Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save devops-school/75535a8879d88c8dda8037707ee5349e to your computer and use it in GitHub Desktop.
Save devops-school/75535a8879d88c8dda8037707ee5349e to your computer and use it in GitHub Desktop.
PyTorch Lab - 11 - Pytorch CUDA Semantics
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"tf.enable_eager_execution()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tf.executing_eagerly() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Only variable and constants are compatible with eager execution "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"W = tf.Variable(6, name = 'var_W')\n",
"\n",
"x = tf.constant([10, 10], name = 'x')\n",
"\n",
"b = tf.Variable(3, name = 'constant_b')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Variable 'var_W:0' shape=() dtype=int32, numpy=6>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"W"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: id=64, shape=(2,), dtype=int32, numpy=array([10, 10], dtype=int32)>"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Variable 'constant_b:0' shape=() dtype=int32, numpy=3>"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"b"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"y = W * x + b"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: id=80, shape=(2,), dtype=int32, numpy=array([63, 63], dtype=int32)>"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tf.Tensor([63 63], shape=(2,), dtype=int32)\n"
]
}
],
"source": [
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tf.Tensor([60 60], shape=(2,), dtype=int32)\n"
]
}
],
"source": [
"print(W*x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.tensorflow.org/guide/eager#work_with_graphs"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([<tf.Tensor: id=108, shape=(), dtype=int32, numpy=60>,\n",
" <tf.Tensor: id=111, shape=(), dtype=int32, numpy=60>], dtype=object)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_result = np.multiply(W, x)\n",
"\n",
"np_result"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"W.numpy()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([63, 63], dtype=int32)"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y.numpy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment