Created
September 30, 2021 23:20
-
-
Save ageron/655076edd654315dec9e64973457ea56 to your computer and use it in GitHub Desktop.
HOML2 – Issue #439.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "7fd7e1bb", | |
"cell_type": "code", | |
"source": "import tensorflow as tf\nfrom tensorflow import keras\nimport numpy as np\n\nprint(\"TensorFlow:\", tf.__version__)\nprint(\"Keras:\", keras.__version__)\nprint(\"NumPy:\", np.__version__)", | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "TensorFlow: 2.4.1\nKeras: 2.4.0\nNumPy: 1.19.5\n" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "8ae45046", | |
"cell_type": "code", | |
"source": "num_samples = 1000\nseq_length = 10\ninput_dims = 1\noutput_dims = 1\n\nX_train = tf.random.uniform((num_samples, seq_length, input_dims))\nX_valid = tf.random.uniform((num_samples, seq_length, input_dims))\ny_train = tf.random.uniform((num_samples, output_dims))\ny_valid = tf.random.uniform((num_samples, output_dims))", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "7154892a", | |
"cell_type": "code", | |
"source": "np.random.seed(42)\ntf.random.set_seed(42)\n\nmodel = keras.models.Sequential([\n # this None is not for batch_size, the None for batch_size is still added behind the scene\n # here [None, 1] means we want to make the input to be accepted with any length of step size as well\n keras.layers.SimpleRNN(1, input_shape=[None, 1]) \n])\n\noptimizer = keras.optimizers.Adam(lr=0.005)\nmodel.compile(loss=\"mse\", optimizer=optimizer)\nhistory = model.fit(X_train, y_train, epochs=20,\n validation_data=(X_valid, y_valid))", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": "Epoch 1/20\n32/32 [==============================] - 1s 21ms/step - loss: 0.1419 - val_loss: 0.1035\nEpoch 2/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0949 - val_loss: 0.0941\nEpoch 3/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0944 - val_loss: 0.0920\nEpoch 4/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0919 - val_loss: 0.0898\nEpoch 5/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0843 - val_loss: 0.0895\nEpoch 6/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0880 - val_loss: 0.0866\nEpoch 7/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0854 - val_loss: 0.0862\nEpoch 8/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0864 - val_loss: 0.0847\nEpoch 9/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0861 - val_loss: 0.0848\nEpoch 10/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0891 - val_loss: 0.0834\nEpoch 11/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0821 - val_loss: 0.0842\nEpoch 12/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0816 - val_loss: 0.0847\nEpoch 13/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0838 - val_loss: 0.0825\nEpoch 14/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0871 - val_loss: 0.0835\nEpoch 15/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0811 - val_loss: 0.0824\nEpoch 16/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0879 - val_loss: 0.0823\nEpoch 17/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0853 - val_loss: 0.0823\nEpoch 18/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0816 - val_loss: 0.0838\nEpoch 19/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0808 - val_loss: 0.0825\nEpoch 20/20\n32/32 [==============================] - 0s 3ms/step - loss: 0.0830 - val_loss: 0.0820\n" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "715f51d2", | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.7.10", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "HOML2 – Issue #439.ipynb", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment