Created
January 31, 2021 01:08
-
-
Save ResidentMario/1a4f6473828048990e26d12d58d7a227 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Derived from https://discuss.pytorch.org/t/custom-convolution-layer/45979/5." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"import torch.nn.functional as F\n", | |
"\n", | |
"class Conv2d(nn.Module):\n", | |
" def __init__(\n", | |
" self, n_channels, out_channels, kernel_size, dilation=1, padding=0, stride=1\n", | |
" ):\n", | |
" super().__init__()\n", | |
"\n", | |
" self.kernel_size = kernel_size\n", | |
" self.kernel_size_number = kernel_size * kernel_size\n", | |
" self.out_channels = out_channels\n", | |
" self.padding = padding\n", | |
" self.dilation = dilation\n", | |
" self.stride = stride\n", | |
" self.n_channels = n_channels\n", | |
" self.weights = nn.Parameter(\n", | |
" torch.Tensor(self.out_channels, self.n_channels, self.kernel_size**2)\n", | |
" )\n", | |
"\n", | |
" def __repr__(self):\n", | |
" return (\n", | |
" f\"Conv2d(n_channels={self.n_channels}, out_channels={self.out_channels}, \"\n", | |
" f\"kernel_size={self.kernel_size})\"\n", | |
" )\n", | |
" \n", | |
" def forward(self, x):\n", | |
" width = self.calculate_new_width(x)\n", | |
" height = self.calculate_new_height(x)\n", | |
" windows = self.calculate_windows(x)\n", | |
" \n", | |
" result = torch.zeros(\n", | |
" [x.shape[0] * self.out_channels, width, height],\n", | |
" dtype=torch.float32, device=x.device\n", | |
" )\n", | |
"\n", | |
" # import pdb; pdb.set_trace()\n", | |
" for channel in range(x.shape[1]):\n", | |
" for i_conv_n in range(self.out_channels):\n", | |
" # print(channel, i_conv_n)\n", | |
" xx = torch.matmul(windows[channel], self.weights[i_conv_n][channel]) \n", | |
" xx = xx.view((-1, width, height))\n", | |
" \n", | |
" xx_stride = slice(i_conv_n * xx.shape[0], (i_conv_n + 1) * xx.shape[0])\n", | |
" result[xx_stride] += xx\n", | |
"\n", | |
" result = result.view((x.shape[0], self.out_channels, width, height))\n", | |
" return result \n", | |
"\n", | |
" def calculate_windows(self, x):\n", | |
" windows = F.unfold(\n", | |
" x,\n", | |
" kernel_size=(self.kernel_size, self.kernel_size),\n", | |
" padding=(self.padding, self.padding),\n", | |
" dilation=(self.dilation, self.dilation),\n", | |
" stride=(self.stride, self.stride)\n", | |
" )\n", | |
"\n", | |
" windows = (windows\n", | |
" .transpose(1, 2)\n", | |
" .contiguous().view((-1, x.shape[1], int(self.kernel_size**2)))\n", | |
" .transpose(0, 1)\n", | |
" )\n", | |
" return windows\n", | |
"\n", | |
" def calculate_new_width(self, x):\n", | |
" return (\n", | |
" (x.shape[2] + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1)\n", | |
" // self.stride\n", | |
" ) + 1\n", | |
"\n", | |
" def calculate_new_height(self, x):\n", | |
" return (\n", | |
" (x.shape[3] + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1)\n", | |
" // self.stride\n", | |
" ) + 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x = torch.randint(0, 255, (1, 3, 512, 512), device='cuda') / 255" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Conv2d(n_channels=3, out_channels=16, kernel_size=3)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"conv = Conv2d(3, 16, 3)\n", | |
"conv.cuda()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CPU times: user 32.5 ms, sys: 4.2 ms, total: 36.7 ms\n", | |
"Wall time: 35.5 ms\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"out = conv(x)\n", | |
"out.mean().backward()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## JIT version" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"import torch.nn.functional as F\n", | |
"import torch.jit as jit\n", | |
"\n", | |
"class Conv2d(jit.ScriptModule):\n", | |
" def __init__(\n", | |
" self, n_channels, out_channels, kernel_size, dilation=1, padding=0, stride=1\n", | |
" ):\n", | |
" super().__init__()\n", | |
"\n", | |
" self.kernel_size = kernel_size\n", | |
" self.kernel_size_number = kernel_size * kernel_size\n", | |
" self.out_channels = out_channels\n", | |
" self.padding = padding\n", | |
" self.dilation = dilation\n", | |
" self.stride = stride\n", | |
" self.n_channels = n_channels\n", | |
" self.weights = nn.Parameter(\n", | |
" torch.Tensor(self.out_channels, self.n_channels, self.kernel_size**2)\n", | |
" )\n", | |
"\n", | |
" def __repr__(self):\n", | |
" return (\n", | |
" f\"Conv2d(n_channels={self.n_channels}, out_channels={self.out_channels}, \"\n", | |
" f\"kernel_size={self.kernel_size})\"\n", | |
" )\n", | |
" \n", | |
" @jit.script_method\n", | |
" def forward(self, x):\n", | |
" width = self.calculate_new_width(x)\n", | |
" height = self.calculate_new_height(x)\n", | |
" windows = self.calculate_windows(x)\n", | |
" \n", | |
" result = torch.zeros(\n", | |
" [x.shape[0] * self.out_channels, width, height],\n", | |
" dtype=torch.float32, device=x.device\n", | |
" )\n", | |
"\n", | |
" for channel in range(x.shape[1]):\n", | |
" for i_conv_n in range(self.out_channels):\n", | |
" xx = torch.matmul(windows[channel], self.weights[i_conv_n][channel]) \n", | |
" xx = xx.view((-1, width, height))\n", | |
" \n", | |
" xx_stride = slice(i_conv_n * xx.shape[0], (i_conv_n + 1) * xx.shape[0])\n", | |
" result[xx_stride] += xx\n", | |
"\n", | |
" result = result.view((x.shape[0], self.out_channels, width, height))\n", | |
" return result\n", | |
"\n", | |
" def calculate_windows(self, x):\n", | |
" windows = F.unfold(\n", | |
" x,\n", | |
" kernel_size=(self.kernel_size, self.kernel_size),\n", | |
" padding=(self.padding, self.padding),\n", | |
" dilation=(self.dilation, self.dilation),\n", | |
" stride=(self.stride, self.stride)\n", | |
" )\n", | |
"\n", | |
" windows = (windows\n", | |
" .transpose(1, 2)\n", | |
" .contiguous().view((-1, x.shape[1], int(self.kernel_size**2)))\n", | |
" .transpose(0, 1)\n", | |
" )\n", | |
" return windows\n", | |
"\n", | |
" def calculate_new_width(self, x):\n", | |
" return (\n", | |
" (x.shape[2] + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1)\n", | |
" // self.stride\n", | |
" ) + 1\n", | |
"\n", | |
" def calculate_new_height(self, x):\n", | |
" return (\n", | |
" (x.shape[3] + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1)\n", | |
" // self.stride\n", | |
" ) + 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x = torch.randint(0, 255, (1, 3, 512, 512), device='cuda') / 255" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Conv2d(n_channels=3, out_channels=16, kernel_size=3)" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"conv = Conv2d(3, 16, 3)\n", | |
"conv.cuda()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"CPU times: user 13.8 ms, sys: 4.79 ms, total: 18.6 ms\n", | |
"Wall time: 17.4 ms\n" | |
] | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"out = conv(x)\n", | |
"out.mean().backward()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.9" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment