Created
April 5, 2016 10:46
-
-
Save So-Cool/ca08a087f8a5c0efb3028ad3acefbd90 to your computer and use it in GitHub Desktop.
Jupyter notebook with sliders
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from numpy import arange, pi, sin, linspace\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"# from IPython.html.widgets import *\n", | |
"from ipywidgets import *\n", | |
"\n", | |
"#notebook\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/javascript": [ | |
"IPython.OutputArea.auto_scroll_threshold = 9999;" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Javascript object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%javascript\n", | |
"IPython.OutputArea.auto_scroll_threshold = 9999;" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl0Vdd9778/ISHmGSQGgRBIDGbGDLZjWx7iOWRoE5vE\nTeq0qRvXr85r8+r0vTbGa7kZmmS9zFl+iePQpLUT23Hj2CbBxsYDJNjYzEiAEAIhQICZRwm03x+/\neyJZ3Cvde8/ZZw/n91lLCw3nnvPjDN/9O9/923uTUgqCIAhCMigwHYAgCIIQHyL6giAICUJEXxAE\nIUGI6AuCICQIEX1BEIQEIaIvCIKQIEKLPhH9lIiaiWhTF9t8l4h2ENEGIpod9piCIAhCfkSR6T8O\n4JZMfySi2wBMVEpVAvgbAD+K4JiCIAhCHoQWfaXUGwCOdrHJIgBLU9uuATCIiErCHlcQBEHInTg8\n/dEAGjv8vBfAmBiOKwiCIHQiro5c6vSzzP0gCIJggMIYjtEEoKzDz2NSv3sfRCQNgSAIQh4opTon\n1hmJI9N/DsCnAYCIFgI4ppRqTrehUir014YNCiUlCs3N7b+7806FJUty39dDDz0USUxRfpmOafVq\nhTFjFL70JYWWFoVTpxRGjnwor/Pr+7nKJ6a2NoVFixS+8AX++b33FL74RYWhQxV275bzFParrU1h\n7lyFp55q/92yZQpVVXw/u3aelMo9V46iZPMJAKsBTCKiRiL6LBHdS0T3poT8RQD1RFQH4FEA94U9\nZlc88gjwxS8CI0a0/+7f/x343veAPXt0Htl/lAI+9zngG98AvvpVoKgI6NsX+OQngZ/9jL+EcHzn\nO8D+/cDXv84/DxnC5/vuu4FHHzUbmw88+yzQ1gZ87GPtv7v5ZqCsDHjsMXNxxUloe0cptTiLbe4P\ne5xs2LIFeO014PHH3//7sWOB++8HHnwQeOKJOCLxk7ffBs6fB+688/2/79cPePFF4Kqr+AEaOdJM\nfK7z9tvAV74CrFkD9Oz5/r99/vPAtdcCX/4yUFxsJj7XuXgR+Nd/5Ua0oEO6S8SJ4e23A5/6FNC/\nv7kY48CrEbmPPAL8wz9w9tmZf/onYNUq4I03st9fdXV1ZLFFhcmYHnsMuOcefkg6Ul1djSlTgDvu\nAJ55xkxs6XDt+n35y/wGNX78pX+bNAmYPl3P+XXtPOXLE08AAwcCt9566d/mzAFuuAH41rfijckE\nlI8npAMiUmFiqanhTKi+njPPdDzxBPDNbwJr114qXELXnD7Nr8CbNgGjR6ff5vnnOWN6/fV4Y/OB\n48f5/DY1Zc40n32WRenNN+ONzQdaW4EpU4Af/xi47rr02zQ0AHPnAps3u/W2SkRQlnXkxsK//Rvw\nhS9kFnwAuOsu4MgRtoGE3HjmGeCKKzILPgB88IP8wDRdUpsldMeLLwLXXNO1tfChDwG7dwMbNsQX\nly/8x38A5eWZBR/gv999N/D978cVlRm8EP2DB4EXXmDfviuI+NVu2bJ44vKJxx4D/uqvut6muBj4\n8IeBp5+OJyaf+PWvgY9+tOttCguBe+8FfvjDeGLyiSefBP7u77rf7s//3H998EL0X3mFs6QBA7rf\n9pZb/L+oUbNjB1Bby559d3ziE8CvfqU/Jp84exZYvhxYtKj7bf/6r/n8HjumPy5fOHsW+OMfgeuv\n737bhQvZIm5OW1TuB16I/ssvAzfemN2211/PVRInT+qNyScef5xfeztXlKTjhhu4gWhs7H5bgXn5\nZWDWLGD48O63LS3lCimpQsueN98EZszgTtzuKCpiC+ill/THZQrnRV+p3ES/Xz9gwQJgxQq9cflC\nWxuwdCnw2c9mt33PnsBHPgI89ZTeuHzi2WffXzfeHXfcwW+3Qna89BL3N2XLzTcDv/+9vnhM47zo\n19dzz/zkydl/5tZbgd/9Tl9MPlFTA/TuDVx2WfafufNOsXiy5cIF4Le/5YYyW665hiukLCm8s57l\ny4Gbbsp++5tv5s+0temLySTOi/7LL7OlkEsJZtCZKw9N97z5Jg+6yoXrrgN27uQSOKFr3nyTBw+O\nG5f9Z8aOBXr1ArZv1xeXLzQ38304f372nxk/nq0gX6ukvBD9bK2dgClT+N+amujj8Y033wQ+8IHc\nPlNUxJ2Szz+vJyafyKZqJx1Bti90zYoVQHU1Vz7lgs8Wj9Oi39YGvPoqZ/q5QCRVPNmyalXuog/w\n28Ef/xh9PD6hFPCb34jo6yRXaydARN9S1q/nidW6GjCUCanX756mJh4pOmlS7p9duFBEvzuamoBz\n54CpU3P/rIh+9yiVeyduQHW1v1V+Tot+4Ofnww038MRWp05FG5NPrFrFGXtBHnfJ5MnA4cP8JaTn\nrbeAefPymxKkqoobjN27o4/LF2pquJps4sTcP9uvH/cDvPpq9HGZxmnRX7Eidz8/oH9/fuBWrow0\nJK/I19oBuKG4/HIWNiE9b7/N92A+EEm23x1Blp/vPFu+WjzOiv65c8Dq1fwali9XXimi1BX5VO50\nRCyernnrrdyqSjojot81y5fnZ+0E3HSTn+N5nBX9P/yBa8ezGWWXiTlzgHffjS4mnzh5Eti2jbP1\nfFmwgC004VLa2oB33sk/0wdE9LuirY2Tlq4mWOuO6dN5ZLlvvr7Ton/NNeH2MXeuiH4m1qwBZs8O\nt2DHggWczfo6yCUM27fzqljDhuW/j2nTeLLBAweii8sX6uuBQYPCnd/CQk4sfavXd1b0169nUQrD\n2LG8EtT+/dHE5BNhrR2AK6sGD5ZBROkI4+cH9OjBfS65LAyUFNatC68PALsB69aF349NOC36s2aF\n2weRWDyZCNOJ2xGxeNIT1s8PEIsnPVGJ/uzZ/umDk6J/8iSwbx+XrYVFRP9SLlxgob7yyvD7EtFP\nTxSZPsAN86pV4ffjG5LpZ8ZJ0d+4kb22Hj3C70t8/UvZuJGX7hsyJPy+pILnUlpaeNnJOXPC72vG\nDJ7K+sKF8PvyiSicAIA7c7dtYxvYF5wU/aguKCCZfjreeosz9CiYNYsfmjNnotmfD2zaBFRUdL20\nZ7b07csj0qXfpJ0DB7hhLSsLv69evYDKSl4G1BcSL/oVFbwKkYwcbWfTJs4go6BXL34re+edaPbn\nA1H5+QEzZvA1E5jA2sl3UFZnfPP1Ey/6BQV8UX3z7cKweTO/1kbFwoXi63ckKj8/YPp0tuQEZt26\n6PQB8M/Xd070L1wAtm6NVpTmzJFMNEApzhqnTYtun9KZ+350ZPoi+u1E1YkbIJm+YbZtA8aMicYP\nDZDO3Hb27+dBKSUl0e1z9mwRpYCTJ4Fdu6JNWqZPF3unI1GM4enIrFn89nvxYnT7NIlzoh+ltRMg\nnbntRJ3lAzzL4Z49PF9S0lm3jkW6qCi6fVZUcJ/U8ePR7dNVTpzgcu58pgPPxIABwMiRnHD6gIg+\nuN7/wAHu0E06Ufv5AE9vW1Hhz0MThk2bgJkzo91njx7cWe5ThUm+bNjASUsU5dwd8SkxdE70o+6k\nAfgGmTmTG5SkoyPTB1iUtm6Nfr+usXVrfoumdId05jJR+/kBPhV7OCX6SunJ9AHx9QN0ZPoAC92W\nLdHv1zVqatrXaI4S6cxlovbzAyTTN0RTE2flpaXR71sqeLijqqaGs/KokUyf0ZnpS2euHicAaM/0\nlYp+33HjlOgHWX5Ugy46Mm2aiFJ9Pc+M2b9/9PuWTB84coRHJuezpnN3BKLvgyjlS0sL9xvpeFMd\nPpyfi127ot933Dgp+jqYNImHsid57nddfj7AQ9n37PFrDpNcCawdHUnLsGFcxrxnT/T7doWtW4Hx\n44E+ffTs35e3VRH9FP3789zvjY169u8Cuvx8gCt4xo9PdgWPLmsnIOmduVu26EtaAGDyZD/uX6dE\nf8sWPX5zwOTJPGNhUtm8We9D40umlC9bt+rpxA1I+hw827ZFW5/fGV/0wRnRv3CB/bTKSn3H8OWi\n5sumTfoyfUB8/ZoayfR1olv0J03yQx+cEf1du7hqp3dvfcdIsuifOwc0NOh9aCTT1yv6SS/brK3l\nZ1gXYu/EjO5WHEi26NfWAhMmsPeuiyRn+idP8lQJ48bpO8bkyZwcJXG6i7Y2YMeOaFbTy0RpKRci\nvPeevmPEgYh+B5Is+rr9fIAfyN27k1nBU1vL92/U0wN0pLg4uZ3ljY1ciKGj3DiAiK+h6+fXGdHf\nvl2/6I8eDZw6lcw5eHT7+QC/RZSXJ3OVJ92duAGTJnHGmzR0WzsBPlg8zoh+HJm+Ly15PuiujApI\nqq+vuxM3oLIymY1qHPoA+OEGiOh3woeLmg/bt+v1QwOS6uvr7sQNqKpKZqYflz74UMHjhOifOMEd\nYTqGr3dmyhT3L2quXLjAIzknTNB/rKRm+nHZO1VVyc30xd7JDidEf9s2fm0tiCHaJGb6DQ28SERx\nsf5jJTHTP3sW2LuXF5PRTVJFP+go183Eify8tLbqP5YunBH9OC4owKJfUxPPsWxh+3a9g946UlXF\nZYVJquDZvp0XkYlytaxMlJRwyeaRI/qPZQunTvH/d+xY/ccqLublWnfu1H8sXYjod8KHljxXduyI\nT/SLi/nhrK+P53g2EJefD3AxQtJ8/SBpicMJANx3A0T0O1FcDJSVud2S50qcog9ww1pXF9/xTBNX\n5U5A0kQ/LmsnwPUKv9CiT0S3EFEtEe0gogfT/L2aiI4T0brU17/keow4RR9wvyXPFd0jGTuTRNGP\no5MxIGm+vuhDboQSfSLqAeD7AG4BMBXAYiJKV6PwmlJqdurrkVyOEcfw6s64flFzRTJ9vdTVxXt+\nk1arH1flToDr+hA2058PoE4p1aCUagXwJIAPp9ku72Uj4hhe3RnXL2outLQA+/bxSNm4qKxMjugr\nxVZhHJU7AUnL9E3ZO66uUhZW9EcD6LjsyN7U7zqiAFxJRBuI6EUiysndjPvVDUiW6NfXcx9GHJUl\nAUnK9A8dAgoLOXGJi8pKfntzVZRywYQTMHw4/3voUHzHjJLCkJ/P5rZ6F0CZUuoMEd0K4L8BpL1E\nS5Ys+dP31dXVqK6uNir6SulZ2s4m4izXDBg3juvWW1r0zuppA3V18Wb5ADcwvXsDBw7w+Auf2bsX\nGDQIGDAgvmMStWvEiBHxHTdg5cqVWLlyZd6fDyv6TQDKOvxcBs72/4RS6mSH75cR0Q+JaIhS6pJK\n4o6iH2BC9IcO5dkQDx7kumefiTtLAljox4zh0ti4jx03cVs7AYHF47vom9AHoN3iueaa+I8dJMQB\nDz/8cE6fD2vvrAVQSUTlRNQTwJ0Anuu4ARGVEHG+TETzAVA6wc+EqYs6YUIyasnj7sQNSIrFYyLT\nB5LTmRu3nx/g8hw8oURfKXUBwP0Afg9gK4BfKqVqiOheIro3tdmfA9hEROsBfBvAXbkcw6ToJ6FW\n35ToJ6Uzt64unjmNOpOUWv04plxPx8SJ7iaFYe0dKKWWAVjW6XePdvj+BwB+kM++z5zhzhKdqw1l\nQkRfL0nK9O+7L/7jVlUBP/95/MeNm7o64Oab4z9uRYW7+mD1iNz6el4JSOdqQ5lIguifPcuNahxz\nlnQmKaJv2tP3nZ07zbxJBfavixVSVou+qQsKJEP06+rMNaoTJ/pvPxw9yhPLmajwCETp4sX4jx0X\nFy/ylODjx8d/7IEDgV69gObm+I8dFqtFv76eX6NMkATRN2XtAPygNjb6PbFdkLSYKPvt04cbmz17\n4j92XOzdCwwbxuJrAleLPawW/Z07zYn+yJG8eMupU2aOHwcmRb+4mM+xz6JkytoJ8N3iMekEAO76\n+laLfn29uYtaUMDZqIstebaYFH3Af1/fVLlmQFWV27NBdodJJwBw1w2wWvRNZvqAuxc1W0T09WJa\n9F0uK8wG05m+q/pgrehfvAjs3m2mkybA1YuaLSZG43YkCaJvUpR8f1M16QQA4ulHTlMTT4fQu7e5\nGHwW/VOngGPHgFGjzMXgewWPaU+/osJNUcoWcQLyw1rRN92KA+521GTDrl2cCca1xFw6fB6Ve/o0\nl2yO7jznbIwEmb6LteTZYNreGTkSOH7cvWIPa0XfdCsOuNuSZ0Mg+iapqOBJ13ysJQ/uX5ON6oAB\nQN++btaSd8fRo3zfDB1qLgZXiz2sFX3TPfMALyyyd6+fteQ2nN9evbiWvLGx+21dw7SfH1BRwQ28\nb5gcA9ERF319q0Xf9ENTXAyUlvpZSx5McWEaXztzTfv5Ab76+jboA+CmG2Ct6Ntg7wButuTZsGuX\nHefX185c0+WaAS7aD9lgiz642O9nrehLS64XWzJ9X+0HW0Tf10zfdCdugIv6YKXoHz/OE1UFa1Ga\nxMWL2h1KcQeqDaLvcyZqgyj5Kvo29EkBbjoBVop+cEFNd9IAfop+czNXdfTvbzoSFn3fMv2WFmD/\nfjNTVnfGV9G3pVEtL+c+vwsXTEeSPVaKvi1+HeCn6NtQrhngo72zezfX5xcVmY6E1yI+eJDfnH3h\n/Hle9N2GRtXFCjQrRd+WVzegXfR9GuBi0/kdOpRLYo8fNx1JdNjUqBYWAmVl3BD5wu7d3JgVhl73\nLxpcSwytFH1bXt2A9sUSDh40HUl02NKJC7CF55vFY5PoA/71m9ikD4B7vr6Vom9TJgq4WZbVFbaU\nawaI6OvFN1/fNn2QTD8CbGzJXbqo3WFTpg/4l4nu2sUdfLbgm+iLPoTDOtFvbeUZNseNMx1JO751\nNkqmrxfJ9PVim+i75gRYJ/qNjTx7Xc+epiNpZ/x4rmv3gZYWrnwoKzMdSTsi+nrxLWmxzd5xrVG1\nTvRtKtcMKC/356HZs4fLCW2pfAD8Ev1Tp/irtNR0JO0EouRDBZpS9on+kCEc19GjpiPJDutE37YL\nCvglSrb5+UD7m5QPotTQwEmCDQMLAwYP5niOHDEdSXgOHeJqugEDTEfSTlCB5oobYJ3o2+Y3A2yF\n7Nvn1qi7TNh4fvv14y8f5n23zdoJcM2CyISt59clN8BK0bep8gHg/oXSUrdG3WXCxkwf8KeCx1ZR\n8kX0gzcp23DJDbBO9G2ZCKwzLl3UrrDRPgP8Ob82i76cX32Ul4u9kzc2ZvqAWxe1K2y0dwARfd1I\npq8Xl+5fq0T/9Gng5Em7Kh8CXLqoXWGzvePD+RXR14ut51c6cvOkoYEHZdlU+RDggygdO8aD34YN\nMx3JpfhwfpWyW5R8EH1b7d/ACXChAs060bfxggJ+2DuBINnYqPrgOR85AhQUcImkbYwdyyPdXa5A\na2vjGTZtGq0fMGAAr6l9+LDpSLrHKtG31c8H/MhEbfXzARalffv4TcRVbM3yARak4cP5HLvKgQPA\noEFAnz6mI0mPK2WbVom+rZ00AI9iPXwYOHfOdCT5Y3OjWlTkflmszaIPuCNKmbD5/gXcSQytE31b\nH5oePXjhhj17TEeSP7aLkisPTSZsP7+uW5Q26wPgzvm1SvSlJdeLzW9SgPvn13bRd6nCJB2iD9Fg\nlejb3pK7/tC4cH5deGgyYbvou5KJZsKF+9eF82uV6J8/b2c5YYDLnqhS7SWxtiKirxeX71/A/kzf\nlfNrlejbNjthZ1wWpcOHeQ6hgQNNR5IZl2vJg3JCm0XJlUw0E7Zn+uXlfA+0tZmOpGusE32bcfn1\n2PYHBuD4du82HUV+7N9vdzkhwIUI+/e7Wat/8SKwdy+X9tpKnz6cVB04YDqSrrFK9F0QJVczfds7\ncQFeMe3oUeDsWdOR5I7t1gPAb3olJW6WxTY18TiD4mLTkXSNCxphlejb/tCUlvLcQKdOmY4kd1wQ\n/YICzuRczPZdeJMC3LV4XGhUATfOr1Wib/tDQ8QdoS6Kku2djAGuWmiuiL6cX7240Jlrlei70pLb\nflHT4UKmD7grSq5koi6IUjpcOb+S6eeICy25iL5eXBUlVzJRF0QpHS69qdp+/1ol+oMGmY6ge1zM\nRIMafRdE31VRcuX8unj/Au6cXxeSQqtE3+Ya/QAXLmpnDh4E+vblxcdtx0VRcqGcMMCFTDQdrmT6\nLkxhHVr0iegWIqoloh1E9GCGbb6b+vsGIpod9pgmcTETdSVLAtwU/aYmHkluezkhwLX6Bw8CLS2m\nI8melhaufR8zxnQk3RNMYd3UZDqSzIQSfSLqAeD7AG4BMBXAYiKa0mmb2wBMVEpVAvgbAD8Kc0zT\nuChKLol+SQlw4gQvnekKrvj5AFBYCIwa5VatfmMjx1xUZDqS7LDdDQib6c8HUKeUalBKtQJ4EsCH\nO22zCMBSAFBKrQEwiIhKQh7XGEOHcuZx/LjpSLLHlVdjgGv1XSuLdalRBdyzeFw8vzYnhmFFfzSA\njjnD3tTvutvGgRe19BC5Z/HIQ6MXOb96cSlpAew/v4UhP5/tMsCdu2jTfm7JkiV/+r66uhrV1dV5\nBaWbIFOaOdN0JNnR0AAsWmQ6iuyx/aHpzK5dwFVXmY4ieyRp0cv48cDrr+vb/8qVK7Fy5cq8Px9W\n9JsAlHX4uQycyXe1zZjU7y6ho+jbjGui5JLnDLhpP9x9t+kosqe8HFi+3HQU2dPQANx0k+kosqe8\nHFi6VN/+OyfEDz/8cE6fD2vvrAVQSUTlRNQTwJ0Anuu0zXMAPg0ARLQQwDGlVHPI4xrFpUwpmPLX\n5nn0O+PS+QXcy0Rda1RdGY0bYPv9GyrTV0pdIKL7AfweQA8Ajymlaojo3tTfH1VKvUhEtxFRHYDT\nAO4JHbVhysuB114zHUV2NDcDAwbYPeVvZ1x6k7pwAdi3Dygr635bW7BdlDrj2pvqmDFcYtraamfF\nUVh7B0qpZQCWdfrdo51+vj/scWzCJVFy7YEB3Dq/e/cCI0bwtMWuMGoUL6pz/rz9YwvOneNYR40y\nHUn2FBXxjLyNjUBFheloLsWqEbmuEGRKKttubIO4Zj0ALKKnT7sxhbWLjWqPHpyNulAWu2cPv0X1\n6GE6ktyw+W1KRD8PgjmCjh41G0c2uOaHAlwW60q272KjCtg/gCjAxfsXsLvfREQ/D1wTJdcyUcCt\n8+uqKMn51YfN51dEP09sfn3ryK5dblXuBNj80HTE1UzUlUzf1aTFZn0Q0c8Tm1/fOuLqQyPnVy+u\niL6rjarN96+Ifp64kIlevMgVBJLp68NV+8HmTLQjLjeqtp5fEf08sfmiBuzbxxPE9eplOpLcceH8\ntra6M+VvZ2zORDviaqY/ahRw6BCXxdqGiH6euPDQuDZRVUdcyPQbG7ke28YBON1RWsolsTaXxZ45\nw9Nsl5aajiR3CguB0aO55NQ2RPTzJBAlm2v1XRb9YcN4YM6JE6YjyYyr1gPAFWjjxtndsO7ezStR\nFTiqUra+rTp6Os0zcCCPwnzvPdORZMZl0Q/KYm1+m3LVzw+w/W3KVWsnwNb7V0Q/BLZe1ACXRR/g\nIew2n1/XRd/2Ch6X36QAyfS9xNaLGiCipBfXM1E5v3qx9U1KRD8Etl7UANczfRdEyeXza/v963qm\nb6sTIKIfAlsvKsDr+DY3u1lOGOCC6Ns4i2K2uHB+Xc70bXUCRPRDYOtFBbhUbPRoLh1zlYoKoL7e\ndBTpOXuWO/FdmvK3M7aLvuv25MiRPCnj2bOmI3k/IvohsDnTd916AOyewjooJ3Rtyt+ODBnCK6vZ\nOFvsyZNcpz9ihOlI8qeggKeFtm0KaxH9EJSX8wW1UZR8EP3+/YHevYGDB01Hcin19e6fX5tniw2y\nfCLTkYTDRjdARD8E/foBffuyd24brvuhAbZaED40qoC959f1TtwAG90AEf2Q2FpL7stDM368nb5+\nfb3bnbgBtoq+JC36ENEPia2djb5korY2qr6cX5vtHR/Or4i+h4jo68XGhwZwv1wzwObz60Omb6M+\niOiHxMaLevo0Vz+4ODthZ2wUJaX86MgF7Dy/AJ/fCRNMRxEeG/VBRD8kNl7UhgaeQdH1ygfATlE6\nepTP7eDBpiMJj42zxSoF7Nzpx5vU0KG8mJFNZbEi+iGxUfR9sXYAbryamoALF0xH0k6Q5fvQqA4Y\nwIvsHDpkOpJ2Dh0Ciot5JlvXIeI3Fps0QkQ/JGPG8E167pzpSNrxxQ8FePrqkhJesMQWfPHzA2x7\nm/KlMirAtsRQRD8kPXrYN+rOp0wfsFOU5PzqY+dOP/z8ABF9D7HtovpS7hZgmyj5lunbNoBIMn29\niOhHgG0X1cdM36bz61umb9v966Po79xpOop2RPQjwLaHxjfRt22Alm+Z/oQJdomSL+WaAbbpg4h+\nBNh0UY8e5ZI3H8oJA2yydy5e5Gmrx40zHUl02Cb6vpRrBgQVaK2tpiNhRPQjwCbRDzrBfCgnDLBJ\n9JuagOHDuczRF8aNAw4cAM6fNx0JV8EdOuT24j+d6dmT59a3pQJNRD8CAtG3YYBLXZ1fr8YAPzDH\njvFIY9P4Zp0BvNBOWZkdc/A0NLi/TkE6bEoMRfQjYOBAbs0PHzYdCWf6EyeajiJaCgrsmRjMt07G\nAFssHt/8/AARfQ+x5aL6mOkD9lg8Pmb6gD2i75ufH2CLPgAi+pFhy0X1MdMH7Cnb9DnTr6szHYW/\n59cWfQBE9CPDlovqa6Zvy/wlkunrxWfRt+H8AiL6kWGD6J8+zSWbo0ebjUMHEycCO3aYjsJfUbJF\n9H2bgiHAlqQFENGPDBtEPxgpWuDhVa2sNG8/nDnDVUQjR5qNQwcVFdxR3tZmLgaf1inozJAhfG5t\nmGLZQ3kwgw2i76ufD/D53b3b7BTLO3f626j27csD+pqazMXQ3MxxDBhgLgZdENmhEYCIfmSUlfEA\nl5YWczH46ucDPBiqpIRHw5pixw5+4/AV0xaPr9ZZgIi+ZxQW8ihCk1Ms+5zpA/x/M2nxiOjrxVc/\nP0BE30NMTwzmc6YPmO/MFdHXi2T68SCiHyGmy7J8z/RNd+YmQfRNnl8R/XgQ0Y+QykpzmWhLC3fC\n+TT7Y2fE3tHLxImS6evE9JtUgIh+hFRVAdu3mzl2QwP3KRQVmTl+HJhsVE+d4nJNH8dABASiZGri\nQN89/XHjgH37zBZ7ACL6kWJS9H23doD2WvKLF+M/dtBf4mO5ZsCQIfzvkSPxHzsYWDhqVPzHjoui\nIp5B1HQeWabVAAASp0lEQVS27/EtHD8VFVxSaGKxBN87cQGgd2+ey95E2abv1g7AteSmLIgdO/jY\nvk2p3BmTiWFA3qJPREOI6CUi2k5Ey4loUIbtGohoIxGtI6K38g/Vfnr2ZIvFRAVPEjJ9wFxn7o4d\nyTi/pkR/2zZg0qT4jxs3Tos+gC8BeEkpVQVgRerndCgA1Uqp2Uqp+SGO5wSmLmoSMn3AXGduEjJ9\nQERfN5Mm8f/VJGFEfxGApanvlwL4SBfberR4X9eYEv0kZfomOnOTIvqmGtXt2/nZ8R3XM/0SpVRz\n6vtmACUZtlMAXiaitUT0uRDHcwITF/XiRbaUfC53C5BMXy+S6evFBtEv7OqPRPQSgNI0f/o/HX9Q\nSikiylTodZVSaj8RDQfwEhHVKqXeSLfhkiVL/vR9dXU1qquruwrPSqqqgKefjveYTU3AsGHc0ek7\nJkblnjjBJZs+V5YEmGhUlWIhTILojxrF99Lx47zMaj6sXLkSK1euzDsGUnkW5RJRLdirP0BEIwG8\nqpSa3M1nHgJwSin1rTR/U/nGYhN79gBXXgns3RvfMV95BXj4YeC11+I7pinOnOHSwtOn46v0ePdd\n4J57gA0b4jmeSZTiWS737s1flHLlwAFg2jQ71piOgzlzgEcfBebNi2Z/RASlVNYWehh75zkAn0l9\n/xkA/50mmD5E1D/1fV8ANwHYFOKY1jNmDNc5nzoV3zF9H9TSkT59+K0mzkY1KdYOwGWbkyYBtbXx\nHTMp1k6AaYsnjOh/DcAHiWg7gOtTP4OIRhHRC6ltSgG8QUTrAawB8LxSanmYgG2noCB+C6K2Fpjc\n5TuWX8TdmZsk0Qf4Xqqpie94SbF2AkxX8OQt+kqpI0qpG5VSVUqpm5RSx1K/36eUuj31fb1Salbq\na5pS6qtRBW4zcbfkW7cCU6bEdzzTxO07J030p0yJP9NPQuVOgMuZvpCBuC9qTY2Ivk6SJvqTJ4u9\no5OqKkczfSEzcYr+6dPAwYN+riuaCRP2ThLGQARMmSL2jk6qqvieMlW3IqKvgThFf9s2FiTf5yzp\nSGVlfOf32DHg3DmgNF3hsqdMmMArwMUxG2RrKx8rKYUIAFdF9evHM26aQERfA4Hox9GSb90KTJ2q\n/zg2UVnJg9HiEKUgy6fEjCkHiot5Nsg4LLRdu3i66uJi/ceyCZMWj4i+BoYOZZGIo+44aX4+wIuk\njxsXT7afND8/IK7O3KT5+QGTJpnrzBXR1wBRfBZPEkUfAC67DNiyRf9xkvgmBcTXmZu0yp0AkxU8\nIvqaENHXS1yiv3kzjxZNGnHV6ietEzdA7B0PiUP0W1rYE01ipiSirxexd/Qi9o6HxCH6dXXc4Za0\nTjAgHtE/fZons0tSuWZAYO/oLkZIqr1TUQE0NppZL1dEXxOTJrEfrJOkWjsAC0VDA3D+vL5j1NTw\ndSzsci5aPxk0iMsKm5r0HeP4cZ6jyufF5jMRrLJXXx//sUX0NTF5MovSuXP6jpFk0S8u5gFpOn3R\npFo7Abo7c4OFU5JUDtuRuOc4ChDR10RxMZf66cz2kzbnTmd0Wzwi+npFqbY2mX5+wIwZwMaN8R9X\nRF8jui9qTU0yywkDRPT1orszd8MGYOZMffu3nZkzzazRIKKvkRkz9F3UtjZ+PU7SlMqdEdHXi+5M\nf/36ZIu+Tn3oChF9jejM9Hfv5hWk+vfXs38X0Cn6x45xR+PYsXr27wI6M32lWPBmzdKzfxeorORV\nw06ciPe4IvoaCVpyHWVvSffzAX5o9uzR01m+ZQs3KgUJfkJGj2ZBOn48+n3v28cduEmayK4zhYVs\nz27eHO9xE3xL62fkSP73wIHo953kyp2Anj15dkYd2WjSrR2AGzxdFk/g5ye1cifAhK8voq8RIr6o\nOiyepHfiBuiyeET0mVmzeGH4qEm6tRMgou8hujprxN5hRPT1Mncu8M470e836Z24ASL6HqKjM7e1\nlfcpmZIe0VcK2LRJRB/QJ/qS6TPTp/O91tYW3zFF9DWjQ/S3buWqkgEDot2vi+gQ/YMH+d+Skmj3\n6yIzZnBpcJSd5adPcwd8kgdmBQwezOtvxDkdg4i+ZqZO5YU4opxY6e23gcsvj25/LjNxIs8Pc+ZM\ndPsMrJ2kdzICvGBNVVW0icvmzdxBXFQU3T5dJm6LR0RfM717A+Xl0VaYrF0LzJsX3f5cpqiIRSnK\nbF/8/PcTtcWzfr1YOx0R0feQqCt43n5bRL8j8+cDa9ZEt7/Nm9k2EpioRT/p0y90RkTfQ6Ks4Dl3\njss15aFp54orgD/8Ibr9rVvH10xgdIi+ZPrtiOh7SJSduRs3sp3Rp080+/OBhQuBP/4xmn2dPs2N\n6ty50ezPB2bM4Cmso+jMbWvje1ga1XYqKoDDh/WMfE6HiH4MRCn60ol7KZMnA++91151E4a33uLM\nq1ev8Pvyhd69ecqLTZvC76u+nqtVBg8Ovy9f6NGD+5DimmZZRD8Gyso4S2puDr8v6cS9lIICYMGC\naHz91auBK68Mvx/fiMrikUFZ6YnT4hHRjwEiFqXVq8PvSzL99CxcGI2vv3o1cNVV4ffjG1GJvnTi\npmfWLO5LigMR/ZiorgZWrgy3j1OngF27eBSf8H6i8PXb2rjhkEz/UqIS/XfeAWbPDr8f37jqKuCN\nN+I5loh+TFx7LfDaa+H2sW4de389e0YTk08sWMDW18WL+e+jtpbXKJCRuJcycyafnzAL0be2AqtW\nAVdfHV1cvjBtGnDkiN6F6ANE9GPi8su5E+vo0fz3sXatWDuZGDIEGDUq3CCtVasky89E7948+jlM\nZ+7atVypMmxYdHH5QkEBJ4avvhrDsfQfQgB45OjCheFe4WRQVteE9fXFz++asBbPK68A118fXTy+\ncd11Ivrece214Xx96cTtmiuuCOfrS6bfNfPmhWtURfS75rrrwvf7ZYOIfoxUV+fv6x89CuzfL3Po\nd0WYztxDh7jOX6ZfyMzNNwO/+11+0wCfO8djIMTPz8zUqcDJkzwDqU5E9GNk3jyepvbYsdw/u3w5\nvyn06BF9XL5w2WXcEXbkSO6f/cMfuNFI8pq43TFhAjBoUH4raa1ezZ2VMh14Zog4MdRt8cgtHiM9\ne3KVyZtv5v7Z3/wG+PCHo4/JJwoL2f56663cPyvWTnbcfjvw4ou5f06sneyIw+IR0Y+ZfEo3W1v5\ntfpDH9ITk09ccUV+neXSiZsdt98OvPBC7p8T0c+OODpzRfRjJh/Rf+01nvtk5Eg9MfnEokXA00/z\nkofZcv48j4GYP19fXL7wgQ/w5Gu5zHN08iTPKyNvUt0zaRLfj7t26TuGiH7MzJ/Pyx2eOJH9Z557\nTqydbJk/H7hwIbch7S+8wLZQ//764vKFnj2BG24Ali3L/jNvvMHXpXdvfXH5QuDr67R4RPRjplcv\n7tBdtSq77ZUSPz8XiIC77gKeeCL7zyxdCvzlX2oLyTtytXjE2skN3RaPiL4BPvhBFvJs2LCBB3ZN\nnao3Jp9YvBh48snsSgsPHQJefx34sz/TH5cv3HYb8NJL3NeUDStWiOjnwnXXcUOZT2lsNojoG+Cz\nnwV++cvspmQIsnxZpDt7pk3j0sJs3qb+67+4g1ysnewpLeXyzWxmja2v57pzGUmePRMnAsOHc/GG\nDkT0DVBaCtxxB/CTn3S/rVg7+bF4cXYWz89+BnzmM9rD8Y7bbsvO4vnGN4DPf57fVoXsIAL+8R+B\nb35T0/5VLmUOGiEiZUsscbB2LVsKO3dyfXk69uzh+U7278+8jZCe+noebNXUlFlwNm7kxrehQQZl\n5cqaNdxYbt2a+dwdOMC2ZG0tMGJEvPG5TmsrT073m98Ac+Zk3q6uDqisJCilsvYC5FY3xOWXA2PG\ndO3tP/kkd5qJ4OdORQV/rViReZulS4G/+AsR/HyYNw8YOJDPYSa+/W3gU58Swc+HoiLggQeAb30r\n8zZr13IJbc4opfL6AvBxAFsAXAQwp4vtbgFQC2AHgAe72E4ljV/+Uqmrr07/t+3blRo2TKmamnhj\n8olvf1upT386/d9aWpQqKVFq27Z4Y/KJtWuVGjFCqcOHL/3b0aNKDRmiVEND/HH5wrFjSg0erNTu\n3Zf+7fx5paZPV+oXv1AqpZ1Za3eYHGcTgI8CeD3TBkTUA8D3U8I/FcBiInJmyrCVmsdDf/SjPAij\nc035hQucgT70EC/6HWdM+WBjTABQVrYSv/td+mkDnnmG3wSqquKNycZzlW9Mc+cCn/gE8KUvXfq3\nH/6QrbNx4+KNSSdxxzRwIHDPPcB3v3vp3772NWDsWOCTn8x9v3mLvlKqVim1vZvN5gOoU0o1KKVa\nATwJwJluSd0XuagIuO8+4JFHgLNn23//la/wBb/vvvhjygcbYwKAjRtX4rnnuAb/lVfaf/+znwF/\n//fA178ef0w2nqswMT3yCHfodpxy+cwZFqoHHzQTky5MxPTAA8Djj7+/0m/LFuB73wN+9KP8qvp0\nu8WjATR2+HkvgAWaj+kUn/88cPfdQHk5f79gAfCDH/BMhuI1h2fBAuCpp4CPfxz49a9ZoH71K57a\nQqapDs/AgVxl8rd/C/zLv/BI0hUrgGuukbElUTB2LGf7FRU8xcjixcCSJdzYlpXlt88uZYWIXiKi\nTWm+sp36KznlOHkyaBDw/PP8sOzbB3zsY9yKjx5tOjJ/uPZa4Oc/B266iWc4XbNGBD9KFi9mq2fp\nUmD8eOAXv+DxD0I0fPObQE0Nn+OHHwYGDwY+97n89xe6ZJOIXgXwj0qpS2bZJqKFAJYopW5J/fzP\nANqUUpe8WBORNBCCIAh5oHIo2YzK3sl0wLUAKomoHMA+AHcCWJxuw1yCFgRBEPIjb9eYiD5KRI0A\nFgJ4gYiWpX4/ioheAACl1AUA9wP4PYCtAH6plKoJH7YgCIKQD9aMyBUEQRD0Y7w+hIh+SkTNRLTJ\ndCwBRFRGRK8S0RYi2kxEf29BTL2IaA0RrSeirUT0VdMxBRBRDyJaR0S/NR0LABBRAxFtTMWUx+KJ\n0UNEg4joaSKqSV2/hRbENCl1joKv45bc6/+cevY2EdF/EVGxBTE9kIpnMxE9YCiGS7SSiIakCm62\nE9FyIhrU3X6Miz6Ax8GDt2yiFcD/VEpdBrav/s70oDKl1DkA1ymlZgGYAeA6IspnELYOHgDbd7a8\nNioA1Uqp2UopW9bD+g6AF5VSU8DXz7jNqZTaljpHswHMBXAGwLMmY0r1/30OPMp/OoAeAO4yHNM0\nAH8NYB6AmQDuIKIJBkJJp5VfAvCSUqoKwIrUz11iXPSVUm8AyGKS4fhQSh1QSq1PfX8K/ICOMhsV\noJQ6k/q2J/hhOGIwHAAAEY0BcBuAnyBzh74JrImFiAYCuFop9VOA+7qUUscNh9WZGwHsVEo1drul\nXk6Ak64+RFQIoA+AJrMhYTKANUqpc0qpiwBeA/CxuIPIoJWLAAQzIC0F8JHu9mNc9G0nlXnMBrDG\nbCQAERUQ0XoAzQBeVUptNR0TgP8L4H8B0LTkQ14oAC8T0VoiClHRHBnjARwioseJ6F0i+jER9TEd\nVCfuAmC8ul4pdQTAtwDsAVf8HVNKvWw2KmwGcHXKSukD4HYAYwzHFFCilGpOfd8MoKS7D4jodwER\n9QPwNIAHUhm/UZRSbSl7ZwyAa4io2mQ8RHQHgINKqXWwKLMGcFXKsrgVbM1dbTieQgBzAPxQKTUH\nwGlk8RoeF0TUE8CHADxlQSwTAHwBQDn47bofEX3KZExKqVoAXwewHMAyAOtgV5IDIDXrWhYWq4h+\nBoioCMAzAH6hlPpv0/F0JGUNvADgcsOhXAlgERHtAvAEgOuJ6D8MxwSl1P7Uv4fAHrVpX38vgL1K\nqbdTPz8NbgRs4VYA76TOl2kuB7BaKfVequT71+D7zChKqZ8qpS5XSl0L4BiAbaZjStFMRKUAQEQj\nARzs7gMi+mkgIgLwGICtSqlvm44HAIhoWNAzT0S9AXwQnHEYQyn1v5VSZUqp8WB74BWl1KdNxkRE\nfYiof+r7vgBuAs8Iawyl1AEAjUQUzOl5I3hacltYDG60baAWwEIi6p16Dm8EFwkYhYhGpP4dC55d\n2LgVluI5AMHab58B0G2Canx5DiJ6AsC1AIamBnt9WSn1uOGwrgJwN4CNRBQI6z8rpTStWpkVIwEs\nJaICcGP9c6VUF0uEGMGG6p0SAM+yXqAQwH8qpZabDQkA8D8A/GfKStkJ4B7D8QD4U8N4I7hixjhK\nqQ2pt8W1YAvlXQD/z2xUAICniWgouJP5PqXUibgD6KCVwwKtBPA1AL8ior8C0ADgE93uRwZnCYIg\nJAexdwRBEBKEiL4gCEKCENEXBEFIECL6giAICUJEXxAEIUGI6AuCICQIEX1BEIQEIaIvCIKQIP4/\ndE8CbcNKv44AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1055f89d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"t = linspace(0.0, 1.0, 101)\n", | |
"x = linspace(1,10, 101) \n", | |
"\n", | |
"def pltsin(f):\n", | |
" plt.plot(x, sin(2*pi*t*f))\n", | |
" plt.show()\n", | |
"\n", | |
"interact(pltsin, f=(1,10,0.1))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment