Created
November 6, 2021 23:30
-
-
Save AnasBrital98/932b3cbabc356d637b6b975643d66df4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import make_regression | |
def Generate_Points(start , end , nbr_points , coefficient , noise ): | |
#Creating X | |
x = np.arange(start , end , (end -start) / nbr_points) | |
#calculating Y | |
y = coefficient[0] | |
for i in range(1 , len(coefficient)) : | |
y += coefficient[i] * x ** i | |
#Adding noise to Y | |
if noise != 0 : | |
y += np.random.normal(-(10 ** noise) , 10**noise , len(x)) | |
return x,y | |
""" | |
You can generate Polynomial Points Using The Function Above , or You can Use | |
The Function in Sklearn like this : | |
from sklearn.datasets import make_regression | |
from matplotlib import pyplot | |
x, y = make_regression(n_samples=150, n_features=1, noise=0.2) | |
pyplot.scatter(x,y) | |
pyplot.show() | |
""" | |
class Polynomial_Reression : | |
def __init__(self , x , y ): | |
self.x = x | |
self.y = y | |
def compute_hypothesis(self , X , theta): | |
hypothesis = np.dot(X , theta) | |
return hypothesis | |
def compute_cost(self , X , theta): | |
hypothesis = self.compute_hypothesis(X, theta) | |
n_samples = len(self.y) | |
error = hypothesis - self.y | |
cost = (1/2 * n_samples) * np.sum((error ) ** 2 ) | |
return cost | |
def Standardize_Data(self ,x): | |
return (x - np.mean(x)) / (np.max(x) - np.min(x)) | |
def fit(self , order = 2 , epsilon = 10e-3 , nbr_iterations = 1000 , learning_rate = 10e-1): | |
self.order = order | |
self.nbr_iterations = nbr_iterations | |
#X = [self.x ** i for i in range(order+1)] | |
X = [] | |
X.append(np.ones(len(self.x))) | |
for i in range(1 , order + 1): | |
X.append(self.Standardize_Data(self.x ** i)) | |
X = np.column_stack(X) | |
theta = np.random.randn(order+1) | |
costs = [] | |
for i in range(self.nbr_iterations): | |
# Computing The Hypothesis for the current params (theta) | |
hypothesis = self.compute_hypothesis(X, theta) | |
# Computing The Errors | |
errors = hypothesis - self.y | |
# Update Theta Using Gradient Descent | |
n_samples = len(self.y) | |
d_J = (1/ n_samples) * np.dot(X.T , errors) | |
theta -= learning_rate * d_J | |
# Computing The Cost | |
cost = self.compute_cost(X, theta) | |
costs.append(cost) | |
# if the current cost less than epsilon stop the gradient Descent | |
if cost < epsilon : | |
break | |
self.costs = costs | |
self.X = X | |
self.theta = theta | |
def plot_line(self): | |
plt.figure() | |
plt.scatter(self.x , self.y , color = 'blue') | |
# Line for Order 1 | |
Y_hat = self.compute_hypothesis(self.X , self.theta) | |
plt.plot(self.x , Y_hat , "-r" , label = 'Order = ' + str(self.order) ) | |
# Line for Order 2 | |
self.fit(order = 2) | |
Y_hat = self.compute_hypothesis(self.X , self.theta) | |
plt.plot(self.x , Y_hat , "-g" , label = 'Order = ' + str(self.order) ) | |
# Line for Order 3 | |
self.fit(order = 3) | |
Y_hat = self.compute_hypothesis(self.X , self.theta) | |
plt.plot(self.x , Y_hat , "-m" , label = 'Order = ' + str(self.order) ) | |
# Line for Order 4 | |
self.fit(order = 4) | |
Y_hat = self.compute_hypothesis(self.X , self.theta) | |
plt.plot(self.x , Y_hat , "-y" , label = 'Order = ' + str(self.order) ) | |
plt.xlabel("independent variable") | |
plt.ylabel("dependent variable") | |
plt.title("Polynomial Regression Using Gradient Descent") | |
plt.legend(loc = 'lower right') | |
plt.show() | |
def plot_cost(self): | |
plt.figure() | |
plt.plot(np.arange(1, self.nbr_iterations+1), self.costs, label = r'$J(\theta)$') | |
plt.xlabel('Iterations') | |
plt.ylabel(r'$J(\theta)$') | |
plt.title('Cost vs Iterations of The Gradient Descent') | |
plt.legend(loc = 'lower right') | |
if __name__ == "__main__": | |
x,y = Generate_Points(0, 50, 100, [3, 1, 1], 2.3) | |
Poly_regression = Polynomial_Reression(x, y) | |
Poly_regression.fit(order = 1) | |
Poly_regression.plot_line() | |
Poly_regression.plot_cost() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment