Created
November 14, 2016 05:14
-
-
Save aloknayak29/fd8f932196d43a0d5bcddddd7b790f46 to your computer and use it in GitHub Desktop.
gps_data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf = pd.read_excel('LogiNext_Location_Analytics_Data (1).xlsx')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf = ldf.rename(columns={'Tracking Date':'trackdt','Battery %': 'battery'})" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf.trackdt = pd.to_datetime(ldf.trackdt)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf = ldf.sort_values(by='trackdt')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Longitude</th>\n", | |
" <th>Latitude</th>\n", | |
" <th>battery</th>\n", | |
" <th>Speed</th>\n", | |
" <th>trackdt</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td>72.860698</td>\n", | |
" <td>19.111690</td>\n", | |
" <td>100.00</td>\n", | |
" <td>0.00</td>\n", | |
" <td>2014-08-12 15:10:16</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>72.860148</td>\n", | |
" <td>19.111601</td>\n", | |
" <td>85.45</td>\n", | |
" <td>0.00</td>\n", | |
" <td>2014-08-12 19:55:10</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>29</th>\n", | |
" <td>72.873396</td>\n", | |
" <td>19.126335</td>\n", | |
" <td>84.55</td>\n", | |
" <td>24.82</td>\n", | |
" <td>2014-08-12 20:04:29</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>28</th>\n", | |
" <td>72.926755</td>\n", | |
" <td>19.125281</td>\n", | |
" <td>83.64</td>\n", | |
" <td>18.71</td>\n", | |
" <td>2014-08-12 20:26:05</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Longitude Latitude battery Speed trackdt\n", | |
"20 72.860698 19.111690 100.00 0.00 2014-08-12 15:10:16\n", | |
"19 72.860148 19.111601 85.45 0.00 2014-08-12 19:55:10\n", | |
"29 72.873396 19.126335 84.55 24.82 2014-08-12 20:04:29\n", | |
"28 72.926755 19.125281 83.64 18.71 2014-08-12 20:26:05" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ldf.head(4)2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa96c38a990>" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEPCAYAAABlZDIgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+cXHV97/HXOyFLFmIS4a4QiOxChYb6aDCBKAK9TgQE\nb1P8gQ9p1KqQBwJBzcW2YP2VfVTbKhZb4JYrhk2s1Kx5VOWX1zaBmrFFkKQhEArhh6UbIGoy94qR\naAiBfO4f52wymczs7uyeszOz+34+HvPYme+c75zPHDb74fv9nu/3q4jAzMxspCY0OgAzMxsbnFDM\nzCwTTihmZpYJJxQzM8uEE4qZmWXCCcXMzDKRa0KR1CNpm6RNZWWzJd0n6WFJd0iaUqXeoZIekLRR\n0iOSluYZp5mZjVzeLZQVwHkVZbcAV0fEKcBtwNWVlSJiNzA/IuYAbwDeLumNOcdqZmYjkGtCiYh7\ngecrik9MywHuAS6sUfc36dNDgUMAz8A0M2tijRhDeVTSBenz9wIzqx0kaYKkjcDPgbsjYv1oBWhm\nZvVrREK5BLhS0nrgcOClagdFxN60y2sm8CZJvzOKMZqZWZ0OGe0TRsSTpOMqkk4Efn+Q438laS1w\nPvBYtWMkuTvMzKxOEaEsP280WihKH8kLqSP9OQH4DPDVgypI/03StPR5O3Au8PhAJ4mIpnosXbq0\n4TE4prETU7PG5ZhaN6Y85H3b8ErgPuAkSc9IuhhYKOkJktbG1oj4enrsDEnfS6vOANZKegh4AFgd\nEd/PM1YzMxuZXLu8IuJ9Nd66ocqxPwMWpM8fAebmGJqZmWXMM+VzUigUGh3CQRzT0DRjTNCccTmm\noWnGmPKgvPrSRpOkGAvfw8xstEgiWnBQ3szMxgEnFDMzy4QTipmZZcIJxczMMuGEYmZmmXBCMTOz\nTDihmJlZJpxQzMwsE04oZmaWCScUMzPLhBOKmZllwgnFzMwy4YRiZmaZcEKxllYqlVi/fj2lUqnR\noZiNe3nv2NgjaZukTWVlsyXdJ+lhSXdImlKl3kxJP5D0qKRHJH08zzitNd188zJe+9rXcfbZi+js\nnEVv76pGh2Q2ruW6H4qks4CdwDciYnZatg74RETcK+nDwAkR8bmKekcDR0fEQ2nC2QC8IyKq7ivv\n/VDGn5tvXsblly8BTgKeBa6hvf1LbNnyOB0dHQ2Ozqz5tdx+KBFxL/B8RfGJaTnAPcCFVer9PCIe\nSp/vBDYDx+YZqzWvym6tUqnEkiVXAz8GHgLWAl9i4sRj6Ovra1ygZuNcI8ZQHpV0Qfr8vcDMgQ6W\n1AW8AXgg37CsGfX2rqKzcxbnnnv5vm6tvr4+2tqOB2anR80GZrJnzzN0dXU1Llizce6QBpzzEuBG\nSZ8F7gReqnVg2t31bWBJ2lKpqbu7e9/zQqEwbvZwHstKpRKLFi1m16617No1G9jEokXz2bDhXl5+\neQuwiSSZbAKe4vrrr3d3l1kNxWKRYrGY6zly31NeUidwV/8YSsV7JwK3RsTpVd47BPge8E8Rcf0g\n5/AYyhi0fv16zj33cnbs2LCvbOrUudxzz8385CdPs2jRYg455DheeqmP66+/lssuu7SB0Zq1ljzG\nUEajhaL0kbyQOiKiJGkC8BngqzXqLQceGyyZ2NjV1dXFSy/1Ud4S2bNnC11dXcybN49zznkrfX19\ndHV1uWVi1gTyvm14JXAfcJKkZyRdDCyU9ATwGLA1Ir6eHjtD0vfS52cC7wfeKmmjpAclnZ9nrNZ8\nOjo66Om5ifb2+UydOpf29vn09Ny0L3l0dHQwb948JxOzJpF7l9docJfX2FYqlQ5oiVS+NrP6tdxt\nw2YjVZk8PJnRrHm5hWJNq7d3FYsWLaatLRlLWbjwQpYv/wc8mdFs5PJooTihWFMqlUp0ds5i1661\n7L81+HTg+0AhfT2fKVOO4Qc/WM68efMaF6xZC3KXVwvxooUjk0xe7OLAyYvHAoeXvfZkRrNm4oSS\ng2qzu60+B94yTPpzK/DrstdPcf31f+3uLrMm4S6vjFXrqmlvn+9+/mH4whf+ks9+9i+A3wa2AB8A\nbuGww36LV1551pMZzUbAXV4toFpXzaRJnV60cBguu+xSJk9uA/4EeBxYxOTJbdx221/z7LNPOpmY\nNRknlIxV66rpn91t9eno6GD58q/S3v4xpk49j/b2+Sxf/lXe9ra3ubVn1oTc5ZWD/ttdJ03qZM+e\nLfT03MTChRc1OqyW5YmMZtnzbcM1NFtCAf8RNLPm5oRSQzMmlDw5WZnZSHlQfhypNY+lWW5JLpVK\nrFmzhjVr1niujZkBbqE0pcolR/rHYJrlluTe3lV86EOXsmfPK8AxtLWV+PrXb/Y4kVkLcZdXDY1K\nKKVSibVr17Jt2zbmzp1LW1tb1W6oerqoNm/ezJw5p7N79x30LzHSnzT6+vpqbjg1WkuPlEoljjvu\nJF58UUARz7Uxa02tusHWmNTbu4oPfvBSXn75NcBzwATa2rqYOHHbAXd1VbY2/uZvvsjxx3cCMGfO\nnAP+APf2ruLiiy9n9+6jgQuBm4CL9s1jGWjDqdHS19fHxIlHkSyBsn+uzYQJM+nr63NCMRvPIqLl\nH8nXGD3bt2+PyZNfHfBwwPaA/ucR8HC0tx8R27dvj+3bt0d7+xEHvAftAccHHBaTJk2JlSu/te8z\nDz72iIC1+z4vImLlym9Fe/sRMXXqnGhvP2Jf/dH97tNrfmczaw3p381M/xbnvWNjj6RtkjaVlc2W\ndJ+khyXdIWnKUOs2Wv9A+dq1a4mYQfJ/6H3A8VSbGX/zzcvYtesIDlzg8ERgFXA/e/ZM4pJLLt/X\nJXbwYohHcuih7zhgl8KFCy9iy5bHueeem9my5fFRH7fon2w4adIe4M3A62hr++8HxGhm41OuYyiS\nzgJ2At+IiNlp2TrgExFxr6QPAydExOeGUneA80Se3wP2d13Bseza9RQg4MfADJK1poqUjyds2HAv\nc+eecdBYA8wnWUakA5jL4Yf/mrVr/4Gurq6DBtwPPfQtbNx4HyeffHKu3204SqUSGzduBA7uujOz\n5pfHGMpodEd1ApvKXj9f9nwm8OhQ6w5w3AgafoOr3h01JX38VsChAe3R1nbyvm6odevWxbRpcwO+\nlXZdzQk4LOCjZZ/x6pg8eXrTdGeZ2fhBDl1ejRiUf1TSBRFxJ/DeNKk0tf7uqF27KruuvsjkyR/h\nyis/yrve9a4D7vIqlUrpAPrJJC2Su5k06XIiVvDyy7cBv2DSpIksX37LAd1Z55zzVk9aNLOW1IiE\ncglwo6TPAncCL2Xxod3d3fueFwoFCoVCFh8LVC742N91tQVoQ3qBa6655qA//h0dHfT03MSiRfP3\nrem1aNEl9PTcSlvbkbzyyq+5/vprDxoD6ejocCIxs8wVi0WKxWKu58h9HoqkTuCuqDIOIulE4NaI\nOL3euhXHRd7fY/8YyjHs2vWfTJ58FNKvDph0WK1l0V8+ZcoUTj31rIZPSjQzg9adh6L0kbyQOiKi\nJGkC8Bngq0Ot20jl3VFTpkxh586d+5JHrZntsL/FsX79+oO6zfrvBnNCMbOxIO+7vFaSTPc+EtgG\nLAVeBVwJBPDdiPhUeuwMYFlELKhVNyJW1DhP7i2UWoa6HMpIlk3xYpBmlrWWa6FExPtqvHVDlWN/\nBiwYQt2mUm3AvlrLo9qYylDmbpS3fnbvfppPf/pPueyyS51YzKzpeC2vEaq35VFPa+PAz94MXAEc\nSXv7L7xpVwO5xWhjgZevb0L9LY/29vlMnTqX9vb5A7Y8Ojo6mDdv3pD+EO2fPT8DWEwyQfIpdu1a\ny6JFi71s/ABqLf8/Us2yfYBZM3ILJSN5/F/r/hbKjcB1QONWGW4lA90kMRLNsn2AWRbcQmli9bQ8\n6vnMnp6bmDz5SpLJkf3Lmo3+KsOtolQqsWjRYnbtWsuOHRsybc1VW2+tf7zMzJxQmt7ChRfxzDNP\n8vnPf3rI3WqNlld301Dk+Uf/wAmuUJnYG/m9zZpC1mu5NOLBKC9f3yjbt2+PdevWNfUy8f3rkU2b\nNrdhy+tXrruW5dL6tdZba/T3NqsXOazl5TEUy0yzjDH0j6GU356d5R1xleNlzfK9zerRcvNQbHwZ\n6pycvOW9yGblemvN8r3NGs0JxTLTDFsU9xvNRTab6XubNZIH5S0z9c7JGSvG6/c2q+QxFMvceJ1J\nPpa/91j+buNVHmMoTihmNqC8JopaYzmh1OCEYpaPwe5gc8uldXmmvJmNqoEminpdM6vkFoqZ1VSr\nhbJhw73egbTFuYViZqOq1h1sO3fu9LpmdpC8d2zsIdk0a1uk+8JLmk2y7e/hQB/w/ojYWaXu+cDf\nkiS9noj40gDncQvFLEdeHWDsacUWygrgvIqyW4CrI+IU4Dbg6spK6X7z/yut+3pgoaRZOcdqZjVU\nrqbtuTdWTe5jKJI6gbvKWijPR8Sr0+czgdUR8fqKOqeT7CH/9vT1J0kWMqvaSnELxawxfJdX6xor\na3k9KumCiLgTeC8ws8oxxwLPlr1+DnjjaARnZkM3mkvcWPNrREK5BLhR0meBO4GXsvjQ7u7ufc8L\nhQKFQiGLjzUzGxOKxSLFYjHXc4x6l1fFeycCt0bE6RXlpwPdEXF++tpdXmZmGWrFQXkApY/khdSR\n/pwAfIbkjq9K64HXSeqU1Ab8IUlrxszMmlSuCUXSSuA+4CRJz0i6mOSOrSeAx4CtEfH19NgZkr4H\nEBGvAB8F1gCPAt+KiM15xmpm+fIWyWOfZ8qbWe68wGTz8eKQNTihmDUvT4JsTq06hmJm49hAC0za\n2OKEYma5OnCLZPAWyWOXE4qZ5crLtIwfHkMxs1HhZVqaiwfla3BCMTOrjwflzcysaTmhmJlZJpxQ\nzMwsE04oZtYUvDRL63NCMbOG6+1dRWfnLM4993I6O2fR27uq0SHZMPguLzNrKC/N0hi+y8vMxpyN\nGzcyYUIHMCMt8dIsrcoJxcwaprd3Fe9850J+/etXgN8GVuGlWVrXkLYAliTg/cAJEfHnko4Djo6I\ndblGZ2ZjVqlUYtGixQd0dcGbmTy5jZ6er7q7qwUNtYVyE/BmYGH6+gXg7warJKlH0jZJm8rKTpF0\nv6SNktZJOq1G3SWSHkkfHx9inGbWIqqtQnz44a/jjjtWea+UFjXUhPKmiLgSeBEgIp4H2oZQbwVw\nXkXZtcDSiJgDLAW+XFlJ0uuBRcBpwBuABZJOGGKsZtakym8NrrYK8d69zzFnzpwGRmgjMdSEskfS\nRCBg377wewerFBH3As9XFO8FpqXPpwNbq1Q9GXggInan2wH/K/DuIcZqZk2o8tbge+75gVchHmOG\ndNuwpPcDFwFzgb8H3gN8JiL+cQh1O4G7ImJ2+noWsBpQ+jgjIp6tqDMLuJ2km203cA+wPiKW1DiH\nbxs2a2ID3RoMeBXiBsjjtuEhDcpHxDclbQDOJkkC74yIzcM85xXAkoi4XdJ7gOXAuRXne1zSl4C7\ngZ3ARuCVYZ7PzBqsf7xk166Dd22cN2+eE8kYMWBCkXRE2cvtQG/5exHxi2Gc80P9LY2I+LaknmoH\nRcQKkjEYJP0F8Gy14/p1d3fve14oFCgUCsMIzczycOB4SdJC8a3Bo6tYLFIsFnM9x4BdXpL+i2Tc\nRMBxJOMhIhn7eCYijh/0BFIXSZfX76avHwUWR8QPJZ0NfDEi5lWp1xERpfQW5X8GTo+IX9U4h7u8\nzJrAQJto9fauYtGixUya1MmePVvo6bnJd3M1UMM22JK0DLgtIr6fvn47SbfXZYPUWwkUgCOBbSR3\ndT0B3ABMJLlrbHFEbJQ0A1gWEQvSuv8KHAHsAa6KiOIA53FCMWuw/oTR1pa0RqolDO/a2DwamVAe\n6W9hDFTWKE4oZo3l9bhaTyPX8vqppM9I6kofnwZ+mmUgZta6qk1S9Hpc489QE8pCoAO4LX28hv2z\n5s1snKs2SdGD7uPPUG8b/gVQdQ6ImVlHRwc9PTexaNH8Awbd3d01vgx1DGUt6Sz5chHx1jyCqpfH\nUMyagwfdW0cjB+VPLXs5GbgQeDkirs4ymOFyQjEzq0/DEkqNYNZFxBuzDGa4nFDMzOrTsKVXKmbM\nTwBOZf8Cj2ZmZkNLKMAG9s+Yfxn4L5Ll5c3MzIChj6FMjogXK8oOjYjduUVWB3d5mZnVp5ETG++r\nUnZ/loGYmVlrG2y14aOBY4F2SXNIurwApgKH5RybmZm1kMHGUM4DPgzMBL5SVv4C8KmcYjIzsxY0\n1DGUCyPiO6MQz7B4DMXMrD6jPg9F0gci4h8k/THVZ8p/pUq1UeeEYmZWn0bMQzk8/Tmlynv+C25m\nZvsMtcvrzIj40WBljeIWiplZfRp52/CNQyw7gKQeSdskbSorO0XS/ZI2Slon6bQada+S9B+SNkn6\npqS2IcZqZmYNMNhtw28GzgA6JH2i7K2pJFv4DmYFSeL5RlnZtcDSiFiTbiX8ZWB+xXmPAT4GzIqI\nlyStAv6w4nPMzKyJDDaG0kYyfnII8Kqy8l8B7xnswyPiXkmdFcV72b8O2HRga43qE4HDJe0lmfPi\nHSLNzJrYUMdQOiNiy7BOkCSUuyJidvp6FrCaZJKkgDMi4tkq9T4O/AXwG2BNRPzRAOfwGIqZWR0a\nOYbyG0lflvR9ST/ofwzznFcASyLiOOAqYHnlAZKmA+8AOoFjgCmS3jfM85mZ2SgY6mrD3wRWAQuA\ny4EPAaVhnvNDEbEEICK+LamnyjHnAE+nWw8j6bskYzkra31od3f3vueFQoFCoTDM8MzMxp5isUix\nWMz1HEPt8toQEadK2lTWdbU+IuYNoW4XSZfX76avHwUWR8QPJZ0NfLHycyS9EegB5gG7SQb310fE\n39U4h7u8zMzq0LANtoA96c+fSfp9kgHyIwY4HgBJK4ECcKSkZ4ClwKXADZImAi8CH0mPnQEsi4gF\nEbFO0reBjem5NwJfG/K3MjOzUTfUFsoC4N+A15LcBjwV6I6Iu/INb2jcQjEzq0+z7Sn/PyPib7MM\nZricUMzM6tNsCeWZ9E6thnNCMTOrTyNvG64m00DMzKy1jSShuElgZmb7DLaW1wtUTxwC2nOJyMzM\nWtKACSUiXjXQ+2ZmZv1G0uVlZma2jxOKmZllwgnFzMwy4YRiZmaZcEIxM7NMOKGYmVkmnFDMzCwT\nTihmZpYJJxQzM8uEE4qZmWUi14QiqUfSNkmbyspOkXS/pI2S1kk6rUq9k9L3H0x/7pD08TxjNTOz\nkRn2fihD+nDpLGAn8I2yvehXA9dFxBpJbweujoj5A3zGBOA54E0R8WyNY7wfiplZHZptP5RBRcS9\nwPMVxXuBaenz6cDWQT7mHOA/ayUTMzNrDgOuNpyTq4DVkq4jWQb/jEGOvwjozT0qMzMbkUYklCuA\nJRFxu6T3AMuBc6sdKGkScAHwycE+tLu7e9/zQqFAoVDIIlYzszGhWCxSLBZzPUeuYygAkjqBu8rG\nUH4ZEdPL3t8REdNq1L0AWBwR5w9yDo+hmJnVoeXGUFLiwP3nt0p6C4Cks4EnB6i7EHd3mZm1hLzv\n8loJFIAjgW3AUuAJ4AZgIvAiSQtko6QZwLKIWJDWPQzYApwQES8Mch63UMzM6pBHCyX3Lq/R4IRi\nZlafVu3yMjOzccAJxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQzMwsE04oZmaWCScUMzPLhBOKmZll\nwgnFzMwy4YRiZmaZcEIxM7NMOKGYmVkmnFDMzCwTTihmZpYJJxQzM8tErglFUo+kbZI2lZWdIul+\nSRslrZN0Wo260yT9o6TNkh6V9KY8YzUzs5HJu4WyAjivouxaYGlEzCHZEvjLNepeD3w/Ik4GTgE2\n5xalmZmNWK4JJSLuBZ6vKN4LTEufTwe2VtaTNBX4vYhYkX7OyxHxqzxjNTOzkTmkAee8Clgt6TpA\nwBlVjjke+L+SVpC0Tv4dWBIRu0YvTDMzq0cjEsoVJMnhdknvAZYD51YccwgwF7gyIv5d0t8CnyTp\nIququ7t73/NCoUChUMg4bDOz1lUsFikWi7meQxGR7wmkTuCuiJidvv5lREwve39HREyrqHMUcH9E\nnJC+Pgu4JiL+oMY5Iu/vYWY2lkgiIpTlZ47GbcNKH/22SnoLgKSzgScrK0TENuBZSSelRWcDj+Ud\nqJmZDV+uLRRJK4ECcCSwjaTL6gngBmAi8CKwOCI2SpoBLIuIBWndU4BbgEnA08DFEbGjxnncQjEz\nq0MeLZTcu7xGgxOKmVl9WrXLy8zMxgEnFDMzy4QTipmZZcIJxczMMuGEYmZmmXBCMTOzTDihmJlZ\nJpxQzMwsE04oZmaWCScUMzPLhBOKmZllwgnFzMwy4YRiZmaZcEIxM7NMOKGYmVkmnFDMzCwTuSYU\nST2StknaVFZ2iqT7JW2UtE7SaTXq9kl6uP+4POM0M7ORy3sL4LOAncA3ImJ2WrYauC4i1kh6O3B1\nRMyvUvdp4NSIeH4I5/GOjWZmdWi5HRsj4l6gMiHsBaalz6cDW2tUF+6SMzNrGYc04JxXAaslXUeS\nNM6ocVwAd0t6BfhaRCwbrQDNzKx+jUgoVwBLIuJ2Se8BlgPnVjnuzIj4maQOksSyOW3xVNXd3b3v\neaFQoFAoZBu1mVkLKxaLFIvFXM+R6xgKgKRO4K6yMZRfRsT0svd3RMS0mh+QHLMUeCEivlLjfY+h\nmJnVoeXGUFJKH/22SnoLgKSzgScPqiAdJmlK+vxw4G3Af4xCrGZmNky5dnlJWgkUgCMlPQMsBS4F\nbpA0EXgR+Eh67AxgWUQsAI4CbpMUaYzfjIg1ecZqZmYjk3uX12hwl5eZWX1atcvLzGzcKJVKrF+/\nnlKp1OhQRp0TiplZRnp7V9HZOYtzz72czs5Z9PauanRIo8pdXmZmGSiVSnR2zmLXrrXAbGAT7e3z\n2bLlcTo6Ohod3kHc5WVm1qT6+vpoa+siSSYAs5k0qZO+vr7GBTXKnFDMzDLQ1dXFSy/1Af1r4W5i\nz54tdHV1NS6oUeaEYmaWgY6ODnp6bqK9fT5Tp86lvX0+PT03NWV3V148hmJmlqFSqURfXx9dXV1N\nnUzyGENxQjEzG4c8KG9mZk3LCcXMzDLhhGJmZplwQjEzs0w4oZiZWSacUMzMLBNOKGZmlolcE4qk\nHknbJG0qKztF0v2SNkpaJ+m0AepPkPSgpDvzjNPMzEYu7xbKCuC8irJrgaURMYdkB8cvD1B/CfBY\nTrHlqlgsNjqEgzimoWnGmKA543JMQ9OMMeUh14QSEfcCz1cU7wWmpc+nA1ur1ZU0E/gfwC25BZij\nZvwFckxD04wxQXPG5ZiGphljykOue8rXcBWwWtJ1gIAzahz3N8Cfsj/5mJlZE2vEoPwVwJKIOI4k\nuSyvPEDS7wPbIuIhkqST6XozZmaWvdwXh5TUCdwVEbPT17+MiOll7++IiGkVdf4S+ADwMtAOvAr4\nbkR8sMY5vDKkmVmdsl4ccjS6vCpbGFslvSUifijpbODJygoR8SngUwCS3gL8ca1kkh7vFoyZWYPl\nmlAkrQQKwJGSniG5q+tS4AZJE4EXgY+kx84AlkXEgjxjMjOzfIyJ/VDMzKwJRETTPICTgI3Ag+nP\nHcDHSeaubAYeAr4DTK1R/yrgP0g2df4m0JaWvxpYAzwBrAamNUFMS4Hn0s99EDh/FGNaAjySPj5e\nVj7s65RDXEvKyvO4Vn8OPJyW/TNwdI365wOPk3TNXpPFtcoxpkZepx5gG7CporyR16lWTMO+TiON\nC5gJ/AB4lAz//eUYU13XasgXcbQfJHeg/RR4LXAOMCEt/yLwV1WOPwZ4mv1/sFcBH0yffwm4On1+\nDfDFJohpKfCJBlyn15Mkt0OBicDdwAlZXqcc4srjWk0pK/8Y8L9rHP8ToBOYRJIQZ+X4OzXSmBpy\nndL3zgLewMF/vBtynQaJKZPrNMz/fkcDb0ifTyFJHo3+nRooprquVTOv5XUO8J8R8WxE3BMRe9Py\nH5Nk1GomAodLOgQ4jP2TJt8B/H36/O+BdzYwpp+WvZfFzQT1xnQy8EBE7I6IV4AfAu9O38vqOmUd\nF2R/rXaWlR9OMuG20huBpyJiS0TsAb5Fco0gn9+pkcYEjblORPVJzNC46zRQTJDdVIS64oqIn0cy\nHYL0+M3AsenbDblWg8QEdVyrZk4oFwG9VcovAf6psjAifgpcBzxDkkh+GRH/kr79mojYlh73c+A1\nDYzpnrJDPirpIUm3SBruBM66YiLpfvs9Sa+WdBjJagSvTd87KqPrlHVckMO1kvSF9GaR9wGfq3L8\nscCzZa+fY/8/tKyuVZYxQWOu00By+bc3wpggm+s0orgkdZG0oH6cFjX8WpXF9EBZ8dCvVRbNvqwf\nJE35EtBRUf5p4Ds16kwH/gU4gqRVcBvwvvS9X1Qc+/+aIKYO9t8U8QWgZzRiSt+/GPh3oAj8HfCV\ntPz5kV6nnOLK7Vql710DdFcpvxD4WtnrDwA3ZHWtcoipIdep7P1ODu5eyu3f3ghiGvF1yiCuKenv\n+jua6FpVi6mua9WsLZS3AxsiotRfIOnDJP/X+r4adc4Bno6IX0TSZfJd9i/rsk3SUennHA1sb3RM\nEVGK9L8SsAyYN0oxERErIuK0iCgAv2T/XKCfZ3CdMo8rr2tVZiXJH+pKW4Hjyl7PZH83ahbXKtOY\nGnidBpLLv72RxJTRdRp2XGn397eBWyPijrK3GnatasVU77Vq1oSykAObbOeTrOt1QUTsrlHnGeB0\nSZMlCTibpC8Q4E7gw+nzDwF3HFx9dGNKf2H6vZuky2c0YkJSR/rzOOBdJL9okM11yjyunK7V68re\neyf7f1fKrQdeJ6lTUhvwhyTXCPL5nRpRTA28TvsO5+D+9kZdp5oxZXSdRhLXcuCxiLi+oryR16pq\nTHVfq+E09fJ8kAxcl4BXlZU9BWxh/61rN6XlM4DvlR23NL1gm0gGtSal5UcA95DcvbAGmN4EMX0j\nLXsIuJ2kT360YvrX9BdjI1AoKx/Rdcoxrjyu1bfLPvMOYEaNmM5Pr8dTwCezulY5xdTI67SS5IaT\n3ST/I3U7ybqbAAACjUlEQVRxE1ynWjGN6DqNJC7gTOCV9Jj+23zPb+S1GiSmuq6VJzaamVkmmrXL\ny8zMWowTipmZZcIJxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQbFyT9ELOn/81SbPS5382jPqdkh7J\nPjKz7Hkeio1rkn4VEVNH6VwvRMSr6qzTCdwVEbNzCsssM26hmFVIWwX/kq6werekmWn5CknXS/qR\npJ9IendaLkk3SXpM0mpJ/6fsvbWS5kr6K6Bd0oOSbq1seUj6Y0mfS5+fmp57I3Bl2TETJF0r6YH0\n/UtH87qYDcYJxexgNwIrIuINJMt33Fj23tERcSbwByQbIkGy4N5xEfE7wAeBN1d+YET8GfCbiJgb\nEX/UX1zj/MuBKyNiTkX5IpItEN5Esi/KR9IWjFlTcEIxO9ib2b/A3q0kax31ux0gIjazf7+KM4F/\nTMu3AWuHe+J0v4lpEfGjsvP3exvwwbTl8gDJ2k8nDvdcZlk7pNEBmDWhgQYWy1dLrnfXv/LjXybZ\nI6ff5CF8roCPRcTddZ7XbFS4hWLjXbU/3veRLAMOyQZW/zZI3R8BF6ZjKUcBhRrHv5TuOwGwDehI\nd6g8FFgAEBE7gOcl9e/l84Gy+quBxf2fIelESe0DfjuzUeQWio137en2qCJpmXwF+BjwdUl/QrIc\n+MXpsZUtl/7X3wHeCjxKsj3vBmBHlTpfAzZJ2hARfyTp8yT7mzzHgftUXAIsl7SXZBnzfrcAXcCD\n6f462xn+vuNmmfNtw2YZkHR4RPxa0hEk4xtnRsRwd7w0a0luoZhl43uSppPs6f3nTiY2HrmFYmZm\nmfCgvJmZZcIJxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQzMwsE/8fgpuCK4H2XEEAAAAASUVORK5C\nYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa96c0f7810>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ldf.plot(x='Longitude',y='Latitude',kind='scatter')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf['rolling_long'] = ldf.Longitude.rolling(window=2).mean()\n", | |
"ldf['rolling_lat'] = ldf.Latitude.rolling(window=2).mean()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa95bfd52d0>" | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEQCAYAAAB4JulQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+UXGWd5/H3J0knaQNJjNOOkWC3CAjqBpIjiMhgZQBB\nhwEFxxjmuAI5iMYZWNgVWUSTs+Mo6DCz4A4ThA4GxwRGRBAWNxgnJZvhRzLQIfwKwXE7gQChPUIw\nGEhDvvvHvZ1UOlXdXd33VlV3f17n1OlbT93n3m/fdPrbz4/7XEUEZmZmWRhT7wDMzGzkcFIxM7PM\nOKmYmVlmnFTMzCwzTipmZpYZJxUzM8tM7klFUrukrZLWl5TNlHSfpEck3SFpvzL1Jkh6UFKHpEcl\nLcw7VjMzG5patFRuBE7uVXYDcElEHAH8FLikd6WIeB2YExGzgCOBj0s6Ou9gzcxs8HJPKhGxGnip\nV/EhaTnASuDMCnX/kG5OAMYBvlPTzKyB1WtM5XFJp6XbnwFmlNtJ0hhJHcALwC8iYm2tAjQzs+rV\nK6mcC3xZ0lpgErCz3E4RsSvt/poBfEjS+2oYo5mZVWlcPU4aERtJx1kkHQL8WT/7vyJpFXAK8ETv\nzyW5W8zMbBAiQlker1YtFaWv5I3Ukn4dA1wOLN6ngvRHkqak283AScCGSieIiIZ/LVy4sO4xOE7H\n6TgdY88rD7WYUrwMuA84VNJmSecA8yQ9RdLq2BIRP0j3nS7prrTqdGCVpHXAg8CKiLg773jNzGzw\ncu/+ioizKnx0TZl9nwdOTbcfBWbnGJqZmWXMd9TXUKFQqHcIA+I4s+U4szUc4hwOMeZFefWr1ZKk\nGAnfh5lZLUkihulAvZmZjQJOKmZmlhknFTMzy4yTipmZZcZJxczMMuOkYmZmmXFSMTOzzDipmJlZ\nZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwzTipm\nZpYZJxUzM8uMk4qZmWXGScXMzDKTe1KR1C5pq6T1JWUzJd0n6RFJd0jar0y9GZL+VdLjkh6VdEHe\nsZqZ2dAoIvI9gXQcsB24KSJmpmVrgIsjYrWks4GDIuIbveq9A3hHRKxLk85DwOkRsaHMOSLv78NG\nhq6uLjo6OgCYNWsWLS0tdY7IrH4kERHK8pi5t1QiYjXwUq/iQ9JygJXAmWXqvRAR69Lt7cCTwAF5\nxmoj2/LltzBjxiGcfPKXOfnkT3HAAQexfPkt9Q7LbESp15jK45JOS7c/A8zoa2dJbcCRwIP5hmUj\nVVdXF/PnL2DnznuBp4H76e5u4txzv0hXV1e9wzMbMeqVVM4FvixpLTAJ2Flpx7Tr61bgwrTFYla1\nzs5Oxow5EJiZlswE2oA/2t0dZmZDN64eJ42IjcDJAJIOAf6s3H6SxpEklB9GxB19HXPRokW7twuF\nAoVCIaNobSRoa2tj165ngPUkCaUI/JrXXuvm9NPnsmTJYubNm1vXGM3yViwWKRaLuZ4j94F62N19\ndWdE/Kf0fUtEdEkaA9wIrIqIH5SpdxPw24i4uJ/je6De+rV8+S2cffb57NzZDGwD3gn8FriM5uYr\n2bRpgwfubVQZlgP1kpYB9wGHStos6RxgnqSngCeALT0JRdJ0SXel2x8B/hL4U0kdkh6WdEre8drI\nNW/eXNatu5+mpj8ADwC/Bu4FrmTs2HfS2dlZ1/jMRoLcu78i4qwKH11TZt/ngVPT7X8DxuYYmo1C\n27dvZ+LE99DdXTq2MoPu7k7a2trqGJnZyOA76m1UaWtr4403NpGMrZB+fZqrr/47d32ZZcBJxUaV\nlpYW2tuvpbl5DvvvP4sJEz7K4sVXc/7559U7NLMRoSYD9XnzQL31p/ed9JBMM25ra3MLxUatPAbq\n6zKl2KyW9sz6agGeo6lpDEuX3uApxGY5cEvFRrSuri5aWw9jx45VJIPy64ECEycGmzdvdCvFRrVh\nOaXYrJ4q3Uk/duzbPYXYLAdOKjai7X0nPenXTt5880VPITbLgZOKjWg9s73Gjz8eOBj4ME1N3SxZ\nsthdX2Y58JiKjQp+jorZvvIYU3FSsWGhq6vLU4DNMuaBehuVli+/hdbWw5gz5zxaWw/zg7XMGphb\nKtbQurq6mDHjkPThWsmU4PHjj+fZZ592i8VsiNxSsVGno6MjvWlxz5TgnTv9YC2zRuWkUgddXV2s\nXbvWj7EdsOfYe0rw83WMxcz64qRSYz3jAyed9EWPDwzArFmzaGoaAxSA2UCBpqYxu9fvMrPG4qSS\nk3Ktka6uLubPX8COHavYtu0hduxYxfz5C9xi6UNLSwtLl97AxInBpEmvMnFisHTpDR5PMWtQTio5\nqNQa6ezsZPz4NkrHB5qaWhtquZBKybCe3XXz5s1l8+aNrFr1z2zevNELQZo1MM/+yli5BQybm+ew\nadMGgIqfDfYv7yzv31i+/Bbmz1/A+PFt7NzZSXv7tQD7lPmXutnIkMfsLyJi2L+Sb6MxrFmzJqZM\nmR0Qu1+TJ8+KNWvWRETEsmU3R3PztJg8eVY0N0+LZctu7vN4L774YqxZsyZefPHFfT7rOdaUKbMH\ndKz+ztPcPC3gkTTuR2LixKn7lDU3Tysbi5kNP+nvzmx/H2d9wHq8GimpPPHEEzFhwuSAnwasCVi1\nzy/ivhJFqb6SRrkkMJRf+OWS4aRJh8akSUdUTJBmNrzlkVT8kK4M9XQfvfHGFOAsYAbwLPPnn7dX\n11RLS0vFrqqe7qz99ttv96D+jh1JV9n8+XM48cQ/paWlZff4TPIZlI7PDKYbrK0t6d5Kpuwm53vz\nzReRxuxV1t29yav7mllFHqjPyJNPPsnnP/8Fduz4CW+++SrwALAReID29n8e0CD3ddddz4EHHsoJ\nJ5zPrFnHAlOoNKi/dxKAof7CL312++TJs2lunsOSJYv3KWtvv9Yzr8yssqybPvV4Uefur2XLbo7x\n4/cLeE/a5VV5TKWSxYu/H9C8V3dW8n5Vxe6tasdnBqJc19xAu+vMbHghh+6v3Gd/SWoHTgW2RsTM\ntGwmsBiYBHQCfxkR2wdSt8I5Iu/vo5I9s73+FvivwP8GzgQGPsOrq6uLAw88mNdffzewbnf5xIkf\nIOIZJkx4D93dm8rOvPLqvWY2WHnM/qrFmMqNwPeAm0rKbgAujojVks4GLgG+McC6DWXP2MaZwFeA\nM0i6rY4B3klz80t9dhl1dXVx9913M27cAbz+es8TCpNkFLGFjo4H2L59e8Wk0df4jJlZreWeVNLE\n0dqr+JCIWJ1urwRWUCapVKjbUPaMbTxPkivPB7qZMKGJyy8/l/PPTwbpy7Uoegb2x41r5dVXO4FP\nAXNIBvif5uqrr+bwww+vy/dlZjYoWfenlXsBrcD6kvergdPS7YuBbQOtW2GfQfcpZqFnbGP//Y+M\n8eMnx6WXXlZ27KN0anC5KcHQHJMmHRYTJkyOxYu/HxEezzCz/DCCphSfC3xP0teBnwE7h3rARYsW\n7d4uFAoUCoWhHnLA5s2byyuvvMKFF/43Jkxo5eqrFzNz5kzmzZu713pfpVODb799+T5Tgvff/718\n73v/hU984hO0tLSUvcPdd7Ob2WAVi0WKxWK+J8k6S5V70UdrAzgEeGAwdUv2GXrKHoK+bkSsdIf9\nihUr+rx5MeubG83MeiOHlkqt7lNR+kreSC3p1zHA5SQzwQZUtxH1tVBkpftJZs2a1ec9IMNh8Ukz\ns95yTyqSlgH3AYdK2izpHGCepKeAJ4AtEfGDdN/pku7qp27D6etGxHI3FfYkj3nz5rJp0wZWrryO\nTZs27NW1lfXNjWZmteBVijPSM/7R1NRa9p6Sau4n6dn34YfXcdFFl1Y8ppnZUORxn4qTSoayuBGx\n9+D8P/zDFcyefaRvbjSzzDmpVNAoSWWo+noWixOKmWUtj6TiBSUbyGganK/30yTNLB9OKg1ktAzO\nV3rcspkNf+7+ajD9DfjXS1YLV7qLz6xxuPtrFOhrmnG9ZNmyaNQuPnfHmWXDLRXrU9Yti0ZsqeS5\nHI4fTWCNzC0Vq7msWxZ93QxaD6Vrs23b9hA7dqxi/vwFmbRYPHZko5FbKtanvFoWjfIX/Nq1aznp\npC+ybdtDu8smT57NypXXcdRRRw36uI3YIjPrzS0Vq7m8WhYtLS0cddRRdf8Fm9eMu0YdOzLLm1sq\nNiCN0rLIQx4z7kZKS2Uk/7ub76ivyEnFhiqPX56NOj18oPw8n5HPSaUCJxVrVMP1L/2uri7e9a5D\nee21fwROAp4fli0t65vHVMyGmUYZO6rWddddz2uv7QSuAg4DnvSYkA2IWypmtpdy40FQYOLEYPPm\njcMuQVplebRU6vWMejNrUD0z13bs2DNzDabxta+d64Ri/XL3l5ntpdw06+bmlzj//PPqGJUNF04q\nZraXRlv1wIYXj6mYWVnDdeaaDZynFFfgpGJmVr26TimW9O6BlJmZ2ehVzZjKT8qU3ZpVIGZmNvz1\nO6VY0mHA+4Epks4o+WgyMDGvwMzMbPgZSEvlvcCpwFTgz0tes4F+5xhKape0VdL6krKZku6T9Iik\nOyTtV6HuKZI2SNoo6asD+YbMzKx+BjxQL+nDEXF/1SeQjgO2AzdFxMy0bA1wcUSslnQ2cFBEfKNX\nvTHARuAE4DlgLfDZiNhQ5hweqDcbhTxDbWjqvfZXh6QvS7pW0pKeV3+VImI18FKv4kPScoCVwJll\nqh4NPB0RmyKiG7gZOL2KeM1sBPOTNRtTNUnlh8A7gJOBXwEzgN8P8ryPSzot3f5MeqzeDgCeKXn/\nbFpmZqNcno+BtqGpZu2vgyPiLySdHhFLJS0D/u8gz3su8D1JXwd+Buwc5HF2W7Ro0e7tQqFAoVAY\n6iHNrEGVW5+sZxVld4NVViwWKRaLuZ6jmjGVNRFxtKR7gQXAC8CaiDhoAHVbgTt7xlR6fXYI8MOI\nOKZX+THAoog4JX1/KRARcWWZY3hMxWwUGSlP1qy3eo+pfF/SW4Ge1sUTwHcGWFfpK3kjtaRfxwCX\nA4vL1FkLHCypVdJ44LPpec1slPP6ZI0r92Va0m6yAvA2YCuwENgf+DIQwG0RcVm673Tg+og4NX1/\nCnA1SfJrj4grKpzDLRWzUcizv4amLmt/Sbq4r88j4u+zDGgwnFTMzKpXr4d07Z/lCc3MasUtmdrL\nrPtL0n+PiG9ncrDqz+2WipntZfnyW5g/fwHjxycPHWtvv5Z58+bWO6yG0tBL30t6OCJmZ3Kw6s/t\npGJmu3l22MDUe/ZXfzINzMxssHruY0kSCpTex2L5yjKpuKlgZg2hrS3p8oKedWzX0929iba2tvoF\nNUq4pWJmI47vY6mfLMdULouIb2VysOrP7TEVM9uHZ3/1ra4D9ZKuKVO8Dfj3iLgjy6Cq5aRiZla9\neg/UTwSOBJ5OXzNJVheeL+l/ZhmUmZkNT9W0VB4APhIRb6bvx5GsUnwc8GhEvC+3KPuPzS0VM7Mq\n1bul8lag9LG/k4BpaZJ5PcugzMxseKrmeSrfAdZJKpLM9Doe+JakSSRPbzQza0gesK+dqmZ/pasI\nH52+XRsRz+USVZXc/WVmlXi5lsrqvkyLpAOAVkpaOBFxb5YBDYaTipmV4+Va+lavVYp7Tn4lMBd4\nHNiVFgdQ96RiZlaOHztce9WMqXwSeG9EeFDezIaFvZdrSVoqXq4lX9XM/voN0JRXIGZmWfNyLbVX\nzX0qPwGOAH5JyRTiiLggn9AGzmMqZtYXz/4qr97LtHy+XHlELM0yoMFwUjEzq17dZ381KicVM7Pq\n1WX2l6R/iYjPSHqUMs9MiYiZZaqZmTUkd4Xlq9+WiqTpEfG8pNZyn0fEplwiq4JbKmY2EL4Rcm/u\n/qrAScXM+tLV1UVHRwef/OQ83whZoi4LSkr6vaRXyrx+L+mVAdRvl7RV0vqSsiMk3S+pQ9IaSR+s\nUPdCSY+mr7rPMjOz4Wf58ltobT2MM864gB07puHn1ucr95aKpOOA7cBNPeMvklYAV0XEPZI+DlwS\nEXN61Xs/sBw4CngD+DnwxYj4TZlzuKViZvvYe5mW6cB7gSJuqSTqNVA/ra/PI+J3/Xy+usx4zC5g\nSro9FdhSpurhwIM9d/BLuhc4A/i7/mI2M4Nyy7T8E/BhJk06mF27nvWNkDkYyDItD5HM+iqXzQI4\naBDnvQhYIemq9LjHltnnMeCbkt5KcrPlJ4C1gziXmY1S+y7TcjgTJ47nttu+y6xZs5xQctBvUomI\nd+dw3i8BF0bE7ZI+DSwBTup13g3pIpa/IOk+6wDerHTARYsW7d4uFAoUCoXsozazYaVnmZb58+fQ\n1NRKd/cm2tsX87GPfazeodVFsVikWCzmeo5ql74/jeThXADFiLhrgPVagTtLxlRejoipJZ9vi4gp\nFQ+Q7PO3wDMRsbjMZx5TMbOKfG9KefVe+v4KkkHzH6VFF0o6NiIuG0h19u4+2yLpoxHxK0knABsr\nnLMlIrokvQv4FHDMQOM1M+vR0tLiZFIj1az9tR44MiJ2pe/HAh393VEvaRlQAN4GbAUWAk8B1wBj\ngdeABRHRkT5Z8vqIODWtey8wDegGLoqIYoVzuKViZlalei8ouR4o9Mz2SmeFFRthmRYnFTOz6tWt\n+0uSSKbydkhaRdKVdTxwaZbBmJnZ8FZNS+VR4GMk4yoAayLihbwCq4ZbKmZm1avrQD3wMDAjIn6W\nZQBmZjZyVNNS2QAcDGwCXiXpAguPqZiZDU/1bqmcnOWJzcxs5PHS92Zmo1Rdlr43MzMbKCcVMzPL\njJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwzTipmZpYZJxUzM8uMk4qZmWXGScXM\nzDLjpGJmZplxUjEzs8w4qZiZWWacVMzMLDNOKmZmlpnck4qkdklbJa0vKTtC0v2SOiStkfTBCnUv\nkvSYpPWSfiRpfN7xmpnZ4NWipXIj+z7f/jvAwoiYBSwEvtu7kqR3An8NzI6ImcA44LM5x2pmZkOQ\ne1KJiNXAS72KdwFT0u2pwJYK1ccCkySNA94CPJdLkGZmlolxdTrvRcAKSVcBAo7tvUNEPJd+vhn4\nA3BPRKysbZhmZlaNeiWVLwEXRsTtkj4NLAFOKt1B0lTgdKAV2AbcKumsiFhW7oCLFi3avV0oFCgU\nCvlEbmY2TBWLRYrFYq7nUETkegIASa3AnenYCJJejoipJZ9vi4gpvep8Gjg5Is5L338O+FBE/FWZ\n40ctvg8zs5FEEhGhLI9ZqynFSl89tkj6KICkE4CNZepsBo6RNFGSgBOAJ3OP1MzMBi337i9Jy4AC\n8DZJm0lme50HXCNpLPAa8IV03+nA9RFxakSskXQr0AF0p1+/n3e8ZmY2eDXp/sqbu7/MzKo3nLu/\nzMxsFHBSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PM\nOKmYmVlmnFTMzCwzTipmZpYZJxUzM8uMk4qZmWXGScXMzDLjpGJmZplxUjEzs8w4qZiZWWacVMzM\nLDNOKmZmlhknFTMzy4yTipmZZSb3pCKpXdJWSetLyo6QdL+kDklrJH2wTL1D088fTr9uk3RB3vGa\nmdngKSLyPYF0HLAduCkiZqZlK4CrIuIeSR8HLomIOX0cYwzwLPChiHimzOeR9/dhZjbSSCIilOUx\nc2+pRMRq4KVexbuAKen2VGBLP4c5EfiPcgnFzMwax7g6nfciYIWkqwABx/az/1xgee5RmZnVQFdX\nF52dnbS1tdHS0lLvcDJVr6TyJeDCiLhd0qeBJcBJ5XaU1AScBlza1wEXLVq0e7tQKFAoFLKK1cws\nM8uX38L8+QsYP76NnTs7aW+/lnnz5tbk3MVikWKxmOs5ch9TAZDUCtxZMqbyckRMLfl8W0RMqVD3\nNGBBRJzSx/E9pmJmDa+rq4vW1sPYsWMVMBNYT3PzHDZt2lCXFsuwHFNJKX312CLpowCSTgA29lF3\nHu76MrMRoLOzk/Hj20gSCsBMmppa6ezsrF9QGavFlOJlwH3AoZI2SzoHOA+4SlIH8E3gC+m+0yXd\nVVL3LSSD9LflHaeZWd7a2pIuL+i5w2I93d2baGtrq19QGatJ91fe3P1lZsNFz5hKU1Mr3d2bajqm\n0lse3V9OKmZmGetvdlejzP5yUqnAScXMGkU9Z3dVy0mlAicVM2sEjTa7qz/DefaXmdmINxpmd/XH\nScXMLCOjYXZXf5xUzMwy0tLSQnv7tTQ3z2Hy5Nk0N8+hvf3ahuz6yovHVMzMMtYos7v644H6CpxU\nzMyq54F6MzNraE4qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwz\nTipmZpYZJxUzM8uMk4qZmWXGScXMzDLjpGJmZpnJPalIape0VdL6krIjJN0vqUPSGkkfrFB3iqQf\nS3pS0uOSPpR3vGZmNni1aKncCJzcq+w7wMKImAUsBL5boe7VwN0RcThwBPBkblHWQLFYrHcIA+I4\ns+U4szUc4hwOMeYl96QSEauBl3oV7wKmpNtTgS2960maDPxJRNyYHueNiHglz1jzNlx+0Bxnthxn\ntoZDnMMhxryMq9N5LwJWSLoKEHBsmX3eDfxW0o0krZR/By6MiB21C9PMzKpRr4H6L5EkiHeRJJgl\nZfYZB8wG/jEiZgN/AC6tXYhmZlatmjyjXlIrcGdEzEzfvxwRU0s+3xYRU3rV+WPg/og4KH1/HPDV\niPjzMsf3A+rNzAYh62fU16r7S+mrxxZJH42IX0k6AdjYu0JEbJX0jKRDI2IjcALwRLmDZ31RzMxs\ncHJvqUhaBhSAtwFbSWZ7PQVcA4wFXgMWRESHpOnA9RFxalr3COAGoAn4DXBORGzLNWAzMxu0mnR/\nmZnZ6NBwd9RLOjS9KfLh9Os2SRdI+k56E+Q6ST9JpxyXq3+RpMckrZf0I0nj0/K3SrpH0lOSVkia\nUq5+A8S5UNKz6XEflnRKneO8UNKj6euCkvLMrmfGMV5YUl6ra/k/JD2Slv0fSe+oUP8USRskbZT0\n1ZLyWv1sDjXORrue+9xYnZY32vWsFGfDXE9JMyT9q5KbzIf2fz0iGvZFkvSeAw4ETgTGpOVXAN8u\ns/87SbrJxqfvbwH+c7p9JXBJuv1V4IoGjXMhcHGDXM/3A+uBCSRdlb8ADsrzemYcY62u5X4l5X8N\n/FOF/X8NtJJ0564DDqvxz+ZQ42yY65l+dhxwJLC+V3nDXM9+4myY6wm8Azgy3d6PZIhiUD+fDddS\n6eVE4D8i4pmIWBkRu9LyB4AZFeqMBSZJGge8hT03Vp4OLE23lwKfbLA4nyv5LK+JB9XGeTjwYES8\nHhFvAr8Czkg/y+t6Zhkj1OZabi8pn0Ryc29vRwNPR8SmiOgGbia5hlC7n82hxgmNcz2J8jdWQ2Nd\nz77ihAa5nhHxQkSsS7e3k6xeckD6cVXXs9GTylxgeZnyc4Gf9y6MiOeAq4DNJMnk5Yj4Zfrx2yNi\na7rfC8DbGyzOlSW7/FXa5XPDUJvuQ4kTeAz4k7T5+xbgEyR/+QD8cU7XM8sYoUbXUtI3JW0GzgK+\nUWb/A4BnSt4/y57/tHldy6zjhMa5nn2p2f/1IcYJDXg9JbWRtKweSIuqup4Nm1QkNQGnAT/uVf41\noDsilpWpM5Ukq7aSdDHtJ+msCqfIZIZCDnFeS9J9cyTwAvD39YozIjaQNH1/AdwNdABvVjjFkK9n\nDjHW7FpGxOWR3Mz7I5IuhqHI7WdziHH6eo7w6ylpP+BWkpvTX62wW5/Xs2GTCvBx4KGI6OopkHQ2\nyV+ilRLFicBvIuJ3aVfIbexZAmarkhsqSQeqXmzEOCOiK9LOS+B64Kg6xklE3BgRH4yIAvAye+4p\neiGH65lpjLW8liWWAWeWKd8CvKvk/Qz2dM3mcS0zj7PBrmdfavZ/vUTVcTba9Uy74m8FfhgRd5R8\nVNX1bOSkMo+9m2+nAF8BTouI1yvU2QwcI2miJJHcMNmzsvHPgLPT7c8Dd+xbvf5x9pqZcQZJ9069\n4kRSS/r1XcCnSH4oIZ/rmWmMNbyWB5d89knKr6a9FjhYUquSmX6fJbmGULufzSHF2WDXc/fu7Dsu\n0UjXc/fu9IqzAa/nEuCJiLi6V3l117OvUfx6vUgGrruA/UvKngY2AQ+nr2vT8unAXSX7LUwv2nqS\nQaWmtHwasJJkVsM9wNQGjfOmtGwdcDtJf3s947yX5Ie9AyiUlGd6PXOKsVbX8taS89wBTK8Q5ynp\n9XoauDSva5ljnI12PZeRTHB5neQPtXMa9HpWirNhrifwEZJu43Xp/6OHgVMGcz1986OZmWWmkbu/\nzMxsmHFSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFrAJJ/0/StHT79+nX6ZL+\nJePzLJR0cZbHNKsXJxUb9dKlcsqJ3tsR8XxEfCb/qMyGJycVG3XSda02SFoq6VHgc0qewLle0hWl\nu1ao+2i6/XklT6T8efpUvCtL9puflj0g6fuSrhlgbEdKul97nnY5JS1fJekKSQ+msX8kLW+WdIuS\np4jelp5v9lCuj9lQOKnYaHUw8L+AjwF/AxRIniFxlKTT+qlb2oI5AvgLYCYwV9IBkqYDl5M88Ooj\nwGFVxLUU+Eoky6E/RrJGXI+xEfEh4CJgUVq2APhdRHwA+DrghGJ15aRio9WmiFhLstz4qkgeQ7CL\n5HkTx1dxnF9GxPZIVlF+nOQZOUcDxYjYFsmjDX7c5xFSkiYDUyJ5UiAkCaY0ltvSrw+l54HkUbU3\nA0TE4yQLB5rVjZOKjValDyAayiNdS5fk3wWMG+Ix+6rXc643S85TTX2z3Dmp2GjV88t3DXC8pGmS\nxpI8i6LYx/4DsTY95pT0wUcDenhTRLwC/K5nvAT4HPCrfqr9G8mjY5H0PuADVcRplrlKf+2YjXQ9\ns7lekHQpexLJXRFxV+k+Zbb7O+Zzkr5FkrB+B2wAtg0wrrOBxZKagd8A5/Rz/muBH0h6LD3P41Wc\nyyxzfp52B844AAAAh0lEQVSKWQ4kTYqIV9PWz0+B9tj7Ea1ZnWcMyQPeXpd0EPAL4L0R8UbW5zIb\nCLdUzPKxSNKJwATgnjwSSuotwCpJTen7LzmhWD25pWJWI5IuI5l+HCRjNAH8OCK+XdfAzDLkpGJm\nZpnx7C8zM8uMk4qZmWXGScXMzDLjpGJmZplxUjEzs8z8fzoQCUbrf7PmAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa96c1012d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ldf.plot(x='rolling_long',y='rolling_lat',kind='scatter')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf['dist'] = (ldf.Latitude.diff(1).apply(np.square) + ldf.Longitude.diff(1).apply(np.square)).apply(np.sqrt)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf['actual_speed'] = ldf.dist / (ldf.trackdt.diff(1).dt.seconds / 3600)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"ldf['actual_speed_norm'] = (ldf.actual_speed - ldf.actual_speed.mean()) / ldf.actual_speed.std()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 71, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa95bf5ba10>" | |
] | |
}, | |
"execution_count": 71, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEYCAYAAABcGYHrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XXV97/H354SEEAgBkhAlYJiJIFFQkSoXNmjLcGuh\ndbiIIz4KVqV2BIfnXg59LGpLrfZyHaJoa5XSVqkERXAoxwpCxTIKCQSQEBJMGBIyMGT63j9+a+fs\n7Oxzzj7n7LP2Wnt9Xs+zn+xhnb1/36x9zmf9fr81KCIwMzPr63YDzMysGBwIZmYGOBDMzCzjQDAz\nM8CBYGZmGQeCmZkBXQgESVdIWiXp7iFe31PSIkl3SrpH0ntybqKZWSV1o4fwdeDUYV7/EHBvRLwC\nOBn4W0m75NIyM7MKyz0QIuImYM1wiwDTs/vTgaciYsuEN8zMrOKKuOV9ObBI0kpgD+B/dbk9ZmaV\nUMRAOBW4IyJOkXQI8CNJCyJiQ/OCknzeDTOzUYoItXq+iHsZnQtcDRARDwG/BuYPtXBEdPR28cUX\nd/w9i3Zzjb1zq0KdVagxzzqH061AUHZrZRnwBgBJc4DDgYdzapeZWWXlPmQk6UqgBsyU9ChwMTAF\niIhYCHwS+IeG3VIvjIin826nmVnV5B4IEXHOCK8/zvC7pU6oWq3WrY/OjWvsHVWoswo1QjHq1Ehj\nSkUmKcrcfjOzvEkiSjSpbGZmXeBAMDMzwIFgZmYZB4KZmQEOBDMzyzgQzMwMcCCYmVnGgWBmZoAD\nwczMMg4EMzMDHAhmZpZxIJiZGeBAMDOzTO6BIOkKSasarnfQapmapDsk/UrSjXm2z8ysqnI//bWk\nE4ANwDciYkGL12cAPwd+JyJWSJoVEU8O8V4+/bWZ2SgU6vTXEXETsGaYRc4BvhMRK7LlW4aBWdVd\ndx0sXNjtVlgvKeIcwuHAPpJulHSbpHd2u0FmRbRkCSxa1O1WWC/J/RKabdgFOBY4BdgduEXSLRHx\nYKuF+/v7t9+v1WqFuAydWR4i4L77ut0KK7qBgQEGBgbaWrYrl9CUNA+4dog5hIuAqRFxSfb4q8AP\nIuI7LZb1HIJV1mWXwYUXwoYNMG1at1tjZVGoOYSMslsr1wAnSJokaRrwGmBxbi0zK4mIdLv//m63\nxHpF7kNGkq4EasBMSY8CFwNTgIiIhRGxRNINwN3AVmBhRLhjbNak3jlevBiOOaa7bbHekHsgRMQ5\nbSxzGXBZDs0xK616IHgewTqliHsZmVkbIuCggxwI1jkOBLOSioAjj0xDRmad4EAwK6kIOOII+PWv\nYdOmbrfGeoEDwaykImDXXWHePHiw5VE6ZqPjQDArqQiQ0rCR5xGsExwIZiVVD4SXvtSBYJ3hQDAr\nqcYegieWrRMcCGYl5R6CdZoDwayk6oEwfz4sXQpbt3a7RVZ2DgSzkqoHwu67w5w5afdTs/FwIJiV\nVD0QwMNG1hkOBLOSagwETyxbJzgQzErKPQTrtNwDQdIVklZJunuE5V4tabOkP8irbWZl4h6CdVo3\neghfB04dbgFJfcCngRtyaZFZCTX3EBYvHjwlttlY5B4IEXETsGaExS4Avg2snvgWmZVTYyDstRdM\nnw7Ll3e3TVZuhZtDkLQfcFZEfJGhL7NpVnmNgQAeNrLxy/2KaW34HHBRw+NhQ6G/v3/7/VqtRq1W\nm5BGmRVNcyDUJ5ZPHXZA1qpmYGCAgYGBtpZVdGHQUdI84NqIWNDitYfrd4FZwEbgvIhY1GLZ6Eb7\nzYrgwgth5ky4KNt8+uIX4fbb4Stf6W67rNgkEREtN7S7NWQkhtjyj4iDs9tBpHmED7YKA7Oq85CR\ndVruQ0aSrgRqwExJjwIXA1OAiIiFTYt7899sCEMNGTU/b9au3AMhIs4ZxbLvnci2mJVZ8x/+2bOh\nrw9Wr07nNjIbrcLtZWRm7WkOBF89zcbLgWBWUq2GhnwKCxsPB4JZSbUKBE8s23g4EMxKyj0E6zQH\ngllJuYdgneZAMCupVoEwdy5s3AhPP92dNlm5ORDMSqpVIEiDZz41Gy0HgllJDXUAmoeNbKwcCGYl\nNVQgeGLZxsqBYFZS7iFYpzkQzEpquEBwD8HGwoFgVlJDBcK8efDEE7BhQ/5tsnJzIJiV1FCBMGkS\nHHEELFmSf5us3HIPBElXSFol6e4hXj9H0l3Z7SZJR+fdRrMyGO40155YtrHoRg/h68BwF/l7GDgx\nIl4OfBLw9Z/MWhguEDyPYGOReyBExE3AmmFevzUinske3grMzaVhZiUzUiB4TyMbraLPIbwP+EG3\nG2FWRB4ysk7L/Ypp7ZJ0MnAucEK322JWRMMFwqGHwmOPwfPPw9Sp+bbLyquQgSBpAbAQOC0ihhxe\nAujv799+v1arUavVJrRtZkUxXCBMngwHHQQPPAALFuTbLiuWgYEBBgYG2lpWEflfx17SgcC1EbHT\nHkSSXgL8BHhnRNw6wvtEN9pvVgTvfjecfDK85z2tX3/zm9Pt7LNzbZYVnCQiouWmRO49BElXAjVg\npqRHgYuBKUBExELgfwP7AF+QJGBzRByXdzvNim64HgJ4YtlGL/dAiIhzRnj9/cD7c2qOWWmNFAgv\nfSlcfXV+7bHyK/peRmY2BPcQrNMcCGYlNVIgHH44PPQQbN6cX5us3BwIZiU1UiDstlu6pOZDD+XX\nJis3B4JZSY0UCOBhIxsdB4JZSbUTCD5i2UbDgWBWUu4hWKc5EMxKqt1AcA/B2uVAMCupdgJh/ny4\n/37Yti2fNlm5ORDMSqqdQJg+HWbOhGXL8mmTlZsDwayk2gkE8MSytc+BYFZS7QaC5xGsXQ4Es5Ia\nTSB4TyNrhwPBrKQ8ZGSd5kAwK6nRBMLixWl5s+HkHgiSrpC0StLdwyzz95KWSrpT0ivybJ9ZWbQb\nCDNnpstorlw58W2ycutGD+HrwKlDvSjpdOCQiDgMOB/4Ul4NMyuTdgMBPLFs7ck9ECLiJmC46ySf\nCXwjW/a/gBmS5uTRNrMyGW0geGLZRlLEOYS5wPKGxyuy58yswWgCwRPL1o7cL6HZaf39/dvv12o1\narVa19pilqfR9hD+7d8mtj1WTAMDAwwMDLS1rKILux5ImgdcGxELWrz2JeDGiPiX7PES4KSIWNVi\n2ehG+82K4PTT4YIL4IwzRl728cdhwQJ44omJb5cVmyQiouWmRLeGjJTdWlkEvAtA0vHA2lZhYFZ1\no+khvOhFsGWLA8GGl/uQkaQrgRowU9KjwMXAFCAiYmFEXCfpDEkPAhuBc/Nuo1kZjCYQpMGJ5dmz\nJ7ZdVl65B0JEnNPGMh/Ooy1mZTaaQIDBieUTT5y4Nlm5FXEvIzNrw2gDwbue2kgcCGYlNZZA8K6n\nNhwHgllJjXXIyGwoDgSzkhptIBxwADzzTLqZteJAMCup0QZCX1+6xrLnEWwoDgSzkhptIIDnEWx4\nDgSzkhprILiHYENxIJiV1FgCwRPLNhwHgllJuYdgneZAMCupsQTCQQelE91t3DgxbbJycyCYldRY\nAmGXXeCww+D++yemTVZuDgSzkhpLIICHjWxoDgSzkhprIHhi2YaSeyBIOk3SEkkPSLqoxet7Slok\n6U5J90h6T95tNCsD9xCs03INBEl9wOXAqcBRwNskzW9a7EPAvRHxCuBk4G8llf5Sn2ad5h6CdVre\nPYTjgKURsSwiNgNXAWc2LRPA9Oz+dOCpiNiSYxvNSmGsgXDYYfDII7BpU8ebZCWXdyDMBZY3PH4s\ne67R5cCRklYCdwEfyaltZqUy1kDYdVc48EBYurTjTbKSK+JQzKnAHRFxiqRDgB9JWhARG1ot3N/f\nv/1+rVajVqvl0kizbhtrIMDgsNFRR3W2TVY8AwMDDAwMtLVs3oGwAnhJw+P9s+canQt8CiAiHpL0\na2A+8MtWb9gYCGZVMp5A8MRydTRvKF9yySVDLpv3kNFtwKGS5kmaApwNLGpaZhnwBgBJc4DDgYdz\nbaVZCXSih2DWKNdAiIitwIeBHwL3AldFxGJJ50s6L1vsk8BrJd0N/Ai4MCKezrOdZmUw3h6CA8Ga\n5T6HEBHXA0c0PfflhvuPk+YRzGwY4wmE+fPhwQdhy5Z0Ogsz8JHKZqU1nkCYNg3mzIFf/7qzbbJy\ncyCYldR4AgE8bGQ7cyCYlVQnAsF7GlkjB4JZSY03ELynkTVzIJiVlHsI1mkOBLOS6kQPYfFi2Lat\nc22ycnMgmJXUeANhxox0W7585GWtGhwIZiU13kAADxvZjhwIZiXViUDwxLI1ciCYlZR7CNZpDgSz\nknIPwTrNgWBWUp3qIdx3X3ovMweCWUl1IhBmz04nt1u1qjNtsnJzIJiVVCcCATxsZINyDwRJp0la\nIukBSRcNsUxN0h2SfiXpxrzbaFYGnQoETyxbXa5nQpfUB1wOvB5YCdwm6ZqIWNKwzAzg/wG/ExEr\nJM3Ks41mZeEegnVa3j2E44ClEbEsIjYDVwFnNi1zDvCdiFgBEBFP5txGs1LoZA/BgWCQfyDMBRoP\nlH8se67R4cA+km6UdJukd+bWOrMS8ZCRdVoRL563C3AscAqwO3CLpFsi4sFWC/f392+/X6vVqNVq\nOTTRrPs6FQj77QfPPQdPPQUzZ47//axYBgYGGBgYaGtZRY47IEs6HuiPiNOyxx8FIiI+07DMRcDU\niLgke/xV4AcR8Z0W7xd5tt+sSPbfH265BQ44YPzvdfzxcNllcMIJ438vKzZJRETLTYm8h4xuAw6V\nNE/SFOBsYFHTMtcAJ0iaJGka8BrAHVqzJp3qIcDgqbCt2nIdMoqIrZI+DPyQFEZXRMRiSeenl2Nh\nRCyRdANwN7AVWBgRnvIya9LJQPDEskEX5hAi4nrgiKbnvtz0+DLgsjzbZVY2nQ6En/ykM+9l5eUj\nlc1KqtNDRu4hmAPBrKQ6GQjz5qW9jNav78z7WTk5EMxKqpOBMGkSHHEELFky8rLWuxwIZiXVyUAA\nDxuZA8GstDodCD5i2RwIZiXlHoJ1mgPBrKQmoofgQKg2B4JZSXU6EA45BFasSOc1smpyIJiVVKcD\nYfJkOPhgeOCBzr2nlYsDwaykOh0I4InlqnMgmJXURASCJ5arzYFgVlIT1UNwIFSXA8GspDxkZJ2W\neyBIOk3SEkkPZBfDGWq5V0vaLOkP8myfWVlMRCAcfjg89BBs3tzZ97VyyDUQJPUBlwOnAkcBb5M0\nf4jlPg3ckGf7zMpkIgJh6tR0BbYHW16w1npd3j2E44ClEbEsIjYDVwFntljuAuDbwOo8G2dWJhMR\nCOCrp1VZ3oEwF1je8Pix7LntJO0HnBURXwQm4Otu1hsmKhA8sVxduV8xrQ2fAxrnFob9yvf392+/\nX6vVqNVqE9Ios6KZyEC4wYO1PWNgYICBgYG2llVETGxrGj9MOh7oj4jTsscfJV1L+TMNyzxcvwvM\nAjYC50XEohbvF3m236xIpkxJF7TZddfOvu9tt8F558Edd3T2fa0YJBERLTcl8g6EScD9wOuBx4Ff\nAG+LiJYjlpK+DlwbEVcP8boDwSopIgXCxo3p305avx7mzEn/TprU2fe27hsuEHKdQ4iIrcCHgR8C\n9wJXRcRiSedLOq/Vj+TZPrMy+OlPoa8PtmyZmCGj6dNh9mxYtqzz723FlvscQkRcDxzR9NyXh1j2\nvbk0yqxEGodyJiIQYPAUFgcfPDHvb8XkI5XNSmbdusH7ExUIPmK5mhwIZiWTRyD4JHfV5EAwK5m8\negijCYS3vx3uumti2mL5cSCYlcy6dekUEzCxPYTFi9PeTO148EH4zW8mpi2WHwdCzp56qtstsLJb\nty7tBTSR9tkHpk1Ll9Rsx/PPp5uVmwMhZ7NmwY9/3O1WWJmtWwf77jvxn9PuxPLKlek6zC+8MPFt\nsonlQOiCRx7pdguszPLoIUB7E8sPPACnnJJ6Bw6E8nMgdEHjpKDZaOUVCO1MLK9dm9rz3HMeMuoF\nlQoEqRjnZ1m/vtstsDIr0pDR+vXw7LPuIfSKSgUCpPHObnMPwcYqolhDRhs2DPYO3EMov8oFQhFO\n1uVAsLFavz7tcrr77hP/WXPmwLZt8MQTQy+zYQNs2pTOq+QeQvk5ELrAQ0Y2VkuWpOse149DmEjS\nyL2Exu+yewjlV7lA6CtAxd6SsrG691446qjOXwNhKCNNLG/YMHjf3+vyy/3Po6TTJC2R9ICki1q8\nfo6ku7LbTZKO7sTn1o+4LEIgbN3a7RZYWXUjEIabWG7sITgQyi/XP4+S+oDLgVOBo4C3SZrftNjD\nwIkR8XLgk8BXOvHZmzalf4vwx7gIbbByqgdCHkNGMPKQUWMPwUNG5Zf39vJxwNKIWBYRm4GrgDMb\nF4iIWyPimezhrcDcTnxwfetl8+ZOvNv4bNnS7RZYWS1dmuYQPGRkEyHvQJgLLG94/BjD/8F/H/CD\nTnxwfeulCH+Mt23rdgusjLZsgeXL4cAD8wuEAw5Ie8WtXdv6dU8q95YCjKi3Julk4Fxgp3mGsShS\nD8FDRjYWy5enXUF33TW/IaP6nkZDzSO4h9Bb8r6E5grgJQ2P98+e24GkBcBC4LSIWDPcG/b392+/\nX6vVqNVqLZerb710MxDqE9tF6KVY+Tz8MBxySLqfVw8BBieWf+u3dn5t/XrYc8/Ui3AgFNPAwAAD\nAwNtLZt3INwGHCppHvA4cDbwtsYFJL0E+A7wzoh4aKQ3bAyE4dS/rGefDW96E+yS+9WkB3sGReil\nWPk8/DAcdFC6n1cPAYafWN6wYfAANg8ZFVPzhvIll1wy5LK5DhlFxFbgw8APgXuBqyJisaTzJZ2X\nLfa/gX2AL0i6Q9IvOvHZjV/W557rxDuOXj0Q6ns8mY3GihVpTB9g7lyYMSOfzx1uYnnduhQIe+3l\nHkIvyH07OSKuB45oeu7LDfffD7y/05/bGAjPPgvTp3f6E0bmQLDxWLECXvWqdH/PPYee6O204Y5F\nWL8ejj46tcU9hPIr7KRypzVuvbiHYGW0cmXqGeTtoINg1SrYuHHn1+o9hBkz3EPoBZUJhMcfH7z/\n7LPdaUN9MtmBYGOxYgXst1/+nztpEhx2GNx//47Pb92aNq5mz/aQUa+oTCD88z8P3u9WINR7CP7F\nsbFYubI7gQCtJ5Y3bEhnXT35ZPjd3/WQUS+oRCA8+STcfPPgbnPdDATJPQQbvc2bYc2afC6M00qr\nieX6LqcnnZT23OvW75V1TiUC4Te/SVtWU6akx90MhGnTHAg2emvWpGGZbp2csdXE8rp1gztnzJyZ\n5hi6NT9nnVGJQNi0KR3IU9//v5uBsNtuDgQbvbVrUyB0S6sho/XrBwOhry/tErtsWf5ts87pwuFZ\n+XvhhRQI9UndbgfCk0+mLa7Zs9MQwHD/7rNPMS7qY921Zg3svXf3Pv+ww+DRRwd/l2BwyKjuwANT\nIMxvPn+xlUYlAmHTpjRcVN9trpt7GU2enO5/7GOw//7p8oSrV6d/f/WrHR+vXg3PPJNCoTEohguR\nbg4r2MTpdiBMmQLz5qWzrb7sZem5xiEjSIHwyCPdaJ11SiUCob5VUz+Qp5vHIUyaBJ/7HLztbe2d\nPmPzZnjqqR1Dov7vHXfs/PyGDTBrVnu9j333TfuPSxNfu41PfQ6hm+oTy/VAaO4hzJvnQCi7SgVC\n/cLk3RwymjQJPvKR9n9m8mR40YvSrR2bNqUhqVYBctttOz9f34+83QCZPt0B0g1r13a3hwA7Tyy3\n6iFcd13uzbIOqkQg1IeMrrkG/uIv8jvkv1k9ECbSlClpj6p291d//vmhA+Shh3Z+ftOm9oKj/u/u\nuztAOqHbQ0aQJpYXLUq90O9/H775TTjjjMHXDzwQbrwRLrggDXMOddt77+6cXNJGVonVUu8h7Ltv\n2jo/4wy46KL05cxTHoEwWlOnprmM/fdvb/nnnts5OOr/3n//jo9Xr06n/G4nOOr3p02b2HrLas2a\nNBTYTUceCRdemP7wv/rV8IEPwFvfOvj6a14Dn/1sWv9r1qSzs/7yl/D00zve1qxJGwrDhcZQtzxP\n+11FlQiE+m6nAMcemw6i+cQn4ItfzLcdW7eWf8tot93gJS9Jt3Zs3Ng6PFavbj2Jvssu7fc+Zs/O\n9zTQ3bR2bdrTp5uOOCKdAubtb4d/+qedX588Oc2NjWTbtjT/0BwU9dvKlem70fz8U0+lzxhLkEyb\n5p5qO0r+56k9L7wweFAawCc/mbq/731v2tIBWLgQLr00bQUtWJDO4LhgQfolaPzZ8ShiD2Gi7b57\nOjla/Tz+w4lIwxGtAmTFijSJ3vz81KmjC5BOrcu8FWHIaNq0tB7f9KbxvU9fX9qZYcaM9r4XdRFp\n/m+oIHn6aXjwwdbPb9kytiDZc89qBUnugSDpNOBzpIPiroiIz7RY5u+B04GNwHsi4s7xfGbjvtOQ\nfrE+/Wn44Afh1lvTVs/HPw7f/jbcdNMAUOOaa1JwPPJI2jJrDImjj05nnRztF2XLlmIEwsDAwJBX\nlusmKU1STp8+eGWw4USkic1WAXLzzQNMmVLb4fknnkgB1W6AzJo1uJtwt6xbB9dem3YI+NCHdn49\n73V5/fXtrZtOqtcopfW3++6D14Vo1/PPp1AdKkgee6z18xs3pr8Xow2SvfYa/e96EX4vcw0ESX3A\n5cDrgZXAbZKuiYglDcucDhwSEYdJeg3wJeD48Xxu45BR3bveBV/9KnzlK/DjH6dftlotrZT+/tr2\n5Z57Lu1Zcffd6fbZz6Z/N2/eMSAWLEi74+2xx9DtKEoPoQhfvE6QBrc0m4dT+vt3XI+QAmTt2qEn\n0G+5Zcfnn3oqhVO7ATJzZmeGBDdtgu9+F666Cn7yEzjxxLRxctJJOy+b97rsxrBVJ2qcOhVe/OJ0\nG43Nm9N3ZqggeeCB1s8/80z67owmRL73vQFe+9paV3uxefcQjgOWRsQyAElXAWcCSxqWORP4BkBE\n/JekGZLmRMSqsX5o85ARpG7rF74AJ5yQfpm/+c3WP7vbbmne4dhjd3x+1Sq45550u+WWNOR0333p\nC9ccFIcemoKgKIFQVVLa2tt77zQUOJJt29JWZX3OozEsliyBn/1sx+frxwq0GyDNR6Fv2JA2UP7u\n79J35l3vgq99rfvHH1TZ5MmDu2WPxrZtKRSGCpJHH4U779z5uc9/PoXXWHolu+02/KjFli0j72GZ\ndyDMBZY3PH6MFBLDLbMie27MgdCqhwDpj/Wll8Ixx4x+cnLOnHR7wxsGn9u6NY1h3n13CopvfSvt\nzbRqVZqzGEs30rqnry9t9c+cmdbfSLZuTb2KVnthtZpAX7cu/eLXQ+JXv0qnkr766sEro1k59fUN\nbny0O8TW3w8XX5w2DIYKkieeSHvztZpwh6HDYvLktBPNSD1YRcS4Ch8NSW8CTo2I87LH7wCOi4g/\naljmWuBTEfHz7PGPgQsj4vYW75df483MekREtOxL5N1DWAE07rC4f/Zc8zIHjLAMMHRRZmY2enmf\nBu024FBJ8yRNAc4GFjUtswh4F4Ck44G145k/MDOz9uTaQ4iIrZI+DPyQwd1OF0s6P70cCyPiOkln\nSHqQtNvpuXm20cysqnKdQzAzs+LymfPNzAyoWCBIOljSX0g6IHvck5PSVajTNfaOKtRZlhorFQjA\nO4A/BE6FNGnR3eZMmCrU6Rp7RxXqLEWNVQuE2cCNwP6SXgfbT6fRa6pQp2vsHVWosxQ1Fq5BnSJp\nt4b79eOD7wJ+AUwFXgEQEdvyb13nVKFO19gbNUI16ixzjT0XCJJeLOk/gL+TtDuk3V2zl08DrgP+\nGThO0rclndqlpo5LFep0jb1RI1Sjzl6osacCQdKewPuAZ4DDgWOz5+sTOLcA+5IOfHsjqRt3V9My\nhVeFOl0j0AM1QjXq7JUaeyIQJM0CiIh1wNUR8fvADcC5kmZGRGT/6a8DrgFmkQ54u510Ku7CTvI0\nqkKdrrE3aoRq1NlzNUZEaW/Aq0jJ+13gAmBaw2tTSUdEnw1MzZ47HnhVwzLnAPO6XYfrdI29UmNV\n6uzVGrvegHGskMnA10hpO580NncJMKvpP30RMLfpZ6d0u/2u0zX2Wo1VqbOXayztqSsk7UHqdtUi\nYqXS1dXeAjwSEZc3LPdV4FfAXsDTEfH3XWnwGFWhTtfYGzVCNers5RpLM4cg6SxJ35X0IUlHRsQG\n4MfAu7NFbiedTfVISQc3/Ohq4LOkSZ7v5troMahCna4R6IEaoRp1VqHGusIHgqTpkr4G/Bnwr8A8\n4Irs5euBwyTNj4jNwGJgEjAl+9nXAa8GTo+I34uIR4s0o9+oCnW6xt6oEapRZxVq3Em3x6zaGK/b\nHzi/4fEk4KfAS7PX+oHLGl7/GXBCdn9a03tN6nY9Va7TNfZGjVWpswo1Nt/yvmJaWyQpsv/FiHhM\n0qL686QV8TywNCK2SPpX4EuSLgaeJq20p7KffTb7ub6I2BaDB4kUThXq7OUa69/ZXq4RdmhbT9cJ\nvf19HUqhhozq42/1MKh3sSLi8YbnnyfN8k/LnrsPeD/pYjonAh+IiMWN7xsFO0Rc0quUnceksRvZ\nS3VKqknat/n5HqvxDZLeKGly/TsLvVUjbF+Xl0jao7FtvVSnpJdL2q3++1j//eylGttRiB6CpEOA\nvwZmS/o56QCPXzT+kjV4A/BERKzLAmRtRNwP3N/wfn1FXRGS3gpcBXwM+AwgoGfqzNr6l6TztZxD\nmlgbSllr3Av4v6Qx4j8m/ZHYPMTipawRtv9e9pNOu3Af8KnG3nuTUtYp6UDSxO9BwM+Bm4Erh2hn\nKWscja73EJSum3w1cBPwO8ChpIM+hjqk+2BgQNJHSWcPPK7p/Qq5QhpqWUWq92xJB0bENrU+62Hp\n6pT0CuA/gGUR8bKIuLvhtZ5Zl6R9z6dExPyIuL4+PAAt6yxljZJOAwZIv5cHk0618OKI7UfeNitd\nnZImkwL956RwXw3sl73WE7+To9X1HkJE3Crp9IhYCSDpadJWM41bIg1bJscDpwALgVdExJqm9yvk\nCmmo5Rjg+8A+wKWkreieqDMi7pR0HykUkPRGUnf6tohYX1+urDU2tPso4NbsufOBXYGfR8QvG4c7\ny1hjg5+hnBRIAAAIgElEQVQCR0fEWgBJt5LO5f+lHvq93ELa6v9gNiewL/CUpOm98H0di9x7CA3j\nkS/OHvdFOrhjD0nfI/UOTpH0l5J+K1tGDVsmA8CrI+IjEbFGg6eXLZQWdU7OXloB7AZ8BThE0p+Q\nxh+BFBxlqbO5xswXgb+SdAvwAeBPgb+WdEL2M6Val401Nvwh3Ai8R9JHSH8k9wYulfT+7GcmlalG\naLkuN0XEWkl9knYFnstuO2w9l6nO5hqz9fk14GJJj5A21vYDFkr6/exn+spU47hFvrtxvZt0NsDr\ngD9teL5+xPSC7N9ZwEWk8cu+7Lm+pvfqa36uKLeh6sxe+z/A67P7t5P+uPx2/f+hLHWOUOMngXdm\n9+dm6/ITDeu5F2r8CTDQ8Pi3SbsdTilTjW3UWV9nHwV+0OJnS1HnCDUeA1ye3Z9COiPpN4BdylRj\nJ255DxndBPxPYHfgzZKOjYjbs//grZGNOUfEk0oXmVgXaYxd0dAda35cQEPVCWkC6muStgH/BjxJ\n2p2NSN+25u54Uescrsa/jIhNABGxQulQ/6ci0pZWidZlc42vjIj/zl77HPBdSVOyWtcBv2iouyw1\nwhDrMusJ1L+P1wAnSZoXEcvqP1iiOodblwLmZz27Tdnv5qORhpHK9H0dt7yHjH4dETcB9wLLgTfB\nDheRALaPPZ8BLMte32GvhubHBdSyzszTwNdJB7BcSNrD4YhWE3UFr3PIGut/FGH7ujyNcq7L5hr/\noP5CRFwLXAn8TTbsdzlp3e6k4DXC0L+XjX/4ppL2s9841JsUvM4h12X2eAPweUlnAX9E2lAr2/d1\n3CYsEFrN0te/YBHxGOnUsbMk/V59eUmzJV1Lmvn/s4j4zkS1r1NGUedZ2cs3RkR/tuU8CbghIj5a\n5C/aaNdl9jPTsnX5J6Qu+r/n1d6xGEuNwPmkXYjnAX8SEX+VR1vHY4x1EhF3kIZcCn/6hVHUeGb2\n3BOk01O8QBpa+vOI+Fx+LS6Ojp/tNOt2bc3uT4uGXfKaltsXeCswB/gH4EURcbOkl0fEDlcSKuIf\nyw7UucP+3CrgLmvjqPHFEXGTpKMj4p5smUKuy/HW2LSMSL9ThVqPMK465wD/1dyLL6Jx1LhfRPxM\n0i4RsSVbprDrciJ1vIfQsEJOBv61vmXcnNoRsZp0EMgbgQeAWvZ8PQwmRabTbeyEcdR5UvZ8c1e0\ncF+8DtRYD4PCrstx1Hhi4+v1vVGKuB5hfL+XjWHQauu7KMa7LhvCoNDrciKNe+U2j31LerWk+4F3\nkva1f0s28batvmw2PDSDNFG1HDisubtdtC2SDtZ5ad5tb1cV1uVErcei/fGoQp0T+H0tTI1569iQ\nkaRdI+IFSR8j7VGyUNJJpJVzT0R8vsUwyTHZ2CTZePq2Im5FNqpCna6xN2qEatRZhRrzMqYeQr0L\n1vDvm4EPZi8fRTrEG9J+9j8FTld2YI92PKhl+wqJiK1FWyFVqNM19kaNUI06q1BjN40pEBq6VNOz\nf3cFjlI6svhLwMskzY10+PfzpLMDvqfpZxvfrzBDCo2qUKdr7I0aoRp1VqHGbmorECSdLOmghse7\nSroA+Hz21JWk/XZPBNYA9wD/KOl3SaeH/W/gxdnYXWFVoU7XCPRAjVCNOqtQY5GMGAiS9gG+RfpP\nfl/29CbSNUT3lPT6rLt1LfBK0lG3H88evwX4c+A/gS0R8UznS+iMKtTpGnujRqhGnVWosXBi5HOA\nzAC+B/wh6YCOc0kHp/SRDiD7x4ZlB4B/AQ7NHu9BGt+7D3j7SJ/VzVsV6nSNvVFjVeqsQo1Fuw3b\nQ8hm5p8hdcX2AC4AXke6uEtftgJmSfqEpDOAZ0kXn340e4sTgBeR9mX+1nCf1U1VqNM19kaNUI06\nq1BjIY2Q0PXdUn8f+Hh2/wLSIex/S1oxRwLfBm4Ajm36+VKcEbAKdbrG3qixKnVWocYi3to6DkHS\nO4DfI5358GXA3wBnkc7w2A+siIgXsmULeYqCdlShTtfYGzVCNeqsQo1F0m4g7AU8DHwrIi7InjsM\nOCAi/qNhue3nEimjKtTpGnujRqhGnVWosUjavR7CM6STQP0Atv/nLwWWNi7UAyukCnW6xkzJa4Rq\n1FmFGgtjNAemHQJMzSZ7evk/vwp1usbeUYU6q1BjIbR9LiNJ+0REywuA9JIq1Okae0cV6qxCjUUx\n6pPbZSnd85M2VajTNfaOKtRZhRq7reMXyDEzs3Iq7MUuzMwsXw4EMzMDHAhmZpZxIJiZGeBAMNuB\npBmS/rBD73WxpD8dYZl5ku7J7r9c0umd+GyzsXAgmO1obwYvybid0nV3J0p9V79jgDMm8HPMhuVA\nMNvRp4CDJd0u6ReS/lPSNcC9AJL+XdJtku5puGgLkk6T9N+S7pT0o+Y3lfR+Sd9XuuLXK7Pl7gA+\nlL0+GbgEeGv22W/JpVqzBj4OwayBpHnAtRGxQNJJpAu0HBURj2av7xURayVNJV2560RgEumi7idE\nxKMNy1wMbCBd2/cNwFsiYouku4APRsTNkv4aOC37vHcDr4yIP8q9cDPaP7mdWVX9oh4GmT+WdFZ2\nf3/gMGBf4Kf15SJibcPy7yJdtOWsiNiqdG3fGRFxc/b6PwGnTWgFZm3ykJHZ8DbW72Q9hlOA10TE\nK4A7gan1l4f4+buBA4EDJrCNZh3hQDDb0Xpgena/+Y/8DGBNRLwgaT5wfPb8rcD/yIabkLR3w8/c\nAZwPLJL0okiXhVwr6bXZ6+9o+uw9O1eK2eg4EMwaZGfVvFnS3cBnml6+Hpgs6V7gUtKF34mIJ4Hz\ngH/PJoqvanrPnwN/Dnxf0j7Ae4EvSLqdwT2MAG4EjvSksnWLJ5XNzAxwD8HMzDIOBDMzAxwIZmaW\ncSCYmRngQDAzs4wDwczMAAeCmZll/j8KUMsxKOYAowAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa95bdf0f10>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ldf.set_index('trackdt').actual_speed.plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 75, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa95ba67dd0>" | |
] | |
}, | |
"execution_count": 75, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEACAYAAACatzzfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEzBJREFUeJzt3W1snXd5x/HfL03JGkprKlB4qFqDpmoDDdxKo90KkqE8\nFBCwVZsWmwkdpLE3bK2GhEBIU8cbpL0YrFL2pgHKNuFGIiqMh8Nop/Z0Koym0AT3EdC20wdCLchS\nMxZRMLn24hy7rhP7/I/tc677n3w/kpVzu7dvf+MmV865ck7siBAAoLl2ZAcAADbGoAaAhmNQA0DD\nMagBoOEY1ADQcAxqAGi4okFt+69sP2h73vbnbT9v1GEAgJ6Bg9r2yyT9paQrIuI1knZK2jvqMABA\nz87C886R9HzbJyXtlnR0dEkAgNUG3qOOiKOS/k7S45J+JOnpiPi3UYcBAHpKVh8Tkt4j6VJJL5N0\nvu3ZUYcBAHpKVh9vlvRfEfE/kmT7Nkm/L2lu9Um2+UdDAGBIEeFB55Q86+NxSVfZ/g3blnSNpEfW\n+YSbfvva176mCy98u6SQdLNmZv5sS9cb5u3GG28c2+ein/6mvdGf91aqZEd9SNJBSYclfU+SJd1c\n/Bkq0O12sxO2hP5c9Oeqvb9E0bM+IuLjkj4+4hYAwGnwykRJrVYrO2FL6M9Ff67a+0swqCVNT09n\nJ2wJ/bnoz1V7fwkGtaROp5OdsCX056I/V+39JRjUANBwDGrV/9CJ/lz056q9vwSDGgAajkGt+ndc\n9OeiP1ft/SUY1ADQcAxq1b/joj8X/blq7y/BoAaAhmNQq/4dF/256M9Ve38JBjUANByDWvXvuOjP\nRX+u2vtLMKgBoOEY1Kp/x0V/Lvpz1d5fgkENAA3HoFb9Oy76c9Gfq/b+EgxqAGg4BrXq33HRn4v+\nXLX3lxg4qG1fZvuw7fv7Py7avn4ccQCAgm9uGxE/kHS5JNneIelJSV8ccddY1b7joj8X/blq7y8x\n7OrjzZL+MyKeGEUMAOBUww7qP5F06yhCMtW+46I/F/25au8vUTyobZ8r6d2SvjC6HADAWgN31Ku8\nXdJ3I+In653QarU0OTkpSZqYmNDU1NTK/mj5T731jufn57W0dGzlWgsLR9XpdIo/fivH09PTI70+\n/fQ3+Zj+8R0v3+52uxqGI6LsRPtWSf8aEf+4zn+P0mudTrvd1uzsPi0utiXt18zMIc3N7d/09QCg\n6WwrIjzovKLVh+3d6v1F4m1bDWui1X/a1Yj+XPTnqr2/RNHqIyJOSHrxiFsAAKfBKxNV//Mw6c9F\nf67a+0swqAGg4RjUqn/HRX8u+nPV3l+CQQ0ADcegVv07Lvpz0Z+r9v4SDGoAaDgGterfcdGfi/5c\ntfeXYFADQMMxqFX/jov+XPTnqr2/BIMaABqOQa36d1z056I/V+39JRjUANBwDGrVv+OiPxf9uWrv\nL8GgBoCGY1Cr/h0X/bnoz1V7fwkGNQA0HINa9e+46M9Ff67a+0swqAGg4RjUqn/HRX8u+nPV3l+i\n9JvbXmj7C7Yfsf2Q7StHHQYA6Cn65raSbpLUjog/tr1T0u4RNo1d7Tsu+nPRn6v2/hIDB7XtCyS9\nISJakhQRS5J+NuIuAEBfyerjFZJ+avsW2/fbvtn2eaMOG6fad1z056I/V+39JUpWHzslXSHpgxHx\nHdt/L+mjkm5ce2Kr1dLk5KQkaWJiQlNTUysPS5a/mOsdz8/Pa2np2Mq1FhaOqtPpFH88xxxzzHHT\nj5dvd7tdDcMRsfEJ9h5J/xERr+wfv17SRyLiXWvOi0HX2ki73dbs7D4tLrYl7dfMzCHNze3f9PUA\noOlsKyI86LyBq4+IWJD0hO3L+u+6RtLDW+wDABQqfR719ZI+b/uIpNdK+sToksZv9cOSGtGfi/5c\ntfeXKHp6XkR8T9LvjrgFAHAavDJR9T8Pk/5c9Oeqvb8EgxoAGo5Brfp3XPTnoj9X7f0lGNQA0HAM\natW/46I/F/25au8vwaAGgIZjUKv+HRf9uejPVXt/CQY1ADQcg1r177joz0V/rtr7SzCoAaDhGNSq\nf8dFfy76c9XeX4JBDQANx6BW/Tsu+nPRn6v2/hIMagBoOAa16t9x0Z+L/ly195dgUANAwzGoVf+O\ni/5c9Oeqvb8EgxoAGo5Brfp3XPTnoj9X7f0lir5nou2upEVJJyX9KiJeN8ooAMCziga1egN6OiKO\njzImS+07Lvpz0Z+r9v4SpasPD3EuAGAblQ7fkHSH7ftsf2CUQRlq33HRn4v+XLX3lyhdfVwdET+2\n/WL1BvYjEXHP2pNarZYmJyclSRMTE5qamlp5WLL8xVzveH5+XktLx1autbBwVJ1Op/jjOeaYY46b\nfrx8u9vtahiOiOE+wL5R0v9GxCfXvD+GvdZq7XZbs7P7tLjYlrRfMzOHNDe3f9PXA4Cms62I8KDz\nBq4+bO+2fX7/9vMlvVXSg1tPBACUKNlR75F0j+3Dkr4t6SsRcftos8Zr9cOSGtGfi/5ctfeXGLij\njoj/ljQ1hhYAwGnwlDvV/zxM+nPRn6v2/hIMagBoOAa16t9x0Z+L/ly195dgUANAwzGoVf+Oi/5c\n9Oeqvb8EgxoAGo5Brfp3XPTnoj9X7f0lGNQA0HAMatW/46I/F/25au8vwaAGgIZjUKv+HRf9uejP\nVXt/CQY1ADQcg1r177joz0V/rtr7SzCoAaDhGNSqf8dFfy76c9XeX4JBDQANx6BW/Tsu+nPRn6v2\n/hIMagBoOAa16t9x0Z+L/ly195coHtS2d9i+3/aXRxkEAHiuYe5R3yDp4VGFZKp9x0V/Lvpz1d5f\nomhQ275Y0jskfXq0OQCAtUrvUX9K0oclxQhb0tS+46I/F/25au8vsXPQCbbfKWkhIo7Ynpbk9c5t\ntVqanJyUJE1MTGhqamrlYcnyF3O94/n5eS0tHVu51sLCUXU6neKP55hjjjlu+vHy7W63q2E4YuM7\nybY/IelPJS1JOk/SCyTdFhHvW3NeDLrWRtrttmZn92lxsS1pv2ZmDmlubv+mrwcATWdbEbHund9l\nA1cfEfGxiLgkIl4paa+kO9cOaQDA6PA8atW/46I/F/25au8vMXBHvVpE3C3p7hG1AABOg3vUqv95\nmPTnoj9X7f0lGNQA0HAMatW/46I/F/25au8vwaAGgIZjUKv+HRf9uejPVXt/CQY1ADQcg1r177jo\nz0V/rtr7SzCoAaDhGNSqf8dFfy76c9XeX4JBDQANx6BW/Tsu+nPRn6v2/hIMagBoOAa16t9x0Z+L\n/ly195dgUANAwzGoVf+Oi/5c9Oeqvb8EgxoAGo5Brfp3XPTnoj9X7f0lGNQA0HAMatW/46I/F/25\nau8vMfB7JtreJenfJT2vf/7BiPj4qMMAAD0DB3VEPGP7jRFxwvY5kr5p++sRcWgMfWNR+46L/lz0\n56q9v0TR6iMiTvRv7lJvuMfIigAAz1E0qG3vsH1Y0lOS7oiI+0abNV6177joz0V/rtr7SwxcfUhS\nRJyUdLntCyR9yfarIuLhtee1Wi1NTk5KkiYmJjQ1NbXysGT5i7ne8fz8vJaWjq1ca2HhqDqdzoYf\nf911e3X8+IIk6YUv3KPbbjuw7vkXXfSSlXP37LlUBw58bkvX45hjjjke9nj5drfb1TAcMdwWw/Zf\nS/q/iPjkmvfHsNdard1ua3Z2nxYX25L2a2bmkObm9g9q0bNbGGujz19y7jDXA4Ctsq2I8KDzBq4+\nbL/I9oX92+dJeoukR7eeCAAoUbKjfqmku2wfkXSvpG9ERHu0WeO1+mFJjejPRX+u2vtLlDw97wFJ\nV4yhBQBwGrwyUfU/D5P+XPTnqr2/BIMaABqOQa36d1z056I/V+39JRjUANBwDGrVv+OiPxf9uWrv\nL8GgBoCGY1Cr/h0X/bnoz1V7fwkGNQA0HINa9e+46M9Ff67a+0swqAGg4RjUqn/HRX8u+nPV3l+C\nQQ0ADcegVv07Lvpz0Z+r9v4SDGoAaDgGterfcdGfi/5ctfeXYFADQMMxqFX/jov+XPTnqr2/BIMa\nABqOQa36d1z056I/V+39JUq+C/nFtu+0/ZDtB2xfP44wAEDPwG9uK2lJ0oci4ojt8yV91/btEfHo\niNvGpvYdF/256M9Ve3+JgfeoI+KpiDjSv/1zSY9IevmowwAAPUPtqG1PSpqSdO8oYrLUvuOiPxf9\nuWrvL1Gy+pAk9dceByXd0L9nfYpWq6XJyUlJ0sTEhKamplYelix/Mdc7np+f19LSsZVrHTx4QLfe\n+mlJ0o4du3Xy5IlTbq/V6XTWvX7/DEkb95Rej2OOOeZ42OPl291uV8NwRAw+yd4p6auSvh4RN61z\nTpRcaz3tdluzs/u0uNiWtF/Sn0tavp6Lbm/0+e3B55acAwDbxbYiwoPOK119fFbSw+sNaQDA6JQ8\nPe9qSe+V9Cbbh23fb/va0aeNz+qHJTWiPxf9uWrvLzFwRx0R35R0zhhaAACnUbSjLroQO2oAGMp2\n76gBAEkY1Kp/x0V/Lvpz1d5fgkENAA3HjnrIcwBgu7CjBoAzBINa9e+46M9Ff67a+0swqAGg4dhR\nD3kOAGwXdtQAcIZgUKv+HRf9uejPVXt/CQY1ADQcO+ohzwGA7cKOGgDOEAxq1b/joj8X/blq7y/B\noAaAhmNHPeQ5ALBd2FEDwBmi5Hsmfsb2gu35cQRlqH3HRX8u+nPV3l+i5B71LZLeNuoQAMDpFe2o\nbV8q6SsR8ZoNzmFHDQBDYEcNAGcIBrXq33HRn4v+XLX3l9i5nRdrtVqanJyUJE1MTGhqakrT09OS\nnv1irnc8Pz+vpaVja67YkTS96vba/7bauf3VhbRjx26dPHlC9i5FPHOa6+065dzT6XQ6p/Tu3dvS\nwsJjkrRy/dXXWH179edffXv1OXv2XKqnnuqq0+nouuv26vjxhVPO37PnUh048LnnfL0GfT055pjj\n8uOLLnqJjh9feM7vx1F8vuXb3W5XwyjdUU+qt6P+nQ3OSd9Rn3p7sx/Xu12yx97Oz3P6a6/fAmB7\nPPt7b7y/17ZtR217TtK3JF1m+3Hb79+OQABAmYGDOiJmI+JlEbErIi6JiFvGETZeneyALVn9sKpG\n9Oeiv/n4y0QAaLgz6t/6YEcNYDOq31EDAHIxqCWxo85Ffy76m49BDQANx46aHTVw1mNHDQDYEga1\nJHbUuejPRX/zMagBoOHYUbOjBs567KgBAFvCoJbEjjoX/bnobz4GNQA0HDtqdtTAWY8dNQBgSxjU\nkthR56I/F/3Nx6AGgIZjR82OGjjrsaMGAGxJ0aC2fa3tR23/wPZHRh01fp3sgC2pfUdHfy76m6/k\nu5DvkLRP0tskvVrSjO3fGnXYeB3JDtiSI0foz0R/rtr7S5Tco36dpB9GxGMR8StJByS9Z7RZ4/Z0\ndsCWPP00/Znoz1V7f4mSQf1ySU+sOn6y/z4AwBjszA5Ydu655+qZZ76jCy54l375y8f0i1+M87N3\nx/nJtl23281O2BL6c9HffAOfnmf7Kkl/ExHX9o8/Kiki4m/XnMfzxwBgSCVPzysZ1OdI+r6kayT9\nWNIhSTMR8ch2RAIANjZw9RERv7b9F5JuV2+n/RmGNACMz7a9MhEAMBrb9spE239k+0Hbv7Z9xXZd\nd9RqfjGP7c/YXrA9n92yGbYvtn2n7YdsP2D7+uymUrZ32b7X9uF++43ZTZthe4ft+21/ObtlWLa7\ntr/X/39wKLtnWLYvtP0F24/0fw9cud652/kS8gck/aGku7fxmiN1BryY5xb12mu1JOlDEfFqSb8n\n6YO1fP0j4hlJb4yIyyVNSXq77dclZ23GDZIezo7YpJOSpiPi8oio8Wt/k6R2RPy2pNdKWnelvG2D\nOiK+HxE/VO9fE6pF1S/miYh7JB3P7tisiHgqIo70b/9cvV+o1TxHPyJO9G/uUu/ve6raI9q+WNI7\nJH06u2WTrEr/vSLbF0h6Q0TcIkkRsRQRP1vv/Cp/ktuIF/M0hO1J9e6Z3ptbUq6/Njgs6SlJd0TE\nfdlNQ/qUpA+rsj9gVglJd9i+z/YHsmOG9ApJP7V9S3/1dLPt89Y7eahBbfsO2/Or3h7o//iuLWfj\nrGX7fEkHJd3Qv2ddhYg42V99XCzpStuvym4qZfudkhb6j2isuh4JL7s6Iq5Q71HBB22/PjtoCDsl\nXSHpH/o/hxOSPrrRycUi4i1ba2ucH0m6ZNXxxf33YUxs71RvSP9zRPxLds9mRMTPbN8l6VrVs++9\nWtK7bb9D0nmSXmD7nyLifcldxSLix/0ff2L7i+qtMu/JrSr2pKQnIuI7/eODktZ9MsOoVh+1/Ol8\nn6TftH2p7edJ2iuptr/9rvXe0LLPSno4Im7KDhmG7RfZvrB/+zxJb5H0aG5VuYj4WERcEhGvVO/X\n/Z01DWnbu/uPxGT7+ZLeKunB3KpyEbEg6Qnbl/XfdY02+EN+O5+e9we2n5B0laSv2v76dl17VCLi\n15KWX8zzkKQDNb2Yx/acpG9Jusz247bfn900DNtXS3qvpDf1n2J1v+1rs7sKvVTSXbaPqLdX/0ZE\ntJObziZ7JN3T/zuCb0v6SkTcntw0rOslfb7/a+i1kj6x3om84AUAGu5sf9YHADQegxoAGo5BDQAN\nx6AGgIZjUANAwzGoAaDhGNQA0HAMagBouP8HWdCYcU+ZosMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa95b9a28d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ldf.actual_speed_norm.hist(bins = 100)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 77, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Longitude</th>\n", | |
" <th>Latitude</th>\n", | |
" <th>battery</th>\n", | |
" <th>Speed</th>\n", | |
" <th>trackdt</th>\n", | |
" <th>rolling_long</th>\n", | |
" <th>rolling_lat</th>\n", | |
" <th>dist</th>\n", | |
" <th>actual_speed</th>\n", | |
" <th>actual_speed_norm</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>72.860148</td>\n", | |
" <td>19.111601</td>\n", | |
" <td>85.45</td>\n", | |
" <td>0.00</td>\n", | |
" <td>2014-08-12 19:55:10</td>\n", | |
" <td>72.860423</td>\n", | |
" <td>19.111646</td>\n", | |
" <td>0.000557</td>\n", | |
" <td>0.000117</td>\n", | |
" <td>-0.631233</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>37</th>\n", | |
" <td>72.971236</td>\n", | |
" <td>19.206873</td>\n", | |
" <td>79.09</td>\n", | |
" <td>0.00</td>\n", | |
" <td>2014-08-12 22:47:49</td>\n", | |
" <td>72.966981</td>\n", | |
" <td>19.202444</td>\n", | |
" <td>0.012283</td>\n", | |
" <td>0.007663</td>\n", | |
" <td>-0.602910</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34</th>\n", | |
" <td>72.961535</td>\n", | |
" <td>19.169745</td>\n", | |
" <td>57.27</td>\n", | |
" <td>36.67</td>\n", | |
" <td>2014-08-13 10:15:06</td>\n", | |
" <td>72.964054</td>\n", | |
" <td>19.169372</td>\n", | |
" <td>0.005093</td>\n", | |
" <td>0.000485</td>\n", | |
" <td>-0.629854</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>72.859800</td>\n", | |
" <td>19.091486</td>\n", | |
" <td>54.55</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-15 18:38:48</td>\n", | |
" <td>72.856920</td>\n", | |
" <td>19.100409</td>\n", | |
" <td>0.018752</td>\n", | |
" <td>0.002445</td>\n", | |
" <td>-0.622497</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>72.839350</td>\n", | |
" <td>19.105030</td>\n", | |
" <td>100.00</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-15 20:06:03</td>\n", | |
" <td>72.849575</td>\n", | |
" <td>19.098258</td>\n", | |
" <td>0.024528</td>\n", | |
" <td>0.016868</td>\n", | |
" <td>-0.568357</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31</th>\n", | |
" <td>72.851480</td>\n", | |
" <td>19.156466</td>\n", | |
" <td>65.45</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-15 21:52:54</td>\n", | |
" <td>72.845415</td>\n", | |
" <td>19.130748</td>\n", | |
" <td>0.052847</td>\n", | |
" <td>0.029675</td>\n", | |
" <td>-0.520280</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>72.842956</td>\n", | |
" <td>19.115235</td>\n", | |
" <td>50.00</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-18 09:55:47</td>\n", | |
" <td>72.839648</td>\n", | |
" <td>19.110813</td>\n", | |
" <td>0.011046</td>\n", | |
" <td>0.000592</td>\n", | |
" <td>-0.629451</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21</th>\n", | |
" <td>72.842923</td>\n", | |
" <td>19.115111</td>\n", | |
" <td>50.00</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-18 10:10:57</td>\n", | |
" <td>72.842940</td>\n", | |
" <td>19.115173</td>\n", | |
" <td>0.000128</td>\n", | |
" <td>0.000508</td>\n", | |
" <td>-0.629768</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td>72.841900</td>\n", | |
" <td>19.116240</td>\n", | |
" <td>50.00</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-18 10:28:11</td>\n", | |
" <td>72.842412</td>\n", | |
" <td>19.115676</td>\n", | |
" <td>0.001524</td>\n", | |
" <td>0.005304</td>\n", | |
" <td>-0.611762</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23</th>\n", | |
" <td>72.846876</td>\n", | |
" <td>19.115668</td>\n", | |
" <td>49.09</td>\n", | |
" <td>43.71</td>\n", | |
" <td>2014-08-18 11:15:20</td>\n", | |
" <td>72.844388</td>\n", | |
" <td>19.115954</td>\n", | |
" <td>0.005009</td>\n", | |
" <td>0.006374</td>\n", | |
" <td>-0.607748</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Longitude Latitude battery Speed trackdt rolling_long \\\n", | |
"19 72.860148 19.111601 85.45 0.00 2014-08-12 19:55:10 72.860423 \n", | |
"37 72.971236 19.206873 79.09 0.00 2014-08-12 22:47:49 72.966981 \n", | |
"34 72.961535 19.169745 57.27 36.67 2014-08-13 10:15:06 72.964054 \n", | |
"15 72.859800 19.091486 54.55 43.71 2014-08-15 18:38:48 72.856920 \n", | |
"16 72.839350 19.105030 100.00 43.71 2014-08-15 20:06:03 72.849575 \n", | |
"31 72.851480 19.156466 65.45 43.71 2014-08-15 21:52:54 72.845415 \n", | |
"22 72.842956 19.115235 50.00 43.71 2014-08-18 09:55:47 72.839648 \n", | |
"21 72.842923 19.115111 50.00 43.71 2014-08-18 10:10:57 72.842940 \n", | |
"24 72.841900 19.116240 50.00 43.71 2014-08-18 10:28:11 72.842412 \n", | |
"23 72.846876 19.115668 49.09 43.71 2014-08-18 11:15:20 72.844388 \n", | |
"\n", | |
" rolling_lat dist actual_speed actual_speed_norm \n", | |
"19 19.111646 0.000557 0.000117 -0.631233 \n", | |
"37 19.202444 0.012283 0.007663 -0.602910 \n", | |
"34 19.169372 0.005093 0.000485 -0.629854 \n", | |
"15 19.100409 0.018752 0.002445 -0.622497 \n", | |
"16 19.098258 0.024528 0.016868 -0.568357 \n", | |
"31 19.130748 0.052847 0.029675 -0.520280 \n", | |
"22 19.110813 0.011046 0.000592 -0.629451 \n", | |
"21 19.115173 0.000128 0.000508 -0.629768 \n", | |
"24 19.115676 0.001524 0.005304 -0.611762 \n", | |
"23 19.115954 0.005009 0.006374 -0.607748 " | |
] | |
}, | |
"execution_count": 77, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ldf[ldf.actual_speed_norm < -0.5]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 78, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa95b91bfd0>" | |
] | |
}, | |
"execution_count": 78, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEKCAYAAADEovgeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFHlJREFUeJzt3X+UXGV9x/H3F5PICgRBFrCm2ZEjmtTTVFERxJ5u1FTb\nIlqo2PgTwR8oKAoWFYGk1la0p5wqp6lHXBGppFh/FLRVEMvWokeTghqV4I/a2YhInKOAoNQE+faP\nuYtD2M3ObObZ2Zl9v86ZMzPPvc/cZ+652U/uc5+5T2QmkiSVtFevGyBJGnyGjSSpOMNGklScYSNJ\nKs6wkSQVZ9hIkopb1OsGlBQRjuuWpFnIzOjm5w38mU1mDuxj3bp1PW/DQnu4z93nC+FRwsCHjSSp\n9wwbSVJxhk0fGx0d7XUTFhz3+dxznw+GKNU/Nx9ERA7y95OkEiKCdICAJKnfGDaSpOIMG0lScYaN\nJKk4w0aSVJxhI0kqzrCRJBVn2EiSijNsJEnFGTaSpOIMG0lScYaNJKk4w0aSVJxhI0kqzrCRJBVn\n2EiSijNsJEnFGTaSpOIMG0lScYaNJKk4w0aSVJxhI0kqzrCRJBVn2EiSijNsJEnFGTaSpOIMG0lS\ncYaNJKk4w0aSVJxhI0kqzrCRJBVn2EiSijNsJGkWGo0GmzdvptFo9LopfcGwkaQObdx4BSMjK1iz\n5lRGRlawceMVvW7SvBeZ2es2FBMROcjfT9LcazQajIys4J57rgNWAVsYGlrNxMTNDA8P97p5XRER\nZGZ08zM9s5GkDtTrdZYsqdEMGoBVLF48Qr1e712j+oBhI0kdqNVq7NhRB7ZUJVvYuXOCWq3Wu0b1\nAcNGkjowPDzM2NgGhoZWs3TpEQwNrWZsbMPAdKGV4jUbSZqFRqNBvV6nVqsNXNCUuGZTNGwiYgw4\nFtiemauqslXA+4F9gDrw4sy8e5d6y4CPAIcA9wEXZ+b7qmUHAFcAI1X9EzPzzmm2b9hIUof6cYDA\nJcCzdyn7IHB2Zv4e8Cng7Cnq3QucmZmPB44GTouIFdWytwLXZubjgP8A3lak5ZKkrikaNpl5PXD7\nLsWHV+UA1wInTFHvtsz8evX6bmAr8Khq8fOAS6vXlwLP73a7JUnd1YsBAt+OiOOq1ycCy3a3ckTU\ngCcAX6mKDs7M7dAMJeDgMs2UJHXLoh5s82Tgoog4D7gK2DHdihGxL/Bx4IzM/MU0q+32osz69evv\nfz06Osro6GiHzZWkwTY+Ps74+HjRbRQfjRYRI8CnJwcI7LLscOCyzDxqimWLgM8An83M97aUbwVG\nM3N7RBwKXJeZK6fZtgMEJKlD/ThAACCqR/NNxHD1vBdwLs2RaVP5EHBTa9BUrgJOql6/HLiym42V\nJHVf6aHPlwOjwCOA7cA6YD/gNJrdX5/MzHOqdR9Jc4jzsRFxDPBF4JvVegmck5mfi4gDgY8Bvw1M\n0Bz6fMc02/fMRpI61He/s+k1w0aSOtev3WiSpAXOsJEkFWfYSJKKM2wkScUZNpKk4gwbSVJxho0k\nqTjDRpJUnGEjSSrOsJEkFWfYSJKKM2wkScUZNpKk4gwbSVJxho0kqTjDRpJUnGEjSSrOsJEkFWfY\nSJKKM2wkScUZNpKk4gwbSVJxho0kqTjDRpJUnGEjSSrOsJEkFWfYSJKKM2wkScUZNpKk4gwbSVJx\nho2kBaXRaLB582YajUavm7KgGDaSFoyNG69gZGQFa9acysjICjZuvKLXTVowIjN73YZiIiIH+ftJ\nal+j0WBkZAX33HMdsArYwtDQaiYmbmZ4eLjXzZtXIoLMjG5+pmc2khaEer3OkiU1mkEDsIrFi0eo\n1+u9a9QCYthIWhBqtRo7dtSBLVXJFnbunKBWq/WuUQuIYSNpQRgeHmZsbANDQ6tZuvQIhoZWMza2\nwS60OeI1G0kLSqPRoF6vU6vVDJpplLhmY9hIkh7AAQKSpL7UVthE00si4vzq/fKIOLJs0yRJg6Ld\nM5sNwNHA2ur9XcA/FGmRJGngLGpzvadm5hER8TWAzLw9IpYUbJckaYC0e2azMyIeAiRARAwD9xVr\nlSRpoLQbNu8DPgUcHBF/DVwP/E2xVkmSBkrbQ58jYgXwTCCAL2Tm1pIN6waHPktS5+b8dzYRceDu\nKmfmz7rZmG4zbCSpcyXCZqYBAjfQvE4TwHLg9ur1w4FtwKO72RjNjr+IljTf7faaTWY+OjMPA64F\nnpuZB2XmI4BjgWvmooHaPefnkNQP2rpmExHfzMzfnalsvhn0bjTn55BUQi9vV3NrRJwbEbXq8Xbg\n1m42RJ1zfg5J/aLdsFkLDNMc/vwp4GB+czcB9Yjzc0jqF23dQaAadXZG4baoQ5Pzc5xyymoWLx5h\n584J5+eQNC+1e83mOqq7B7TKzGeUaFS3DPo1m0mORpPUTT2bzyYintTydm/gBODezDx7hnpjNEeu\nbc/MVVXZKuD9wD5AHXhxZt7dTt2qfB3wKuAnVdE5mfm5aba/IMJGkrppXk2eFhGbMnO30wxExNOB\nu4GPtITNJuDMzLw+Ik4CDsvM89upW5WvA+7KzAvbaKNhI0kd6tlotIg4sOVxUEQ8G9h/pnqZeT3N\nH4K2Orwqh+bvd07ooO79TWqn3ZKk+aHdKQZa7yRwL/C/wCmz3Oa3I+K4zLwKOBFYNovPOD0iXgr8\nN3BWZt45y7ZIkuZAu2GzMjP/r7UgIh46y22eDFwUEecBVwE7Oqy/AXhHZmZEvBO4kN0E3/r16+9/\nPTo6yujoaKftlaSBNj4+zvj4eNFttDtA4MbMPGKmsmnqjgCfbr3u0rLscOCyzDyq07ptLveajSR1\naM5vxBkRhwKPAoYi4on85lrJUuBhbW4jWuoREcOZ2YiIvYBzaY5Ma6vuZJsy87bq7fHAt9pshySp\nR2bqRns2cBLN6yqto7/uAs6Z6cMj4nJgFHhERGwD1gH7RcRpNK8BfTIzP1yt+0jg4sw8drq6mXkJ\n8J6IeALNmULrwGva+J6SpB5qtxvthMz8xBy0p6vsRpOkzvVi8rSXZOY/RcRZTH0HgRl/69JLho0k\nda4Xk6ftUz3vO8Uy/4pLktrSbjfaMZn5pZnK5hvPbCSpc72cz+aiNsskSXqQmYY+Hw08DRiOiDNb\nFi0FHlKyYZKkwTHTNZslNK/XLAL2ayn/OfBnpRolSRos7V6zGcnMiTloT1d5zUaSOteL0WiTfhkR\nfws8nuZ8NsD8nzxNkjQ/tDtA4KPAzcCjgb+k+cv9zYXaJEkaMO12o92QmU+KiC0tk6BtzsynFG/h\nHrAbTZI618tutJ3V848j4k+AW4EDu9kQSdLgajds3hkR+wNn0fx9zVLgjcVaJUkaKG11o01ZMeKN\nmfn3XW5PV9mNJkmdm/Mbcc7QmG2Zubybjek2w0aSOtfL29VMpasNkSQNrj0JG08ZJEltmeneaHcx\ndagEMFSkRZKkgbPbsMnM/Xa3XJKkduxJN5okSW0xbCRJxRk2kqTiDBtJUnGGjSSpOMNGklScYSNJ\nKs6wkSQVZ9hIkoozbCRJxRk2kqTiDBtJUnGGjSSpOMNGklScYSNJKs6wkSQVZ9j0UKPRYPPmzTQa\njV43RZKKMmx6ZOPGKxgZWcGaNaeyfPnjeO1rX8fWrVsftJ6BJGkQRGb2ug3FRETOx+/XaDQYGVnB\nPfdcB6wCtgBHA/dx+umv5qKL3gs0A+mUU17HkiU1duyoMza2gbVrX9jDlktaCCKCzIyufuZ8/GPc\nLfM1bDZv3syaNady5503tJQeAbwZeCU33XQDBx100IMCaWhoNRMTNzM8PNyTdktaGEqEjd1oPVCr\nNc9Ummc0VM8TwBpgGZs2baJer7NkSY1m0ACsYvHiEer1+lw3V5L2mGHTA8PDw4yNbWDvvUeBxwCj\nwAbgx8AtHHnkkVMG0s6dE9RqtR60WJL2jGHTI2vXvpBt277DC17wZOAe4DzgKE4//VWsXLny/kAa\nGlrN0qVHMDS0mrGxDUW60ByEIKk0r9nMA1u3bmXTpk0ceeSRrFy58gHLGo0G9XqdWq1WJGgchCBp\nVw4Q6FC/hE2vTDUqzkEIkhwgoK5yEIKkuWLYLGAOQpA0VwybBWwuByFIWti8ZqPigxAk9RcHCHTI\nsJGkzjlAoI/5WxZJC5lhMwda7/A8MrKCjRuv6HWTJGlO2Y1WmL9lkdRv7EbrQ/6WRZIMm+L8LYsk\nFQ6biBiLiO0RsaWlbFVEfDkivhERV0bEvu3WrcoPiIhrIuI7EXF1ROxf8jvsKX/LIkmFr9lExNOB\nu4GPZOaqqmwTcGZmXh8RJwGHZeb57dStyt8N/DQz3xMRbwEOyMy3TrP9nl+zmeRvWST1i778nU1E\njACfbgmb2zPzgOr1MuDqzHx8O3WrspuBP8jM7RFxKDCemSumqT9vwkaS+sWgDBD4dkQcV70+EVjW\nYf2DM3M7QGbeBhzczcZJkrpvUQ+2eTJwUUScB1wF7NjDz9vtqcv69evvfz06Osro6Ogebk6SBsv4\n+Djj4+NFtzHn3Wi7LDscuCwzj2q3bkRsBUZbutGuy8yV09S3G02SOtSv3WhRPZpvIoar572Ac4H3\nt1u3chVwUvX65cCV3WqoJKmM0kOfLwe+DDw2IrZFxCuAtRHxHeAm4EeZ+eFq3UdGxGdmqAvwbmBN\n9RnPBC4o+R0kSXvO29VIkh6gX7vRJEkLnGEjSSrOsJEkFWfYLHBO6iZpLhg2C5iTukmaK45GW6Cc\n1E3SdByNpq5xUjdJc8mwWaCc1E3SXDJsFigndZM0l7xms8A5qZukXfXl5Gm9ZNhIUuccICBJ6kuG\njSSpOMNGklScYSNJKs6wkSQVZ9hIkoozbCRJxRk2kqTiDBtJUnGGjSSpOMNGklScYSNJKs6wkSQV\nZ9hIkoozbCRJxRk2kqTiDBtJUnGGjSSpOMNGklScYSNJKs6wkSQVZ9hIkoozbCRJxRk2kqTiDBtJ\nUnGGjSSpOMNGklScYSNJKs6wkSQVZ9hIkoozbPrY+Ph4r5uw4LjP5577fDAYNn3Mf4Rzz30+99zn\ng8GwkSQVZ9hIkoqLzOx1G4qJiMH9cpJUUGZGNz9voMNGkjQ/2I0mSSrOsJEkFWfYzAMR8diI+FpE\n3Fg93xkRb4iI90TE1oj4ekR8IiKWTlP/TRHxrYjYEhEfjYglVfm6iLil+twbI+I5c/vN5q8u7PMz\nIuKb1eMNLeUHRMQ1EfGdiLg6Ivafu281v3V5n5/RUu5xPo3d7PN3RMQ3qrLPRcSh09R/TkTcHBHf\njYi3tJR3fpxnpo959KD5H4Bbgd8GngXsVZVfALxrivV/C/gBsKR6fwXwsur1OuDMXn+n+f6YxT5/\nPLAFeCjwEODzwGHVsncDZ1ev3wJc0OvvNx8fXd7nHued7/N9W8pfD/zjNOt/HxgBFgNfB1ZUyzo+\nzj2zmX+eBfxPZv4wM6/NzPuq8q8Ay6ap8xBgn4hYBDyM5gE1qasjSgZUp/t8JfDVzPxVZv4a+E/g\n+GrZ84BLq9eXAs8v2O5+1s19Dh7n7Wjd53e3lO8D3DfF+kcC38vMiczcCfwzzeMbZnGcGzbzzwuB\njVOUnwx8dtfCzLwV+DtgG/Aj4I7MvLZlldOr7okP2qUzrY72OfAt4PerroSHAX9M83+LAIdk5naA\nzLwNOLhAewdBN/c5eJy34wH7PCLeGRHbgBcB50+x/qOAH7a8v6Uqg1kc54bNPBIRi4HjgH/Zpfzt\nwM7MvHyKOg+n+b+MEZpdavtGxIuqxRtodjU8AbgNuLBg8/vSbPZ5Zt5Msxvh88C/A18Dfj3NJvxt\nwS4K7HOP8xlMtc8z89zMXA58lGZX2p6Y8Tg3bOaXPwJuyMzGZEFEnETzf3EvmqbOs4AfZObPqu6F\nTwJPA8jMRladqsDFwFNKNbyPzWafk5mXZOaTM3MUuAP4brXotog4pPqcQ4GfFGp3P+vqPvc4b8uD\n9nmLy4ETpij/EbC85f2yqgxmcZwbNvPLWh54mvsc4C+A4zLzV9PU2QYcFRF7R0QAzwS2VvVbR5gc\nT7MrQg80m31ORAxXz8uBP6X5DxbgKuCk6vXLgSu73+S+19V97nHell33+WNalj2f6m/GLjYDj4mI\nkWqE65/TPL5hFse5dxCYJ6p+6Ama3QF3VWXfA5YAP61W+0pmvi4iHglcnJnHVuuto3kg7KTZvfDK\nzNwZER8BnkDz4l8deM1kP6v2eJ9/ETiQ5j5/U2aOV+UHAh+jeT1hAjgxM++Yu281vxXa5x7nuzHN\nPv848Fia+2wCODUzfzzFPn8O8F6aJyZjmXlBVd7xcW7YSJKKsxtNklScYSNJKs6wkSQVZ9hIkooz\nbCRJxRk2kqTiDBtpChFxV+HP/0BErKhev20W9Uci4pvdb5lUhr+zkaYQET/PzCnnVSmwrbsyc78O\n64wAn87MVYWaJXWVZzZSm6qziS9Udxf+fEQsq8oviYj3RsSXIuL7EXF8VR4RsSEibqommPq3lmXX\nRcQREfEuYKia3OqyXc9YIuKsiDi/ev2kattfA05rWWevaE5A9tVq+avmcr9I7TBspPZdBFxS3V34\n8ur9pEMz8xjguTTvTgzNmxsuz8zfAV4GHL3rB2bm24BfZuYRmfnSyeJptv8h4LTMfOIu5afQnFri\nqTTnIHl1deYjzRuGjdS+o/nNzQwvA45pWfavAJm5ld/M7XEM1S3dq3t1XTfbDVdztOyfmV9q2f6k\nPwReVp3xfJXm/cMOn+22pBIW9boBUh/Z3QXO1rsVdzprZOv699KceXXS3m18bgCvz8zPd7hdac54\nZiNNbao/7F+meat2gJcA/zVD3S8BJ1TXbg4BRqdZf0c1pTfAdmC4mpHyocCxAJl5J3B7RDytZfuT\nrgZeN/kZEXF4RAzt9ttJc8wzG2lqQ9WUuUHzjOZCmrMZfjgi3gw0gFdU6+56xjP5/hPAM4Bv05xe\n9wbgzinqfADYEhE3ZOZLI+KvaM4lcgsPnGfkZOBDEXEfcE1L+QeBGnBjNafRT2hjTnhpLjn0WSoo\nIvbJzF9U8398FTgmM529UwuOZzZSWZ+JiIcDi4F3GDRaqDyzkSQV5wABSVJxho0kqTjDRpJUnGEj\nSSrOsJEkFWfYSJKK+3/bbfaof1oCUAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa95bb11a90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ldf[ldf.actual_speed_norm < -0.5].plot(x='Longitude',y='Latitude', kind='scatter')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 79, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa95b853510>" | |
] | |
}, | |
"execution_count": 79, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEQCAYAAAB4JulQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+UXGWd5/H3J0knaQNJjNOOkWC3CAjqBpIjiMhgZQBB\nhwEFxxjmuAI5iMYZWNgVWUSTs+Mo6DCz4A4ThA4GxwRGRBAWNxgnJZvhRzLQIfwKwXE7gQChPUIw\nGEhDvvvHvZ1UOlXdXd33VlV3f17n1OlbT93n3m/fdPrbz4/7XEUEZmZmWRhT7wDMzGzkcFIxM7PM\nOKmYmVlmnFTMzCwzTipmZpYZJxUzM8tM7klFUrukrZLWl5TNlHSfpEck3SFpvzL1Jkh6UFKHpEcl\nLcw7VjMzG5patFRuBE7uVXYDcElEHAH8FLikd6WIeB2YExGzgCOBj0s6Ou9gzcxs8HJPKhGxGnip\nV/EhaTnASuDMCnX/kG5OAMYBvlPTzKyB1WtM5XFJp6XbnwFmlNtJ0hhJHcALwC8iYm2tAjQzs+rV\nK6mcC3xZ0lpgErCz3E4RsSvt/poBfEjS+2oYo5mZVWlcPU4aERtJx1kkHQL8WT/7vyJpFXAK8ETv\nzyW5W8zMbBAiQlker1YtFaWv5I3Ukn4dA1wOLN6ngvRHkqak283AScCGSieIiIZ/LVy4sO4xOE7H\n6TgdY88rD7WYUrwMuA84VNJmSecA8yQ9RdLq2BIRP0j3nS7prrTqdGCVpHXAg8CKiLg773jNzGzw\ncu/+ioizKnx0TZl9nwdOTbcfBWbnGJqZmWXMd9TXUKFQqHcIA+I4s+U4szUc4hwOMeZFefWr1ZKk\nGAnfh5lZLUkihulAvZmZjQJOKmZmlhknFTMzy4yTipmZZcZJxczMMuOkYmZmmXFSMTOzzDipmJlZ\nZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwzTipm\nZpYZJxUzM8uMk4qZmWXGScXMzDKTe1KR1C5pq6T1JWUzJd0n6RFJd0jar0y9GZL+VdLjkh6VdEHe\nsZqZ2dAoIvI9gXQcsB24KSJmpmVrgIsjYrWks4GDIuIbveq9A3hHRKxLk85DwOkRsaHMOSLv78NG\nhq6uLjo6OgCYNWsWLS0tdY7IrH4kERHK8pi5t1QiYjXwUq/iQ9JygJXAmWXqvRAR69Lt7cCTwAF5\nxmoj2/LltzBjxiGcfPKXOfnkT3HAAQexfPkt9Q7LbESp15jK45JOS7c/A8zoa2dJbcCRwIP5hmUj\nVVdXF/PnL2DnznuBp4H76e5u4txzv0hXV1e9wzMbMeqVVM4FvixpLTAJ2Flpx7Tr61bgwrTFYla1\nzs5Oxow5EJiZlswE2oA/2t0dZmZDN64eJ42IjcDJAJIOAf6s3H6SxpEklB9GxB19HXPRokW7twuF\nAoVCIaNobSRoa2tj165ngPUkCaUI/JrXXuvm9NPnsmTJYubNm1vXGM3yViwWKRaLuZ4j94F62N19\ndWdE/Kf0fUtEdEkaA9wIrIqIH5SpdxPw24i4uJ/je6De+rV8+S2cffb57NzZDGwD3gn8FriM5uYr\n2bRpgwfubVQZlgP1kpYB9wGHStos6RxgnqSngCeALT0JRdJ0SXel2x8B/hL4U0kdkh6WdEre8drI\nNW/eXNatu5+mpj8ADwC/Bu4FrmTs2HfS2dlZ1/jMRoLcu78i4qwKH11TZt/ngVPT7X8DxuYYmo1C\n27dvZ+LE99DdXTq2MoPu7k7a2trqGJnZyOA76m1UaWtr4403NpGMrZB+fZqrr/47d32ZZcBJxUaV\nlpYW2tuvpbl5DvvvP4sJEz7K4sVXc/7559U7NLMRoSYD9XnzQL31p/ed9JBMM25ra3MLxUatPAbq\n6zKl2KyW9sz6agGeo6lpDEuX3uApxGY5cEvFRrSuri5aWw9jx45VJIPy64ECEycGmzdvdCvFRrVh\nOaXYrJ4q3Uk/duzbPYXYLAdOKjai7X0nPenXTt5880VPITbLgZOKjWg9s73Gjz8eOBj4ME1N3SxZ\nsthdX2Y58JiKjQp+jorZvvIYU3FSsWGhq6vLU4DNMuaBehuVli+/hdbWw5gz5zxaWw/zg7XMGphb\nKtbQurq6mDHjkPThWsmU4PHjj+fZZ592i8VsiNxSsVGno6MjvWlxz5TgnTv9YC2zRuWkUgddXV2s\nXbvWj7EdsOfYe0rw83WMxcz64qRSYz3jAyed9EWPDwzArFmzaGoaAxSA2UCBpqYxu9fvMrPG4qSS\nk3Ktka6uLubPX8COHavYtu0hduxYxfz5C9xi6UNLSwtLl97AxInBpEmvMnFisHTpDR5PMWtQTio5\nqNQa6ezsZPz4NkrHB5qaWhtquZBKybCe3XXz5s1l8+aNrFr1z2zevNELQZo1MM/+yli5BQybm+ew\nadMGgIqfDfYv7yzv31i+/Bbmz1/A+PFt7NzZSXv7tQD7lPmXutnIkMfsLyJi2L+Sb6MxrFmzJqZM\nmR0Qu1+TJ8+KNWvWRETEsmU3R3PztJg8eVY0N0+LZctu7vN4L774YqxZsyZefPHFfT7rOdaUKbMH\ndKz+ztPcPC3gkTTuR2LixKn7lDU3Tysbi5kNP+nvzmx/H2d9wHq8GimpPPHEEzFhwuSAnwasCVi1\nzy/ivhJFqb6SRrkkMJRf+OWS4aRJh8akSUdUTJBmNrzlkVT8kK4M9XQfvfHGFOAsYAbwLPPnn7dX\n11RLS0vFrqqe7qz99ttv96D+jh1JV9n8+XM48cQ/paWlZff4TPIZlI7PDKYbrK0t6d5Kpuwm53vz\nzReRxuxV1t29yav7mllFHqjPyJNPPsnnP/8Fduz4CW+++SrwALAReID29n8e0CD3ddddz4EHHsoJ\nJ5zPrFnHAlOoNKi/dxKAof7CL312++TJs2lunsOSJYv3KWtvv9Yzr8yssqybPvV4Uefur2XLbo7x\n4/cLeE/a5VV5TKWSxYu/H9C8V3dW8n5Vxe6tasdnBqJc19xAu+vMbHghh+6v3Gd/SWoHTgW2RsTM\ntGwmsBiYBHQCfxkR2wdSt8I5Iu/vo5I9s73+FvivwP8GzgQGPsOrq6uLAw88mNdffzewbnf5xIkf\nIOIZJkx4D93dm8rOvPLqvWY2WHnM/qrFmMqNwPeAm0rKbgAujojVks4GLgG+McC6DWXP2MaZwFeA\nM0i6rY4B3klz80t9dhl1dXVx9913M27cAbz+es8TCpNkFLGFjo4H2L59e8Wk0df4jJlZreWeVNLE\n0dqr+JCIWJ1urwRWUCapVKjbUPaMbTxPkivPB7qZMKGJyy8/l/PPTwbpy7Uoegb2x41r5dVXO4FP\nAXNIBvif5uqrr+bwww+vy/dlZjYoWfenlXsBrcD6kvergdPS7YuBbQOtW2GfQfcpZqFnbGP//Y+M\n8eMnx6WXXlZ27KN0anC5KcHQHJMmHRYTJkyOxYu/HxEezzCz/DCCphSfC3xP0teBnwE7h3rARYsW\n7d4uFAoUCoWhHnLA5s2byyuvvMKFF/43Jkxo5eqrFzNz5kzmzZu713pfpVODb799+T5Tgvff/718\n73v/hU984hO0tLSUvcPdd7Ob2WAVi0WKxWK+J8k6S5V70UdrAzgEeGAwdUv2GXrKHoK+bkSsdIf9\nihUr+rx5MeubG83MeiOHlkqt7lNR+kreSC3p1zHA5SQzwQZUtxH1tVBkpftJZs2a1ec9IMNh8Ukz\ns95yTyqSlgH3AYdK2izpHGCepKeAJ4AtEfGDdN/pku7qp27D6etGxHI3FfYkj3nz5rJp0wZWrryO\nTZs27NW1lfXNjWZmteBVijPSM/7R1NRa9p6Sau4n6dn34YfXcdFFl1Y8ppnZUORxn4qTSoayuBGx\n9+D8P/zDFcyefaRvbjSzzDmpVNAoSWWo+noWixOKmWUtj6TiBSUbyGganK/30yTNLB9OKg1ktAzO\nV3rcspkNf+7+ajD9DfjXS1YLV7qLz6xxuPtrFOhrmnG9ZNmyaNQuPnfHmWXDLRXrU9Yti0ZsqeS5\nHI4fTWCNzC0Vq7msWxZ93QxaD6Vrs23b9hA7dqxi/vwFmbRYPHZko5FbKtanvFoWjfIX/Nq1aznp\npC+ybdtDu8smT57NypXXcdRRRw36uI3YIjPrzS0Vq7m8WhYtLS0cddRRdf8Fm9eMu0YdOzLLm1sq\nNiCN0rLIQx4z7kZKS2Uk/7ub76ivyEnFhiqPX56NOj18oPw8n5HPSaUCJxVrVMP1L/2uri7e9a5D\nee21fwROAp4fli0t65vHVMyGmUYZO6rWddddz2uv7QSuAg4DnvSYkA2IWypmtpdy40FQYOLEYPPm\njcMuQVplebRU6vWMejNrUD0z13bs2DNzDabxta+d64Ri/XL3l5ntpdw06+bmlzj//PPqGJUNF04q\nZraXRlv1wIYXj6mYWVnDdeaaDZynFFfgpGJmVr26TimW9O6BlJmZ2ehVzZjKT8qU3ZpVIGZmNvz1\nO6VY0mHA+4Epks4o+WgyMDGvwMzMbPgZSEvlvcCpwFTgz0tes4F+5xhKape0VdL6krKZku6T9Iik\nOyTtV6HuKZI2SNoo6asD+YbMzKx+BjxQL+nDEXF/1SeQjgO2AzdFxMy0bA1wcUSslnQ2cFBEfKNX\nvTHARuAE4DlgLfDZiNhQ5hweqDcbhTxDbWjqvfZXh6QvS7pW0pKeV3+VImI18FKv4kPScoCVwJll\nqh4NPB0RmyKiG7gZOL2KeM1sBPOTNRtTNUnlh8A7gJOBXwEzgN8P8ryPSzot3f5MeqzeDgCeKXn/\nbFpmZqNcno+BtqGpZu2vgyPiLySdHhFLJS0D/u8gz3su8D1JXwd+Buwc5HF2W7Ro0e7tQqFAoVAY\n6iHNrEGVW5+sZxVld4NVViwWKRaLuZ6jmjGVNRFxtKR7gQXAC8CaiDhoAHVbgTt7xlR6fXYI8MOI\nOKZX+THAoog4JX1/KRARcWWZY3hMxWwUGSlP1qy3eo+pfF/SW4Ge1sUTwHcGWFfpK3kjtaRfxwCX\nA4vL1FkLHCypVdJ44LPpec1slPP6ZI0r92Va0m6yAvA2YCuwENgf+DIQwG0RcVm673Tg+og4NX1/\nCnA1SfJrj4grKpzDLRWzUcizv4amLmt/Sbq4r88j4u+zDGgwnFTMzKpXr4d07Z/lCc3MasUtmdrL\nrPtL0n+PiG9ncrDqz+2WipntZfnyW5g/fwHjxycPHWtvv5Z58+bWO6yG0tBL30t6OCJmZ3Kw6s/t\npGJmu3l22MDUe/ZXfzINzMxssHruY0kSCpTex2L5yjKpuKlgZg2hrS3p8oKedWzX0929iba2tvoF\nNUq4pWJmI47vY6mfLMdULouIb2VysOrP7TEVM9uHZ3/1ra4D9ZKuKVO8Dfj3iLgjy6Cq5aRiZla9\neg/UTwSOBJ5OXzNJVheeL+l/ZhmUmZkNT9W0VB4APhIRb6bvx5GsUnwc8GhEvC+3KPuPzS0VM7Mq\n1bul8lag9LG/k4BpaZJ5PcugzMxseKrmeSrfAdZJKpLM9Doe+JakSSRPbzQza0gesK+dqmZ/pasI\nH52+XRsRz+USVZXc/WVmlXi5lsrqvkyLpAOAVkpaOBFxb5YBDYaTipmV4+Va+lavVYp7Tn4lMBd4\nHNiVFgdQ96RiZlaOHztce9WMqXwSeG9EeFDezIaFvZdrSVoqXq4lX9XM/voN0JRXIGZmWfNyLbVX\nzX0qPwGOAH5JyRTiiLggn9AGzmMqZtYXz/4qr97LtHy+XHlELM0yoMFwUjEzq17dZ381KicVM7Pq\n1WX2l6R/iYjPSHqUMs9MiYiZZaqZmTUkd4Xlq9+WiqTpEfG8pNZyn0fEplwiq4JbKmY2EL4Rcm/u\n/qrAScXM+tLV1UVHRwef/OQ83whZoi4LSkr6vaRXyrx+L+mVAdRvl7RV0vqSsiMk3S+pQ9IaSR+s\nUPdCSY+mr7rPMjOz4Wf58ltobT2MM864gB07puHn1ucr95aKpOOA7cBNPeMvklYAV0XEPZI+DlwS\nEXN61Xs/sBw4CngD+DnwxYj4TZlzuKViZvvYe5mW6cB7gSJuqSTqNVA/ra/PI+J3/Xy+usx4zC5g\nSro9FdhSpurhwIM9d/BLuhc4A/i7/mI2M4Nyy7T8E/BhJk06mF27nvWNkDkYyDItD5HM+iqXzQI4\naBDnvQhYIemq9LjHltnnMeCbkt5KcrPlJ4C1gziXmY1S+y7TcjgTJ47nttu+y6xZs5xQctBvUomI\nd+dw3i8BF0bE7ZI+DSwBTup13g3pIpa/IOk+6wDerHTARYsW7d4uFAoUCoXsozazYaVnmZb58+fQ\n1NRKd/cm2tsX87GPfazeodVFsVikWCzmeo5ql74/jeThXADFiLhrgPVagTtLxlRejoipJZ9vi4gp\nFQ+Q7PO3wDMRsbjMZx5TMbOKfG9KefVe+v4KkkHzH6VFF0o6NiIuG0h19u4+2yLpoxHxK0knABsr\nnLMlIrokvQv4FHDMQOM1M+vR0tLiZFIj1az9tR44MiJ2pe/HAh393VEvaRlQAN4GbAUWAk8B1wBj\ngdeABRHRkT5Z8vqIODWtey8wDegGLoqIYoVzuKViZlalei8ouR4o9Mz2SmeFFRthmRYnFTOz6tWt\n+0uSSKbydkhaRdKVdTxwaZbBmJnZ8FZNS+VR4GMk4yoAayLihbwCq4ZbKmZm1avrQD3wMDAjIn6W\nZQBmZjZyVNNS2QAcDGwCXiXpAguPqZiZDU/1bqmcnOWJzcxs5PHS92Zmo1Rdlr43MzMbKCcVMzPL\njJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwzTipmZpYZJxUzM8uMk4qZmWXGScXM\nzDLjpGJmZplxUjEzs8w4qZiZWWacVMzMLDNOKmZmlpnck4qkdklbJa0vKTtC0v2SOiStkfTBCnUv\nkvSYpPWSfiRpfN7xmpnZ4NWipXIj+z7f/jvAwoiYBSwEvtu7kqR3An8NzI6ImcA44LM5x2pmZkOQ\ne1KJiNXAS72KdwFT0u2pwJYK1ccCkySNA94CPJdLkGZmlolxdTrvRcAKSVcBAo7tvUNEPJd+vhn4\nA3BPRKysbZhmZlaNeiWVLwEXRsTtkj4NLAFOKt1B0lTgdKAV2AbcKumsiFhW7oCLFi3avV0oFCgU\nCvlEbmY2TBWLRYrFYq7nUETkegIASa3AnenYCJJejoipJZ9vi4gpvep8Gjg5Is5L338O+FBE/FWZ\n40ctvg8zs5FEEhGhLI9ZqynFSl89tkj6KICkE4CNZepsBo6RNFGSgBOAJ3OP1MzMBi337i9Jy4AC\n8DZJm0lme50HXCNpLPAa8IV03+nA9RFxakSskXQr0AF0p1+/n3e8ZmY2eDXp/sqbu7/MzKo3nLu/\nzMxsFHBSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PM\nOKmYmVlmnFTMzCwzTipmZpYZJxUzM8uMk4qZmWXGScXMzDLjpGJmZplxUjEzs8w4qZiZWWacVMzM\nLDNOKmZmlhknFTMzy4yTipmZZSb3pCKpXdJWSetLyo6QdL+kDklrJH2wTL1D088fTr9uk3RB3vGa\nmdngKSLyPYF0HLAduCkiZqZlK4CrIuIeSR8HLomIOX0cYwzwLPChiHimzOeR9/dhZjbSSCIilOUx\nc2+pRMRq4KVexbuAKen2VGBLP4c5EfiPcgnFzMwax7g6nfciYIWkqwABx/az/1xgee5RmZnVQFdX\nF52dnbS1tdHS0lLvcDJVr6TyJeDCiLhd0qeBJcBJ5XaU1AScBlza1wEXLVq0e7tQKFAoFLKK1cws\nM8uX38L8+QsYP76NnTs7aW+/lnnz5tbk3MVikWKxmOs5ch9TAZDUCtxZMqbyckRMLfl8W0RMqVD3\nNGBBRJzSx/E9pmJmDa+rq4vW1sPYsWMVMBNYT3PzHDZt2lCXFsuwHFNJKX312CLpowCSTgA29lF3\nHu76MrMRoLOzk/Hj20gSCsBMmppa6ezsrF9QGavFlOJlwH3AoZI2SzoHOA+4SlIH8E3gC+m+0yXd\nVVL3LSSD9LflHaeZWd7a2pIuL+i5w2I93d2baGtrq19QGatJ91fe3P1lZsNFz5hKU1Mr3d2bajqm\n0lse3V9OKmZmGetvdlejzP5yUqnAScXMGkU9Z3dVy0mlAicVM2sEjTa7qz/DefaXmdmINxpmd/XH\nScXMLCOjYXZXf5xUzMwy0tLSQnv7tTQ3z2Hy5Nk0N8+hvf3ahuz6yovHVMzMMtYos7v644H6CpxU\nzMyq54F6MzNraE4qZmaWGScVMzPLjJOKmZllxknFzMwy46RiZmaZcVIxM7PMOKmYmVlmnFTMzCwz\nTipmZpYZJxUzM8uMk4qZmWXGScXMzDLjpGJmZpnJPalIape0VdL6krIjJN0vqUPSGkkfrFB3iqQf\nS3pS0uOSPpR3vGZmNni1aKncCJzcq+w7wMKImAUsBL5boe7VwN0RcThwBPBkblHWQLFYrHcIA+I4\ns+U4szUc4hwOMeYl96QSEauBl3oV7wKmpNtTgS2960maDPxJRNyYHueNiHglz1jzNlx+0Bxnthxn\ntoZDnMMhxryMq9N5LwJWSLoKEHBsmX3eDfxW0o0krZR/By6MiB21C9PMzKpRr4H6L5EkiHeRJJgl\nZfYZB8wG/jEiZgN/AC6tXYhmZlatmjyjXlIrcGdEzEzfvxwRU0s+3xYRU3rV+WPg/og4KH1/HPDV\niPjzMsf3A+rNzAYh62fU16r7S+mrxxZJH42IX0k6AdjYu0JEbJX0jKRDI2IjcALwRLmDZ31RzMxs\ncHJvqUhaBhSAtwFbSWZ7PQVcA4wFXgMWRESHpOnA9RFxalr3COAGoAn4DXBORGzLNWAzMxu0mnR/\nmZnZ6NBwd9RLOjS9KfLh9Os2SRdI+k56E+Q6ST9JpxyXq3+RpMckrZf0I0nj0/K3SrpH0lOSVkia\nUq5+A8S5UNKz6XEflnRKneO8UNKj6euCkvLMrmfGMV5YUl6ra/k/JD2Slv0fSe+oUP8USRskbZT0\n1ZLyWv1sDjXORrue+9xYnZY32vWsFGfDXE9JMyT9q5KbzIf2fz0iGvZFkvSeAw4ETgTGpOVXAN8u\ns/87SbrJxqfvbwH+c7p9JXBJuv1V4IoGjXMhcHGDXM/3A+uBCSRdlb8ADsrzemYcY62u5X4l5X8N\n/FOF/X8NtJJ0564DDqvxz+ZQ42yY65l+dhxwJLC+V3nDXM9+4myY6wm8Azgy3d6PZIhiUD+fDddS\n6eVE4D8i4pmIWBkRu9LyB4AZFeqMBSZJGge8hT03Vp4OLE23lwKfbLA4nyv5LK+JB9XGeTjwYES8\nHhFvAr8Czkg/y+t6Zhkj1OZabi8pn0Ryc29vRwNPR8SmiOgGbia5hlC7n82hxgmNcz2J8jdWQ2Nd\nz77ihAa5nhHxQkSsS7e3k6xeckD6cVXXs9GTylxgeZnyc4Gf9y6MiOeAq4DNJMnk5Yj4Zfrx2yNi\na7rfC8DbGyzOlSW7/FXa5XPDUJvuQ4kTeAz4k7T5+xbgEyR/+QD8cU7XM8sYoUbXUtI3JW0GzgK+\nUWb/A4BnSt4/y57/tHldy6zjhMa5nn2p2f/1IcYJDXg9JbWRtKweSIuqup4Nm1QkNQGnAT/uVf41\noDsilpWpM5Ukq7aSdDHtJ+msCqfIZIZCDnFeS9J9cyTwAvD39YozIjaQNH1/AdwNdABvVjjFkK9n\nDjHW7FpGxOWR3Mz7I5IuhqHI7WdziHH6eo7w6ylpP+BWkpvTX62wW5/Xs2GTCvBx4KGI6OopkHQ2\nyV+ilRLFicBvIuJ3aVfIbexZAmarkhsqSQeqXmzEOCOiK9LOS+B64Kg6xklE3BgRH4yIAvAye+4p\neiGH65lpjLW8liWWAWeWKd8CvKvk/Qz2dM3mcS0zj7PBrmdfavZ/vUTVcTba9Uy74m8FfhgRd5R8\nVNX1bOSkMo+9m2+nAF8BTouI1yvU2QwcI2miJJHcMNmzsvHPgLPT7c8Dd+xbvf5x9pqZcQZJ9069\n4kRSS/r1XcCnSH4oIZ/rmWmMNbyWB5d89knKr6a9FjhYUquSmX6fJbmGULufzSHF2WDXc/fu7Dsu\n0UjXc/fu9IqzAa/nEuCJiLi6V3l117OvUfx6vUgGrruA/UvKngY2AQ+nr2vT8unAXSX7LUwv2nqS\nQaWmtHwasJJkVsM9wNQGjfOmtGwdcDtJf3s947yX5Ie9AyiUlGd6PXOKsVbX8taS89wBTK8Q5ynp\n9XoauDSva5ljnI12PZeRTHB5neQPtXMa9HpWirNhrifwEZJu43Xp/6OHgVMGcz1986OZmWWmkbu/\nzMxsmHFSMTOzzDipmJlZZpxUzMwsM04qZmaWGScVMzPLjJOKmZllxknFrAJJ/0/StHT79+nX6ZL+\nJePzLJR0cZbHNKsXJxUb9dKlcsqJ3tsR8XxEfCb/qMyGJycVG3XSda02SFoq6VHgc0qewLle0hWl\nu1ao+2i6/XklT6T8efpUvCtL9puflj0g6fuSrhlgbEdKul97nnY5JS1fJekKSQ+msX8kLW+WdIuS\np4jelp5v9lCuj9lQOKnYaHUw8L+AjwF/AxRIniFxlKTT+qlb2oI5AvgLYCYwV9IBkqYDl5M88Ooj\nwGFVxLUU+Eoky6E/RrJGXI+xEfEh4CJgUVq2APhdRHwA+DrghGJ15aRio9WmiFhLstz4qkgeQ7CL\n5HkTx1dxnF9GxPZIVlF+nOQZOUcDxYjYFsmjDX7c5xFSkiYDUyJ5UiAkCaY0ltvSrw+l54HkUbU3\nA0TE4yQLB5rVjZOKjValDyAayiNdS5fk3wWMG+Ix+6rXc643S85TTX2z3Dmp2GjV88t3DXC8pGmS\nxpI8i6LYx/4DsTY95pT0wUcDenhTRLwC/K5nvAT4HPCrfqr9G8mjY5H0PuADVcRplrlKf+2YjXQ9\ns7lekHQpexLJXRFxV+k+Zbb7O+Zzkr5FkrB+B2wAtg0wrrOBxZKagd8A5/Rz/muBH0h6LD3P41Wc\nyyxzfp52B844AAAAh0lEQVSKWQ4kTYqIV9PWz0+B9tj7Ea1ZnWcMyQPeXpd0EPAL4L0R8UbW5zIb\nCLdUzPKxSNKJwATgnjwSSuotwCpJTen7LzmhWD25pWJWI5IuI5l+HCRjNAH8OCK+XdfAzDLkpGJm\nZpnx7C8zM8uMk4qZmWXGScXMzDLjpGJmZplxUjEzs8z8fzoQCUbrf7PmAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa95b6650d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"ldf.plot(x='rolling_long',y='rolling_lat',kind='scatter')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment