Created
March 1, 2022 06:56
-
-
Save berendgort/6b9f56d320aec56bf672fa1a68819d3e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Set constants | |
batch_size=16 | |
epochs=300 | |
# Reinitiating data here | |
data = fractional_diff_data | |
X = data[['open', 'high', 'low', 'close', 'volume', 'rsi', 'macd', 'macd_signal', 'macd_hist', 'cci', 'dx', 'volatility']].values | |
y = np.squeeze(data[['label_barrier']].values).astype(int) | |
# Split into train+val and test | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=69) | |
# Normalize input | |
scaler = MinMaxScaler() | |
X_train = scaler.fit_transform(X_train) | |
X_test = scaler.transform(X_test) | |
# Convert to numpy arrays | |
X_train, y_train = np.array(X_train), np.array(y_train) | |
X_test, y_test = np.array(X_test), np.array(y_test) | |
# initialize sets and convet them to Pytorch dataloader sets | |
train_dataset = ClassifierDataset(torch.from_numpy(X_train).float(), torch.from_numpy(y_train.astype(int)).long()) | |
test_dataset = ClassifierDataset(torch.from_numpy(X_test).float(), torch.from_numpy(y_test.astype(int)).long()) | |
train_loader = DataLoader(dataset=train_dataset, | |
batch_size=batch_size | |
) | |
test_loader = DataLoader(dataset=test_dataset, | |
batch_size=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment