Created
November 20, 2021 07:47
-
-
Save AnasBrital98/9da8240855f881cc37c7c0605724c3f6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
import matplotlib.pyplot as plt | |
# Loading The DataSet | |
train_data = datasets.MNIST( | |
root = 'data', | |
train = True, | |
transform = transforms.ToTensor(), | |
download = True, | |
) | |
train_data_loader = torch.utils.data.DataLoader(dataset=train_data,batch_size=64,shuffle=True) | |
# Defining our AutoEncoder Architecture | |
class Autoencoder(nn.Module): | |
def __init__(self): | |
super(Autoencoder , self).__init__() | |
# Encoder | |
self.encoder = nn.Sequential( | |
nn.Linear(784, 256), | |
nn.ReLU(), | |
nn.Linear(256, 128), | |
nn.ReLU(), | |
nn.Linear(128, 32), | |
nn.ReLU(), | |
nn.Linear(32, 16) , | |
nn.ReLU(), | |
nn.Linear(16, 10) | |
) | |
# Decoder | |
self.decoder = nn.Sequential( | |
nn.Linear(10, 16), | |
nn.ReLU(), | |
nn.Linear(16, 32), | |
nn.ReLU(), | |
nn.Linear(32, 64), | |
nn.ReLU(), | |
nn.Linear(64, 128), | |
nn.ReLU(), | |
nn.Linear(128, 256), | |
nn.ReLU(), | |
nn.Linear(256, 784), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
encoded_data = self.encoder(x) | |
decoded_data = self.decoder(encoded_data) | |
return decoded_data | |
# Training The Model | |
model = Autoencoder() | |
loss_function = nn.MSELoss() | |
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3,weight_decay=1e-5) | |
number_of_epochs = 10 | |
results = [] | |
for epoch in range(number_of_epochs): | |
for (img, _) in train_data_loader: | |
img = img.reshape(-1 , 784) | |
reconstructed_image = model(img) | |
loss = loss_function(reconstructed_image, img) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
print(f'Epoch : {epoch+1} , Loss : {loss.item()} ') | |
results.append((epoch, img, reconstructed_image)) | |
# Visualize The Result | |
def plot_result(autoEncoder_result , nbr_epoch): | |
original_images = autoEncoder_result[ nbr_epoch -1 ][1].detach().numpy() | |
reconstructed_images = autoEncoder_result[ nbr_epoch -1 ][2].detach().numpy() | |
# Plot The Original Images | |
plt.figure(figsize=(9, 3)) | |
plt.gray() | |
for index, image in zip(range(9) , original_images): | |
plt.subplot(2, 9, index+1) | |
image = image.reshape(-1, 28,28) | |
plt.imshow(image[0]) | |
plt.suptitle(f"Original Images " , fontsize = 20) | |
# Plot The Reconstructed images | |
plt.figure(figsize=(9, 3)) | |
plt.gray() | |
for index, image in zip(range(9), reconstructed_images): | |
plt.subplot(2, 9, index+1) | |
image = image.reshape(-1, 28,28) | |
plt.imshow(image[0]) | |
plt.suptitle(" Reconstructed Images" , fontsize = 20) | |
plot_result(results , number_of_epochs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment