Created
November 20, 2021 07:49
-
-
Save AnasBrital98/ae3fa7280093fdbed871c7aa7545b4cc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
from torchsummary import summary | |
from torch.autograd import Variable | |
import matplotlib.pyplot as plt | |
# Loading The Dataset and Creating The Data Loader to iterate Over The Data | |
train_data = datasets.MNIST( | |
root = 'data', | |
train = True, | |
transform = transforms.ToTensor(), | |
download = True, | |
) | |
train_data_loader = torch.utils.data.DataLoader(dataset=train_data,batch_size=64,shuffle=True) | |
# defining our Convolution Autoencoder Architecture | |
class Convolution_Autoencoder(nn.Module): | |
def __init__(self): | |
super(Convolution_Autoencoder , self).__init__() | |
# Encoder | |
self.encoder = nn.Sequential( | |
nn.Conv2d(1, 16, 3 , padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2,2) , stride=(2,2)), | |
nn.Conv2d(16, 32, 3, stride=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=(2,2) , stride=(2,2)), | |
nn.Conv2d(32, 64, 6) | |
) | |
# Decoder | |
self.decoder = nn.Sequential( | |
nn.ConvTranspose2d(64, 32, 7), | |
nn.ReLU(), | |
nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1), | |
nn.ReLU(), | |
nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
encoded_data = self.encoder(x) | |
decoded_data = self.decoder(encoded_data) | |
return decoded_data | |
# visualizing The Architecture | |
model = Convolution_Autoencoder().cuda() | |
summary(model , (1 , 28 , 28)) | |
loss_function = nn.MSELoss() | |
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3,weight_decay=1e-5) | |
# Training The Model | |
number_of_epochs = 10 | |
results = [] | |
for epoch in range(number_of_epochs): | |
for (img, _) in train_data_loader: | |
#img = img.reshape(-1 , 784) | |
img = Variable(img).cuda() | |
reconstructed_image = model(img) | |
loss = loss_function(reconstructed_image, img) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
print(f'Epoch:{epoch+1}, Loss:{loss.item():.4f}') | |
results.append((epoch, img, reconstructed_image)) | |
# Visualizing The Result | |
def plot_result(autoEncoder_result , nbr_epoch): | |
original_images = autoEncoder_result[ nbr_epoch -1 ][1].cpu().data.numpy() | |
reconstructed_images = autoEncoder_result[ nbr_epoch -1 ][2].cpu().data.numpy() | |
# Plot The Original Images | |
plt.figure(figsize=(9, 3)) | |
plt.gray() | |
for index, image in zip(range(9) , original_images): | |
plt.subplot(2, 9, index+1) | |
image = image.reshape(-1, 28,28) | |
plt.imshow(image[0]) | |
plt.suptitle(f"Original Images " , fontsize = 20) | |
# Plot The Reconstructed images | |
plt.figure(figsize=(9, 3)) | |
plt.gray() | |
for index, image in zip(range(9), reconstructed_images): | |
plt.subplot(2, 9, index+1) | |
image = image.reshape(-1, 28,28) | |
plt.imshow(image[0]) | |
plt.suptitle(" Reconstructed Images" , fontsize = 20) | |
plot_result(results , number_of_epochs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment