// SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.0; import {IPoolAddressesProvider} from './IPoolAddressesProvider.sol'; import {DataTypes} from '../protocol/libraries/types/DataTypes.sol'; /** * @title IPool * @author Aave * @notice Defines the basic interface for an Aave Pool. */ interface IPool { /** * @dev Emitted on mintUnbacked() * @param reserve The address of the underlying asset of the reserve * @param user The address initiating the supply * @param onBehalfOf The beneficiary of the supplied assets, receiving the aTokens * @param amount The amount of supplied assets * @param referralCode The referral code used */ event MintUnbacked( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint16 indexed referralCode ); /** * @dev Emitted on backUnbacked() * @param reserve The address of the underlying asset of the reserve * @param backer The address paying for the backing * @param amount The amount added as backing * @param fee The amount paid in fees */ event BackUnbacked(address indexed reserve, address indexed backer, uint256 amount, uint256 fee); /** * @dev Emitted on supply() * @param reserve The address of the underlying asset of the reserve * @param user The address initiating the supply * @param onBehalfOf The beneficiary of the supply, receiving the aTokens * @param amount The amount supplied * @param referralCode The referral code used */ event Supply( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint16 indexed referralCode ); /** * @dev Emitted on withdraw() * @param reserve The address of the underlying asset being withdrawn * @param user The address initiating the withdrawal, owner of aTokens * @param to The address that will receive the underlying * @param amount The amount to be withdrawn */ event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount); /** * @dev Emitted on borrow() and flashLoan() when debt needs to be opened * @param reserve The address of the underlying asset being borrowed * @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just * initiator of the transaction on flashLoan() * @param onBehalfOf The address that will be getting the debt * @param amount The amount borrowed out * @param interestRateMode The rate mode: 1 for Stable, 2 for Variable * @param borrowRate The numeric rate at which the user has borrowed, expressed in ray * @param referralCode The referral code used */ event Borrow( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, DataTypes.InterestRateMode interestRateMode, uint256 borrowRate, uint16 indexed referralCode ); /** * @dev Emitted on repay() * @param reserve The address of the underlying asset of the reserve * @param user The beneficiary of the repayment, getting his debt reduced * @param repayer The address of the user initiating the repay(), providing the funds * @param amount The amount repaid * @param useATokens True if the repayment is done using aTokens, `false` if done with underlying asset directly */ event Repay( address indexed reserve, address indexed user, address indexed repayer, uint256 amount, bool useATokens ); /** * @dev Emitted on swapBorrowRateMode() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user swapping his rate mode * @param interestRateMode The current interest rate mode of the position being swapped: 1 for Stable, 2 for Variable */ event SwapBorrowRateMode( address indexed reserve, address indexed user, DataTypes.InterestRateMode interestRateMode ); /** * @dev Emitted on borrow(), repay() and liquidationCall() when using isolated assets * @param asset The address of the underlying asset of the reserve * @param totalDebt The total isolation mode debt for the reserve */ event IsolationModeTotalDebtUpdated(address indexed asset, uint256 totalDebt); /** * @dev Emitted when the user selects a certain asset category for eMode * @param user The address of the user * @param categoryId The category id */ event UserEModeSet(address indexed user, uint8 categoryId); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral */ event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral */ event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user); /** * @dev Emitted on rebalanceStableBorrowRate() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user for which the rebalance has been executed */ event RebalanceStableBorrowRate(address indexed reserve, address indexed user); /** * @dev Emitted on flashLoan() * @param target The address of the flash loan receiver contract * @param initiator The address initiating the flash loan * @param asset The address of the asset being flash borrowed * @param amount The amount flash borrowed * @param interestRateMode The flashloan mode: 0 for regular flashloan, 1 for Stable debt, 2 for Variable debt * @param premium The fee flash borrowed * @param referralCode The referral code used */ event FlashLoan( address indexed target, address initiator, address indexed asset, uint256 amount, DataTypes.InterestRateMode interestRateMode, uint256 premium, uint16 indexed referralCode ); /** * @dev Emitted when a borrower is liquidated. * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param liquidatedCollateralAmount The amount of collateral received by the liquidator * @param liquidator The address of the liquidator * @param receiveAToken True if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly */ event LiquidationCall( address indexed collateralAsset, address indexed debtAsset, address indexed user, uint256 debtToCover, uint256 liquidatedCollateralAmount, address liquidator, bool receiveAToken ); /** * @dev Emitted when the state of a reserve is updated. * @param reserve The address of the underlying asset of the reserve * @param liquidityRate The next liquidity rate * @param stableBorrowRate The next stable borrow rate * @param variableBorrowRate The next variable borrow rate * @param liquidityIndex The next liquidity index * @param variableBorrowIndex The next variable borrow index */ event ReserveDataUpdated( address indexed reserve, uint256 liquidityRate, uint256 stableBorrowRate, uint256 variableBorrowRate, uint256 liquidityIndex, uint256 variableBorrowIndex ); /** * @dev Emitted when the protocol treasury receives minted aTokens from the accrued interest. * @param reserve The address of the reserve * @param amountMinted The amount minted to the treasury */ event MintedToTreasury(address indexed reserve, uint256 amountMinted); /** * @notice Mints an `amount` of aTokens to the `onBehalfOf` * @param asset The address of the underlying asset to mint * @param amount The amount to mint * @param onBehalfOf The address that will receive the aTokens * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man */ function mintUnbacked( address asset, uint256 amount, address onBehalfOf, uint16 referralCode ) external; /** * @notice Back the current unbacked underlying with `amount` and pay `fee`. * @param asset The address of the underlying asset to back * @param amount The amount to back * @param fee The amount paid in fees * @return The backed amount */ function backUnbacked(address asset, uint256 amount, uint256 fee) external returns (uint256); /** * @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens. * - E.g. User supplies 100 USDC and gets in return 100 aUSDC * @param asset The address of the underlying asset to supply * @param amount The amount to be supplied * @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user * wants to receive them on his own wallet, or a different address if the beneficiary of aTokens * is a different wallet * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man */ function supply(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external; /** * @notice Supply with transfer approval of asset to be supplied done via permit function * see: https://eips.ethereum.org/EIPS/eip-2612 and https://eips.ethereum.org/EIPS/eip-713 * @param asset The address of the underlying asset to supply * @param amount The amount to be supplied * @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user * wants to receive them on his own wallet, or a different address if the beneficiary of aTokens * is a different wallet * @param deadline The deadline timestamp that the permit is valid * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man * @param permitV The V parameter of ERC712 permit sig * @param permitR The R parameter of ERC712 permit sig * @param permitS The S parameter of ERC712 permit sig */ function supplyWithPermit( address asset, uint256 amount, address onBehalfOf, uint16 referralCode, uint256 deadline, uint8 permitV, bytes32 permitR, bytes32 permitS ) external; /** * @notice Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned * E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC * @param asset The address of the underlying asset to withdraw * @param amount The underlying amount to be withdrawn * - Send the value type(uint256).max in order to withdraw the whole aToken balance * @param to The address that will receive the underlying, same as msg.sender if the user * wants to receive it on his own wallet, or a different address if the beneficiary is a * different wallet * @return The final amount withdrawn */ function withdraw(address asset, uint256 amount, address to) external returns (uint256); /** * @notice Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower * already supplied enough collateral, or he was given enough allowance by a credit delegator on the * corresponding debt token (StableDebtToken or VariableDebtToken) * - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet * and 100 stable/variable debt tokens, depending on the `interestRateMode` * @param asset The address of the underlying asset to borrow * @param amount The amount to be borrowed * @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable * @param referralCode The code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man * @param onBehalfOf The address of the user who will receive the debt. Should be the address of the borrower itself * calling the function if he wants to borrow against his own collateral, or the address of the credit delegator * if he has been given credit delegation allowance */ function borrow( address asset, uint256 amount, uint256 interestRateMode, uint16 referralCode, address onBehalfOf ) external; /** * @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned * - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address * @param asset The address of the borrowed underlying asset previously borrowed * @param amount The amount to repay * - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode` * @param interestRateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable * @param onBehalfOf The address of the user who will get his debt reduced/removed. Should be the address of the * user calling the function if he wants to reduce/remove his own debt, or the address of any other * other borrower whose debt should be removed * @return The final amount repaid */ function repay( address asset, uint256 amount, uint256 interestRateMode, address onBehalfOf ) external returns (uint256); /** * @notice Repay with transfer approval of asset to be repaid done via permit function * see: https://eips.ethereum.org/EIPS/eip-2612 and https://eips.ethereum.org/EIPS/eip-713 * @param asset The address of the borrowed underlying asset previously borrowed * @param amount The amount to repay * - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode` * @param interestRateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable * @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the * user calling the function if he wants to reduce/remove his own debt, or the address of any other * other borrower whose debt should be removed * @param deadline The deadline timestamp that the permit is valid * @param permitV The V parameter of ERC712 permit sig * @param permitR The R parameter of ERC712 permit sig * @param permitS The S parameter of ERC712 permit sig * @return The final amount repaid */ function repayWithPermit( address asset, uint256 amount, uint256 interestRateMode, address onBehalfOf, uint256 deadline, uint8 permitV, bytes32 permitR, bytes32 permitS ) external returns (uint256); /** * @notice Repays a borrowed `amount` on a specific reserve using the reserve aTokens, burning the * equivalent debt tokens * - E.g. User repays 100 USDC using 100 aUSDC, burning 100 variable/stable debt tokens * @dev Passing uint256.max as amount will clean up any residual aToken dust balance, if the user aToken * balance is not enough to cover the whole debt * @param asset The address of the borrowed underlying asset previously borrowed * @param amount The amount to repay * - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode` * @param interestRateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable * @return The final amount repaid */ function repayWithATokens( address asset, uint256 amount, uint256 interestRateMode ) external returns (uint256); /** * @notice Allows a borrower to swap his debt between stable and variable mode, or vice versa * @param asset The address of the underlying asset borrowed * @param interestRateMode The current interest rate mode of the position being swapped: 1 for Stable, 2 for Variable */ function swapBorrowRateMode(address asset, uint256 interestRateMode) external; /** * @notice Rebalances the stable interest rate of a user to the current stable rate defined on the reserve. * - Users can be rebalanced if the following conditions are satisfied: * 1. Usage ratio is above 95% * 2. the current supply APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too * much has been borrowed at a stable rate and suppliers are not earning enough * @param asset The address of the underlying asset borrowed * @param user The address of the user to be rebalanced */ function rebalanceStableBorrowRate(address asset, address user) external; /** * @notice Allows suppliers to enable/disable a specific supplied asset as collateral * @param asset The address of the underlying asset supplied * @param useAsCollateral True if the user wants to use the supply as collateral, false otherwise */ function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external; /** * @notice Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1 * - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives * a proportionally amount of the `collateralAsset` plus a bonus to cover market risk * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param receiveAToken True if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly */ function liquidationCall( address collateralAsset, address debtAsset, address user, uint256 debtToCover, bool receiveAToken ) external; /** * @notice Allows smartcontracts to access the liquidity of the pool within one transaction, * as long as the amount taken plus a fee is returned. * @dev IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept * into consideration. For further details please visit https://docs.aave.com/developers/ * @param receiverAddress The address of the contract receiving the funds, implementing IFlashLoanReceiver interface * @param assets The addresses of the assets being flash-borrowed * @param amounts The amounts of the assets being flash-borrowed * @param interestRateModes Types of the debt to open if the flash loan is not returned: * 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver * 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2 * @param params Variadic packed params to pass to the receiver as extra information * @param referralCode The code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man */ function flashLoan( address receiverAddress, address[] calldata assets, uint256[] calldata amounts, uint256[] calldata interestRateModes, address onBehalfOf, bytes calldata params, uint16 referralCode ) external; /** * @notice Allows smartcontracts to access the liquidity of the pool within one transaction, * as long as the amount taken plus a fee is returned. * @dev IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept * into consideration. For further details please visit https://docs.aave.com/developers/ * @param receiverAddress The address of the contract receiving the funds, implementing IFlashLoanSimpleReceiver interface * @param asset The address of the asset being flash-borrowed * @param amount The amount of the asset being flash-borrowed * @param params Variadic packed params to pass to the receiver as extra information * @param referralCode The code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man */ function flashLoanSimple( address receiverAddress, address asset, uint256 amount, bytes calldata params, uint16 referralCode ) external; /** * @notice Returns the user account data across all the reserves * @param user The address of the user * @return totalCollateralBase The total collateral of the user in the base currency used by the price feed * @return totalDebtBase The total debt of the user in the base currency used by the price feed * @return availableBorrowsBase The borrowing power left of the user in the base currency used by the price feed * @return currentLiquidationThreshold The liquidation threshold of the user * @return ltv The loan to value of The user * @return healthFactor The current health factor of the user */ function getUserAccountData( address user ) external view returns ( uint256 totalCollateralBase, uint256 totalDebtBase, uint256 availableBorrowsBase, uint256 currentLiquidationThreshold, uint256 ltv, uint256 healthFactor ); /** * @notice Initializes a reserve, activating it, assigning an aToken and debt tokens and an * interest rate strategy * @dev Only callable by the PoolConfigurator contract * @param asset The address of the underlying asset of the reserve * @param aTokenAddress The address of the aToken that will be assigned to the reserve * @param stableDebtAddress The address of the StableDebtToken that will be assigned to the reserve * @param variableDebtAddress The address of the VariableDebtToken that will be assigned to the reserve * @param interestRateStrategyAddress The address of the interest rate strategy contract */ function initReserve( address asset, address aTokenAddress, address stableDebtAddress, address variableDebtAddress, address interestRateStrategyAddress ) external; /** * @notice Drop a reserve * @dev Only callable by the PoolConfigurator contract * @param asset The address of the underlying asset of the reserve */ function dropReserve(address asset) external; /** * @notice Updates the address of the interest rate strategy contract * @dev Only callable by the PoolConfigurator contract * @param asset The address of the underlying asset of the reserve * @param rateStrategyAddress The address of the interest rate strategy contract */ function setReserveInterestRateStrategyAddress( address asset, address rateStrategyAddress ) external; /** * @notice Sets the configuration bitmap of the reserve as a whole * @dev Only callable by the PoolConfigurator contract * @param asset The address of the underlying asset of the reserve * @param configuration The new configuration bitmap */ function setConfiguration( address asset, DataTypes.ReserveConfigurationMap calldata configuration ) external; /** * @notice Returns the configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The configuration of the reserve */ function getConfiguration( address asset ) external view returns (DataTypes.ReserveConfigurationMap memory); /** * @notice Returns the configuration of the user across all the reserves * @param user The user address * @return The configuration of the user */ function getUserConfiguration( address user ) external view returns (DataTypes.UserConfigurationMap memory); /** * @notice Returns the normalized income of the reserve * @param asset The address of the underlying asset of the reserve * @return The reserve's normalized income */ function getReserveNormalizedIncome(address asset) external view returns (uint256); /** * @notice Returns the normalized variable debt per unit of asset * @dev WARNING: This function is intended to be used primarily by the protocol itself to get a * "dynamic" variable index based on time, current stored index and virtual rate at the current * moment (approx. a borrower would get if opening a position). This means that is always used in * combination with variable debt supply/balances. * If using this function externally, consider that is possible to have an increasing normalized * variable debt that is not equivalent to how the variable debt index would be updated in storage * (e.g. only updates with non-zero variable debt supply) * @param asset The address of the underlying asset of the reserve * @return The reserve normalized variable debt */ function getReserveNormalizedVariableDebt(address asset) external view returns (uint256); /** * @notice Returns the state and configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The state and configuration data of the reserve */ function getReserveData(address asset) external view returns (DataTypes.ReserveData memory); /** * @notice Validates and finalizes an aToken transfer * @dev Only callable by the overlying aToken of the `asset` * @param asset The address of the underlying asset of the aToken * @param from The user from which the aTokens are transferred * @param to The user receiving the aTokens * @param amount The amount being transferred/withdrawn * @param balanceFromBefore The aToken balance of the `from` user before the transfer * @param balanceToBefore The aToken balance of the `to` user before the transfer */ function finalizeTransfer( address asset, address from, address to, uint256 amount, uint256 balanceFromBefore, uint256 balanceToBefore ) external; /** * @notice Returns the list of the underlying assets of all the initialized reserves * @dev It does not include dropped reserves * @return The addresses of the underlying assets of the initialized reserves */ function getReservesList() external view returns (address[] memory); /** * @notice Returns the address of the underlying asset of a reserve by the reserve id as stored in the DataTypes.ReserveData struct * @param id The id of the reserve as stored in the DataTypes.ReserveData struct * @return The address of the reserve associated with id */ function getReserveAddressById(uint16 id) external view returns (address); /** * @notice Returns the PoolAddressesProvider connected to this contract * @return The address of the PoolAddressesProvider */ function ADDRESSES_PROVIDER() external view returns (IPoolAddressesProvider); /** * @notice Updates the protocol fee on the bridging * @param bridgeProtocolFee The part of the premium sent to the protocol treasury */ function updateBridgeProtocolFee(uint256 bridgeProtocolFee) external; /** * @notice Updates flash loan premiums. Flash loan premium consists of two parts: * - A part is sent to aToken holders as extra, one time accumulated interest * - A part is collected by the protocol treasury * @dev The total premium is calculated on the total borrowed amount * @dev The premium to protocol is calculated on the total premium, being a percentage of `flashLoanPremiumTotal` * @dev Only callable by the PoolConfigurator contract * @param flashLoanPremiumTotal The total premium, expressed in bps * @param flashLoanPremiumToProtocol The part of the premium sent to the protocol treasury, expressed in bps */ function updateFlashloanPremiums( uint128 flashLoanPremiumTotal, uint128 flashLoanPremiumToProtocol ) external; /** * @notice Configures a new category for the eMode. * @dev In eMode, the protocol allows very high borrowing power to borrow assets of the same category. * The category 0 is reserved as it's the default for volatile assets * @param id The id of the category * @param config The configuration of the category */ function configureEModeCategory(uint8 id, DataTypes.EModeCategory memory config) external; /** * @notice Returns the data of an eMode category * @param id The id of the category * @return The configuration data of the category */ function getEModeCategoryData(uint8 id) external view returns (DataTypes.EModeCategory memory); /** * @notice Allows a user to use the protocol in eMode * @param categoryId The id of the category */ function setUserEMode(uint8 categoryId) external; /** * @notice Returns the eMode the user is using * @param user The address of the user * @return The eMode id */ function getUserEMode(address user) external view returns (uint256); /** * @notice Resets the isolation mode total debt of the given asset to zero * @dev It requires the given asset has zero debt ceiling * @param asset The address of the underlying asset to reset the isolationModeTotalDebt */ function resetIsolationModeTotalDebt(address asset) external; /** * @notice Returns the percentage of available liquidity that can be borrowed at once at stable rate * @return The percentage of available liquidity to borrow, expressed in bps */ function MAX_STABLE_RATE_BORROW_SIZE_PERCENT() external view returns (uint256); /** * @notice Returns the total fee on flash loans * @return The total fee on flashloans */ function FLASHLOAN_PREMIUM_TOTAL() external view returns (uint128); /** * @notice Returns the part of the bridge fees sent to protocol * @return The bridge fee sent to the protocol treasury */ function BRIDGE_PROTOCOL_FEE() external view returns (uint256); /** * @notice Returns the part of the flashloan fees sent to protocol * @return The flashloan fee sent to the protocol treasury */ function FLASHLOAN_PREMIUM_TO_PROTOCOL() external view returns (uint128); /** * @notice Returns the maximum number of reserves supported to be listed in this Pool * @return The maximum number of reserves supported */ function MAX_NUMBER_RESERVES() external view returns (uint16); /** * @notice Mints the assets accrued through the reserve factor to the treasury in the form of aTokens * @param assets The list of reserves for which the minting needs to be executed */ function mintToTreasury(address[] calldata assets) external; /** * @notice Rescue and transfer tokens locked in this contract * @param token The address of the token * @param to The address of the recipient * @param amount The amount of token to transfer */ function rescueTokens(address token, address to, uint256 amount) external; /** * @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens. * - E.g. User supplies 100 USDC and gets in return 100 aUSDC * @dev Deprecated: Use the `supply` function instead * @param asset The address of the underlying asset to supply * @param amount The amount to be supplied * @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user * wants to receive them on his own wallet, or a different address if the beneficiary of aTokens * is a different wallet * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man */ function deposit(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external; }