Created
November 6, 2021 23:29
-
-
Save AnasBrital98/09e56582fdf328d6423cc7f0561e3dfe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import linalg | |
def Generate_Points(start , end , nbr_points , coefficient , noise ): | |
#Creating X | |
x = np.arange(start , end , (end -start) / nbr_points) | |
#calculating Y | |
y = coefficient[0] | |
for i in range(1 , len(coefficient)) : | |
y += coefficient[i] * x ** i | |
#Adding noise to Y | |
if noise != 0 : | |
y += np.random.normal(-(10 ** noise) , 10**noise , len(x)) | |
return x,y | |
""" | |
You can generate Polynomial Points Using The Function Above , or You can Use | |
The Function in Sklearn like this : | |
from sklearn.datasets import make_regression | |
from matplotlib import pyplot | |
x, y = make_regression(n_samples=150, n_features=1, noise=0.2) | |
pyplot.scatter(x,y) | |
pyplot.show() | |
""" | |
class Polynomial_Reression : | |
def __init__(self , x , y ): | |
self.x = x | |
self.y = y | |
def compute_hypothesis(self , X , theta): | |
hypothesis = np.dot(X , theta) | |
return hypothesis | |
def fit(self , order = 2): | |
X = [self.x ** i for i in range(order+1)] | |
X = np.column_stack(X) | |
theta = linalg.pinv(X.T @ X) @ X.T @ self.y | |
self.X = X | |
self.theta = theta | |
def plot_line(self): | |
plt.figure() | |
plt.scatter(self.x , self.y , color = 'blue') | |
Y_hat = self.compute_hypothesis(self.X , self.theta) | |
plt.plot(self.x , Y_hat , "-r") | |
plt.xlabel("independent variable") | |
plt.ylabel("dependent variable") | |
plt.title("Polynomial Regression Using Normal Equation") | |
plt.show() | |
if __name__ == "__main__": | |
x,y = Generate_Points(0, 50, 100, [3,2,1], 1.5) | |
Poly_regression = Polynomial_Reression(x, y) | |
Poly_regression.fit(order = 3) | |
Poly_regression.plot_line() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment