Name | Original | GGUF f32 | GGUF f16 | GGUF q8_0 | GGUF tq2_0 | GGUF tq1_0 |
---|---|---|---|---|---|---|
STSBTask | 0.8444961710957753 | 0.7736137897844315 | 0.7736028484956837 | 0.773361958282741 | 0.3647773184116074 | 0.3647773184116074 |
ParaphraserTask | 0.760147408288547 | 0.5760219715717907 | 0.5760429923959474 | 0.5761467826017955 | 0.11769859613134119 | 0.11769859613134119 |
XnliTask | 0.4796407185628742 | 0.4165668662674651 | 0.4165668662674651 | 0.4155688622754491 | 0.3393213572854291 | 0.3393213572854291 |
SentimentTask | 0.836 | 0.7983333333333333 | 0.7976666666666666 | 0.799 | 0.5176666666666667 | 0.5176666666666667 |
ToxicityTask | 0.989866 | 0.982673 | 0.98267 | 0.982684 | 0.724437 | 0.724437 |
InappropriatenessTask | 0.8463448532935726 | 0.8284147185686138 | 0.8285707439160764 | 0.828561158741147 | 0.5766776718675115 | 0.5766776718675115 |
IntentsTask | 0.8034 | 0.7386 | 0.7386 | 0.7392 | 0.2868 | 0.2868 |
IntentsXTask | 0.781 | 0.6956 | 0.6956 | 0.6942 | 0.1096 | 0.1096 |
FactRuTask | 0.24240861548860063 | 0.12707425468979844 | 0.12693111870225876 | 0.12664414521133774 | 0.05964525242263313 | 0.05964525242263313 |
RudrTask | 0.26938953157907136 | 0.15240762044883197 | 0.15240762044883197 | 0.1553384424039951 | 0.060060972146900204 | 0.060060972146900204 |
SpeedTask (gpu) | 28.902501265207924 | - | - | - | - | - |
SpeedTask (cpu) | 994.7337913513184 | 184.08727248509723 | 110.00351905822754 | 81.11035426457723 | 53.92512798309326 | 90.35333156585693 |
Last active
May 27, 2025 11:24
-
-
Save EvilFreelancer/b2833527b040e7811e1842c47a09415d to your computer and use it in GitHub Desktop.
FRIDA GGUF тестирование
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"source": [ | |
"from encodechka_eval import tasks\n", | |
"# from encodechka_eval.bert_embedders import embed_bert_both, get_word_vectors_with_bert\n", | |
"from openai import OpenAI\n", | |
"import numpy as np" | |
], | |
"id": "e67cbe9a", | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "24e5e3d9", | |
"metadata": {}, | |
"source": [ | |
"from importlib import reload\n", | |
"\n", | |
"reload(tasks)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "99873d77", | |
"metadata": {}, | |
"source": [ | |
"import os\n", | |
"\n", | |
"DATA_PATH_NAME = 'ENCODECHKA_DATA_PATH'\n", | |
"os.environ[DATA_PATH_NAME] = 'encodechka_eval'" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"source": [ | |
"m = model = tokenizer = 'frida'\n", | |
"\n", | |
"client_cls = OpenAI(\n", | |
" api_key=\"~\",\n", | |
" base_url=\"http://gpu02:8888/v1\"\n", | |
")\n", | |
"\n", | |
"client_mean = OpenAI(\n", | |
" api_key=\"~\",\n", | |
" base_url=\"http://gpu02:9999/v1\"\n", | |
")\n", | |
"\n", | |
"\n", | |
"def normalize(v):\n", | |
" v = np.array(v)\n", | |
" return v / (np.linalg.norm(v) + 1e-9)\n", | |
"\n", | |
"\n", | |
"def embed_bert_both(text, model, tokenizer, max_length=128):\n", | |
" response_cls = client_cls.embeddings.create(\n", | |
" model=model,\n", | |
" input=text,\n", | |
" )\n", | |
" response_mean = client_mean.embeddings.create(\n", | |
" model=model,\n", | |
" input=text,\n", | |
" )\n", | |
" cls = np.array(response_cls.data[0].embedding)\n", | |
" mean = np.array(response_mean.data[0].embedding)\n", | |
" cls_norm = normalize(cls)\n", | |
" mean_norm = normalize(mean)\n", | |
"\n", | |
" return {\n", | |
" 'cls': cls,\n", | |
" 'mean': mean,\n", | |
" 'cls_norm': cls_norm,\n", | |
" 'mean_norm': mean_norm\n", | |
" }\n", | |
"\n", | |
"\n", | |
"def get_word_vectors_with_bert(words, model, tokenizer, return_raw=False):\n", | |
" def normalize(v):\n", | |
" v = np.array(v)\n", | |
" return v / (np.linalg.norm(v) + 1e-9)\n", | |
"\n", | |
" try:\n", | |
" response = client_cls.embeddings.create(\n", | |
" model=model,\n", | |
" input=words,\n", | |
" )\n", | |
" except Exception as e:\n", | |
" print(f\"[get_word_vectors_with_bert] Error during embedding request: {e}\")\n", | |
" return {i: np.zeros(768) for i in range(len(words))}\n", | |
"\n", | |
" embeddings = [normalize(obj.embedding) for obj in response.data]\n", | |
"\n", | |
" if return_raw:\n", | |
" return embeddings, words\n", | |
"\n", | |
" id2vecs = {i: emb for i, emb in enumerate(embeddings)}\n", | |
" return id2vecs" | |
], | |
"id": "b3f1edfda54a3117", | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "62f9b88a", | |
"metadata": {}, | |
"source": [ | |
"stsb_task = tasks.STSBTask()\n", | |
"stsb_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "199b2bdc", | |
"metadata": {}, | |
"source": [ | |
"para_task = tasks.ParaphraserTask()\n", | |
"para_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "1a81480b", | |
"metadata": {}, | |
"source": [ | |
"xnli_task = tasks.XnliTask()\n", | |
"xnli_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "a3756015", | |
"metadata": {}, | |
"source": [ | |
"senti_task = tasks.SentimentTask()\n", | |
"senti_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "e1d5dd24", | |
"metadata": {}, | |
"source": [ | |
"tox_task = tasks.ToxicityTask()\n", | |
"tox_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "ad0f9609", | |
"metadata": {}, | |
"source": [ | |
"inap_task = tasks.InappropriatenessTask()\n", | |
"inap_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "244f2c82", | |
"metadata": {}, | |
"source": [ | |
"intents_task = tasks.IntentsTask()\n", | |
"intents_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "106c4e3f", | |
"metadata": {}, | |
"source": [ | |
"intentsx_task = tasks.IntentsXTask()\n", | |
"intentsx_task.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "529ca496", | |
"metadata": {}, | |
"source": [ | |
"factru_task = tasks.FactRuTask()\n", | |
"factru_task.eval(lambda words: get_word_vectors_with_bert(words, model=model, tokenizer=tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "36d5993a", | |
"metadata": {}, | |
"source": [ | |
"rudr_task = tasks.RudrTask()\n", | |
"rudr_task.eval(lambda words: get_word_vectors_with_bert(words, model=model, tokenizer=tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
}, | |
{ | |
"cell_type": "code", | |
"id": "df527b39", | |
"metadata": {}, | |
"source": [ | |
"speed_task_cpu = tasks.SpeedTask()\n", | |
"speed_task_cpu.eval(lambda x: embed_bert_both(x, model, tokenizer), m)" | |
], | |
"outputs": [], | |
"execution_count": null | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment