-
-
Save audy/3875060 to your computer and use it in GitHub Desktop.
Visualization of iris and digits datasets via random projections
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
from sklearn.datasets import load_iris | |
from sklearn.preprocessing import StandardScaler | |
iris = load_iris() | |
X, y = iris.data, iris.target | |
X_pca = StandardScaler().fit_transform(X) | |
fig = plt.figure() | |
colors = plt.cm.Spectral(y * 255 / y.max()) | |
n_iter = 200 | |
points = [plt.plot([], [], 'o', color=['r', 'g', 'b'][i])[0] | |
for i in np.unique(y)] | |
def init(): | |
global points | |
for p in points: | |
p.set_data([], []) | |
plt.xlim((-4, 4)) | |
plt.ylim((-3, 3)) | |
plt.xticks(()) | |
plt.yticks(()) | |
return points | |
def animate(i): | |
global points | |
alpha = 2 * np.pi * i / n_iter | |
beta = 4 * np.pi * i / n_iter | |
interpolation1 = np.cos(alpha) * X_pca[:, 1] + np.sin(alpha) * X_pca[:, 2] | |
interpolation2 = np.cos(beta) * X_pca[:, 0] + np.sin(beta) * X_pca[:, 3] | |
for p, c in zip(points, np.unique(y)): | |
p.set_data(interpolation1[y == c], interpolation2[y == c]) | |
return points | |
anim = FuncAnimation(fig, animate, frames=n_iter, interval=100, blit=True, | |
init_func=init) | |
#anim.save("iris.mp4", fps=20, extra_args=['-vcodec', 'libx264']) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment