Last active
December 9, 2024 00:51
-
-
Save djsegal/6f3244279c8b93c542157e41933bf5eb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "9b1cf49c-61f2-4dac-8f98-0e2b247feed3", | |
"metadata": {}, | |
"source": [ | |
"# **Steady-State Free Precession (SSFP) Magnetization Analysis**\n", | |
"\n", | |
"This notebook explores SSFP magnetization dynamics using the Bloch equations. It simulates and compares the magnetization behavior under two conditions:\n", | |
"1. Resetting magnetization to $[0, 0, 1]$ for each phase increment ($\\theta$).\n", | |
"2. Using carry-over magnetization from the previous $\\theta$.\n", | |
"\n", | |
"Finally, we visualize the results to analyze steady-state behavior and identify trends in magnetization evolution.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "4906914d-8446-4cfe-b6c3-5d6ebdaf58e0", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Import necessary libraries\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"from cycler import cycler\n", | |
"\n", | |
"%matplotlib inline\n", | |
"\n", | |
"# Custom color palette for plots\n", | |
"custom_colors = [\n", | |
" \"#1f77b4\", \"#ff7f0e\", \"#2ca02c\", \"#d62728\", \"#9467bd\",\n", | |
" \"#8c564b\", \"#e377c2\", \"#7f7f7f\", \"#bcbd22\", \"#17becf\"\n", | |
"]\n", | |
"\n", | |
"plt.rcParams['axes.prop_cycle'] = cycler(color=custom_colors)\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "52050a7c-cbd1-4e78-9ba5-0d4d1cd16321", | |
"metadata": {}, | |
"source": [ | |
"## **Constants and Parameters**\n", | |
"\n", | |
"Key parameters for the SSFP sequence:\n", | |
"- $T_1 = 500 \\, \\text{ms}$, $T_2 = 200 \\, \\text{ms}$: Relaxation times.\n", | |
"- $TR = 20 \\, \\text{ms}$: Repetition time.\n", | |
"- Flip angle = $10^\\circ$, Off-resonance frequency ($df$) = $75 \\, \\text{Hz}$.\n", | |
"- Number of pulses: $5 \\cdot T_1 / TR$.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "89ec567e-f557-4d5a-8075-9a85982c6ff6", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Constants\n", | |
"T1 = 500 # ms\n", | |
"T2 = 200 # ms\n", | |
"TR = 20 # ms\n", | |
"flip_angle = 10 # degrees\n", | |
"df = 75 # Hz\n", | |
"num_pulses = int(5 * T1 // TR) # Pulses to achieve steady state\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "244608de-a2b4-4abd-b69c-27f0a752ecc0", | |
"metadata": {}, | |
"source": [ | |
"## **Bloch SSFP Simulation**\n", | |
"\n", | |
"This function simulates the steady-state magnetization vector $M$ for an SSFP sequence.\n", | |
"The algorithm:\n", | |
"1. Applies an RF pulse (flip angle).\n", | |
"2. Models relaxation and recovery using $T_1$ and $T_2$.\n", | |
"3. Simulates off-resonance precession and phase cycling.\n", | |
"4. Repeats the process over a defined number of pulses to achieve steady state.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "bc22bbe6-5646-447f-a09c-a215449932c9", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def bloch_ssfp(T1, T2, TR, flip_angle, df, theta, M0=None, num_pulses=100): \n", | |
" if M0 is None:\n", | |
" M0 = [0, 0, 1]\n", | |
" \n", | |
" flip_rad = np.deg2rad(flip_angle)\n", | |
" theta_rad = np.deg2rad(theta)\n", | |
" \n", | |
" M = np.array(M0, dtype=float)\n", | |
" E1 = np.exp(-TR / T1)\n", | |
" E2 = np.exp(-TR / T2)\n", | |
" \n", | |
" E = np.diag([E2, E2, E1])\n", | |
" M_eq = np.array([0, 0, 1 - E1])\n", | |
" phi_off = 2 * np.pi * df * TR / 1000 # Convert TR to seconds\n", | |
" phi_total = theta_rad + phi_off\n", | |
" \n", | |
" Rz_phi = np.array([[np.cos(phi_total), -np.sin(phi_total), 0],\n", | |
" [np.sin(phi_total), np.cos(phi_total), 0],\n", | |
" [0, 0, 1]])\n", | |
" Rx_alpha = np.array([[1, 0, 0],\n", | |
" [0, np.cos(flip_rad), -np.sin(flip_rad)],\n", | |
" [0, np.sin(flip_rad), np.cos(flip_rad)]])\n", | |
" \n", | |
" for _ in range(num_pulses):\n", | |
" M = Rx_alpha @ M\n", | |
" M = E @ M + M_eq\n", | |
" M = Rz_phi @ M\n", | |
" \n", | |
" return M\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7adfddde-70d6-4c34-9ec9-cc4e97a5ba2d", | |
"metadata": {}, | |
"source": [ | |
"## **Magnetization Simulation for Phase Increments ($\\theta$)**\n", | |
"\n", | |
"This section calculates the magnetization evolution for two cases:\n", | |
"1. **Step 1**: Reset magnetization to $[0, 0, 1]$ for each $\\theta$.\n", | |
"2. **Step 2**: Carry over the final magnetization from the previous $\\theta$.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "c994e560-15e8-4a1a-921f-fa959a41cbe0", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def make_magnetizations(thetas):\n", | |
" step1_magnetizations = [] # Step 1: Reset magnetization\n", | |
" step2_magnetizations = [] # Step 2: Carry-over magnetization\n", | |
" M_SSFP = [0, 0, 1] # Initial magnetization for carry-over\n", | |
" \n", | |
" for theta in thetas:\n", | |
" M_SS = [0, 0, 1] # Reset for Step 1\n", | |
" M_SS_list = []\n", | |
" for _ in range(num_pulses):\n", | |
" M_SS = bloch_ssfp(T1, T2, TR, flip_angle, df, theta, M_SS, num_pulses=1)\n", | |
" M_SS_list.append(M_SS.copy())\n", | |
" step1_magnetizations.append((theta, M_SS_list))\n", | |
" \n", | |
" M_SSFP_list = []\n", | |
" for _ in range(num_pulses):\n", | |
" M_SSFP = bloch_ssfp(T1, T2, TR, flip_angle, df, theta, M_SSFP, num_pulses=1)\n", | |
" M_SSFP_list.append(M_SSFP.copy())\n", | |
" step2_magnetizations.append((theta, M_SSFP_list))\n", | |
"\n", | |
" return step1_magnetizations, step2_magnetizations\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ffcb25c6-5a87-41a1-8ec5-23e76f1f4261", | |
"metadata": {}, | |
"source": [ | |
"### **Simulation Results for Phase Increments ($\\theta$)**\n", | |
"\n", | |
"Here, the magnetization is calculated for phase increments ($\\theta$) from $-180^\\circ$ to $180^\\circ$ in $30^\\circ$ steps.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "93ca24e9-221b-4725-b64f-a9fe9a9a19de", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"thetas = np.arange(-180, 181, 30)\n", | |
"step1_magnetizations, step2_magnetizations = make_magnetizations(thetas)\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "98f924d9-7e57-4b2f-a287-5194e68bc9dc", | |
"metadata": {}, | |
"source": [ | |
"## **Comparison of Final Magnetization and Error Across $\\theta$**\n", | |
"\n", | |
"### Left Plot:\n", | |
"The left subplot visualizes the final magnetization components ($M_x$, $M_y$, $M_z$) for each $\\theta$, comparing Step 1 (reset) and Step 2 (carry-over).\n", | |
"\n", | |
"### Right Plot:\n", | |
"The right subplot shows the difference between the final magnetization of Step 1 and Step 2 for each component, highlighting any discrepancies between the two approaches.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "7cea9042-9a6f-42d9-a21c-8dd3e6408615", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAMWCAYAAAAeTZgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb1fk/8M/V9N4z3omznemQBRmELEZCoOwCCS1QVoEG2pK2jHQQKJQfm5DSkFBmmV9CAtkLssietuN4xXvK25r398fhypYtJU6wJdv6vF+v+7J0daX7SEeWrp77nHMkWZZlEBERERERERH1cSpPB0BERERERERE5A5MghARERERERGRV2AShIiIiIiIiIi8ApMgREREREREROQVmAQhIiIiIiIiIq/AJAgREREREREReQUmQYiIiIiIiIjIKzAJQkRERERERERegUkQIiIiIiIiIvIKTIIQERG5kJeXB0mSsGrVqm7dT3JyMhYtWtSt++jNpk+fjunTp3vNfomIiKj7MAlCRERea9WqVZAkyenyxBNPeDq8DpTY7r77bqe3//nPf7ZvU1lZ6ebofp6TJ0/imWeeQV5enlfstzPKysrw+OOPY8iQIfDz84O/vz/S09Px97//HQaDwdPh9Xrr1q3DM8884+kwiIjIzTSeDoCIiMjT/vrXvyIlJcVhXVpaGpKSktDc3AytVuuhyDry8fHB559/jjfffBM6nc7hto8++gg+Pj5oaWnxUHQX7+TJk1i6dCmmT5+O5ORkh9s2bNjQ5/Z7Pj/++COuuuoqNDQ04Pbbb0d6ejoAYP/+/XjuueewY8cOj8bXF6xbtw5vvPEGEyFERF6GSRAiIvJ6V155JcaNG+f0Nh8fHzdHc25z587F119/jW+//RbXXnutff2uXbuQm5uLX/ziF/j88889GGHXa5/s6ev7NRgMuO6666BWq3Ho0CEMGTLE4fZ//OMf+Pe//+2R2IiIiHo7dochIiJywdmYIIsWLUJAQACKioqwYMECBAQEIDIyEo8//jisVqvD/V988UVMnjwZ4eHh8PX1RXp6Oj777LOfFVNcXBymTp2KDz/80GH9Bx98gBEjRiAtLa3DfXbu3Ikbb7wRiYmJ0Ov1SEhIwO9+9zs0Nzd32PbTTz/FsGHD4OPjg7S0NHz55ZdYtGiRQ5WE8rq8+OKLWLFiBQYMGAC9Xo9LLrkEP/74Y4fHzMjIwA033ICwsDD4+Phg3Lhx+Prrr+23r1q1CjfeeCMA4PLLL7d36dm2bRuAjmNzJCcnu+zGpNwnPz8fDzzwAAYPHgxfX1+Eh4fjxhtvdOj2cqH7BYDy8nL8+te/RnR0NHx8fDBq1CisXr3aYZsLfX3ae/vtt1FUVISXXnqpQwIEAKKjo/GXv/zFYd2bb76J4cOHQ6/Xo1+/fnjwwQc7dJmZPn060tLScPToUUybNg1+fn5ITU21vye3b9+OCRMmwNfXF4MHD8amTZsc7v/MM89AkiRkZGTgpptuQlBQEMLDw/HII490qD6yWCz429/+Zn/uycnJ+NOf/gSj0eiwXXJyMq655hp8//33GD9+PHx8fNC/f3+89957HZ63wWDAo48+ioSEBOj1eqSmpuL555+HzWa74Nd+0aJFeOONNwDA4f2j+Pjjj5Geno7AwEAEBQVhxIgReOWVVzrEREREvQ8rQYiIyOvV1tZ2GEMjIiLC5fZWqxVz5szBhAkT8OKLL2LTpk3417/+hQEDBuD++++3b/fKK69g/vz5+OUvfwmTyYSPP/4YN954I7755htcffXVFx3vbbfdhkceeQQNDQ0ICAiAxWLBp59+isWLFzvtCvPpp5+iqakJ999/P8LDw7Fv3z689tprKCwsxKeffmrfbu3atbj55psxYsQILFu2DDU1Nfj1r3+NuLg4p3F8+OGHqK+vx29+8xtIkoR//vOfuP7665GTk2PvQnTixAlceumliIuLwxNPPAF/f3/873//w4IFC/D555/juuuuw9SpU/Hwww/j1VdfxZ/+9CcMHToUAOx/23v55ZfR0NDgsO7//b//h8OHDyM8PByA6E6ya9cu3HLLLYiPj0deXh7eeustTJ8+HSdPnoSfn98F77e5uRnTp09HdnY2HnroIaSkpODTTz/FokWLYDAY8Mgjj1zw6+PM119/DV9fX9xwww0ut2nrmWeewdKlSzFz5kzcf//9yMzMxFtvvYUff/wRP/zwg8O+ampqcM011+CWW27BjTfeiLfeegu33HILPvjgAzz66KO47777cNttt+GFF17ADTfcgLNnzyIwMNBhfzfddBOSk5OxbNky7NmzB6+++ipqamocEhd33303Vq9ejRtuuAGPPfYY9u7di2XLluHUqVP48ssvHR4vOzsbN9xwA379619j4cKFWLlyJRYtWoT09HQMHz4cANDU1IRp06ahqKgIv/nNb5CYmIhdu3ZhyZIlKCkpwcsvv3xBr/1vfvMbFBcXY+PGjfjvf//rcN+NGzfi1ltvxRVXXIHnn38eAHDq1Cn88MMPHdqYiIh6IZmIiMhLvfvuuzIAp4ssy3Jubq4MQH733Xft91m4cKEMQP7rX//q8FhjxoyR09PTHdY1NTU5XDeZTHJaWpo8Y8YMh/VJSUnywoULzxsvAPnBBx+Uq6urZZ1OJ//3v/+VZVmW165dK0uSJOfl5clPP/20DECuqKhwGYcsy/KyZctkSZLk/Px8+7oRI0bI8fHxcn19vX3dtm3bZAByUlKSfZ3yuoSHh8vV1dX29f/3f/8nA5DXrFljX3fFFVfII0aMkFtaWuzrbDabPHnyZHngwIH2dZ9++qkMQN66dWuHWKdNmyZPmzbN5evyv//9r0ObOHvOu3fvlgHI77333kXt9+WXX5YByO+//759nclkkidNmiQHBATIdXV1sixf2OvjTGhoqDxq1KhzbqMoLy+XdTqdPHv2bNlqtdrXv/766zIAeeXKlQ7PB4D84Ycf2tdlZGTIAGSVSiXv2bPHvn79+vUd3vvKe2v+/PkOMTzwwAMyAPnIkSOyLMvy4cOHZQDy3Xff7bDd448/LgOQt2zZYl+XlJQkA5B37Njh8Jz0er382GOP2df97W9/k/39/eWsrCyHx3ziiSdktVotFxQUyLJ8Ya/9gw8+KDs7FH7kkUfkoKAg2WKxdLiNiIh6P3aHISIir/fGG29g48aNDsv53HfffQ7Xp0yZgpycHId1vr6+9ss1NTWora3FlClTcPDgwZ8Vb2hoKObOnYuPPvoIgDjrPXnyZCQlJTndvm0cjY2NqKysxOTJkyHLMg4dOgQAKC4uxrFjx3DnnXciICDAvv20adMwYsQIp4978803IzQ01H59ypQpAGB/Haqrq7FlyxbcdNNNqK+vR2VlJSorK1FVVYU5c+bg9OnTKCoq+hmvhBjY9Fe/+hWuvfZahy4ibZ+z2WxGVVUVUlNTERISctGv/7p16xATE4Nbb73Vvk6r1eLhhx9GQ0MDtm/f7rD9+V4fV+rq6jpUX7iyadMmmEwmPProo1CpWg/r7rnnHgQFBWHt2rUO2wcEBOCWW26xXx88eDBCQkIwdOhQTJgwwb5euews1gcffNDh+m9/+1sA4vVp+3fx4sUO2z322GMA0CGmYcOG2V8bAIiMjMTgwYMd9v3pp59iypQpCA0Ntb+PKisrMXPmTFitVuzYscPhMS/2tQeAkJAQNDY2dupzgIiIeh92hyEiIq83fvx4lwOjOuPj44PIyEiHdaGhoaipqXFY98033+Dvf/87Dh8+7DAWQtuxBy7WbbfdhjvuuAMFBQX46quv8M9//tPltgUFBXjqqafw9ddfd4ixtrYWgBhDAwBSU1M73D81NdVp4iAxMdHhuvKjU9lHdnY2ZFnGk08+iSeffNJpbOXl5S6725xPXV0drr/+esTFxeG9995zeF2bm5uxbNkyvPvuuygqKoIsy/bblOd8ofLz8zFw4ECHZAPQ2n1GeQ0V53t9XAkKCkJ9fX2nYwJEMqMtnU6H/v37d4gpPj6+w/svODgYCQkJHda5inXgwIEO1wcMGACVSmUfbyU/Px8qlarDeykmJgYhISHnfZ2Ajv9Pp0+fxtGjRzv83ynKy8vP+Zidfe0B4IEHHsD//vc/XHnllYiLi8Ps2bNx0003Ye7cuee9LxER9XxMghAREV0gtVp93m127tyJ+fPnY+rUqXjzzTcRGxsLrVaLd999t8Ogphdj/vz50Ov1WLhwIYxGI2666San21mtVsyaNQvV1dX44x//iCFDhsDf3x9FRUVYtGiRw6CSF8rV66AkHJTHfvzxxzFnzhyn2zpLunTWokWLUFxcjH379iEoKMjhtt/+9rd499138eijj2LSpEkIDg6GJEm45ZZbftZzvhDne31cGTJkCA4fPgyTydTlM9S4iuliYwVcJ/U6m+zrzL5tNhtmzZqFP/zhD063HTRo0AU/pitRUVE4fPgw1q9fj2+//Rbffvst3n33Xdx5550dBsElIqLeh0kQIiKibvD555/Dx8cH69evh16vt69/9913u+TxfX19sWDBArz//vu48sorXQ7keuzYMWRlZWH16tW488477evbl/orXWmys7M7PIazdZ3Rv39/AKLLyMyZM8+57YVWxzz33HP46quv8MUXXzidQeWzzz7DwoUL8a9//cu+rqWlpcOMKRey36SkJBw9ehQ2m82hGiQjI8N+e1eYN28edu/ejc8//9yh642rmAAgMzPT/noDgMlkQm5u7nlf94tx+vRppKSk2K9nZ2fDZrPZZxBKSkqCzWbD6dOnHQaZLSsrg8FguKjXacCAAWhoaOjS53OuttfpdJg3bx7mzZsHm82GBx54AG+//TaefPLJn5W4IyIiz+OYIERERN1ArVZDkiSHaXPz8vLw1Vdfddk+Hn/8cTz99NMuu5oocQCOZ8BlWe4w3We/fv2QlpaG9957z2Hmle3bt+PYsWMXFV9UVBSmT5+Ot99+GyUlJR1ur6iosF/29/cHgA5JCmc2bdqEv/zlL/jzn/+MBQsWON1GrVZ3OOv/2muvdZjG+EL2e9VVV6G0tBSffPKJfZ3FYsFrr72GgIAATJs27byP0Rn33XcfYmNj8dhjjyErK6vD7eXl5fj73/8OAJg5cyZ0Oh1effVVh+f7n//8B7W1tT9rFiJXlKllFa+99hoA4MorrwQgXicAHWZseemllwDgomK66aabsHv3bqxfv77DbQaDARaL5YIf01XbV1VVOVxXqVQYOXIkAHSY4peIiHofVoIQERF1g6uvvhovvfQS5s6di9tuuw3l5eV44403kJqaiqNHj3bJPkaNGoVRo0adc5shQ4ZgwIABePzxx1FUVISgoCB8/vnnTsdGePbZZ3Httdfi0ksvxV133YWamhq8/vrrSEtL6zAlbWe98cYbuOyyyzBixAjcc8896N+/P8rKyrB7924UFhbiyJEjAIDRo0dDrVbj+eefR21tLfR6PWbMmIGoqKgOj3nrrbciMjISAwcOxPvvv+9w26xZsxAdHY1rrrkG//3vfxEcHIxhw4Zh9+7d2LRpk30KXcWF7Pfee+/F22+/jUWLFuHAgQNITk7GZ599hh9++AEvv/xypwczPZ/Q0FB8+eWXuOqqqzB69GjcfvvtSE9PBwAcPHgQH330ESZNmgRADCK6ZMkSLF26FHPnzsX8+fORmZmJN998E5dccgluv/32LomprdzcXMyfPx9z587F7t278f777+O2226zvxdHjRqFhQsXYsWKFTAYDJg2bRr27duH1atXY8GCBbj88ssveJ+///3v8fXXX+Oaa66xT5/b2NiIY8eO4bPPPkNeXt45p7V2RnlNH374YcyZMwdqtRq33HIL7r77blRXV2PGjBmIj49Hfn4+XnvtNYwePdrl9MlERNR7MAlCRETUDWbMmIH//Oc/eO655/Doo48iJSUFzz//PPLy8rosCdIZWq0Wa9aswcMPP4xly5bBx8cH1113HR566KEOCZR58+bho48+wjPPPIMnnngCAwcOxKpVq7B69WqcOHHiovY/bNgw7N+/H0uXLsWqVatQVVWFqKgojBkzBk899ZR9u5iYGCxfvhzLli3Dr3/9a1itVmzdutVpMqKyshIAsHDhwg63bd26FdHR0XjllVegVqvxwQcfoKWlBZdeeik2bdrUYWySC9mvr68vtm3bhieeeAKrV69GXV0dBg8ejHfffReLFi26qNfHlQkTJuD48eN44YUXsHbtWvz3v/+FSqXC0KFD8cQTT+Chhx6yb/vMM88gMjISr7/+On73u98hLCwM9957L5599llotdoujQsAPvnkEzz11FN44oknoNFo8NBDD+GFF15w2Oadd95B//79sWrVKnz55ZeIiYnBkiVL8PTTT1/UPv38/LB9+3Y8++yz+PTTT/Hee+8hKCgIgwYNwtKlS+0DuV6I66+/Hr/97W/x8ccf4/3334csy7jllltw++23Y8WKFXjzzTdhMBgQExODm2++Gc8880yHQXGJiKj3keTOjBBFREREXmv06NGIjIzklKFe7plnnsHSpUtRUVFxwVUXREREPQXT2URERAQAMJvNHcZW2LZtG44cOYLp06d7JigiIiKiLsTuMERERAQAKCoqwsyZM3H77bejX79+yMjIwPLlyxETE4P77rvP0+ERERER/WxMghAREREAMSBneno63nnnHVRUVMDf3x9XX301nnvuuQ4DihIRERH1RhwThIiIiIiIiIi8AscEISIiIiIiIiKvwCQIEREREREREXkFjgnSjWw2G4qLixEYGAhJkjwdDhEREREREVGfJMsy6uvr0a9fP6hUrus9mATpRsXFxUhISPB0GERERERERERe4ezZs4iPj3d5O5Mg3SgwMBCAaISgoCAPR0NdzWw2Y8OGDZg9eza0Wq2nwyE3YJt7H7a5d2K7ex+2ufdhm3sntnvfVldXh4SEBPvvcFeYBOlGSheYoKAgJkH6ILPZDD8/PwQFBfFD1Euwzb0P29w7sd29D9vc+7DNvRPb3TucbygKDoxKRERERERERF6BSRAiIiIiIiIi8gpMghARERERERGRV/CKJMiOHTswb9489OvXD5Ik4auvvjrvfbZt24axY8dCr9cjNTUVq1at6vY4iYiIiIiIiKj7eEUSpLGxEaNGjcIbb7zRqe1zc3Nx9dVX4/LLL8fhw4fx6KOP4u6778b69eu7OVIiIiIiIiIi6i5eMTvMlVdeiSuvvLLT2y9fvhwpKSn417/+BQAYOnQovv/+e/y///f/MGfOnO4Kk4iIiIiIiIi6kVckQS7U7t27MXPmTId1c+bMwaOPPnrO+xmNRhiNRvv1uro6AGIqJrPZ3OVxkmcpbcq29R5sc+/DNvdObHfvwzb3Pmxz78R279s6265MgjhRWlqK6Ohoh3XR0dGoq6tDc3MzfH19nd5v2bJlWLp0aYf1GzZsgJ+fX7fESp63ceNGT4dAbsY29z5sc+/Edvc+bHPvwzb3Tmz3vqmpqalT2zEJ0oWWLFmCxYsX26/X1dUhISEBs2fPRlBQkAcjo+5gNpuxceNGzJo1C1qt1tPhkBuwzb0P29w7sd29D9vc+7DNvRPbvW9TemKcD5MgTsTExKCsrMxhXVlZGYKCglxWgQCAXq+HXq/vsF6r1fKfrA9j+3oftrn36c42l2UZMmTYZJvDIstO1p1jO41Kg7igOKf7KGsoQ0lDCWRZBgAE+wSjf2h/p9vm1OSgqqkKMmR7fAC65fr05OlQSR3HaC9vLMfh0sP2bf20fpiSNMVpvNnV2ciozOjS2CxWCw4ZDqEpuwlaTWu7X5FyBUJ9QzvE0GhqxKacTQAASZIAAFcPvBpqldrpc9tfvB8SJIftu+P6oPBBiA5wrGxV7C3cC5tss2+fFpWGAF1Ah+2MFiOOlR875/4kSFBJKqgkFSSp9XLbpe02rrb10fjAR+PjNF6lbZT9dxd+vnsftrl3Yrv3TZ1tUyZBnJg0aRLWrVvnsG7jxo2YNGmShyIiIiJA/BAqri+GxWaB2WaG1WbtVKLAVVLhXImFmIAYjI0e6zSOHfk7kFOTY3/M0TGjkd4v3em27x15D+WN5S7jUH6At3+eMmSXf22yDQDsjydDRqhPKO4YdUeH52K1WbGvaB/2Fu21P3ZySDLmpM5x2JdyeUvuFmRXZ3eIS/kRCsDhtgtd3/Y2o8VoT4Iozw8ACmoLsCN/h/1+AboAGFoMHbaTIeNk+UkcKT8CZRcOMbSudLjedn2H2CDDZrOhrLoMWSeyoFK1JmnKGsoQ5hsGwDEZ0GhuxLenv8VPeQFIkNBsboZGpXHYTpIkFNUVYWfBTvs6Rdsf923Xn+u29gmB9rddlngZBoYNdJq4WH14Nayy1b7u2iHXIso/qsN2dcY6fHL8k/PGpzw/JdkBwJ7oaHvbubadlDAJswfMhkpSQS2pHfb5zsF3UFRfZE+YzBs0D6NiRsGZ5fuXw2qzOk3IuErG2Kw2HDEcgTHDCJ1W16mkTbhvOEZEj3AaQ0FtAaqbq+3bRvpFukxINZoaAQBatRYalcZpYpCIiLqOVyRBGhoakJ2dbb+em5uLw4cPIywsDImJiViyZAmKiorw3nvvAQDuu+8+vP766/jDH/6AX/3qV9iyZQv+97//Ye3atZ56CkREHifLMiw2iz0BYbFZYLaa7dfbXm5/m8VmQUpICgaEDXD62B8f/xgVjRX27a8dfC0GRwy23261WWG2mdFiacEre1+B1WaFVbY6JAHaJgguJonQ/m9sYCxOV57GweqDqD5WDZVKJZIKshX7i/ejsK7Qvu2hkkPYkb+jYwJCtmJv0V7UG+tF8gM2QAZsOH+MF8pH7YPCukKnt5U0lKCovsh+Pbs6G3mGPKfb5hpyUdVcdcH7vxhfZHwBFTr+4DO0GJBd0/q9rVfrO/zwVrR/bl1BlmXUmmthqjM5/BDfU7gHftqOY3wZrUbkGHIc1m3K3dSp59adGkwN+NH3R6e3HS49LN6PPzFZTS6f27HyY90WY1tHyo5gTeYah3VKEuFU5Sk0mZvsCZQz1WcQHRANtaTukKxQEmgdki5OEjEqiOSGbJNF4ut4FtRqdcdtnSR3EoISUNVc5TSG7fnbcbrqtH3bsTFjcVnSZVBLaujUOmjVWvFXpcVHxz9CcX2xfX9qSW1PiGhVP/09x/XObqtX610mYoiIvIlXJEH279+Pyy+/3H5dGbdj4cKFWLVqFUpKSlBQUGC/PSUlBWvXrsXvfvc7vPLKK4iPj8c777zD6XGJqNfIrcl1SEAMDBsIX23H7nz1xnpsOLOh04kNhSzLsMpWh2SEclmpzmh/+9CIoRgWOQwmqwkmq8n++CarCdvytsHQYhD3ka3IqspCiE+I2M5qtictAOBAyYGLShJcqKqmKjQZm1DQWID6s/UOFQHtEwUSJJhtzkckr22pRaO5scviUn6Mtf1xJkkSfDQ+CPMNE2fRVY4/ygCgydxkv3+EfwRSw1KdVgiYrCb7Y7fd508XHK+3u61DhYBY6fI+E/pNgFqldtifJEkoqS+ByWayr/PX+mNq0tQO2wFAVlUW9GX6i4tNudyuysFms6GopQj9wvrZ212WZczsPxOhvqEdutHUtdSh2dzssG5mykyHKhflMQrrC2GVreetRrmQypb2tymXh0QMQXxQfIdqHwAoqiuCFVb7fQaFD0KQPqjDdg2mBhTXF583PqcJxvbJPeWyk4SkK0pC0Ww1O/yP1ZvqoWvWOb1PTUvNBX9GuEp8nUtRXREqmyqd3tb+M6KgtgA/FjtPSJ2qPIVGcyMkSPb/XbWkFskVVetl+20qtdPbHW5r+zg/rQv2CcbDEx62J1/aVirtK9qH7Xnb7QmTlJAUXD3oaqfxHi8/jrKGsotOxrSv8iEicjevSIJMnz7doSy3vVWrVjm9z6FDh7oxKiLyZrIso9nSjHpjPepN9ag31qPB1IB6Uz2azE1OKynaX58/eD5GRo+0P56SWDBZTVi+fzlMVpM9GXH9kOsR7BNsv11JPlQ1V+HrzK8dkxdKMkO2wmZzTGYoCY3z/XBxprKp0mX1QXljORrMDfbrNc01UEsdx1MAAK1K9PdUDv6dneVVzu525gywq236BfbDlIQpOFR7COMHjYdOq7P/qNh9djeya7Lt24+MHonJCZPtSQflIF8tqfH5yc9R3lTeMXlxju4B59oGQIezzhIkBPsE475x9zl9zY6UHsGewj32x0kMTrR3h2lvR/4OnKk+061jVSiuG3odNKqOhyKlDaX2SiAJEvy0fpg1YJbTeM9Un0FGbEaXxmexWLDXuBfjR4+HRiPik2UZ4+PGI1Af2CGGRlMjogOiHX54K906nD23QWGDxGO2Szi4ut6ZbZxdn5QwCckhyU5ftxCfEIfuWNcMusbe1aet2pZa9Avsd959XUyXtPYJlCmJUzA1aarD54zymfSfQ/9BeWO5fdurBl6FgWEDO2xrk214fd/rnaoIa/vXYrWgqKUIsaGxkFRSx8RNm79KRVd0QDTGxo51qPxSLjeZmxy2jfSPRL/AfvbPcOVz2GxrTfLKkB2SzV3NR+2DorrWqilJkqBRaaBT61DWUIazdWftCZOYgBjk1OQ4VKwol38s+lFs6yLZ4ioZ0/azrTMJE51ah1n9Z8Ff599trwkReSevSIIQEbmLLMtosbTYExv1pp+SG22SHcpfq2yFxWZBi6XFYTFZTY4JCBfJiNNVpxHqG2pPjrR1qPQQrLLVfr2mucbpoIdmmxlnas78rOfs9KylkzOVqWGpGB83HlqVOLhVSsK1Ki02nNmA8sZy+/1mpMzAJXGXtG730300Kg1e2fsKjBYjNCqNvf/8+frun2s8AFfbR/hFYETECGiyNbgy9UqHwbZSQlNQ2VRpf8zogGjEB8U7fX2CfYJhspo6PTjk+cYuaJsM6axRMaNcjp/Q3tSkqZiaNPWCHr+rxQTEYMGQBZ3adkDYAJfdrC6W2WxG08kmXJ58eacGWfPX+btMKrUXExCDeYPn/dwQf7Zfjvxlp7YL9gnGr8f+ultiUJIiStJEJamcJsUA4O6xd8NsNdu3DfUJdVrdJssyfjv+t04TMecaF8hkNmG3cTcuGX0JVGpVp8YQig+Kx+SEyU7j3ZSzCTk1OfZtx/Ubh/Fx453G+9Lul1DdXO20qq79OleXnVXhtd9WpxaJXHvSRZZFIsZqRq3RsWJNkiQcLz/u9LmdqTmDmpaa87avM+2TJO0rW9omTZTP9yj/KATrgxHiE4Jgn2D4anxRXF+M/8v8PwTqAhGoD0SoTyimJU+7qJiIyPswCUJE1AlKcqPWUoucmhwMihzk9IfoqcpT+N+J/8Em2zokN1osLTBajK3XrS0/66xfnbHO6UwKapUaeo0eVpvVfnAZGxiLmIAYh7N5WpUWkES5u7Ozd+crr1YuK8mJ85VFp4SkYEzsGKfPJT4oHs2WZvv24X7hCNI7n1r80YmPXvRrdqHMZuddXPqH9nc5u0p7rpIjRN5OqZbqDGdVKq4ec2jk0AuOxWw2o/FEI65IuaJLZoyY2X9mp7aTJAkPjX+oU+MqXcgYTM6uRwdE41djfgWrzepQOWi2mrHxzEbsL9lvT5oMDBuISQmT7FWDbbdV5alQUl9y/grCn25vW9GkrHfVfbAtlaTCN1nfdOjKplVrYbaZkVOTI2YUUvsg0j8SPhofBPuIZEmIT4gYS0iScLTsKI6WHbUnTJS/PiofNFobYbVZoQVnCSHyJkyCEJHXM1qMaDA1IEAXAL2m4zTX9cZ6vLr3VbSYW5BVnoVjh47h7vS70WJpgaHFAEOLAbXGWhhaDMg35GPX2V0w2Uyd3r9GpYGP2gc+WnEwp9PoHM6KuUpGTE+ajsmJkx0qJbRqLVSSCisOrECjqdGegLhq4FVIDE7ssG+rzYq4wLiLHnyvq/p2p4Sm/OzHICLqjfQaPfTo+N3TXdQqNXxVvvBFayXNNYOvwWVJl9kTJsE+wS4TuP0C+6G0obRTyRiLzXJBY0i1vazX6DEpfhJqjbWobRHfsU3mJpitZpQ3lqO6udoeU0VTBVYeWukQp16jR7A+GOWN5ShpKIFeoxfftT9NxayRNCgsK0TGDxkiOdImQdL+b4AuAAG6AM7cQ9RHMAlCRH2WyWpy2RWl7V+T1QRZlnH90OsR4RfRIbFR3VyNLblb0GxuRnl9OU7nnUZZUxl8NR1LsY1Woz0BopJU9rNUykGXj8ZHHIi1uR6sD3Y42PLT+rVWV5wjORGsD3bZV/re9Hs79RqpVepOn7EkIqK+Kcw3rNPVNpcmXtrpx1VmFets9Urby75aX0yMn+jweErXnbVZa/HD2R/sFZbhfuEYGDbQ/t3dbG6G0WJEuaXc5YxXsiyjtr4W+dn58NX6Ov1+1qtbr2tUGvjr/M+ZKIn2j4Za1bnqJiLyHCZBiKjXMVvN5xxrQ/lrtBoBoMO4Gw5dUn7qltJiacHx8uOI8Itwus9Gc6NIlvw07aKvxhdJIUn2stsQnxAE64MRoAvA6iOr7cmNIH2Q/eDI2YFTgC6AB0xERNQnSZIYBFWr1qIrepxo1VpE+EXgyoFXYnTMaPv3fWxgLEbHjLZvZ7QY7RUk7x99H7mG3A7HAcqMThbZggZzg8Pg3E73rdK2JkrUzk9qPDn1SaeDJxtaDMipyXH4/ueAr0SewyQIEfVoFY0V+L7ge4cER4ulBQAcxt1wldhosXR+3A2zzQx/nX+HxEaITwgi/SNR21yLImsRxg4Zi18M+4XLfudPhTyFAF2AywH+iIiI6OJF+Uchyj/K5e16jR5RGrHNrSNuRUVjRYeTJ4ZmA05knEB8YjwsssXh+KH9MYUyjonZJE7COKOSVDC0GOCv9bcP4qocQ9S01GBv4V574qRfQD88OulRp49T3liOOmOdPWHiq/HllMJEXYxH6ETkdmarGTvydzgkNhaOWmg/K2KTbag31sPQYkBWVRa+zvzaaXLDZL2IcTdcdEnx0fhgatJUXDPoGqf3Hxo5FLACO807MX/y/HMOnBfiE3JBrwcRERF1jyERQzAkYkiH9SaTCV8ZvsLkiZPRIrd0qChVEiZ1xjqYrCYYrcaOVaVtjkl+mrsLTeYmNJmbUFxfbN9XWaOYglgRqAtEQV2BwwkXZVDXE+UnkFWVZT9W0aq0opr0HGOWBOoCnc6WRETOMQlCRG4jyzKazE2oaanBF6e+cEhs1BvrYZNtMLQYUGess0/hZ7KacLT8qMvHVEkql2WpyhKkC0KYX5hDv11nfXl1ap3L/UT5R8FsNkMj8WOTiIiot5MkCXqVHtEB0ec8saEcu5xrbLEGUwPCfMJwU9pNYlySllr7uGKGFgN2n92NRlOj/ZhHp9ah0dSIRlMjiuqKHPaXY8hxGPRVr9a3Ht+onR/r6NV6xAbGYkLcBIyIHsFKVKLz4H8IEXUpWZaRXZ2NAyUHcO3ga1FYV4iteVuRb8hHrbEWZquYFu9I2RGHKfK0KjHQp0KSJATpgxCkD0JZY5nT5EagLhDhvuEI8gmyj6/h7AzJuZIbRERERK5IkgR/nT/8df6ICYhxuZ0sy5AkCX5aP/QL7OdwW2JwIo6VHbNXl4ztNxbpsen2RIky+02tsRZVzVViYFerETbZBqPVCKPViDpjnesYISE2IBYnK04iLjAOl8Rdgkv6XeJ0fBIiYhKEiLqIyWrCkdIj2Fu0F+WN5SiuL8bW3K1Ot/XX+SPSLxJmm9me0JiRMgMT4ibYy0GD9EH2qei25G6BXq3vkOBwNp0tERERkbuda9yOyQmTMTlhMgDYpwjWqrWIQ1yHbYP1wSiqL0KDscGeAHE6/pm1dZ0MGcUNxShuKEaIPgSnq09je952jIweiYnxExEX1HE/RN6MSRAi+lkMLQbsK9qHgyUHUWesQ74hH7mGXBitRujVeoyJHYNJ8ZMwPm48wnzDEKwPhlatFYOdGuvtCY2E4ASX0/PNSJnh5mdFRERE1PVUkgoqtcrl7beOuBUAYLVZ0WhuPOcseA2mBjSYGlBnrEOeIQ+F9YUwGA04VHoIJytO4nT1aewv3o/UsFRMiJ+AoRFDOSMdEZgEIaKLIMsyCmoLsKdwDzIqM1BnrEOuIReFdYWwylYAgI/aB8khyfjV6F8hvV96h8e4LPEyd4dNRERE1CuoVWp7t+BzsdqsOFNzBnsL9+JkxUkU1BYgz5CHFmsLMqsycbr6NE5VnsLx8uNICE7A+LjxGBs7Fn5aPzc9E6Keh0kQIuo0i82C4+XHsbdwL4rri1HRVIGcmhxUNFXYtwnWB6N/aH+Mih6FSxMvxYioER6MmIiIiKjvUqvUGBQ+CIPCB6G8sRx7C/fiUMkhnK07ixxDDgwtBpytO4uzdWcR7huOzMpMbM3dinmD52F0zGhPh0/kEUyCENF5NZga8GPRj9hfvB91xjoU1hUix5CDBlMDADEgV0xADPqH9MfE+ImYlDAJySHJnNeeiIiIyE2i/KMwb/A8XNH/ChwsOYh9RfuQb8hHjiEHJfUlqGquQlVzFU5WnLQnTlgRQt6ISRAicqm4vhh7C/fiePlxNJobkWfIQ74hHyabCQCgUWmQGJSIweGDcWnipZgQP8HluB5ERERE1P38tH64LPEyTIqfhIzKDOwp3IOsqizk1eahwFAAtUqNLblb8MPZHzApfhJmpMxAdEC0p8MmchsmQYjIgU222b8wC2oLYGgxIKcmB8X1xZAhAxBfrikhKRgZNRKXJV2GMTFjOFMLERERUQ+iVqkxPGo4hkcNR1FdEfYW7cWR0iNIDUu1H9tty9uGbXnbkBaVhiv6XwGTxYSyxjKMjxuPUN9QTz8Fom7BJAgRAQCazc320klDiwGlDaXIqclBdUu1fZtw33CkhKRgYvxETE6YjIHhA+3T2BIRERFRzxQXFIfrg67HrP6z4K/zhwQJGZUZ2JK7BcfKj+F4+XEcKz+GwrpCRPtH4/uC7zE8ajimJU1DbGCsp8Mn6lJMghB5uYrGCvuZgSZzE87WnUVuTS6aLE0AxHgfcYFxGBg+EFOTpmJC3ASWTBIRERH1QoH6QPvloZFDMTRyKMoby7E1dyvWnl6LssYylDWW4VTlKWRVZWFQ+CAmQajPYRKEyEsV1RVha95WZFdno9HUiFxDLs7WnYXFZgEA6FQ6JIUkIS0yDVOTpyI9Nh3+On8PR01EREREXSnKPwo3p92MJrM4AZZryEWTuQlF9UVYcWAFxsaOxRUpV6B/aH8Oek99ApMgRF6q0dSIvYV7kWPIQVlDmX28j0BdIFJCUjA+bjwuS7wMwyKHQa1SezhaIiIiIupOC4YsQL/AfthfvB9n687CV+OLJnMTDhQfwIHiA0gKScIVKVcgvV86ShtKRbVwUJynwya6YEyCEHkZi82C/cX7sfHMRhwsOYgWawsAIMovCgPCBmBa0jRMSpiE+KB4D0dKRERERO4S6huKOalzMD15Oo6WHcXomNEoayzDltwt2Fu4F/mGfKw8tBKfnfwMRqsR/lp/pIalYmL8RAyNHMpx4qjXYBKEqI+SZRkFtWIatPigeNQb67GzYCe25m5FnbEOANAvqB+sNiuGRgzFjJQZuCTuEgTpgzwcORERERF5il6jxyVxlwAA4oPiceeoO3HdkOuws2AntuVtQ3F9MU5VnoJKUuFU5SkcLz+OhOAEjI8bj/TYdPhqfT38DIjOjUkQoj7GYrPgRPkJ7Cncg5KGEgTrgxHhF4G9RXthtpoBAME+wbg8+XJMjJ+IXEMuRkSNgFat9XDkRERERNQTBeoDcdXAqzB7wGz8a9e/UNJQAkOLAWfrzuJs3VmE+4YjszITW3O3YnTMaEyMn4hI/0hPh03kFJMgRH3MyYqT+OLUF6hoqkBOTQ4qmiowLHIY/DR+Dn05NSrx78854ImIiIioMzQqDaYmTYVGpUFBbQFyDDkoqS9BVXMVqpqrcLLiJE5Xn8aewj0YEjEEE+MnIjUslQOqUo/CJAhRH2K0GFHVVIVdhbtQ3VwNQExxG6gNxOLJizEgdAC/hIiIiIjook1KmITxceNxqvIU9hbuRVZVFvJq81BgKECTpQknKk4gsyoTGVUZOFJ2BEnBSZgQPwGjY0ZDp9Z5OnwiJkGIeiObbEOLpQV+Wj8AgKHFgK25W7EjfweazE3w0fhAo9IgMTgRo6NHY/aA2UgNS/Vw1ERERETUF6hVaqRFpSEtKg1FdUXYU7gHR8qO4GztWeQaclFvqkeeIQ95hjxE+UchozIDmwI3Ib1fOsbHjWclMnkUkyBEvUizuRkHSw5iX9E+xAXFYXzceGzK2YQDxQdgk20AgAi/CMwbPA9lDWW4NPFSDAofxNG6iYiIiKhbxAXF4RfDfoHZA2bjx+If8WPRjyioLUCuIRdljWUobyxHeWM5AnWBOF19Gt8XfI+0qDRMiJ+ApOAkVimT2zEJQtQLVDZVYm/hXhwuPQyT1YTShlKsO70O606vg16tBwAMCh+EK/pfgZHRI5n0ICIiIiK3CtQHYkbKDExJnIJj5cewt3AvcmpykGvIxdm6s6g31eNo+VGcqjyFrKosHCw5iJTQFEyMn4i0qDT7eHVE3Y3vNKIeSpZlnKk5gz2Fe5BdnQ2z1YyC2gLkGfLQZGkCAPhofXD9kOtxRf8rkBic6OGIiYiIiMjbadVajI0dizExY5BnyMOewj04UX4CBXWiOqTJ3ITsmmycqTmD2IpYnKw4ifjAeFwSdwnG9RuHQH2gp58C9XFMghD1MCarCUdKj2Bv0V5UNlWi0dRoz6BbbBYAgE6tQ1JwEmakzMCi0YtYRkhEREREPYokSUgJTUFKaAqqm6uxr2gfDhQfwNm6s8ityUVlcyWKG4pR3FCMEH0IsqqzsD1vO0bGjMTE+InoF9jP00+B+igmQYh6CEOLAfuK9uFgyUE0m5tR3VyNnJoclDWWQYYMAAjUBWJA6ADMGjALlyVehvigeA9HTURERER0bmG+YZibOheXJ1+Ow6WHsbdoL/IMecityUVhfSEMRgMOlR7CyYqTyKrOwvGy4/jT1D+xiwx1C76riDxIlmWcrTuLPYV7cKriFKyyFUV1Rcg15KLWWGvfLso/CsMihmFu6lyMjxuPYJ9gD0ZNRERERHTh9Bo9JsRPwCVxl+B01WnsLdqLUxWn7F2+W6wtyKzKRIOpAR8c/QAzUmYgITjB02FTH8MkCJEHWGwWnCg/gT2Fe1DSUAKjxYj82nzkGfJgtBoBAGpJjfgg0T9ydv/ZGBk9Elq11sORExERERH9PCpJhcERgzE4YjDKGsqwt2gvDpUcQmFdIXINuQj3Dceus7uw6+wuDAofhBkpMzAqZhRUkgoNpgYE6AI8/RSoF2MShMiNGkwN2F+8H/uL96PB1IA6Y529DFCZ4tZH44OUkBTMSJmB6cnTkRKSwjE/iIiIiKhPig6IxvzB8zGz/0wcKD6ABlMDBkcMxuaczThYchBZVVnIqspCuF84JsZPxI9FP2JQ+CBMjJ+I1LBUHifTBWMShMgNSupLsLdoL46VHYPFZkF5YzlyDbmoaKqwbxPiE4LB4YNxVepVmJQwCeF+4R6MmIiIiIjIffy0fpiSNMV+vX96f9Q012Bb3jbsLNiJqqYq/PvAv1HeVI6TlSdxpOwIUsNScW/6vVBJKg9GTr2NVyVB3njjDbzwwgsoLS3FqFGj8Nprr2H8+PEut3/55Zfx1ltvoaCgABEREbjhhhuwbNky+Pj4uDFq6q1ssg2ZlZnYU7gH+bX5sNgsosSvJhcN5gYAgAQJMQExGBMzBlemXomx/cbCR8P3FxERERFRqG8orht6Ha4edDV2nd2Ff+z4Byw2C/IMecgz5KHeWI+MygwMjRjKihDqNK9JgnzyySdYvHgxli9fjgkTJuDll1/GnDlzkJmZiaioqA7bf/jhh3jiiSewcuVKTJ48GVlZWVi0SExF+tJLL3ngGVBvYrVZ8eaPb6KquQrN5mbkGfKQX5sPs80MANCoNEgKTsLUpKmY2X8mBoUPYgabiIiIiMgJnVqHweGDMbP/TBTUFiDXkIuyxjI0W5rxyp5XEBsYixkpMzAxfiJ0ap2nw6UezmuSIC+99BLuuece3HXXXQCA5cuXY+3atVi5ciWeeOKJDtvv2rULl156KW677TYAQHJyMm699Vbs3bvXrXFT76RWqaFT63Cw5CCK64vtU9z6a/2RGpaKK1OvxJSkKYgJiPFwpEREREREPV9sYCwWT1qMY+XHsLdwL6yyFRF+Edh1dhdK6kvwwdEP8OWpLzElaQomx0/Guux1GBs7FmlRaZxqlxx4xbvBZDLhwIEDWLJkiX2dSqXCzJkzsXv3bqf3mTx5Mt5//33s27cP48ePR05ODtatW4c77rjD5X6MRiOMRqP9el1dHQDAbDbDbDZ30bOhnkJp07Zta5NtOFx6GJvzNuNExQkU1hUCAMJ9wjE8ajiuGXgNxsWOg7/Ov8N9qedz1ubUt7HNvRPb3fuwzb0P27z3GhExAmnhaWixtMBX64ur+l+F3YW7sTV/K6qaqvBt1rd47/B7MNvMOFB0APFB8RgXOw7j+o2DXtIDYLv3VZ1tV0mWZbmbY/G44uJixMXFYdeuXZg0aZJ9/R/+8Ads377dZXXHq6++iscffxyyLMNiseC+++7DW2+95XI/zzzzDJYuXdph/Ycffgg/P7+f/0Sox7DKVuQ25yK3ORfTQ6fDBhtONpzE8YbjqLfWAxBT3JptZsTqY5EelI4EnwSoJbVnAyciIiIi6oNssg35Lfk4Un8Euw27YZbFD2J/tT+iddEI14Yj2TcZQ/yHIFQb6uFoqTs0NTXhtttuQ21tLYKCglxu5xWVIBdj27ZtePbZZ/Hmm29iwoQJyM7OxiOPPIK//e1vePLJJ53eZ8mSJVi8eLH9el1dHRISEjB79uxzNgL1LlabFauPrka1oRqFpwtxPOg4KlsqYQwyIjQoFIn6RExJnIKpiVOhU+ugV+s5UFMfYTabsXHjRsyaNQtardbT4ZAbsM29E9vd+7DNvQ/bvO86XX0abx94G3mGPBQ1FMEm21CFKjSoG2DzsSGnMgd/uOoPGBU7ytOhUhdTemKcj1ckQSIiIqBWq1FWVuawvqysDDExzsdkePLJJ3HHHXfg7rvvBgCMGDECjY2NuPfee/HnP/8ZKlXHQSz1ej30en2H9Vqtlh+ufcixkmMorC/EkfIjyGjIQHleOdKi0hAfHI+Z/WdifNx4aNVs776M/9Peh23undju3odt7n3Y5n3PkKgheGD8A9hTuAcZlRkoqC1AniEPLdYWZBuyITfK2FqwFaPjR3OskD6ms//LXtHqOp0O6enp2Lx5MxYsWAAAsNls2Lx5Mx566CGn92lqauqQ6FCrRVcGL+hBRC7IsozdZ3cjvzYfxQ1iwNMgXRBuHHYjZvafyYoPIiIiIiIPUkkqDI4YjMERg1HWUIa9RXtxqOQQztadxeGSw6ix1iDXkItDJYdwSdwlng6XPMBr5uRcvHgx/v3vf2P16tU4deoU7r//fjQ2Ntpni7nzzjsdBk6dN28e3nrrLXz88cfIzc3Fxo0b8eSTT2LevHn2ZAh5H0mScOuIW9FkboJKUiHJJwm/n/R7JkCIiIiIiHqY6IBozB88H7+/9PeYFD8JCUEJAIDTVaexs2AnLDaLhyMkT/CKShAAuPnmm1FRUYGnnnoKpaWlGD16NL777jtER0cDAAoKChwqP/7yl79AkiT85S9/QVFRESIjIzFv3jz84x//8NRToB7iYMlBhPuGIzEoEVFVUZiSOIUJECIiIiKiHspP64cr+l+BUxWncOzsMVS1VCG3htUg3sprkiAA8NBDD7ns/rJt2zaH6xqNBk8//TSefvppN0RGvYXJasL67PUAgGsHXQvDMQMTIEREREREPVxySDKGRgzFD9ofYIQRmVWZ2FmwE2Nix3BsEC/jNd1hiLrCjvwdqDPWIcIvAhPiJng6HCIiIiIi6qSpiVMRq4+FCipUNbdWg5B3YRKEqJOMFiO+y/4OAHDVwKugVnFsGCIiIiKi3iI5JBkJvgn2sUGUahCODeJdmAQhOg+rzYoWSwt25O9AvbEeEX4RmBg/0dNhERERERHRBRruPxwDwgZAJbEaxFux8xPReRwpO4J1p9fhWNkxBOoDcfWgq6FWqWGz2jwdGhERERERXYBofTTUEWrk1uYiz5DHsUG8ECtBiM7BarNiR/4OZFZmIrsmGzk1OfDV+Ho6LCIiIiIiukhTE6ciNTTVoRrkYMlBT4dFbsIkCNE5HCk7gsqmSmTXZAMAUkJSEOwT7OGoiIiIiIjoYiWHJGNY5DAkBicCEGODfF/wPccG8RJMghC5oFSB5BnyYLKa4K/1x6SESUgJSfF0aERERERE9DNMS57GahAvxSQIkQuHSw+jsqkSZ2rOAAAGhg3EjJQZkCTJw5EREREREdHPwWoQ78UkCJETVpsVOwt2sgqEiIiIiKiPYjWId2IShMgJexVItagCGRQ+iFUgRERERER9CKtBvBOTIETtOFSB2EQVyMT4iawCISIiIiLqY1gN4n2YBCFqh1UgRERERETegdUg3odJEKI2lCqQ3JpcmGwmBGgDWAVCRERERNSHta8GqWisQFVTlafDom6i8XQARD2JUgWSU5MDABgYzhlhiIiIiIj6MqUapKi+CE3mJoT5hiE6INrTYVE3YSUI0U9YBUJERERE5J2uG3od/t+c/4fYgFhkV2cjszLT0yFRN2EShOgn9rFAajgWCBERERGRNwnSByHSPxKXJV4GAFiTtQayLHs4KuoOTIIQwbEKxGwzI0AXgAnxE1gFQkRERETkReamzoVGpcHpqtPIqsrydDjUDZgEIYKoAqlorGitAgljFQgRERERkbcJ9Q1lNUgfxyQIeT2rzYod+TuQZ8iD2WZGoC6QVSBERERERF6qbTXI3qK9OFN9xtMhURdiEoS8XvuxQAaGcUYYIiIiIiJvFeobilExo5BryMVTW5/Cl6e+hMVm8XRY1EWYBCGvplSB5BpyWQVCRERERESoaqpCTnUOalpqUNVchbzaPBwsOejpsKiLMAlCXk2pAsmpyQHAGWGIiIiIiLxduF84hkUNQ2JwIgAgqyoLO/J2sBqkj2AShLyW0yqQOFaBEBERERF5u2lJ05AamgqVpIKhxYBwv3BYbVZPh0VdQOPpAIg8xVkVyOUpl7MKhIiIiIjIyyWFJGFM7BioVWqUNZShqrkKOrXO02FRF2AlCHklpQokpyaHVSBERERERNTBzcNvxu8n/x4+Gh+crjqNrKosT4dEXYBJEPJKShVIriEXAKtAiIiIiIjIkSRJCPUNxWWJlwEA1mStgSzLHo6Kfi4mQcgrZVVl2atAgnRBrAIhIiIiIiKn5qbOhUalYTVIH8EkCHml+YPnQ6PSwE/jxyoQIiIiIiJyidUgfQuTIOSVNuduhp/WD7MGzMIfLv0Dq0CIiIiIiMilKwdeCY1Kg1MVp7Dq8CocLDno6ZDoInF2GPI6jaZGbM7ZDACYN2geBoQN8HBERERERETUk+nUOoT6hGJDzgacrTuLqqYqjIweCY2KP6l7G1aCkNfZlLMJLZYWxAfFY3TMaE+HQ0REREREPVxFYwUssgUyZFQ1VyGvNo/VIL0UkyDkVRpNjdiSuwUAcM2gazgOCBERERERnVdSSBKGRQ5DUnASADHRwo68HbDYLB6OjC4UkyDkFaw2K87WnmUVCBERERERXZRpSdOQGpYKlaRiNUgvxiQIeYXDpYfx1v638MaPb6DB1IB5g+exCoSIiIiIiDqN1SB9g1clQd544w0kJyfDx8cHEyZMwL59+865vcFgwIMPPojY2Fjo9XoMGjQI69atc1O01FWsNit25O9ATk0OqpqrUNJQgrKGMk+HRUREREREvYyzapADxQc8HRZdAK9JgnzyySdYvHgxnn76aRw8eBCjRo3CnDlzUF5e7nR7k8mEWbNmIS8vD5999hkyMzPx73//G3FxcW6OnH6uw6WHUdFUgVxDLgBgUPggDAwf6OGoiIiIiIiot3FWDbIzfyerQXoRr0mCvPTSS7jnnntw1113YdiwYVi+fDn8/PywcuVKp9uvXLkS1dXV+Oqrr3DppZciOTkZ06ZNw6hRo9wcOf1cGpUGJfUlsNgsCNYH45J+lyAlJMXTYRERERERUS/EapDezSuSICaTCQcOHMDMmTPt61QqFWbOnIndu3c7vc/XX3+NSZMm4cEHH0R0dDTS0tLw7LPPwmq1uits6iIDwgbAX+ePxKBEjIkZg8tTLud4IEREREREdFFYDdK7aTwdgDtUVlbCarUiOjraYX10dDQyMjKc3icnJwdbtmzBL3/5S6xbtw7Z2dl44IEHYDab8fTTTzu9j9FohNFotF+vq6sDAJjNZpjN5i56NnSh1mWug9FsxJiYMXh84uPQqDRd0h7KY7BtvQfb3Puwzb0T2937sM29D9vcO3Vlu0+Om4xjpceQZ8hDZVMlzlSfwd6CvRgfN/5nPzZdnM62q1ckQS6GzWZDVFQUVqxYAbVajfT0dBQVFeGFF15wmQRZtmwZli5d2mH9hg0b4Ofn190hkxPN1ma8X/I+zLIZac1p2Lh+Y5fvY+PGrn9M6tnY5t6Hbe6d2O7eh23ufdjm3qmr2t1cbYauSYcyUxl2N+xGc0kzyqLKoJbUXfL4dGGampo6tZ1XJEEiIiKgVqtRVuY4I0hZWRliYmKc3ic2NhZarRZqdesbeOjQoSgtLYXJZIJOp+twnyVLlmDx4sX263V1dUhISMDs2bMRFBTURc+GLsSXGV8iVh2LxOBE3D/5/i7tBmM2m7Fx40bMmjULWq22yx6Xei62ufdhm3sntrv3YZt7H7a5d+rqdh9eOxxvH3gbW/O3wibb4Bvri+gR0awG8RClJ8b5eEUSRKfTIT09HZs3b8aCBQsAiEqPzZs346GHHnJ6n0svvRQffvghbDYbVCoxdEpWVhZiY2OdJkAAQK/XQ6/Xd1iv1Wr54eoB9cZ67Dy7EyqVCtcOvdZlu/1cbF/vwzb3Pmxz78R29z5sc+/DNvdOXdXuqRGpGBEzArm1ucg15CLbkI3dRbsxIXECNCqv+Kndo3S2Tb1iYFQAWLx4Mf79739j9erVOHXqFO6//340NjbirrvuAgDceeedWLJkiX37+++/H9XV1XjkkUeQlZWFtWvX4tlnn8WDDz7oqadAnWS1WbE+ez0+P/U5TFYTkkKSMCJqhKfDIiIiIiKiPmZ68nT7TDHVzdWcKaYX8Jr01M0334yKigo89dRTKC0txejRo/Hdd9/ZB0stKCiwV3wAQEJCAtavX4/f/e53GDlyJOLi4vDII4/gj3/8o6eeAnXSodJD2Ja3DVvytiBEH4I7Rt3B2WCIiIiIiKjLJQYnYljkMGRXZyPXkIvMqkzszN+J9H7prAbpobyqVR566CGX3V+2bdvWYd2kSZOwZ8+ebo6KupLVZsXO/J04U3MGFpsFFtmC7KpsXJZ4madDIyIiIiKiPmh68nScrDiJ/Np8h2qQCfETPB0aOeE13WHIOxwqPYTyxnLkGfIAAIPDB2Na8jTPBkVERERERH2WUg2SFJwEAPZqEIvN4uHIyBkmQajPaFsFYpWtCPUJxbjYcUgOSfZ0aERERERE1IdxbJDewyPdYTZv3ozNmzejvLwcNpvN4baVK1d6IiTqA9pXgQwKH4TLUy7neCBERERERNStXI0NMjZ2LLRqzkDUk7i9EmTp0qWYPXs2Nm/ejMrKStTU1DgsRBdDqQLJrslmFQgREREREbmds2qQgyUHPR0WteP2SpDly5dj1apVuOOOO9y9a+rDlCqQfEM+AFaBEBERERGRe7EapHdweyWIyWTC5MmT3b1b6sMsNgurQIiIiIiIyONYDdLzuT0Jcvfdd+PDDz90926pDztcehhljWX2KpDB4YNZBUJERERERG7naqYYs9Xs4chI4fbuMC0tLVixYgU2bdqEkSNHQqt1LAt66aWX3B0S9WJKFciZ6tYZYdJj01kFQkREREREHjE9eTpOVpxEfm0+jBYjhkcPh0blkTlJyAm3t8TRo0cxevRoAMDx48cdbuOZe7pQ9iqQWlaBEBERERGR5yUGJ2J68nRE+0fjVOUpHC87jrkD5no6LPqJ25MgW7dudfcuqY9qXwUS5hPGKhAiIiIiIvK4ualzMTF+Iv68+c/Irs5GRmUGhkYO9XRYBA+MCdJWYWEhCgsLPRkC9WJKFUhebR4AzghDREREREQ9R4hPCKYmTQUArMlaA1mWPRwRAR5IgthsNvz1r39FcHAwkpKSkJSUhJCQEPztb3+DzWZzdzjUS9lnhKnOhk22IcyXVSBERERERNSzzEmdA41KgzPVZ5BRmeHpcAgeSIL8+c9/xuuvv47nnnsOhw4dwqFDh/Dss8/itddew5NPPunucKiX4lggRERERETU07WvBrHZbKwI8TC3jwmyevVqvPPOO5g/f7593ciRIxEXF4cHHngA//jHP9wdEvUy7atAwn3DMTZmLKtAiIiIiIiox5mTOgfb87fjcOlhLPt+GWb2n4kJ8RM8HZbXcnsSpLq6GkOGDOmwfsiQIaiurnZ3ONQLta8C4VggRERERETUUzWZmyDLMjKrMlHRWAG9Wo+xsWOhVWs9HZpXcnt3mFGjRuH111/vsP7111/HqFGj3B0O9TJKFcjp6tOsAiEiIiIioh7PYrMg2CcYKkmF6pZq5BpycbDkoKfD8lpurwT55z//iauvvhqbNm3CpEmTAAC7d+/G2bNnsW7dOneHQ73M4dLDKG0oRUFtAQBWgRARERERUc+WGJyI4ZHDkV2djVxDLrKqsnC07CjGx43n7xgPcHslyLRp05CVlYXrrrsOBoMBBoMB119/PTIzMzFlyhR3h0O9iH0skJrWsUA4IwwREREREfV005KnITUsFb4aXwTqAzExfiITIB7i9koQAOjXrx8HQKUL1r4KZHD4YExPns4PDyIiIiIi6tESgxOxaPQijIweie152/Ft9rdIi0rjbxkPcEsS5OjRo0hLS4NKpcLRo0fPue3IkSPdERL1Mk5nhInlWCBERERERNQ7DIkYgpiAGPxQ8APOVJ9BRmUGhkYO9XRYXsctSZDRo0ejtLQUUVFRGD16NCRJcjo3siRJsFqt7giJehl7FUgdq0CIiIiIiKh3CvEJwdSkqdiSuwVrstZgSMQQ/qZxM7ckQXJzcxEZGWm/THSh4oPi0WBqgE22IcI3glUgRERERETUK81NnYudBTtZDeIhbkmCJCUl2S/n5+dj8uTJ0Ggcd22xWLBr1y6HbYkUWpUWMmQMjRiKsbFjWQVCRERERES9UrBPMKYmTcXmnM1Yk7UGEX4RCPEJgVat9XRoXsHts8NcfvnlqK6u7rC+trYWl19+ubvDoV7iu+zvYLVZkR6bjsWTFiMlNMXTIREREREREV2UOQPmwCJbsClnE5ZuW4oDJQc8HZLXcHsSRJZlp2fwq6qq4O/v7+5wqBeoaqrCD2d/AABcM+gaD0dDRERERET085yoOIG6ljpUNVchsyoTO/N3wmw1ezosr+C2KXKvv/56AGLw00WLFkGv19tvs1qtOHr0KCZPnuyucKgX+Tb7W1htVgyJGIKB4QM9HQ4REREREdHPkhCUgAFhA5Bfm4/qlmrkGfJwoOQAJsZP9HRofZ7bkiDBwcEARCVIYGAgfH197bfpdDpMnDgR99xzj7vCoV6iqqkKPxSIKpB5g+d5OBoiIiIiIqKfLyE4AcMjh+NM9RnkGHKQVZWFnfk7kR6bzrFBupnbkiDvvvsuACA5ORmPP/44u77QOVlsFnx07COcrTsLq2zFsMhhSA1L9XRYREREREREXWJ68nScqDjBahA3c/uYIE8//TQTIHReh0oO4Vj5MXxx6gucrDiJQWGDIMuyp8MiIiIiIiLqEko1SFKwmCFVqQbh2CDdy22VIG199tln+N///oeCggKYTCaH2w4ePOiJkKgHsdgs2FmwE6erTkOGjABdAMqbyjklLhERERER9SmsBnE/t1eCvPrqq7jrrrsQHR2NQ4cOYfz48QgPD0dOTg6uvPJKd4dDPdCpilMobSjF2bqzAIDB4YMxPXm6Z4MiIiIiIiLqYqwGcT+3J0HefPNNrFixAq+99hp0Oh3+8Ic/YOPGjXj44YdRW1vr7nCoB0qLSkOYbxh8tb6I8ovCmNgxSA5J9nRYREREREREXW568nQMCBsAtaR2qAah7uH2JEhBQYF9KlxfX1/U19cDAO644w589NFH7g6HeqCq5irkG/IxNGIoFk9ajJn9Z3o6JCIiIiIiom7BahD3cnsSJCYmBtXV1QCAxMRE7NmzBwCQm5vLgS8JALA2ay1ssg1pUWmYNWAW4oPiPR0SERERERFRt2E1iPu4PQkyY8YMfP311wCAu+66C7/73e8wa9Ys3HzzzbjuuuvcHQ71MBWNFdhTKBJj8wbN83A0RERERERE3Y/VIO7j9iTIihUr8Oc//xkA8OCDD2LlypUYOnQo/vrXv+Ktt97q1n2/8cYbSE5Oho+PDyZMmIB9+/Z16n4ff/wxJEnCggULujU+AtadXmevAkkJTfF0OERERERERG7BahD3cHsSRKVSQaNpnZn3lltuwauvvorf/va30Ol03bbfTz75BIsXL8bTTz+NgwcPYtSoUZgzZw7Ky8vPeb+8vDw8/vjjmDJlSrfFRkCjqRHljeWtVSCDWQVCRERERETeo301SGZVJqtBuoHbkyD9+/fHXXfdBaPR6LC+srIS/fv377b9vvTSS7jnnntw1113YdiwYVi+fDn8/PywcuVKl/exWq345S9/iaVLl3ZrbN7OYrPg7QNv40+b/4RaYy3SotI4GwwREREREXmdttUgNS01rAbpBm5PguTl5eGHH37AlClTUFpaal9vtVqRn5/fLfs0mUw4cOAAZs5snWVEpVJh5syZ2L17t8v7/fWvf0VUVBR+/etfd0tcJBwqOYSS+hIcLj2MzKpMGK1GGC3G89+RiIiIiIioD2E1SPfTnH+TriVJEr777js8/vjjSE9Px1dffYVLLrmkW/dZWVkJq9WK6Ohoh/XR0dHIyMhwep/vv/8e//nPf3D48OFO78doNDpUuNTV1QEAzGYzzGa+aZ2x2CzYlrsNGZUZsMk2RPlFIVQfCpWs6vGvmRJfT4+Tug7b3Puwzb0T2937sM29D9vcO/WWdr80/lIcLT2KPEMeqpurcab6DPae3YsJcRM8HVqP1tl2dXsSRJZlBAQE4IsvvsCSJUswbdo0rFixArNmzXJ3KC7V19fjjjvuwL///W9ERER0+n7Lli3D0qVLO6zfsGED/Pz8ujLEPuN002n8UP0DTjWeggwZcZY4WM9Ysa5wnadD67SNGzd6OgRyM7a592Gbeye2u/dhm3sftrl36g3tbq42Q9ukRbWpGrsbdqOlpAVlUWXQSG7/Cd9rNDU1dWo7j1SCKJYtW4bhw4fjnnvuwa233tpt+4yIiIBarUZZWZnD+rKyMsTExHTY/syZM8jLy8O8ea2Dc9psNgCARqNBZmYmBgwY0OF+S5YsweLFi+3X6+rqkJCQgNmzZyMoKKirnk6fYbFZkPVjFqyyFUGaIET7RWPBsAW4c+Sdng6tU8xmMzZu3IhZs2ZBq9V6OhxyA7a592Gbeye2u/dhm3sftrl36k3tPqJuBN7a/xa25W+DVbbCJ9YH0SOiWQ1yDkpPjPPxSCVIW7fffjsGDBiA6667rtv2qdPpkJ6ejs2bN9unubXZbNi8eTMeeuihDtsPGTIEx44dc1j3l7/8BfX19XjllVeQkJDgdD96vR56vb7Deq1W2+P/yTzhcNFhlDWVoaShBJIkYXDkYFwx4Ipe91qxfb0P29z7sM29E9vd+7DNvQ/b3Dv1hnbvH94fI2NGIq82DzmGHGTXZGN30W5MSJgArbpnx+4pnW1TtydBlIqKtiZNmoQjR464HJ+jKyxevBgLFy7EuHHjMH78eLz88stobGzEXXfdBQC48847ERcXh2XLlsHHxwdpaWkO9w8JCQGADuvp4lhsFuws2InTVachQ0a0fzRGx4zmrDBEREREREQQM8WcqDiB/Np8h5liJsZP9HRovVqP6VAUHR3dYeDSrnTzzTejoqICTz31FEpLSzF69Gh899139n0WFBRApXL7ZDle61DJIRTXF6OovggAMDh8MKYnT/dsUERERERERD2EMlPMmeozyDHk2GeKSY9NZzXIz+CWJMjYsWOxefNmhIaGYsyYMQ7jgrR38ODBbovjoYcectr9BQC2bdt2zvuuWrWq6wPyUkoVSFZVFmTIiPGPwaiYUawCISIiIiIiaoPVIF3PLUmQa6+91j5WxrXXXnvOJAj1fUoVSHF9MQBgUPggVoEQERERERG1Y68GqTmDnBpRDVLRWOHpsHo1tyRBnn76afvlZ555xh27pB6KVSBERERERESdNz15Ok5WnERdSx2iAqIwIKzjTKXUeW4fBKN///6oqqrqsN5gMKB///7uDofc7FDJIRTVFbEKhIiIiIiIqBMSghPw+0t/j7vH3g0/jR/WZK7pMOsqdZ7bkyB5eXmwWq0d1huNRhQWFro7HHIj+4ww1WJGmNiAWFaBEBERERERnUeYbxjmpM6BVq1FTk0OTlac9HRIvZbbZof5+uuv7ZfXr1+P4OBg+3Wr1YrNmzcjJSXFXeGQB7AKhIiIiIiI6OIE6YMwLWkaNuVswjdZ32BY5DCOt3kR3JYEWbBgAQBAkiQsXLjQ4TatVovk5GT861//clc45Gb2sUCqs1qrQKJZBUJERERERNRZc1LnYHv+dns1yPCo4Z4OqddxWxLEZrMBAFJSUvDjjz8iIiLCXbumHuBgyUEU1RWhpL4EgKgCmZY8zcNRERERERER9R5tq0HWZK2B2WrG8Kjh0Kq1ng6t13D7mCC5ubn2BEhLS4u7d08eYLFZ8H3B96wCISIiIiIi+plmDZiFWmMt1mSuwYqDK7C/eL+nQ+pV3J4Esdls+Nvf/oa4uDgEBAQgJycHAPDkk0/iP//5j7vDITdgFQgREREREVHX2J63HVbZihZrC7KqsvB9wfcwW82eDqvXcHsS5O9//ztWrVqFf/7zn9DpdPb1aWlpeOedd9wdDnUzexVIFatAiIiIiIiIfq70fulIDU2FWlKjpqUGuYZcVoNcALcnQd577z2sWLECv/zlL6FWq+3rR40ahYyMDHeHQ93sYMlBFNYVorihdUYYVoEQERERERFdnPigeAyPGo6kkCQAQFlDGaL8ozwcVe/htoFRFUVFRUhNTe2w3mazwWxmCU9f0rYKBAD6BfRjFQgREREREdHPND15OqqbqqFX6+Gn9UOLheNtdpbbK0GGDRuGnTt3dlj/2WefYcyYMe4Oh7qRUgVS0lACCRKrQIiIiIiIiLpAfFA8fjvht7h28LWQIOGbrG8gy7Knw+oV3F4J8tRTT2HhwoUoKiqCzWbDF198gczMTLz33nv45ptv3B0OdZP2VSCxgbEYGT2SVSBERERERERdQJIkzEmdg+3525FTk4OTFScxPGq4p8Pq8dxeCXLttddizZo12LRpE/z9/fHUU0/h1KlTWLNmDWbNmuXucKibFNUVobiuuLUKJIxVIERERERERF0pSB+EaUnidxarQTrH7ZUgADBlyhRs3LjRE7smN0kKSUJccByi/KOgU+lYBUJERERERNQNWA1yYTySBAEAk8mE8vJy2Gw2h/WJiYkeioi60tnas8ioyEBScBIWT1qMUJ9QT4dERERERETU5yjVIBtzNmL1kdUYEzMGNwy7AVq11tOh9UhuT4KcPn0av/rVr7Br1y6H9bIsQ5IkWK1Wd4dE3eCbLDG+y7h+4zAofJCHoyEiIiIiIuq7BoUPwvL9y2EwGtBgakBySDImJUzydFg9ktuTIIsWLYJGo8E333yD2NhYSJLk7hCom52tPYvDpYchSRKuHni1p8MhIiIiIiLq046VH0OYXxgMRgOyqrLwfcH3GNdvHKtBnHB7EuTw4cM4cOAAhgwZ4u5dk5usyVoDQFSBxAbGejgaIiIiIiKivm168nScKD+BfEM+alpqkGvIxf7i/awGccLts8MMGzYMlZWV7t4tuUFxfTGyq7NxpPQIJEnCNYOu8XRIREREREREfV58UDyGRw1HUkgSANirQcxWs4cj63ncngR5/vnn8Yc//AHbtm1DVVUV6urqHBbqnSw2Cz4+/jF+v+H3KG0oxeiY0YgJiPF0WERERERERF5hevJ0pIamQi2pHapByJHbu8PMnDkTAHDFFVc4rOfAqL3bwZKDOFt7FgV1BZAgoaiuCPXGegTqAz0dGhERERERUZ+nVINk12QjpyaHY4O44PYkyNatW929S+pmFpsF3xd8j8yqTABAXGAcUsNSmQAhIiIiIiJyI44Ncn5uT4JMmzbN3bukbtZiaYFWpUVZYxkkSBgYPhDTktnORERERERE7sRqkPNzexLk6NGjTtdLkgQfHx8kJiZCr9e7OSr6OQJ0AVBJKgyLGAZ/nT9GRI1Ackiyp8MiIiIiIiLyOqwGOTe3J0FGjx4NSZJc3q7VanHzzTfj7bffho+Pjxsjo4uVZ8jD0bKj8Nf5Y+n0pQj3C/d0SO7R3AzJYvF0FERERERERHZKNciZmjM4U3OG1SDtuH12mC+//BIDBw7EihUrcPjwYRw+fBgrVqzA4MGD8eGHH+I///kPtmzZgr/85S/uDo0u0jdZ3wAAJsRNQHRANDQqt+fW3KulBfj8c6hefBEDP/8c0ocfAocOAU1Nno6MiIiIiIgI05OnY0DoAM4U44Tbf63+4x//wCuvvII5c+bY140YMQLx8fF48sknsW/fPvj7++Oxxx7Diy++6O7w6ALlGfJwrOwYVJIKVw+62tPhdL/iYuDTT4HcXEiHDyPcYICkUgEnTwL+/kBKCjBsGDBkiLhORERERETkZqwGcc3tSZBjx44hKSmpw/qkpCQcO3YMgOgyU1JS4u7Q6CKsyVwDAJgQPwFR/lEejqYbyTLw44/Ad98B2dnAqVOA1QptfT2kkyfF9dBQ4PRp4NgxkQBJShIJkaFDgUDOlENERERERO6jjA2SZ8jj2CBtuD0JMmTIEDz33HNYsWIFdDodAMBsNuO5557DkCFDAABFRUWIjo52d2h0AY6XH0dBbQGOlR+DWlLjqoFXeTqk7iPLwBdfAAcPAocPA6WlYn1MDOqDgxGsVgMGA1BTI5aTJ4HgYCA2Fjh+XCRAEhJaEyLBwZ58NkRERERE5AXaV4NkVmViZ/5Or68GcXsS5I033sD8+fMRHx+PkSNHAhDVIVarFd98I8aWyMnJwQMPPODu0KiTLDYL1mevx6bcTahrqcOVA69EhF+Ep8PqPpIEWK3Ajh1i3A+VChg+HLZJk3CmqQn9oqKgysgAzp4FSkqAqiqgtlYsGRkiCeIqIRIa6ulnR0REREREfVTbahBDiwF5tXleXw3i9iTI5MmTkZubiw8++ABZWVkAgBtvvBG33XYbAn/qMnDHHXe4Oyy6AAdLDqKgtgDljeWQIKG2pRZFdUVICE7wdGhdT5aBLVuArVsBrRbw8wPS04Grr4Y8ZQrq1q+HfNVVYrvsbFEFcuxYa0KkshKorxdLVpboJqMkRIKDgbi41oRIuJfMqkNERERERG7BapCOPDKNR2BgIO677z5P7Jp+JovNgp35O5FVJRJY8UHxGBE9om8mQJqagNWrRRcYAFiwQCQ75s4FBg8GzObWbXU6kcwYNgy49lrgzJmOCZHycqCxUSRLsrNFQiUmBjhxAggJEZdvuonJECIiIiIi6jKsBnHksblMT548iYKCAphMJof18+fP91BE1Bn2KpAmUQUyKHwQpiVN83RYXaelBfDxAfLygBUrRNcWjQa44QZg+nSxjSSd+zG0WjE7zJAhwPz5QE6OY0KkuFgkRJqaxG05OWKfCQnA1Kmii4zK7bNXExERERFRH8RqEEduT4Lk5OTguuuuw7FjxyBJEmRZBgBIP/2wtFqt3bbvN954Ay+88AJKS0sxatQovPbaaxg/frzTbf/973/jvffew/HjxwEA6enpePbZZ11u7w2UKpDMqkwAQEJQAtKi0pAU0nG2n15HlsXAp+vXA/37i/E/rFYgIgK4914x08vF0GiAQYPEMm8ekJsrEiLHjwP5+WKQ1dJSkXypqgJefVWMGzJ6NDB2rKg4UauBsjLAZhPVIudLwhAREREREbXBapBWbk+CPPLII0hJScHmzZuRkpKCffv2oaqqCo899hhefPHFbtvvJ598gsWLF2P58uWYMGECXn75ZcyZMweZmZmIiuo4teu2bdtw6623YvLkyfDx8cHzzz+P2bNn48SJE4iLi+u2OHuygyUHkV+bj4qmCkiQMDB8YN+oAjGZgG++AQ4cEF1f1qwR3VrGjwfuvBPw9e2a/ajVQGqqWK65RlSbnDwpusPk5YlKkIoKMX7Izp1i8fMTCZHKSjHQaliYiG30aMDJ+5aIiIiIiKg9VoO0cnsSZPfu3diyZQsiIiKgUqmgUqlw2WWXYdmyZXj44Ydx6NChbtnvSy+9hHvuuQd33XUXAGD58uVYu3YtVq5ciSeeeKLD9h988IHD9XfeeQeff/45Nm/ejDvvvLNbYuzJ2o8F0qeqQA4cEJUfBw60zv4SGwvcc0/3dUtRqUTFSf/+wFVXiW4ysbEiUZKVJapSDh0SCZHvvweOHBEVINHRwKlTolqESRAiIiIiIuokVoMIbh94wGq12meBiYiIQHFxMQAgKSkJmZmZ3bJPk8mEAwcOYObMmfZ1KpUKM2fOxO7duzv1GE1NTTCbzQgLC+uWGHu6A8UH+mYViCwDDQ3A0aMiAeLnB1x6qVh+6qrV7VQq0d1GpxNJkKFDgV/+EvjnP4HHHhNji2i1gMUCFBWJZM3q1cDbbwM//ii60rR9Pjabe+ImIiIiIqJeQ6kGSQ5JBgB7NYjZaj73HfsYt1eCpKWl4ciRI0hJScGECRPwz3/+EzqdDitWrED//v27ZZ+VlZWwWq2Ijo52WB8dHY2MjIxOPcYf//hH9OvXzyGR0p7RaITRaLRfr6urAwCYzWaYzb33jWWxWbA9bzsyKjIgyzLig+IxJHwI+vn369XPC01NUP33v6LKIjERUm0t5JEjYfvFL0QiwmY7Z0JBee7d+hqkpAAzZohsZW4uUFoKqbkZstUK7N8vFo0GGDoU8pgxkENCoFq7FvKQIZCHDAGSk0VihbqEW9qcehS2uXdiu3sftrn3YZt7J7Y7cGncpThachS5Nbmoaa7Bmeoz2FOwBxPjJ3o6tJ+ts+3q9iTIX/7yFzQ2NgIAli5dinnz5mHKlCkIDw/Hxx9/7O5wOuW5557Dxx9/jG3btsHHx8fldsuWLcPSpUs7rN+wYQP8/Py6M8RuldWYhe3V23Gm6QwkSFBZVbCesWLd2XWeDu2i+ZaVIXnDBujq6yGr1SiePBmN0dGw+PnBnJsrEg6dtHHjxm6M9CcDBkAfHo7As2dhDAqCxc8PwTk5CMnJgd5gEDPMrF0Ln6oqSDYbWkJDYQwJgTkgAA1xcahPSEBjdDQTIl3ELW1OPQrb3Dux3b0P29z7sM29k7e3u7naDF2TDuWmcmQbs1FoLsS6o733t52iqampU9u5PQkyZ84c++WBAwciIyMD1dXVCA0Ntc8Q09UiIiKgVqtRVlbmsL6srAwxMTHnvO+LL76I5557Dps2bcLIkSPPue2SJUuwePFi+/W6ujokJCRg9uzZCAoKuvgn4EEWmwWZP2bCbDEjWBuMxKBEzBs8D3eMuMPToV24w4eB6GhIGRmQDh4UU9GmpsJ2992Iv4jZX8xmMzZu3IhZs2ZBq/XQYEKyDJSUQDp4ENKhQ5A2bBADvdbUAAYDEBYG2WYDzGaguhryoEGQhw4FBgwQFSR0QXpEm5Nbsc29E9vd+7DNvQ/b3Dux3YWRdSOxv2Q/NpzZAAAYMm4I0qLSPBzVz6f0xDgft/0K+tWvftWp7VauXNnl+9bpdEhPT8fmzZuxYMECAIDNZsPmzZvx0EMPubzfP//5T/zjH//A+vXrMW7cuPPuR6/XQ6/Xd1iv1Wp77T/ZwcKDOFt3FlUtVVCr1BgUMQhX9L+idz0fsxlYu1aMn5GdLQYVVauBceOAO+6A+mdW6Xi8fZOSxDJpkhjXpKRELLW1QHW1WE6dEkmfzEzxOoSEiOl3hw0Ts9X0pvbsATze5uR2bHPvxHb3Pmxz78M2907e3u4p4SlICU+BSqXChjMb8F3Odxjdb3S3FSW4S2fb1G1JkFWrViEpKQljxoyB7K4BJ9tYvHgxFi5ciHHjxmH8+PF4+eWX0djYaJ8t5s4770RcXByWLVsGAHj++efx1FNP4cMPP0RycjJKS0sBAAEBAQgICHB7/J5gsVnwfcH3yKruxTPCVFQAn34qZlxRZn+JiAD++Efg8svFjCt9RUwM8Kc/iWl3T54UCR8lIVJT05oQOXFCJEFOngT27BGXBw4UCZFBg8QArURERERE1KfNHjAbW/O2Is+QhxMVJ/pENUhnuC0Jcv/99+Ojjz5Cbm4u7rrrLtx+++1unWnl5ptvRkVFBZ566imUlpZi9OjR+O677+yDpRYUFEDVZjrUt956CyaTCTfccIPD4zz99NN45pln3Ba3Jx0oPoA8Qx4qmyqhklQYGNbLZoQ5cgRYswY4fVr84LfZxOwvSneQvpQAUYSFAZddJhaDQVSAnDwpkkClpSIhUl0tblNuDwoSiZG9e+1dhOwJkXOMgUNERERERL1XoD4Qlydfjg1nNmBN5hoMjxze66tBOsNtSZA33ngDL730Er744gusXLkSS5YswdVXX41f//rXmD17tlte7Iceeshl95dt27Y5XM/Ly+v2eHoyexVIVWsVyPCo4b2jCsRsBr79VvyoP3JE/PAHgNhY0QXmhhtE95G+LiREdJGZNAmoq3OeEKmsFLfV1YmuMgEBwPHjHRMigwcDvr6efkZERERERNSF2leDeEMixK0jI+r1etx666249dZbkZ+fj1WrVuGBBx6AxWLBiRMnvKabSW9grwJp7mVVIJWVovtLZmZr9xeVSvyQnzABuPlmIDzc01G6X1CQeP4TJgANDc4TIhUV4rbTp8Xi5ycqRPbtEwmR/v3F6zhkCODv7+lnREREREREP5NSDfJt9rd4de+rGBE1Ar8Z9xvo1H23i7zHpodQqVSQJAmyLMNqtXoqDHJCqQLJrMoEACQGJfaOKpBjx4CvvxY/7Nt2f0lPB664Apg7lwOAAqLa45JLxNLYKBJGJ0+KvyUlIilSXi4SSNnZYvH1FZU0P/4outw89JAYW4WIiIiIiHotWZbhp/XDiYoTMFlN0Kg02F+8H5MTJns6tG7j1iSI0Wi0d4f5/vvvcc011+D111/H3LlzHcbjIM9SqkCqmqugklRIDUvt2VUgZjPw3XdikE9n3V+uvx44z/TGXsvfHxg7VizNzR0TIiUlIiHS3Azk5IglOFgMpJqeLsYN4f8uEREREVGvJEkSqpurkRCUgDM1Z5BZlYnv87/HuH7j+mw1iNuSIA888AA+/vhjJCQk4Fe/+hU++ugjRPBMco/ToQokuIdXgVRVie4vGRkdu7+MHy+6v/B91jm+vsDo0WJpaWmtqGmbECkrE4Ol7tghFn9/sf3YsaKbTFaWmJp36FAxJgkREREREfVo05On43j5ceQZ8mBoMSCvNg85NTkYEjHE06F1C7clQZYvX47ExET0798f27dvx/bt251u98UXX7grJHLiQPEB5BpyW6tAQntwFcjx48D//Z/z7i8zZgBXXsnuLxfLx0dUz4wcCRiNYoyQU6fEMnkyUFwMHD4sutP88INYfH3FAKs6HRAZCSQkiGmIBw709LMhIiIiIiIX4oLikBaVhjM1Z1DTXINQn1AMDh/s6bC6jduSIHfeeWefH2W2t7PYLNiZv9M+I0yPrQKxWET3l927O3Z/SU8X3V9GjfJsjH2JXg+kpYnFbAY0GjG98O23iwTUoUPAwYOiKufoUUCWxTZRUaIKJzFRPAYREREREfVIswfMxsT4iXh5z8uobKrEiYoTSItK83RY3cJtSZBVq1a5a1d0kQ4UH0BebetYID1yRpjqatH95dSpjt1fLrlEdH+JjPR0lH1X28oalUp0gRkyRLzuX34J1NeLpFRzs+g68+23wJYtwPDhIokSFyeSVWfPAlu3ikRJZKT4GxUlxhthspSIiIiIyK0i/SMR6R+J6cnTseHMBqzJXNNnp8v12Oww1LMoVSDKWCBJwUkYFjmsZ1WBnDghur8og3e27f4yfTpw1VWiKwa5n0olpt/VakXblJaKttDpxNS7hw+LRVFfD9TUAIGBrUtAgGjPtkkR5XJgIJMjRERERETdbPaA2diWtw15hrw+Ww3CJAjZxQXFod5Y3/NmhLFYgA0bxLgTzrq/XHedGJyTPCs+XixXXw3k54sxQmJigMJC0WUmLw8oKgIMBpEYqa4WM8+05efnmBhRkiP+/h2rRqKixHoiIiIiIuoSgfrAPl8NwiQIAQA0Kg3C/cIxMnok4gLjes5YIDU1ovvLyZMdu7+MGye6YURFeTpKakutBvr3b72ekCAWRVMT8MILIilSX9+6GI3itqYm0ZVGIUmukyMBAR2rRqKiRAKGiIiIiIgumFIN0mBqQK2xFiE+IZ4OqUsxCUJ2swfMxuiY0fDR+CBIH+TpcETi46uvnHd/mToVuOYadn/pjfz8gIULRaKjvFxUhZSXi5ll2iZFlMVkErPQNDaKbjYKSRKVIO2TI/7+QFBQa0Jkzhx2pSEiIiIi6qRAfSAen/w44oPioVapPR1Ol2MShBxE+feQqoraWuDjj8WsI227v4wdCyxYAIwZwx+2vVlyslgUsiwSHkpCpO3S0OA8OWI2i9saGlrfI4CoFFISIdHRYomLEzPVqFSt29XUiKqTyEgm04iIiIiI2ugRvQK6CZMg1DMZDEBBgfhx27b7y003iR+11LdIkkhaBAUBAwa0rpdlkRBrWzGiXG5oENUjSpJEuWyxtCZKGhqA5cvFY2m1YoySfv3EUlAAZGeLrjNhYWJcmWk9ZBwcIiIiIiLqFkyCUM8iy8C2bWIcEJ1OjCWRnAxMmSK6v+j1no6Q3EmSgJAQsQwa1LreZhOJsrZJkbbJESUJEh0tEhwlJaJy5OxZsQAiAWIwiDFMAgPFoK1Go0iQxMWJfSrVRkeOiO1CQwGr1a0vARERERERdR0mQajnaG4G3ntPdIEBRNeXm24SP1pHjmT3F2qlUonkRlgYMGRI63qbrXXWmfLy1m43NhtQVQUUF7cuZ8+Kx7FaRTIkJwf4/PPWx/Lxaa0a2bULUKmg8vPDoMJCqAoLRfestoOyhoU5drchIiIiIqIeh0kQ8iyDQUynGhICrFgBVFaKM+6/+AUwY4ZIfISFeTpK6i1UKjH2R0SE6ELVdn1kpFhGjRKJj6Ym8X5rbBRVI5deKipBiorEoK0tLSIxcvq0mOIXgCTLiG5shFRRIbrutB+QNSLCcZaayEhRPcIEHhERERFRj8AkCHlOVhbwxRdARob4UernB4SHA/fe6zhoJlFXU6uB3/5WdJGprBRVI8OHA5qfPhItFrGuuBg4elTMSvPTGCOSxSKqTWpqHB9TrxdT9gYGigSJctnfvzUx0jZBEhTE5AgRERERkZsxCUKesWkTsHWrGGuhpEQMWnnrrcA994hkCJE7aLWiW0tsrON6jaa1K0xsrBifprwccmUlqo4fR1BEhKgkUab1bW4WVSRGo+h205aPT8dpfF0lR2JixHoiIiIiIuoWTIKQZ9TUADt2iB+SKpUY9DIpiQkQ6nni4oDbbwcA2OrrceaTT5A0YgTU1dWtA7IaDM6n8m1uFt1qWlrEtm35+nZMjFx1FTB7tvM4Cgtbq0vUfW++9r5OlsWiXO6qdTqdyLM5U1cnip2U+/j7i7edM5WVYugcZ3Gf6zld6G06nSj4c8ZgEL3TFP7+oqekM+XlIufY2f1e6HqzGSgr80VBgeOEVW3V14uiMIWPj+vJy2pqxEeEM64Kwi52fVSU848Ik8kxXpVKbOtMc7N4fp3Zb9vb2v51ts7Zbb6+zuOVZRFz2/tqtc7jUNqRxXVERNQZTIKQeymzv2zdKo5m/PyA9HQxHsOVV3o6OqJz8/FBS2SkGLRXq21d39TUcRrf8vKOSRFlaWkRvzKam8V2iuJiYPt2URESEiLGEwkJgRwQCHn1ash6X6h0GkiBAcBdd4kxSH5isYgfkLLFCpvRDOj1CAt3/otA+fFms4l/yfZ/na272L/p6eJptNfSAnz3neP+5s8XP5LbKykB1q93HWtXJhWuuAIYM8Z587/66k+v8U/3+eUvRe62vcZG4MUXHR+/M9pu6+xy+8eSZfFWnDvX8Tko2/33v62TIckyMHOmaA9nj/X66+Jt3Nn4Lnab+Hjgllucb7d5s334HQBi+J6ZMzs+riwD//ufyAteaHyd3c5qVSEvbwCys1V44AHnP66PHAG2bGm9LS4OuPlm54+3dStw+PC593kxP+Cd3eeBBxwLypRtCgqATz5pXe/rK3oFOnusQ4eAjRsvfN9t1zm77GzdL38pEk3tt2lpAV54wXH7xx4TeeD2CgqAd9913LazSRjlr82mQmZmKk6eVEGtdr395Ze7/oz4z3/E/5Gy/bXXiknu2jMaxTjwKlXr4yuXO/u3s9vGxgKDBzuPNytLfB8o28bFicJEZ3JzxefuxcR6IbETEbkDkyDkPu1nf5k/X5xumz4dGDeO337UI9ls4m0KuJ78pdjgh+qGZFi0yTBHAZYwwDJAhqWhBZZKAyxVtTBX1cFSXQdLTT3kpmbomgzQNRugb6qBT3MNfFtqoJECIOdXwmarBNDmx6/FCpSXAQBG9auAxkcL2WiGLTIackgobEEhONsQgi+2hKDFpEZLRi58fCQ8NCsTNv9A2AKCIPsHiMv+gTiYG4otPwZC1uogQ3L48ewsqXAht7XfLj9fHFTbbI4JjOZm4OuvHbevrha5JWVbZfvycmDPnnPH0fb1Ujhbf77LJ06IXlDKdYtFhTNnhmHnThUOHBBnppXbcnPF0C7tYzGZgAMHLi6OC3XgALBhg/PbMjMdz+ZnZbk+83/kSOv7vDsFBgKnTjm/raDAMSd44gTwww/Ot23/3LqaLEuorQ1DWZmE2lrn21RUiPe3IjBQjKPsTPvn1p2U/6P26uvF66bQaMQY0M60f27dKSfHeWLDYumYODp71rEaRPlBXV8vhhdT1inOl4hxvC6hujoG2dmSw2d9+8c4eVIk89o/piSJ92vb6pX8fDG2e/tEisUi8t3t1ztbznVbZ7YbNAiYPFl8f7VdJAn49luRZFa2vfRSYPTo1qRE2+U//xGf2xcbo7NtnLVHUpLI8Tuzdy9w7Jh472o0Ink2aZLzbU+dEtVwWm3r9m0XrVZ89jY0aFFfL5KCym08HCXq+5gEoe5lsYhvlPx857O/WK2tg1ESuSDL4q1ksYgfasrltouz9efbVqcTb0Vn9u4V1QfKD/HkZOD664HGRg0qRY4CZrNY1q8XB2Y2m3hLi78SbDZfWK2+sNliYbUqt8mwmS2wmk2wWUyw2sywwgybygLoYqAxNkJlbILaYoLaYoTKYoTK2AxVfS0k2YYwU4s4QKuKcIjXbG6AobZBPDGTCbJKjSUZseL/Ta0BNBZAXQeom1BlakJ+QxhsUP10+0+LysV16eKn/pVl1z9wcnMd1+3Z4/rHm6sfa13NYHCsRrHZxEFyba34AdA2UdDY6DwxprzPPK39Dw212vHjtu2BvlrtvDvMhf4YON/2Op3rYW98fVtfe0lq7THm7PF9fVt/bHY2zgvZxmYDWlqs8PNznKCsbcKqpaW1e5Esi8LG9t132nZF0uvPv39n973Qbfz8HNtZ2cZkclyv0TiPSZbFbefqdedsv66SkBfL1T7aJj4VFov4fP25+zOZVPYf+q5UVbl+bQwGx8+IoiLxQ7w9ZUxud6io6Fg1pWifTKyoEDPCO9NdidL2iZGgIDEeuZJ80Wpbl5wc8ZoqX00pKSLx2HYbrVZ8jmzZIsY0b//VpjyuWg3Isgp5eak4flxlT65JkvOkiZI4ab/Oxwe4+mrnz62qShR4Ktv6+4skuzNKlQ0TMETuwV+f1H2ys4GvvgISE8UpD4ul4+wvTIB4jYwMkQtTfiAmJYkzTs58+qnYVklWKAe3sow2yYSf/1etFmfBlGSGydSaJCkoEAdXyvaBgcCuXSoUFAzH1q0qhx+/F3aWVwKg/WnxB9QA/AD4yYBRAqAH9GFA2x8nxhZAVQPJZkVQRDG0WglITgKMJsBkBIwm2OqNsDSaoLGIgQc0NjM0pmZIkgwVZKhgg0qyQQUZGosG/kZxxGdTaWFVaWBV6WBVaWFR68Q6tQ5WtRZWlRZQqSFp1JC0P/3VaACtBlKAPySt9pxn/saNE+XY7c8sms0iidB2+2uuEcOetD8DWV4OrFt37rOLbf925rKrs8HTp7eeCZUkwGy2Ydu2LMyYEYd331XbYwaAG24QH2Xtz3I2NwNvvHHhMV1orJIkusPMm+f89Vi92jHRdOWVwIQJcOqFFxzH43C2v/Ot68z6hARg4ULn26xfD+zf33p97FjXvSQ//NCxUuFcPxwu5jarVUZGRhnGjAnFo4863+bgQccuIwkJwG23Od92wwbH6iBFV41h0nb94sXOE015eaIYU+HrC/z+984f78cfgbVrnd92ITpTnXX77eL/qH2Co6EBePllx+0fflgkedpXgOXlAR9/3PGxL+SyxSIjL68KyclBP/1Adr7ttGnAyJHOK9LeeUckxxTz5ztWlinbNTSItujKqjtXt6WkAGlpHSvsbDaRAKmqan2M+HjRJab9drIsDumUMYYuJI7zab+d2ey6a15xsWPyyGp1TIa21ZlqMVHxFYncXMn+GaokSDr718dHdG9qn4jRasUxxK5drdsnJIjuX862Xb8e2Lfv/EkXV+u1WiA4WCRtw8LEdykTKkSuSbL8c3P15EpdXR2Cg4NRW1uLoKAgT4fjPjab6AC9ZYs4dVBVBQwbJn4NLVzYZwY/NZvNWLduHa666iponZ2+9gLKQHvKEhQkDg4BcVBTV9c6VMaWLaKMWElAJCYCI0a0JiDaLvv3i/u0T1x09aeVWu26b3dlpTiwVvj7A4MHW3H2bAEGDEiEXq+2H7wUFDieneqKvx1+7MsyJKsFD95RixAfI1QJcQ5lzUVFwKpVgHQmG/r8LATJBjw0cmfr+CPKAK0tLaioVqOoyqfNAZIs9vPTNemn6z9dgVnjB5POHyatP8w6f5i1fjBr/WGecCnMSQNhCQiBrNO39u2GFdLRo1D5++DSSTKiU/zE0XWbpKfF0jqegnLgOXmy80E+6+vFe+dc/csB14kRV8kSZ7dFRIgDSUXb//Pycq29WkKSxLbO4rXZWsfBvdg4Oru9cvDrTNsz4+0TR+3JMg+Y2+Lnu3PnqgBx9rcz6/R655UVyo/0ttsHBzuvvjKZgNraC99323Umkxlbt27F9OmXQ6PRutwuIsL1gL1ZWY7fVUlJzhNSZjNw/Pj5x1Q6122d/ZuaKhKKzqxdK6ollG0vu0wcrjnz5pviq6QzMSucJUbaX2+/JCaKBLMsi9dSORliNotxpDIyWo8JhgwRYwe1PYGhXN6yRRx+KgmdtscSrZdtqK6uRXBwMKSLrHjU6VqPe9orK2sdlwkQx0iDBjnftqBAHEe1PxZoX8Vyrr9+fmJRBsFWEiLKEhoq/gYHe/fnPT/f+7bO/v7maXjqWvX1wGefieTHgQOts7/ExAC/+Y3rQRWox2ppcUx0tF2UMT4bG8USGCgOoJTxQdueoSksFAdbitpa17MltJ8lwpkLPThw9lejAe680/lZmTNnxJkZZfuYGODee21Yv/4orr46Hlpt61H7nj3irPD5zt509sxO20RI6w99CSqVFiEhEU5/MCQnA3/+MyBZk6FqDIfUUA80jhSNpEzlW1cH1NUhsr4ekcqUvk6SJA5Lh1O5AEw/LWUngLqf+gP4+NgHcoVeD5zZLtYV+Ii/S5aIASl+OvLSaH6aCMdgEC92YCBgCBJ//fwcjtACA11XMLhTXFzntlOpXM8S4k4XMomQNx8QU+ddSFXQz6VSOSYkz0Wncz2gZ2eZzUBUVDOSk10nFs/H1Q/c9rRa1wl4d3LVjcOZBx7o3HZtExoXmrCRZfHaOBtMGxDfBZWVrRWl/fq1Fha3Fx0tjkXO1SXWZJKRlVWGAQOCIEkXV1Xq6ysGcHZ2QkerFcc5yvbKRHDK7W0T1VZr13al1OtFMsTfvzUxoiy/+53DuOp2SpKfh+rkDZgEoa5z5gzw+efilO2JE+LTVJn9ZcQI8QnPT9YeR5bFb2BXiY7GRnG7kuhobBS5LeVy23EE9HrHaSslSfSAiooSB7PKGT+VShy4zJjhPAGxebMo4z9fpcTFJBjar5s40flBfGyseNsq2+t0rgdMmzhRLJ6kUin9+zWAXygQ6eIoEhCN3tTkNEHisK6pqTVR0nZRkibx8eIIT9mmpEQsDQ2OI0SqVMCTT4oXMDhYJEqU2W8MBlF77+PTuuh04pRZYKDrv4GB7E5HRNTDtK046+rZ3BMTxdIZnUnwmEw2rFmThVmzBkCS1Bc05piy3sdHVNA4c+CA6OKi3H/AADFjkMJma32cTz9tPXS+mGSMxSK+spWvbWVpOy02INqmsVEkiaKixBIZKf42NYnDeKViJDoamDWrc683UW/DI0j6+Ww2MebH5s1iKPeSErE+Jkac6rj6ate/NMktlD7ISmKjpsYx0dHU1DHRoSQ7mpqcD5iokKTWMw0BAcCNN4qmj4oSX6LK79SMDLEoyYeYGFHG6ozyZXy+qorufEv5+rYOeqhwx+wZbqE0mr+/aAhXzGbXCZLGRmDRIvFYLS3iTWUwiOXIEcekCSASIVZr65tO0b5eGBBJkLZJEWXx9W29rNWKN1xgYOsbsG0tcNvrysIkLBER/UScTJHh63vx1T/nkp7eOi25MyqV+LrT6cTA61deefGDvRuNrcd2zc2OJ6vanrxSTnzl5Tl2+QVElU1hYevhQb9+4qtTSZS07UZz5oz4+m7b1YY9S6g3YRKEfp76epE2PnJEDOTQ1CQ+IYcNE6ML3nRT61xy5DGrV4svLOVLsP2XY3PzucfbUKlcl1X6+oqT+soX4WWXOR8nYcgQsXTGuX6Xkxtpta0Ney4+PqJ0JjZWXI+LE6eQlKRJWBhw883icttkicEAfP+9eEMqCRNlpDuTyfm0CgqVqjUhote3Hkk6W5QSpLvvdv55ZDKJCra2yZOQECZuiYjILYKCxPJzybL46nVV3RsVBcyd29ptue3foiKRVKmthX1GtLaDKSvdzqKixMDUpaWtx4I+Po4Ds7Yfi+RCZ8ci6m5MgtDFy8kRCZATJxy7v4wdKyo/FizoeCqdukx+vqisUL7YEhPFGAsVFR2/3HbuFCfbz5XoUKsdkxttkx2+vq3lke2XkBBm/6kdVzXLoaEdO3vHxIjsWF2dKFcym88/TonRKD5vlFKlzlCrRdIlMrK1giQgQCxms5h+pm3i5K9/df7GLi8HTp1yXXXCahMiIvIQSWpNqLQfL0WWxdedTuf8fMCHH7YO59fYKLaJjhZfe1VV4nxBUZFYsrIcz1MoJ8vanyhTjiEDAx0HZ2278KcCeQKTIHThbDZgxw5g0ybn3V+uugqYNIlnUS+S1Sp+qyndVNp3GWlpEV9IW7aIJlAqO1Qq4JtvnD+mxSK+/JR56p0lO/z8zp3o6Oq+vUQAxJQwkyeLy1arSIS0H6ukfZec9uOUKJUjbRejsfWy0mm6vl4kV9qrrxfzKSo0GlGx4ucHla8vUouKoDp7VvwjlJeLzz1nFSdth+c/V9ectut0On5WEhFRt5Mk8ZXjynXXiSmg255cS0kRt1ksYp1ygm3VKnG5bbfp+nrn0xJLkmNyxNllZ8eeYWEdxkkn6jJMgtCFaWgAvvgCOHSoY/eXUaNE95eEBE9H2eNZLB3H5VAWg0H8flN6CFx9teinqXzxKF8wtbWOY09qta3T8Snliko/zupqUQ3i5ycGKnWW7HA19SCR26jV4o14rikhZFn8YyiJkYYGx35eyqJcb25unWfxvvvE+vr61mSLMohrRUVr8kStFvv5aVv/khLR5U+lEvW/hYWu43fWFedcXXW0WtdJklGjXM/FSURE1IV8fUVvVmczoWk0rceVSpebqipxfFlX1zqunLOxSKzW1uvtSZLYr7MqEj8/cQz78MPd/9zJ+zAJQp2Xmyumv3XW/WX8eJFC9vPzdJQ9hsnkfBDS6mqRwDAanX9hNDY6DsBpNHbM3AcGihLF5mbHL4ynnnI+fIPRKMbqCAxkRp16OeWIyddXHI2dj9Uq/lGam13PoZmZKUaAUxIoMTFiDJOGBthqapC3fj3iR48Wj7FrlzgCbF91olSbKPvq7HPRal2PY3LDDUD//o7dd3Q68SGxcqVjwuSqq5x331H6wPEfn4iIuoAkAfPnt143mc59Yq+lxfmxblOT46w2zkRFiWPi9if3IiNF152jR1tP5iUnAwMHuuMVoL6ASRA6P5tNlBFs3CjOhhYXi/VK95e5c4FLL/XKg2yTSYXiYueDUClV+86mlW1sPP9c8D4+4vdNWpootGn74e/jI+7/5ZeisqNtNYczej0HpSIvpVa3jv3hyuDBYgFE0sBiEQmFoCAgMhK12dmQp0wR6/r1E/+UbatOlFNdzrrltO+a03Zpm0xxpnXe41ZarfisPXHCMWGiUokPAOW5KsvZs6J6r22liZJEUhZl5p32i7IvIiIiF3Q6cWIuOrrjbWZzaxfv9ktNjeNxcvtjZbNZfLVmZYmlvbIysZ1yIvCSS8T52MjIjudkT58WX5NKFxsiJkHo3BobxQH0wYMi5drY6Nj95cYbOz9pex9htYqTwXv2qLB//0Ds3atCS4vzD3Cr1fXjSFJrosPZ+BxBQeLD+oorWvtktqXRiJefiLqQUp3hypgxYmlLqQBp3xXHWfcc5bLF4jppoiRORoxo7fqjDBprNova49ra1v1rNK4HBKqoEIlrpVuOVttafdL2b/vLytzUzpIjrpInERHMthIRkZ1W21q50V7bMfCcJUhaWsTXYP/+HQf8b2gQ2zQ0iO0B8dV66pS47O/vePJw+3bx9ennB2i1KtTVJWDMGK/7CUNtMAlCruXlie4vx4937P6ipFv9/T0dpdtZrcD69cDu3RIKCqJx+rTk8mRp276O7ZMdfn6upxMLC3M+zSwR9UCdqTZpS6kAcZUkUcYyuekmx0oMo1Ec8R04AHz1VWvCRK8HpkxxHOekvr611lhJnlwISRJJEGfJEldJlDvvBIYPF/dry2QC1qxxTJiMHXvuEfqIiKhPU6tFNXN4eMfbbDaR69dqnX+1NjUBf/+7GDNPOfE4eLD4eq2tFddzc8Uiy2IoQ5tN3FejkaBSRePtt1WYPh2YPp2zHHojr0qCvPHGG3jhhRdQWlqKUaNG4bXXXsP48eNdbv/pp5/iySefRF5eHgYOHIjnn38eV111lRsj9hBZBr7/XvzSb9/9ZfRo0f3lssu8sky6pUX89jhzRmSgbbbzTwvWdhDS9gOS8jcAkReSpNY+au2nDD4X5T4TJ4q5C5XEibKuPZsN+Ppr0Z1RSZgoCRHlsrN1ynRSF5o8KS8XH4R6veMHoiSJGNomUO69Vzz3tplhnU7M/f3VV6676LhaNBqv/E4iIuqLVKpzfz36+oqvkbbVI7NmifsYjaJiRKkayc8XS2OjOL9gNgO1tX7Ytk1CdbWoHpk/v+OUwtS3eU0S5JNPPsHixYuxfPlyTJgwAS+//DLmzJmDzMxMRDkZXG/Xrl249dZbsWzZMlxzzTX48MMPsWDBAhw8eBBpaWkeeAZu0tgoBpo4cKBj95eRI8VAfV76KXH8OPDBB+KDNigImDRJRlFRJUaMCEJEhOupZZldJqIuFRQkPpPPR6UCZs4UlXttK0zaLi0tHdcps+m4SpI4W2c2t1aAGI1iqakR15uaxBGoQpLEwK7tkxYajdg2N7fz3XZ0OnE/rbbz3XaUJTCwY9UKERH1eJIkfo44+0mi14vzBPHx4np5ufhbXS1+1lRUyNi504rmZmDfPqCoCCgpASZPFokUVmJ7B6/59n/ppZdwzz334K677gIALF++HGvXrsXKlSvxxBNPdNj+lVdewdy5c/H73/8eAPC3v/0NGzduxOuvv47ly5e7NXa3KSwEPvkEOHastfuLry+Qng6MGwdcf71XdX9pbhYnRCUJ+N//gL17xfrwcOCOO4B+/Wz46KM8LFqUDB8ftWeDJSJy5kK66QCiAsRo7JgYOdeiDP3/+9+L7432o9ydPu2YWJEkIDW14wBKFouoY1bmAe8sZRwXV0kSV+tuvVUk9528BtJ33yH82DFIERHi9RsyhOOdEBH1QlFRompElsVX1u7dMmpqKmC1hiIvTyRBlMqRzEzgmmvER77Xs1pFn6U+yiuSICaTCQcOHMCSJUvs61QqFWbOnIndu3c7vc/u3buxePFih3Vz5szBV1991Z2hepbFAuzYIZIhQGv3l9mzRX9zlcqj4bmLLIvSuLVrxbF5XV1rQcwVV4iSOb1eHMvHxjb15c8HIvI2yojNPj4X1lWn7VS8fn6Oo+ClpIijUCVpotWKMaXa3tdkEh+0W7YA27Z1rgqlbdedc82y40p+vhjMtf2ATTodpHXrkFReDun0afFa3HuvmPpA2U6ZOae8XFRPdqbLjlKRwvJAIiK3U76epk6VUVSUh5aWgTh5UvT8r6sT44YUFYmP9XHjxMzzF3IOoU85fVoMuB4bK2bFmzrV0xF1Oa9IglRWVsJqtSK63dxN0dHRyMjIcHqf0tJSp9uXlpa63I/RaITRaLRfr6urAwCYzWaYL3RQOg+Qdu6EpFJBAiAPGQKMGAHb9deLA1ir9dxTnfQRjY3AN99IOHxYwvHjEsrLgeRkGWlpwB132Oxld+L42/zT5Z7fttQ12Obeh23eBYKDgWnTHNe1fz1VKtE9ZepUcQquuRmS0lWnbZedlhZIbStQlAoTF110pLYJk3YJFFmSWh+3srI1FqMRyM5GQF0dUFcHmyRBNpsdz4hpNOJo2mSCdOqUvcpEdtVdR1nXruuO7KK7juysC49Ox3FPuhH/170P29w7mc1mBAebcP31Jhw5AoSGSsjIAE6fllBWBlRVAcXFMrKygDlzbBg1yos+em02SFu3QtqyBdKRI0BDA+S0NNgGDhQnDXqBzv4/e0USxF2WLVuGpUuXdli/YcMG+PWCSanVej2SQ0JgiY6GTa9HcXIyrKdOtc435QVMJhU++CANZ84Ew2qVoFIBtbV1GDz4OE6etODkyY732bhxo/sDJY9im3sftrmHKdUpbdlsUJnNUJtM9kVlNDpcb79OZTZDbTRCslqRd8UVkNVqaIxGqFtaoDYaoTEa4VtRgWhfX6i0WhitVqisVtQ0NIjHMBohKVMMANA2NMDvHCdHOpAkyGo1bBoNbBqN88tqNeSf1rVdXzp+PGpTU50+bNjJk5A1Glh1Olh1OjRHRMDGkbcvCv/XvQ/b3Dtt3izaPTVVA4MhBs3NQcjLC0ZVlRa7dwPHjpnx44+1SEmpwyWXlCEgoG8nyzRNTei3ezeCzpxBSE4OVCYToFKhuKUF2fv2eTq8TmtqaurUdl6RBImIiIBarUZZWZnD+rKyMsTExDi9T0xMzAVtDwBLlixx6EJTV1eHhIQEzJ49G0FBQT/jGbjRddeJs2RqNUZ4SfcXRUkJ8MEHKgQGAgEBEkJDgREjZKSnB+LKK/shMNBxe7PZjI0bN2LWrFnQsrzZK7DNvQ/bvA/6aeabAUqXlvaqqmDbuRNH9+3DyNRUqDUahN55Z+t9jUb7eCfS3r2QNm/uXPWJq2pKi0Us5zFQrRZ12j91yZGVudb9/CAdP+5QfWJbtEiMGKh03VHU1UH6v//rXOWJMuuOl+D/uvdhm3snZ+1+441iSMT161XIyAAyMiRYLEBRUQR8fUVVyMyZMsaPl/vm6ADZ2VB9+SVQWQmptFR8/kdGQh47FoHjxmHQnDm9ZnwQpSfG+XjFt5tOp0N6ejo2b96MBQsWAABstv/P3p2HRVnu/wN/P8O+IzsqIiK4C4pJmKYmCooZLWqeFvWUnmPZZllp7mZWdjq2WFbnZ1qdNls8mStuWUmWLIoLiPvCDiKbLMPcvz/u7wyMLIICDzDv13XNJTzzzMyHuRlk3tz359Zh9+7dmD17dq23CQsLw+7du/Hss88ajsXExCAsLKzOx7GysoJVLY3TLCws2tYP17ZUaxPQauVuwFu3yo+9vIA+feTrf9w4+XF90+Da3PjSLeOYmx6OeTtT3ywJLy9UREcjzdISwePGwfz6cbe0hCEVd3ICevVqWPPYxuy6c/3nevn58lKdVgtct7TXrKSk6mu0sKjqd1JZKXd+q2+3Hf2/Zmby34ZuU1wtlGkrvyzXhq9108MxN03Xj3tIiFyNuX27bIWRlARkZsr2GBkZ8kdvcrLsDXhdx4S2S6eTfbh27ZJNUfRb6fj4yL6QY8cCoaFtaj1QQ1/LJhGCAMCcOXMwdepUDBo0CIMHD8bq1atRXFxs2C3m0UcfRadOnbBy5UoAwDPPPIPhw4fjX//6F6KiovD111/j0KFD+Pjjj9X8MqiJ6EPOK1eAzz6TjZAAoG9f4KGHqmZdt4FVTEREpBZXV3m5EZ2uRm+TBu++ow9PpkyRXfqq77xTXCx/S8/JMQ5NnJ3lY+h08nN9eFJQIP8DbAhFuXFYov+4+sXMTP4HO2qU3J65NvptkPWhiZVVm/olm4jaJzs74P77gX79gM2bZehx7JjctOz334G0NODiRWDECNnCqk1PlissBL7/HoiPl5dr1+TP77595RMwaRLQqZPaVTabtjx0jTJ58mRkZ2dj0aJFyMjIQHBwMLZv325ofnrhwgVoqs1vGjJkCL788kssWLAA8+fPR0BAADZt2oS+ffuq9SVQE6ioAH75RW6Cc/Wq/B0RkL9XTp4sf1/j72FERNSkNJqqN/yNod/55to1+R9Vbb9x5+fL6/ShSVkZ8Mwz8jr90h395cgR+WfOG81EqaysWvpTreF7g79WS0u5+87vv1dt06y/ODgAX38tAxp9mDJtGtCtW837qqiQf53UP3f6GS1tfLYJEbVugYHA7NlygoS7uwxCLl0CzpyROXJurmyZOGGCnDTR5pw5A3z3nfw/ITlZ/ry3t5fTYW67DYiOlmF2O2YyIQgAzJ49u87lL/v27atxbOLEiZg4cWIzV0Ut5fx54Kef5Gv9yBH5R7Ru3eRMr0mTTHgbLCIiap0URc6SqGWprYGzs0zxa6NvKKufreLmJn9jr282Sl1Ld+rYgcewPXF5ubydftaL/l3C9YSQf3XUb6sMyHcVnp7GQYm9vTxn61bjmSZWVjIAsbY2DkVqC0qqH+NsEyJqBCsrICpKTor46Sfg+PGq9w9//CFDkbQ04I47gMhItI1eITqd/GuwfvmLvv9lp05AUJDsA3D77Sbxs9KkQhAyTaWl8rV+4ID8AXbxojxuYyN/F3zwQS57ISIiE+DuLi/1uX7pTn19Tq5dk+8I9Me02qpAJCpKhhlFRfJSWCj/zcsDTp6sOu//GtUiK6tqPbpecXHtQYp+tsn1Fyur2o/rtyquLyjp2LHpnmciaje6dAH++U85i9zNTb6XOHdOhiDZ2TKvHTtW7SoboKioavlLXJz8ma3RVC1/mTixjU5ruTkMQahdS0mRa/pOngSOHpWzehVFNs3v3Ru46676++MRERGZlJtduqPTVYUiJSWyy3htM1jy8+VfIYqLq2aTPPGEDFX0QYn+cvq0nFFSfbaJVlsV1OjXtDZEbf1LqoUnypAhsNVqZRDj4iJnmuj/Gvrtt7JOfXgycKB8N0REJsHcXL5n6N1bzgo5dgw4fFj+yEtNBT74APjb34AOHdSutA5nz1YtfzlxQobPdnbGy19M7C/CDEGoXSoqArZtk0FnUlJVHzgHB6B/f3mZMAHw8FC3TiIionZBozFs31svZ2fguefkx+XlMjBxdq793LNn5X/U+mDl+tkm+ktZWc1j1S/62SYVFTJ8qYWSl4eAkhJoDh2SX4uZWdXynIMHjWef5OTIpgHX9zvRaoH3369/eY6dHeDoKH8hqW+ZExG1Ol5ewOOPy+Uwrq7ypXzypMwWTp6UTVWHDWtFq0l0OuDXX4GdO4HExKo3RB07yt1fIiOBIUNaUcEthyEItStCyGR2+3Y5C+T4cfk7iUYDdO8uE9wxY2To2SbW7hEREbVX+lChLn5+8qKnnwGi3x1Hf7n+8+rHqvc0qS848fVF+aVLMpjQN4e9elXOXLl+R53t2+W6+tocP17/shwrq6peLdbWMgxxdKwKRq7/186Ov7AQtSIajcwN+vSRL9P0dLnT5NmzwH//C/z5J/DIIzKz7dBB7qSuiuJi4+UvJSWy+D59qpa/dOmiUnHqYwhC7UZ+vlz6cviwTGRzc+VxZ2cZdg4YAIwfX/cfnIiIiKgVu5mlOhUVdYcl1T7XhYfjRHw8/MaNgxlQtSQnMxP46CPj8GTQIHm/+l4nxcUyoCkqqrrvG9E3va0eiOgvNjZVH1tayjDk+oCka9d2vX0lUWunDzc6dgRefBHYuxfYtEkuj1m0SP4R1s+v6o+vLTrZ4tw54+UvOp38uTlokFwCc999Jrf85XoMQajN0+lk6hoTI2d/pKTIY2ZmQM+eQK9estlx//4mOduLiIjIdFlYyHcrN/pzbEWF8W06dJAXDw/ZFbF6cHLPPcZb9Aohr0tMBL75pv5ZJ2VlcjaLEA3ra2JuXntAMny4bFLg7CyDkeqzRfbulf/qA5POnU3+DQ9Rc9JogFGj5B9dv/hCbmqVkyNnh+TkyKX5Dz/cAivghJDLX3bskH8VTk+Xx7295V+DIyLkdjZ8Q8QQhNq2rCzjBkVXr8rj7u4y9Bg8WHZsvtESZSIiIqIarKzkX07royjyF40BA2TTgPqW6+hni5SXV+2yU9tF3/9Eq62alVJdUZFsTADId2BOTjK0cXaWS3U0mqrQ5JFH5Luz65ceabXAX38ZzzJxcJDBCxE1mqurnHWelAQUFMj3Jb/91oKZw9698o1R9eUvvXtXLX/x9W2hQlo//pSjNkmrlUHnvn1AcrJsIC+E/ONNnz7y9T5+PNCjh9qVEhERkUmwtQX8/W98XkWFXEZTUCAv+o+r/1tYKIOS64MR/cd+fvINztWrcvrrlSvyotPJKbHVXb0qwxBbWxmS6MMSMzNg1y7jmSaWllXNW+vqU+LoaLx7DhEZdOokN19wd5c7U2ZmyiX7y5fLPLLZ3pvoZ5f9+aeccWZrKwPcQYOAe+/lX4SvwxCE2pyLF2XIeeKEXOqmb/TesaPc6vqOO4DwcPn/MxEREVGrYmEht+F1can7HCHkLzh1BSXjx8vb63Ty8ytX5DutCxfk59WDE3t72ehVPxslLU0+RmFhzcBEP4Okrh4l+ouVVd0Bif5je3vjZUNEJsDaWoYg/frJ9yseHnKlXHY28PbbcveYJm/Jce2a7M4aHy/7BRUUAEFBcvlLq9qupvVgCEJtRlkZsGePnFZ2/Lj8fx6QP2z69ZMzQCZM4EwvIiIiauMUpWrr3Y4d6z5Po5GzOvRd37t1kyGLPjwpKwNmz5ZvkvLzjS9Hjsh/9YFJWZkMVRrS3NXSsvZwpHpwYmEh63d0BIYOldN0iUyEnx/wxBNydVl0NPDDD8D+/XIm+5EjwJQpVe18unW7hQe6cEE2b87JkaHjY4/JWR9eXjIQoVoxBKE2ITUV+PlnufTl6NGqPmK+vjL8GDFC9gjjMlYiIiIyWU5Oshv89fS76lQPVLp3l2+U9LNL9E1b6+tTUloqgxJ9o1d9M7bamJlVhSJpafIvVtWX43ToIAOSd9+VgYl+BsmIEfI6ojbOwkL+a2MDPPSQ7FX4+edyicyaNTKDDAgAbr9d7iJjY9PAO750STYgOXgQ2LhR9glwdQVmzmTw0UB8y0it2rVrwLZtsm9XUlJVk2N7e9n4tG9f2aTdy0vdOomIiIjalMBAeQGq+gnU1p+k+pKcoiLZ06S2PiXVL+XlcglOcbG8nDxZ9UtcdTqd7G5ffVZJeTnQpYtc7uPtLYMRRZGPe/CgbLbg4SGDFE7zpzYkIABYuBDYskVO3sjKknlGZqZ8iURFyV0t6/y2FgI4cADYvl3eWAh5clAQMG0ad4FqBIYg1KpVVsqeXfHx8v8+RZF/uOjVS/b9CAsz3hWOiIiIiBpJUWQQYWMjA4a66Herqa+pa0FBzaauY8bIN2z63iX6i34ZTllZ1WPExBj3ErGzkzNYbGyqdrPR9xxxd68KRTw85MeOjgxHqNWysABuu01u4lRWJidTHT4MXL4s+4YMHCjDEAeH62547Rrw44/yNRAXJ8NFX1+55mbUKH7PNxJDEGq1cnLklLGsLBmAODnJoDM4GLj77vr7iRERERFREzM3N+5BUhshZE+R6sFI//5VawOqn5eUBKxbVxWW6HSykeOVK0BurnxXWFws10Xn5gJnz1bdXt+c9fqLvb1xKKL/2M6ObxSpVejYUS6PcXOTS/1TUuT7nn37gIwMuetlZKQMRAzfsmVlMjmJj5evExsbGYL078/v65vAEIRaHZ0O2L0b+N//ZPjh6Slnfzg6yh8IAwbwtU5ERETUKimKDBz0zRnrOy8wEHj22arARB+C6FVUyHeFly/L9dH6cKWkpGoGSU6O8f3a2FSFIdV3qnFwqApE/m85jVn1GShELURR5M61gYFyaYyXl2yWmpMjV4ddviwzv6QkuemDi20p8N13VVtie3rKN0SjR8skhRqNIQi1Cjk58v+sK1fkDk/nz8vjPXoADz9ctR19jalhRERERNQ2WVvX38jRwgLw8ZEXMzP5l+/s7Kr+JPrwRL9ER9+n5No1OZW4OltboxkjGltbdM/IgObsWfkutHpA4u3NbvvU7BwdgQcflD2Dt26Vs0KOH5crxfbvl/2E845cwgN5H8PHMhNKhw7AAw/I18IDD9zitjKmja9uUlVlJfD773LrW324r5/hNXEiMGQIZ30QERERmbzbbpMXIWTokZUlA5GsrKqP9cHI9ZeysqqtfzMzAQCKEPAsKICSnl41Y0R/eeGF+rcmJmoiiiI3eujWDdixQ2ZwR48C6ekCGQkZOP7rEcQ565Dr0wGdFs+Ax+CuMuSzt1e79DaNIQipJidH7up0/LicAlZUJLsmjxgh9852clK7QiIiIiJqVfRTgx0cAH//quNCyNkg1UMR/b/FxTWDkYICeZviYhmOZGRU3X9JiZwd4u0NdOokA5GOHeVMk02bqmaMeHnJd7BEt8jWFrg3WqCfNhHbMgUqCi4g4ZIt8nT2+LjgQThadUfgVmsMLwaGD7eHxY3vkurBEIRUtX+/3BIKkP2tOnYEpk+XHxMRERERNYiiyL+gOTnJv6rpCSHXF1wXjoiMDGQnJcHRw0MGIfolNZWV8jbp6fISH191X3l58q94+hCma1fgmWdkX4brtyu8dg2wtDTe6YaoLteuAf/7H7r/+SeeOBWPNOGFwZ088IX14/irrA+yLim4nCu//U6ckJtE1LeSjOrHEIRUceQI8OWXcgc1QG4H37s3MHw4t7wlIiIioiaiKECHDvLSo4fhsK6sDKe+/RZ+QUEwu3KlKiDx9ATuuks2ZLj+Un17YEDeZuFC2bvE27tqxkjHjrKrZWqqDEiq71Lj4SG3OOQvvKR3+TLw7bfye+boUZhVVsLHthLmi55Dv8v9YX5CbqNbUgL8+ac8PS0NuOMOIDxcttahxmEIQi2qsBD45hu5xTUg/y+67TYZ2k+YIGccEhERERE1K40GFY6OQK9extv3ClEVnPTpY3z8/fflOm79khp3d9lAtaICuHBBXvRSUuRf92vbxtfW1jgY0X/s7MxwxJQIIVONrVuBxETg0iV53MMDCA6Gtzfwj/HAb78Brq5yBsiZMzIEyc6Wl+RkYPx4oGdPVb+SNochCDW7EyfkTI+kJBlyFhfL/1tGj5ZTubRaufyFswWJiIiISFV1deRXFGDyZNk7RD9rJDRUrknIzjaeMXL5spz2rNXKrQ+vXDG+LwuL2sMRe3s5c6T6rBF3d/nXQu4U0L6UlgI//QQcPAjExclQTVHkX4j79wfuuw8ICIA5ZL/E3r3l6UePylkhBQVAQoL8VsvKkn9UHjuW/VIbiiEINZvCQhlsxsXJJZT6kKNzZ+DRR+UuZ4BcLklERERE1Krpg4nreXrKy4AB8vOiIrndYW0NWYuL5cyRvDx5qc7SsioQcXSU72j14Uj1GSP6i709w5G2KD1d/mX4yBH5V+LKSrmmZeBA+T30wANy/Kvx8AD+/nc5m97NTf6R+eRJGYD88ovc9Oj0aSAyEggK4rfFjTAEoSYnhEwmt2+XU7RSUmQQ3qsX8NBDwJgxnPVBRERERO2UvT0wf77xDjX6xqxXr9YejpSUyGZ5ubnyUp21dd0zR/r2leshqPUTAjh0CPj5Zzmd4+JFedzdXYYfd90lL3W8UdJo5OSjHj3kXXh7y7vJy5MzRPTLZJKSgIkT2SukPgxBqEnl5QGbN8tg8/Dhqtl/rq7yBRsezgCEiIiIiNo5a2vAx0deqispqT0cuT4U0V+uXZNLJ0pL5fnV2djIJhHl5bJ/SUAAe4q0VmVlcj3LH38YL38JDAT69QPuv19+3ADOzvIPy/36yVkhyclyZsiVK3LnTZ0OePDB5v1y2jqGINQkdDogNhbYtUu+EE+dksfMzeUatp49gXHj5OdERERERCbJ1lauCdevCwfkDIHiYuNQRP9xUVHt4UhpqQxIsrKAHTvkxcEBCA4GQkLkG+qEBPnXxx495OOSOjIyjJe/6BsiVl/+4uTUqLtUFLnspXt3YNs2uRorKUl+21y5Arz2GjB1KrfRrQvfktIty8iQweaxY3L2R2GhPO7pKRPK0FC5Po0/e4mIiIiIrqMocmmLvT3g51d1XAj5i3X1cEQfkOiX1ISFyZkg+l/Cf/1VXmxtZe8JFxe53MLfX+5K4O2t3tdpaoSQsz62bJG7v+h3D3JzkwHIyJHAqFG3NE3ezk5mKP36ySUyTk5yVkhaGvD66/LuJ0yQmQtVYQhCN02rlY14fvlF7hZ27px8rVtZyeWJPXvK3V8CAtSulIiIiIiojVEU2SDT0VGGGHpCyN4iWVlyC0Zra9lc8+RJID5ezgBJTwdSU+X5Fhbyr5Ndusg34NW3BKbmUVYmU4nYWBmEFBTI8QwIqFr+0qNHkz1cjx5y1oeFhVxx9e23cuOZXbtk/vLwwzIwUZSaK7RMEUMQuinnz8vZHydOyJld167J4507ywBk6FDZ14epIxERERFRE1IU2RjC2bnqmJmZ3IWgVy9gyhRg3Tq5ZCYjQ/6bmwt89RXwww9yC9aBA2UfESsrOatEq230kgyqQ2Zm1fIX/VbJVlZy6UtwsOxaWn3smoj+fZe9vdxJZvBg4L//BXJygLfflsPs5yffp40aZdo7dDIEoUYpKwNiYoADB+Tyl0uX5HFbWxlq9ukjp1wxYSQiIiIiUoFGA9x5p5xBot9HtUMH+Yv8lStyn9W//pLTBvr1k7e5eFH2KendW146dFD3a2iL9Ftkbt4slyedPy+Pu7rK0GnECLkkqYV2iejbF1i8GNi0Cfj8c5mHnTsnV1OdOCGDkmbIYtoEhiDUYCdPytd0crIMQMrKZBDt5yd/Vo4YAQwbxuanRERERESqCgyUl/JyuWOBt7d8x3vunFwyEx8vpwjEx8t17aWlgIeHXEOhXzqjD0RcXdX+alq/8vKq5S+HDtVc/nLvvXKWTguztpbv0WJjq9rIxMXJJTPTp7d4Oa0G367SDRUXy67Df/0luw5nZsrjDg6yK3HfvsA998ifm0RERERE1EpYWsogQ8/PT17uu0/O/vjlFzktQKeTUwUyMuRMEjc34M8/ZSDi41MViLi7q/e1tFZZWVXLXw4fNl7+EhQkl7+oOLPGwwOYNEn2yE1OBk6flpNRliyRTVWHDpV5jSlhCEJ1EkK+lrdtq9p/WquVPxcDAmTj0zFj5HozbklORERERNRGKIqc7REaCly+LN/Ip6fLS2Fh1U40ilIViHh5yQaAvXrJQMTT0/TePV+v+vKXc+fkMf3yl+HD5fIXlafJazTAHXfIYfvpJ7lKKiVFlvvFF3JoH3nEtP6gzRCEapWfL2d0JSbK13RenjzeoYMMNIODgfHjuVyQiIiIiKjNCgwE5s6V74iPH5d/9czMrApECgpkE4nsbDkl3NVVTg/38gI6dqyaIeLtbXqBiBBy+dC+fXK3HsB4+Uv1GTitgIsLMHWqLBsA9u6V/UJOngSWLava1TM3Fxg0qH0PJ0MQMqLTyTRw1y75M/DkSXnM3FzO/OjZExg7VgYh7fmFQURERERkEszM5Ba8/v5AVJRs6FlbIJKfL/uI5OQAR4/Kv4YeOiQDEG/vqkCkUyfTeKOQkFC1TaalpfHyFxcXtaurlaJUDc2oUbLcL76QQ/3dd3KYAwJk3jVhgpwE1B6ZRAiSl5eHp556Cps3b4ZGo8H999+Pd955B/b29nWev3jxYuzcuRMXLlyAu7s7oqOjsXz5cji1462jcnOBH3+UP9MOH5bBLyCnRvXrB9x2mwxA6njaiIiIiIioLdNoqvqGjB0r+4boA5GMjKpA5MoVOVU8L0/umNChg+y46e0tZ4n07i3XX/j4tL9181qtTAz27pWf33WX/KvxsGGyV0Ab2iXCzQ145hngjz+At96SQ5uRAaSlARcuyKCkPfYMaTsjdAseeughpKenIyYmBhUVFZg+fTpmzpyJL7/8stbz09LSkJaWhrfeegu9e/fG+fPn8c9//hNpaWn47rvvWrj6lqPVArt3A6mpcpqUpaXc8rZnTzk9qkcPtSskIiIiIqIWodHIbXN9fYHISODSJRmGHD9eFYboAxH95fhxuQtNfLwMRDw9q3qI+Pq2/UAkJwf4+OOq7W8jIuQOEVevttrZHzeiKHJ4evSQm9ykpckNhdLTZZ41bJjaFTa9dh+CnDhxAtu3b8dff/2FQYMGAQDee+89jBs3Dm+99RY6duxY4zZ9+/bF999/b/jc398fK1aswMMPPwytVgvzNpTuNcbevXJ3LCHkLLY+fWQTnfBwub0SERERERGZIEWRszp8fGSzz/R0GXgcPy7fNetnieTmymUz+fkyMHF0lIGIn59sPNEWZWcDO3YA3brJXWCuXQPs7OQes/36yXPaaACi5+QEPP647PF64oRcDlNRIYcuN7f97ZLcPt/NVxMbGwtnZ2dDAAIA4eHh0Gg0OHjwIO69994G3c/Vq1fh6OhYbwBSVlaGsrIyw+cF/7eepKKiAhUVFTf5FbSc0aOBEyc06NdPwMVFQVSUDl27yuvaQPktTj+mbWFsqWlwzE0Px9w0cdxND8fc9HDMb5G7u9z95M47gcxMKCdOQDlxQu40k5kJRR+IXL0qL9nZEEuWQAwYADFggGp9Qxo97keOQLN5M5QjR4ArVyD8/YFu3aB77DEZfLSj7x8fH2DGDGDfPgUdOihwchLo2hVwdBRt5sts6LgqQuj7w7ZPr732GjZs2ICUlBSj4x4eHli6dClmzZp1w/vIyclBSEgIHn74YaxYsaLO85YsWYKlS5fWOP7ll1/C1ta28cWrQAjg2jVzWFpWwty8XX9rEBERERFRUxECllevwuHiRThcugTrnBxY5+fDOi8P5fb2qLSxMZxa5uSEfH9/XPX3h/OpUwCAQh8fFHt5QbSSWfcdUlLgFRsL59OnYVFcDABIv/12pN5/v2wm244VFlrAwaECQrStfiAlJSX429/+ZpjAUJfW8R12E15++WW88cYb9Z5z4sSJW36cgoICREVFoXfv3liyZEm9586bNw9z5swxuq2Pjw/GjBlT7yBQ21RRUYGYmBiMHj0aFhYWapdDLYBjbno45qaJ4256OOamh2PeAnJyoCQnA6dPQ9x7r5wtkpAgl9BotbK/RmYmlNRUCE9PoKgIyM2FbsoUGKajN7FGjbuLC8x++kk2OnVzgwgKgmNwMALGjWv3IUhbpV+JcSNtNgR5/vnnMW3atHrP6datG7y8vJCVlWV0XKvVIi8vD15eXvXevrCwEJGRkXBwcMCPP/54wxeKlZUVrKysahy3sLDgD9d2jONrejjmpodjbpo47qaHY256OObNSL917siR8vOhQ+WltFQ2nYiPB/btA0pKgLNn5cXWFmbdusnpB/7+zTYNod5x12rllpm7dgFdugBZWcDAgbJDaGQkzPj90mo19LXcZkMQd3d3uLu73/C8sLAw5OfnIy4uDiEhIQCAPXv2QKfTITQ0tM7bFRQUICIiAlZWVvjpp59gzc6gREREREREt8baGrjtNnmxs5PNU9PTgcxMwMIC+PVXeXFyAgYMAEJCgO7d5fVZWXIbk+Z6b5abC3zyiQxkAODeewEPD7kFcP/+zfOY1OLabAjSUL169UJkZCRmzJiBtWvXoqKiArNnz8aDDz5o2Bnm8uXLGDVqFD777DMMHjwYBQUFGDNmDEpKSvDFF1+goKDAMLXG3d0dZpz+REREREREdGsmTAACA+USmTNn5PaUxcXA4cOyoeq+ffLi4CCbF5aWylCie3e5r2vPnkC1XiM3JS8PsLUFTp4EPv1UzkyxtQWmTQOCgprgi6TWpt2HIADw3//+F7Nnz8aoUaOg0Whw//3349133zVcX1FRgZSUFJSUlAAA4uPjcfDgQQBA9+7dje7r7Nmz6NpMa9SIiIiIiIhMhqMjMHiwvBQVAZaW8qLVAsnJQFwckJgIFBTIYESrldd7ecmlNu7uxoGInV3jHv/YMWDTJhmEFBbK5Tddu8ptUtzcmuELptbAJEIQFxcXfPnll3Ve37VrV1TfJGfEiBFo55vmEBERERERtR729lUfm5sDffvKy8MPA7t3y0aq6elAeTlw4YK8WFjIkMTbW84Q8fcHevWSFweHuh9LqwV27gT275e9SfLyZP+PKVOA++6Tj0/tFkeXiIiIiIiIWiczMznTY+JEuWQlO1uGIenpQFkZcOmSvJibA56eVYGIn5+8Xa9esr/I/7EoLITm00+Bo0eBhAQZqlhYyNsNG8YAxARwhImIiIiIiKj16txZztIoK5NByPHjQEpK1eyQtDTZL+TyZXkxM5NByB9/yH+7dpWBiLk5um7bJoOPM2fkfTs7y+arQ4YArq5qfpXUQhiCEBERERERUetnZQX06ycv5eVAampVIFJ9hkhJSdXHGo0hENHY28Pt6FEoZmay/4efn9z1ZcIEIDhY7a+OWghDECIiIiIiImpbLC3lbjJ9+gAVFcCpU1WBSFZWVQhSXAxkZAAZGVCEgEVRkZzxERwsA5BJk2RIQiaDIQgRERERERG1XRYWVQ1RtVrg9GngxAl5yc6Wy2XS04HCQmhtbSGGDgWGDgXGj5dhCpkUhiBERERERETUPpibAz16yMvddwNnz8oZIsnJEFlZyM7IgPODD8LsttvkkhgyOQxBiIiIiIiIqP0xMwO6d5eX8eOhy8zE6d9/R8CAAQxATJhG7QKIiIiIiIiImpVGA7i5QWdhoXYlpDKGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEszVLqA9E0IAAAoKClSuhJpDRUUFSkpKUFBQAAsLC7XLoRbAMTc9HHPTxHE3PRxz08MxN00c9/ZN/75b/z68LgxBmlFhYSEAwMfHR+VKiIiIiIiIiNq/wsJCODk51Xm9Im4Uk9BN0+l0SEtLg4ODAxRFUbscamIFBQXw8fHBxYsX4ejoqHY51AI45qaHY26aOO6mh2Nuejjmponj3r4JIVBYWIiOHTtCo6m78wdngjQjjUaDzp07q10GNTNHR0f+EDUxHHPTwzE3TRx308MxNz0cc9PEcW+/6psBosfGqERERERERERkEhiCEBEREREREZFJYAhCdJOsrKywePFiWFlZqV0KtRCOuenhmJsmjrvp4ZibHo65aeK4E8DGqERERERERERkIjgThIiIiIiIiIhMAkMQIiIiIiIiIjIJDEGIiIiIiIiIyCQwBCEiIiIiIiIik8AQhOgGVqxYgSFDhsDW1hbOzs61nqMoSo3L119/bXTOvn37MHDgQFhZWaF79+5Yv3598xdPN60h437hwgVERUXB1tYWHh4emDt3LrRardE5HPe2q2vXrjVe16+//rrROUeOHMGwYcNgbW0NHx8fvPnmmypVS01lzZo16Nq1K6ytrREaGoo///xT7ZKoiSxZsqTGa7pnz56G60tLS/Hkk0/C1dUV9vb2uP/++5GZmalixXQz9u/fj7vvvhsdO3aEoijYtGmT0fVCCCxatAje3t6wsbFBeHg4UlNTjc7Jy8vDQw89BEdHRzg7O+Oxxx5DUVFRC34V1Bg3GvNp06bVeO1HRkYancMxNy0MQYhuoLy8HBMnTsSsWbPqPe/TTz9Fenq64RIdHW247uzZs4iKisLIkSORmJiIZ599Fo8//jh27NjRzNXTzbrRuFdWViIqKgrl5eU4cOAANmzYgPXr12PRokWGczjubd+yZcuMXtdPPfWU4bqCggKMGTMGvr6+iIuLw6pVq7BkyRJ8/PHHKlZMt+Kbb77BnDlzsHjxYsTHxyMoKAgRERHIyspSuzRqIn369DF6Tf/222+G65577jls3rwZGzduxC+//IK0tDTcd999KlZLN6O4uBhBQUFYs2ZNrde/+eabePfdd7F27VocPHgQdnZ2iIiIQGlpqeGchx56CMeOHUNMTAx+/vln7N+/HzNnzmypL4Ea6UZjDgCRkZFGr/2vvvrK6HqOuYkRRNQgn376qXBycqr1OgDixx9/rPO2L774oujTp4/RscmTJ4uIiIgmrJCaQ13jvnXrVqHRaERGRobh2IcffigcHR1FWVmZEILj3tb5+vqKf//733Ve/8EHH4gOHToYxlsIIV566SXRo0ePFqiOmsPgwYPFk08+afi8srJSdOzYUaxcuVLFqqipLF68WAQFBdV6XX5+vrCwsBAbN240HDtx4oQAIGJjY1uoQmpq1/9+ptPphJeXl1i1apXhWH5+vrCyshJfffWVEEKI48ePCwDir7/+Mpyzbds2oSiKuHz5covVTjentt/Jp06dKu655546b8MxNz2cCULURJ588km4ublh8ODBWLduHYQQhutiY2MRHh5udH5ERARiY2NbukxqIrGxsejXrx88PT0NxyIiIlBQUIBjx44ZzuG4t22vv/46XF1dMWDAAKxatcpouVNsbCzuvPNOWFpaGo5FREQgJSUFV65cUaNcugXl5eWIi4szes1qNBqEh4fzNduOpKamomPHjujWrRseeughXLhwAQAQFxeHiooKo/Hv2bMnunTpwvFvR86ePYuMjAyjcXZyckJoaKhhnGNjY+Hs7IxBgwYZzgkPD4dGo8HBgwdbvGZqGvv27YOHhwd69OiBWbNmITc313Adx9z0mKtdAFF7sGzZMtx1112wtbXFzp078cQTT6CoqAhPP/00ACAjI8PozTIAeHp6oqCgANeuXYONjY0aZdMtqGtM9dfVdw7HvW14+umnMXDgQLi4uODAgQOYN28e0tPT8fbbbwOQ4+vn52d0m+rfAx06dGjxmunm5eTkoLKystbXbHJyskpVUVMKDQ3F+vXr0aNHD6Snp2Pp0qUYNmwYjh49ioyMDFhaWtboAeXp6Wn4mU5tn34sa3udV/+/28PDw+h6c3NzuLi48HuhjYqMjMR9990HPz8/nD59GvPnz8fYsWMRGxsLMzMzjrkJYghCJunll1/GG2+8Ue85J06cMGqYVp+FCxcaPh4wYACKi4uxatUqQwhCrUNTjzu1PY35HpgzZ47hWP/+/WFpaYl//OMfWLlyJaysrJq7VCJqYmPHjjV83L9/f4SGhsLX1xfffvstQ2miduzBBx80fNyvXz/0798f/v7+2LdvH0aNGqViZaQWhiBkkp5//nlMmzat3nO6det20/cfGhqK5cuXo6ysDFZWVvDy8qrRYT4zMxOOjo78xasFNeW4e3l51dg1Qj/GXl5ehn857q3LrXwPhIaGQqvV4ty5c+jRo0ed4wtUfQ9Q2+Hm5gYzM7Nax5Tj2T45OzsjMDAQp06dwujRo1FeXo78/Hyj2SAc//ZFP5aZmZnw9vY2HM/MzERwcLDhnOubIWu1WuTl5fF7oZ3o1q0b3NzccOrUKYwaNYpjboIYgpBJcnd3h7u7e7Pdf2JiIjp06GD4a3FYWBi2bt1qdE5MTAzCwsKarQaqqSnHPSwsDCtWrEBWVpZhCmVMTAwcHR3Ru3dvwzkc99blVr4HEhMTodFoDOMdFhaGV155BRUVFbCwsAAgx7dHjx5cCtMGWVpaIiQkBLt37zbs7qXT6bB7927Mnj1b3eKoWRQVFeH06dN45JFHEBISAgsLC+zevRv3338/ACAlJQUXLlzgz+x2xM/PD15eXti9e7ch9CgoKMDBgwcNu8GFhYUhPz8fcXFxCAkJAQDs2bMHOp0OoaGhapVOTejSpUvIzc01BGEccxOkdmdWotbu/PnzIiEhQSxdulTY29uLhIQEkZCQIAoLC4UQQvz000/ik08+EUlJSSI1NVV88MEHwtbWVixatMhwH2fOnBG2trZi7ty54sSJE2LNmjXCzMxMbN++Xa0vi27gRuOu1WpF3759xZgxY0RiYqLYvn27cHd3F/PmzTPcB8e97Tpw4ID497//LRITE8Xp06fFF198Idzd3cWjjz5qOCc/P194enqKRx55RBw9elR8/fXXwtbWVnz00UcqVk634uuvvxZWVlZi/fr14vjx42LmzJnC2dnZaBcoaruef/55sW/fPnH27Fnx+++/i/DwcOHm5iaysrKEEEL885//FF26dBF79uwRhw4dEmFhYSIsLEzlqqmxCgsLDf9nAxBvv/22SEhIEOfPnxdCCPH6668LZ2dn8b///U8cOXJE3HPPPcLPz09cu3bNcB+RkZFiwIAB4uDBg+K3334TAQEBYsqUKWp9SXQD9Y15YWGheOGFF0RsbKw4e/as2LVrlxg4cKAICAgQpaWlhvvgmJsWhiBENzB16lQBoMZl7969Qgi5hVZwcLCwt7cXdnZ2IigoSKxdu1ZUVlYa3c/evXtFcHCwsLS0FN26dROffvppy38x1GA3GnchhDh37pwYO3assLGxEW5ubuL5558XFRUVRvfDcW+b4uLiRGhoqHBychLW1taiV69e4rXXXjP6hUkIIQ4fPiyGDh0qrKysRKdOncTrr7+uUsXUVN577z3RpUsXYWlpKQYPHiz++OMPtUuiJjJ58mTh7e0tLC0tRadOncTkyZPFqVOnDNdfu3ZNPPHEE6JDhw7C1tZW3HvvvSI9PV3Fiulm7N27t9b/v6dOnSqEkNvkLly4UHh6egorKysxatQokZKSYnQfubm5YsqUKcLe3l44OjqK6dOnG/4IQq1PfWNeUlIixowZI9zd3YWFhYXw9fUVM2bMqBFuc8xNiyJEtX08iYiIiIiIiIjaKY3aBRARERERERERtQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERERERmQSGIERERERERERkEhiCEBEREREREZFJYAhCRERERERERCaBIQgRERERNdq+ffugKAr27dundilEREQNxhCEiIhM0vr166EoSp2XP/74Q+0SazVt2jSjOs3NzeHj44MHH3wQx48fv6n7LCkpwZIlS9r9m9nNmzdj+PDh8PDwgK2tLbp164ZJkyZh+/bthnPS0tKwZMkSJCYmqlZnSkoKnnvuOQwZMgTW1tZQFAXnzp1TrZ6mkJSUhAceeAC+vr6wtrZGp06dMHr0aLz33ntG57322mvYtGmTOkUC+OuvvzB79mz06dMHdnZ26NKlCyZNmoSTJ0+qVhMRETUtc7ULICIiUtOyZcvg5+dX43j37t1VqKZhrKys8J///AcAoNVqcfr0aaxduxbbt2/H8ePH0bFjx0bdX0lJCZYuXQoAGDFiRFOX2yq89dZbmDt3LoYPH4558+bB1tYWp06dwq5du/D1118jMjISgAxBli5diq5duyI4OFiVWmNjY/Huu++id+/e6NWrl6qBTFM4cOAARo4ciS5dumDGjBnw8vLCxYsX8ccff+Cdd97BU089ZTj3tddewwMPPIDo6GhVan3jjTfw+++/Y+LEiejfvz8yMjLw/vvvY+DAgfjjjz/Qt29fVeoiIqKmwxCEiIhM2tixYzFo0KBG3Uar1UKn08HS0rLGdcXFxbCzs7vpeoQQKC0thY2NTZ3nmJub4+GHHzY6dvvtt2P8+PHYsmULZsyYcdOP3x5ptVosX74co0ePxs6dO2tcn5WVpUJVdZswYQLy8/Ph4OCAt956q82HICtWrICTkxP++usvODs7G13X2p77OXPm4MsvvzR6bU+ePBn9+vXD66+/ji+++ELF6oiIqClwOQwREVE9zp07B0VR8NZbb2H16tXw9/eHlZUVjh8/jiVLlkBRFBw/fhx/+9vf0KFDBwwdOhRA1Rtv/fldu3bF/PnzUVZWZnT/Xbt2xfjx47Fjxw4MGjQINjY2+Oijjxpdp5eXFwAZkFSXn5+PZ599Fj4+PrCyskL37t3xxhtvQKfTGb4+d3d3AMDSpUsNy2yWLFmCn376CYqi4MiRI4b7+/7776EoCu677z6jx+nVqxcmT55sdOyLL75ASEgIbGxs4OLiggcffBAXL16sUfvBgwcRGRkJJycn2NraYvjw4fj999+NztE/16dOncK0adPg7OwMJycnTJ8+HSUlJfU+Nzk5OSgoKMAdd9xR6/UeHh4AZI+L2267DQAwffp0w3Oxfv36m6o1OTkZkyZNgqOjI1xdXfHMM8+gtLS03loBwMXFBQ4ODjc8ry7/+9//EBUVhY4dO8LKygr+/v5Yvnw5Kisrjc4bMWIE+vbti+PHj2PkyJGwtbVFp06d8Oabb9a4z0uXLiE6Ohp2dnbw8PDAc889V+N7uS6nT59Gnz59agQgQNVzDwCKoqC4uBgbNmwwPPfTpk0zXH/58mX8/e9/h6enJ6ysrNCnTx+sW7fO6P70fUq++eYbzJ8/H15eXrCzs8OECRNq/d673pAhQ2qEmwEBAejTpw9OnDjRoK+XiIhaN84EISIik3b16lXk5OQYHVMUBa6urkbHPv30U5SWlmLmzJmwsrKCi4uL4bqJEyciICAAr732GoQQAIDHH38cGzZswAMPPIDnn38eBw8exMqVK3HixAn8+OOPRvedkpKCKVOm4B//+AdmzJiBHj163LBufc2VlZU4c+YMXnrpJbi6umL8+PGGc0pKSjB8+HBcvnwZ//jHP9ClSxccOHAA8+bNQ3p6OlavXg13d3d8+OGHmDVrFu69915DuNG/f3907twZiqJg//796N+/PwDg119/hUajwW+//WZ4nOzsbCQnJ2P27NmGYytWrMDChQsxadIkPP7448jOzsZ7772HO++8EwkJCYY3xHv27MHYsWMREhKCxYsXQ6PR4NNPP8Vdd92FX3/9FYMHDzb6uidNmgQ/Pz+sXLkS8fHx+M9//gMPDw+88cYbdT5XHh4esLGxwebNm/HUU08ZjV11vXr1wrJly7Bo0SLMnDkTw4YNAyDfGN9srV27dsXKlSvxxx9/4N1338WVK1fw2Wef1T2wTWD9+vWwt7fHnDlzYG9vjz179mDRokUoKCjAqlWrjM69cuUKIiMjcd9992HSpEn47rvv8NJLL6Ffv34YO3YsAODatWsYNWoULly4gKeffhodO3bE559/jj179jSoHl9fX8TGxuLo0aP1Lif5/PPP8fjjj2Pw4MGYOXMmAMDf3x8AkJmZidtvvx2KomD27Nlwd3fHtm3b8Nhjj6GgoADPPvus0X2tWLECiqLgpZdeQlZWFlavXo3w8HAkJibWO8uqNkIIZGZmok+fPo26HRERtVKCiIjIBH366acCQK0XKysrw3lnz54VAISjo6PIysoyuo/FixcLAGLKlClGxxMTEwUA8fjjjxsdf+GFFwQAsWfPHsMxX19fAUBs3769QXVPnTq11po7deok4uLijM5dvny5sLOzEydPnjQ6/vLLLwszMzNx4cIFIYQQ2dnZAoBYvHhxjcfr06ePmDRpkuHzgQMHiokTJwoA4sSJE0IIIX744QcBQBw+fFgIIcS5c+eEmZmZWLFihdF9JSUlCXNzc8NxnU4nAgICREREhNDpdIbzSkpKhJ+fnxg9erThmP65/vvf/250n/fee69wdXW94fO2aNEiAUDY2dmJsWPHihUrVtR4voQQ4q+//hIAxKeffmp0/GZqnTBhgtF9PPHEE0bPU0OsWrVKABBnz55t8G1KSkpqHPvHP/4hbG1tRWlpqeHY8OHDBQDx2WefGY6VlZUJLy8vcf/99xuOrV69WgAQ3377reFYcXGx6N69uwAg9u7dW289O3fuFGZmZsLMzEyEhYWJF198UezYsUOUl5fXONfOzk5MnTq1xvHHHntMeHt7i5ycHKPjDz74oHBycjJ8zXv37jW8HgoKCgznffvttwKAeOedd+qttTaff/65ACD+3//7f42+LRERtT5cDkNERCZtzZo1iImJMbps27atxnn333+/YdnI9f75z38afb5161YAsr9Adc8//zwAYMuWLUbH/fz8EBER0eCara2tDbXu2LEDH330Eezt7TFu3DijXSw2btyIYcOGoUOHDsjJyTFcwsPDUVlZif3799/wsYYNG4Zff/0VAFBYWIjDhw9j5syZcHNzMxz/9ddf4ezsbPgr/w8//ACdTodJkyYZPa6XlxcCAgKwd+9eAEBiYiJSU1Pxt7/9Dbm5uYbziouLMWrUKOzfv9+wbEfv+ud62LBhyM3NRUFBQb1fx9KlS/Hll19iwIAB2LFjB1555RWEhIRg4MCBDVrmcDO1Pvnkk0af6xuA6r8/mkv1mQ6FhYXIycnBsGHDUFJSguTkZKNz7e3tjfrLWFpaYvDgwThz5ozh2NatW+Ht7Y0HHnjAcMzW1tYwW+NGRo8ejdjYWEyYMAGHDx/Gm2++iYiICHTq1Ak//fTTDW8vhMD333+Pu+++G0IIo++piIgIXL16FfHx8Ua3efTRR42WFD3wwAPw9vZu9HOfnJyMJ598EmFhYZg6dWqjbktERK0Tl8MQEZFJGzx4cIMao9a2g0xd150/fx4ajabGDjNeXl5wdnbG+fPnG3zftTEzM0N4eLjRsXHjxiEgIADz5s3D999/DwBITU3FkSNH6gxvGtKUctiwYVi7di1OnTqF06dPQ1EUhIWFGcKRGTNm4Ndff8Udd9wBjUZjeFwhBAICAmq9TwsLC8N5AOp9c3n16lV06NDB8HmXLl2Mrtdfd+XKFTg6Otb7tUyZMgVTpkxBQUEBDh48iPXr1+PLL7/E3XffjaNHj8La2rrO295Mrdd//f7+/tBoNM2+3e2xY8ewYMEC7Nmzp0Y4dPXqVaPP9UuequvQoYNRH5jz58+je/fuNc5ryLItvdtuuw0//PADysvLcfjwYfz444/497//jQceeACJiYno3bt3nbfNzs5Gfn4+Pv74Y3z88ce1nnP99/L1z72iKOjevXujnvuMjAxERUXByckJ3333HczMzBp8WyIiar0YghARETVAfX0E6rru+jeNN3PfDdW5c2f06NHDaHaHTqfD6NGj8eKLL9Z6m8DAwBver77R6/79+3HmzBkMHDgQdnZ2GDZsGN59910UFRUhISEBK1asMHpcRVGwbdu2Wt842tvbG84DgFWrVtW5Ha3+XL263oiK/+vF0hCOjo4YPXo0Ro8eDQsLC2zYsAEHDx7E8OHD67zNzdR6vYZ+P9yK/Px8DB8+HI6Ojli2bBn8/f1hbW2N+Ph4vPTSSzVmqzTF89kYlpaWuO2223DbbbchMDAQ06dPx8aNG7F48eI6b6Ov+eGHH64zhNL3rGkqV69exdixY5Gfn49ff/210dtOExFR68UQhIiIqIn5+vpCp9MhNTUVvXr1MhzPzMxEfn4+fH19m+VxtVotioqKDJ/7+/ujqKioxqyR69X35rxLly7o0qULfv31V5w5c8bQLPTOO+/EnDlzsHHjRlRWVuLOO+80elwhBPz8/OoNWvRNLx0dHW9YY3MZNGgQNmzYgPT0dAB1Pxc3U2tqaqrRLJ9Tp05Bp9Oha9eut1Z0Pfbt24fc3Fz88MMPRmNy9uzZm75PX19fHD16FEIIo+cnJSXllmrVz8DSP/dA7c+/u7s7HBwcUFlZ2ajnvjohBE6dOtWgsKS0tBR33303Tp48iV27dtU7S4WIiNoe9gQhIiJqYuPGjQMArF692uj422+/DQCIiopq8sc8efIkUlJSEBQUZDg2adIkxMbGYseOHTXOz8/Ph1arBSD7O+iP1WbYsGHYs2cP/vzzT0MIEhwcDAcHB7z++uuwsbFBSEiI4fz77rsPZmZmWLp0aY0ZBUII5ObmAgBCQkLg7++Pt956yyi80cvOzm7EM1C3kpISxMbG1nqdvv+LfmmHnZ0dgJrPxc3UumbNGqPP33vvPQAw7LrSHPQzO6o/7+Xl5fjggw9u+j7HjRuHtLQ0fPfdd4ZjJSUldS5Nud7evXtrnVmi789RfVmNnZ1djefezMwM999/P77//nscPXq0xv3U9tx/9tlnKCwsNHz+3XffIT09/YbPfWVlJSZPnozY2Fhs3LgRYWFh9Z5PRERtD2eCEBGRSdu2bVuNZpGA3Ba1W7duN3WfQUFBmDp1Kj7++GPD8oQ///wTGzZsQHR0NEaOHHlLNWu1WnzxxRcA5FKBc+fOYe3atdDpdEbLCubOnYuffvoJ48ePx7Rp0xASEoLi4mIkJSXhu+++w7lz5+Dm5gYbGxv07t0b33zzDQIDA+Hi4oK+ffsaGp0OGzYM//3vf6EoimF5jJmZGYYMGYIdO3ZgxIgRsLS0NDyuv78/Xn31VcybNw/nzp1DdHQ0HBwccPbsWfz444+YOXMmXnjhBWg0GvznP//B2LFj0adPH0yfPh2dOnXC5cuXsXfvXjg6OmLz5s239FwB8g37kCFDcPvttyMyMhI+Pj7Iz8/Hpk2b8OuvvyI6OhoDBgww1O7s7Iy1a9fCwcEBdnZ2CA0NhZ+fX6NrPXv2LCZMmIDIyEjExsbiiy++wN/+9jejoKo2V69eNQQmv//+OwDg/fffh7OzM5ydnY22Ir7ekCFD0KFDB0ydOhVPP/00FEXB559/fkvLW2bMmIH3338fjz76KOLi4uDt7Y3PP//cEJ7dyFNPPYWSkhLce++96NmzJ8rLy3HgwAF888036Nq1K6ZPn244NyQkBLt27cLbb7+Njh07ws/PD6GhoXj99dexd+9ehIaGYsaMGejduzfy8vIQHx+PXbt2IS8vz+gxXVxcMHToUEyfPh2ZmZlYvXo1unfvjhkzZtRb6/PPP4+ffvoJd999N/Ly8gyvM73qTWSJiKiNUmVPGiIiIpXVt0Uuqm2Rqt8id9WqVTXuQ78VanZ2do3rKioqxNKlS4Wfn5+wsLAQPj4+Yt68eUZblAoht8iNiopqcN21bZHr6OgoRo0aJXbt2lXj/MLCQjFv3jzRvXt3YWlpKdzc3MSQIUPEW2+9ZbRF6YEDB0RISIiwtLSssV3usWPHBADRq1cvo/t+9dVXBQCxcOHCWmv9/vvvxdChQ4WdnZ2ws7MTPXv2FE8++aRISUkxOi8hIUHcd999wtXVVVhZWQlfX18xadIksXv3bsM5dT3X+nGsbwvZiooK8cknn4jo6Gjh6+srrKyshK2trRgwYIBYtWqVKCsrMzr/f//7n+jdu7cwNzevsV1uY2o9fvy4eOCBB4SDg4Po0KGDmD17trh27Vqdderpv+dqu/j6+t7w9r///ru4/fbbhY2NjejYsaNhS1pct53t8OHDRZ8+fWrcfurUqTUe5/z582LChAnC1tZWuLm5iWeeeUZs3769QVvkbtu2Tfz9738XPXv2FPb29sLS0lJ0795dPPXUUyIzM9Po3OTkZHHnnXcKGxsbAcBou9zMzEzx5JNPCh8fH2FhYSG8vLzEqFGjxMcff2w4R79F7ldffSXmzZsnPDw8hI2NjYiKihLnz5+/4XOn3za4rgsREbV9ihDN1PmKiIiIyAQtWbIES5cuRXZ2Ntzc3NQux6Ts27cPI0eOxMaNG4229CUiItJjTxAiIiIiIiIiMgkMQYiIiIiIiIjIJDAEISIiIiIiIiKTwJ4gRERERERERGQSOBOEiIiIiIiIiEwCQxAiIiIiIiIiMgkMQYiIiIiIiIjIJJirXUB7ptPpkJaWBgcHByiKonY5RERERERERO2SEAKFhYXo2LEjNJq653swBGlGaWlp8PHxUbsMIiIiIiIiIpNw8eJFdO7cuc7rGYI0IwcHBwByEBwdHVWuhppaRUUFdu7ciTFjxsDCwkLtcqgFcMxND8fcNHHcTQ/H3PRwzE0Tx719KygogI+Pj+F9eF0YgjQj/RIYR0dHhiDtUEVFBWxtbeHo6MgfoiaCY256OOamieNuejjmpodjbpo47qbhRq0o2BiViIiIiIiIiEwCQxAiIiIiIiIiMgkMQYiIiIiIiIjIJLAnCBEREREREVErVVlZiYqKCrXLUJ2FhQXMzMxu+X4YghARERERERG1MkIIZGRkID8/X+1SWg1nZ2d4eXndsPlpfRiCEBEREREREbUy+gDEw8MDtra2t/TGv60TQqCkpARZWVkAAG9v75u+L4YgRERERERERK1IZWWlIQBxdXVVu5xWwcbGBgCQlZUFDw+Pm14aw8aoRERERERERK2IvgeIra2typW0Lvrn41Z6pDAEISIiIiIiImqFTHkJTG2a4vloFSHImjVr0LVrV1hbWyM0NBR//vlnvedv3LgRPXv2hLW1Nfr164etW7caXS+EwKJFi+Dt7Q0bGxuEh4cjNTXVcP25c+fw2GOPwc/PDzY2NvD398fixYtRXl5udI6iKDUuf/zxR9N+8dRmaXVaVIpKtcsgIiIiIiKiBlI9BPnmm28wZ84cLF68GPHx8QgKCkJERISh4cn1Dhw4gClTpuCxxx5DQkICoqOjER0djaNHjxrOefPNN/Huu+9i7dq1OHjwIOzs7BAREYHS0lIAQHJyMnQ6HT766CMcO3YM//73v7F27VrMnz+/xuPt2rUL6enphktISEjzPBHUpuRdy8O0n6bhu8zv1C6FiIiIiIiIGkj1EOTtt9/GjBkzMH36dPTu3Rtr166Fra0t1q1bV+v577zzDiIjIzF37lz06tULy5cvx8CBA/H+++8DkLNAVq9ejQULFuCee+5B//798dlnnyEtLQ2bNm0CAERGRuLTTz/FmDFj0K1bN0yYMAEvvPACfvjhhxqP5+rqCi8vL8PFwsKi2Z4Lajv+uPQHisqLkFqSitS81BvfgIiIiIiIyIQMHz4ciqLgtddeMzouhEBoaCgURcGyZctavC5Vd4cpLy9HXFwc5s2bZzim0WgQHh6O2NjYWm8TGxuLOXPmGB2LiIgwBBxnz55FRkYGwsPDDdc7OTkhNDQUsbGxePDBB2u936tXr8LFxaXG8QkTJqC0tBSBgYF48cUXMWHChDq/nrKyMpSVlRk+LygoACCbttxK4xZqfQ5dPgQhBABgc8pmBLgEqFwRtQT965ivZ9PBMTdNHHfTwzE3PRxz09SWxr2iogJCCOh0Ouh0OrXLaTQhBBISEuDr64sjR44YfQ3r169HWloaACA4OLhRX59Op4MQAhUVFTV2h2nouKoaguTk5KCyshKenp5Gxz09PZGcnFzrbTIyMmo9PyMjw3C9/lhd51zv1KlTeO+99/DWW28Zjtnb2+Nf//oX7rjjDmg0Gnz//feIjo7Gpk2b6gxCVq5ciaVLl9Y4vnPnTnb1bUcqRSV2nt+JMp0MvH6M/xE+OT6wM7NTuTJqKTExMWqXQC2MY26aOO6mh2NuejjmpqktjLu5uTm8vLxQVFRk1LuyrTh16hQKCwsxa9Ys/PTTT4YJAoWFhZg/fz4eeeQRvPXWWwgMDDRc1xDl5eW4du0a9u/fD61Wa3RdSUlJg+5D1RCkNbh8+TIiIyMxceJEzJgxw3Dczc3NaMbJbbfdhrS0NKxatarOEGTevHlGtykoKICPjw/GjBkDR0fH5vsiqEUl5yTDqdgJtua2KM8tR4VjBeAPjOs9Tu3SqJlVVFQgJiYGo0eP5tI4E8ExN00cd9PDMTc9HHPT1JbGvbS0FBcvXoS9vT2sra3lQSGAaisPWpSVFdCInVlSUlJga2uLqVOn4u2334a1tTUsLS2xYsUKDBo0CJ07d4aXlxcCAwMbVUZpaSlsbGxw5513Vj0v/6ehYYqqIYibmxvMzMyQmZlpdDwzMxNeXl613sbLy6ve8/X/ZmZmwtvb2+ic4OBgo9ulpaVh5MiRGDJkCD7++OMb1hsaGlpvamhlZQUrK6saxy0sLFr9i4wa7ljuMWg0GgR5BQEVQKwSi5hzMZjcbzLMNGY3vgNq8/iaNj0cc9PEcTc9HHPTwzE3TW1h3CsrK6EoCjQaDTSa/2vlWVoKTJ6sTkEbNwLXhQ71SUxMRP/+/dGrVy9YW1vj5MmTsLGxwdq1axEfH48VK1Zg4MCBVV9bA2k0GiiKUusYNnRMVW2MamlpiZCQEOzevdtwTKfTYffu3QgLC6v1NmFhYUbnA3I6k/58Pz8/eHl5GZ1TUFCAgwcPGt3n5cuXMWLECISEhODTTz9t0JOfmJhoFKyQaUpITwAABHsGo5d9LzhZOSGnJAcHLx9UuTIiIiIiIiL1xcfHY+DAgVAUBf3790dSUhKee+45zJo1CwEBAYiLi1Nt51XVl8PMmTMHU6dOxaBBgzB48GCsXr0axcXFmD59OgDg0UcfRadOnbBy5UoAwDPPPIPhw4fjX//6F6KiovD111/j0KFDhpkciqLg2WefxauvvoqAgAD4+flh4cKF6NixI6KjowFUBSC+vr546623kJ2dbahHP5Nkw4YNsLS0xIABAwAAP/zwA9atW4f//Oc/LfXUUCt0reIaUnJTAMgQJC4lDqO7jcYPKT/g55M/Y4jPEJUrJCIiIiKidsnKSs7IUOuxGyE+Ph5/+9vfAMjmp6tXr8bFixfx1VdfobS0FMnJyRg4cCAA4I477sDbb7+N0NBQPPbYY+jbty+ee+65Jv8S9FQPQSZPnozs7GwsWrQIGRkZCA4Oxvbt2w2NTS9cuGA0S2PIkCH48ssvsWDBAsyfPx8BAQHYtGkT+vbtazjnxRdfRHFxMWbOnIn8/HwMHToU27dvN6wZiomJwalTp3Dq1Cl07tzZqB79jh8AsHz5cpw/fx7m5ubo2bMnvvnmGzzwwAPN+XRQK5eUlYRKUQlve2942svv0Uj/SGw6uQlJWUk4l38OXZ27qlskERERERG1P4rSqCUpajlz5gzy8/MNIceAAQPwwQcfYN26dXBwcMDBgweh1WoNM0EWLlyI119/HcOGDYNGo2nWAARoBSEIAMyePRuzZ8+u9bp9+/bVODZx4kRMnDixzvvT7zdc157D06ZNw7Rp0+qtaerUqZg6dWq955DpScxIBAAEewUbjrnZuiGscxh+v/g7tpzcgicHP6lOcURERERERCqLi4uDpaWlYaLC1KlTER0dDVdXVwByloi7uzt8fHwAAJGRkXjllVewZcsWbN++vdnrU7UnCFFbE58eD8A4BAGA8YHjAQB7z+1FUXlRS5dFRERERETUKsTHx6Nv376GRqUWFhZwc3OD8n+7y8THxxvaTgDAX3/9hby8PDg5ObVIw1qGIEQNlFOSg8uFl6FAQZBnkNF1fdz7oKtTV5RVlmHXmV0qVUhERERERKSulStXIi4urs7rP/nkE+zYsQOA7Nf5+OOPY8+ePTh37hyOHj3a7PUxBCFqIP2uMIGugbCztDO6TlEURAVGAQC2nNxi1FuGiIiIiIiIjF27dg0TJ07Ee++9Bz8/P8ybNw/Lly9v9sdlCELUQLX1A6luRNcRsLOwQ0ZxBg6lHWq5woiIiIiIiNoYGxsbHDhwAHfeeScA2fvzm2++afbHZQhC1ABCCCRmJgKoOwSxNrfGGP8xAIAtqVtaqDIiIiIiIiJqKIYgRA1wNv8sCsoKYG1ujZ5uPes8b1zAOChQEJceh8sFl1uwQiIiIiIiIroRhiBEDaDvB9LPox/MNXXvLO1l74VBHQcBALambm2R2oiIiIiIiKhhGIIQNcCN+oFUp98ud9fZXSjVljZjVURERERERNQYDEGIbqC8shzHso8BAAZ4DbjB2fKcTg6dUFJRgj1n9zR3eURERERERNRADEGIbuB49nFU6CrgauOKzo6db3i+oiiICpDb5f588mdul0tERERERNRKMAQhugF9P5Bgr2AoitKg24zqNgrW5ta4WHARRzKPNGd5RERERERE1EAMQYhuICFDhiANWQqjZ2thi7u63gVAzgYhIiIiIiIi9TEEIapHfmk+zuafBdCwpqjV6RukHrx8EFnFWU1dGhERERERETUSQxCiehzOOAwA8HP2g5O1U6Nu6+PkgyDPIAgIbEvd1hzlERERERERUSMwBCGqh34pTGNngejdHXg3AGDH6R0oryxvqrKIiIiIiIhateHDh0NRFLz22mtGx4UQCA0NhaIoWLZsWYvXxRCEqA5CCCRmJAJoXD+Q6m7rdBs8bD1QWF6I/ef3N2F1RERERERErZMQAgkJCfD19UVSUpLRdRs2bEBaWhoAYODAgS1eG0MQojpcKriE3Gu5sNBYoI9Hn5u6D42iwbiAcQCAzSmbuV0uERERERG1e6mpqSgsLMTUqVONQpDCwkLMmzcP06ZNAwCEhIS0eG0MQYjqoJ8F0tu9NyzNLG/6fsb4j4GlmSXO5J9Bck5yE1VHRERERETUOsXFxcHW1hZTpkxBSkoKystla4Dly5dj0KBBcHd3h5eXF7y9vVu8NvMWf0SiNuJW+4HoOVg5YLjvcMScicHPJ39GL/deTVAdERERERGZEiGAsjJ1HtvKClCUhp8fHx+P/v37o0ePHrC2tkZycjJsbGzw4YcfIj4+HitWrFBlKQzAEISoVlqdFklZctrWQO9bf3GODxyPmDMx+P3i73js2mNwsXG55fskIiIiIiLTUVYGTJyozmNv3AhYWzf8/Pj4eAwcOBCKoqB///5ISkrCV199hVmzZiEgIABxcXG49957m6/genA5DFEtUnJSUKothZOVE/yc/W75/rp16IZebr1QKSqx/dT2JqiQiIiIiIioddKHIAAQHByM1atX49ChQ1i4cCFKS0uRnJyMgQMHIiEhAREREYbb/e9//8PMmTObtTbOBCGqhb4fSJBnEJTGzPuqx92Bd+NEzglsP7Udk/pMgrmGLz8iIiIiImoYKys5I0Otx26oM2fOID8/3xCCDBgwAB988AHWrVsHBwcHHDx4EFqtFiEhIfD29sbx48cBAFqtFsuWLcPPP//cHF+CAd+FEdWiqfqBVBfmEwYXGxfkXcvDgYsHcKfvnU1230RERERE1L4pSuOWpKglLi4OlpaW6Nu3LwBg6tSpiI6OhqurKwA5S8Td3R0+Pj4AAB8fH5w7dw5bt25FVFRUszdL5XIYousUlRfhZO5JAMAA7wFNdr/mGnOM7T4WgNwul4iIiIiIqL2Jj49H3759YWFhAQCwsLCAm5ubYYZ9fHw8Bgyoep81ePBg7N27Fx9++CHmzp3b7PUxBCG6zpHMIxAQ6OTQCW62bk163xH+ETDXmCM5Nxmn8k416X0TERERERGpbeXKlYiLi6vz+k8++QQ7duwwfD548GC88MIL+Oc//wkHB4dmr48hCNF19P1ABng13SwQvQ42HXCHzx0AgJ9PNu9aNyIiIiIiotYuMDAQrq6u+Mc//tEij8cQhOg6+hCkKfuBVHd34N0AgP3n96OgrKBZHoOIiIiIiKgt+OCDD7Bq1SqYm7dMy1KGIETVZBZlIr0oHRpFg36e/ZrlMQJdA9G9Q3dU6Cqw8/TOZnkMIiIiIiKi1uz06dPo0aMH7OzscM8997TY4zIEIapGvytMD9cesLWwbZbHUBQF4wPHAwC2pm5Fpa6yWR6HiIiIiIiotfL390dKSgree++9Fn1chiBE1TRnP5DqhvkOg6OVI7JLsvHn5T+b9bGIiIiIiIhIYghC9H90QofDmYcBNF8/ED1LM0tE+EcAYINUIiIiIiKilsIQhOj/nM47jaLyItha2CLQNbDZH29s97FQoOBI1hFcuHqh2R+PiIiIiIjI1DEEIfo/+n4g/T36w0xj1uyP527njrDOYQA4G4SIiIiIiKglMAQh+j+GfiDezdsPpLqowCgAwJ6ze1BcXtxij0tERERERGSKGIIQASjVluJEzgkAzd8PpLp+Hv3g6+SLssoy7Dqzq8Uel4iIiIiIyBQxBCECcDTrKLQ6LTxsPeBt791ij1t9u9wtqVsghGixxyYiIiIiIjI1DEGIULUUJtgrGIqitOhjj+g6AnYWdkgvSkd8enyLPjYREREREZEpYQhCBCAhXTZFbcl+IHrW5tYI7xYOgA1SiYiIiIiImhNDEDJ5edfycKHgAhQoCPIMUqWGqIAoKFAQlx6H9MJ0VWogIiIiIiJq7xiCkMnTL4Xx7+APBysHVWrwdvBGiHcIBAS2pG5RpQYiIiIiIqKmMnz4cCiKgtdee83ouBACoaGhUBQFy5Yta/G6GIKQyaveD0RN+gapu87sQqm2VNVaiIiIiIiIbpYQAgkJCfD19UVSUpLRdRs2bEBaWhoAYODAgS1eG0MQMmlCCEMIokY/kOoGeg+Et703iiuKsffsXlVrISIiIiIiulmpqakoLCzE1KlTjUKQwsJCzJs3D9OmTQMAhISEtHhtDEHIpJ2/eh5XSq/A0swSvdx6qVqLoiiICogCIBukcrtcIiIiIiJqi+Li4mBra4spU6YgJSUF5eXlAIDly5dj0KBBcHd3h5eXF7y9vVu8NvMWf0SiVkQ/C6SfRz9YmFmoWwyA8G7h+CLpC1wouICkrCT09+yvdklERERERNQKCCFQVlmmymNbmVlBUZQGnx8fH4/+/fujR48esLa2RnJyMmxsbPDhhx8iPj4eK1asUGUpDNBKQpA1a9Zg1apVyMjIQFBQEN577z0MHjy4zvM3btyIhQsX4ty5cwgICMAbb7yBcePGGa4XQmDx4sX45JNPkJ+fjzvuuAMffvghAgICAADnzp3D8uXLsWfPHmRkZKBjx454+OGH8corr8DS0tJwP0eOHMGTTz6Jv/76C+7u7njqqafw4osvNt8TQS2utfQD0bOztMPIriOx7dQ2bDm5hSEIEREREREBAMoqyzBx40RVHnvjxI2wNrdu8Pnx8fEYOHAgFEVB//79kZSUhK+++gqzZs1CQEAA4uLicO+99zZjxXVTfTnMN998gzlz5mDx4sWIj49HUFAQIiIikJWVVev5Bw4cwJQpU/DYY48hISEB0dHRiI6OxtGjRw3nvPnmm3j33Xexdu1aHDx4EHZ2doiIiEBpqWw2mZycDJ1Oh48++gjHjh3Dv//9b6xduxbz58833EdBQQHGjBkDX19fxMXFYdWqVViyZAk+/vjj5n1CqMWUV5YjKUuuT2stIQhQ1SA19lIssouzVa6GiIiIiIiocfQhCAAEBwdj9erVOHToEBYuXIjS0lIkJycbrh8+fDiCg4MRHBwMMzMzHDp0qFlrU30myNtvv40ZM2Zg+vTpAIC1a9diy5YtWLduHV5++eUa57/zzjuIjIzE3LlzAcg1RTExMXj//fexdu1aCCGwevVqLFiwAPfccw8A4LPPPoOnpyc2bdqEBx98EJGRkYiMjDTcZ7du3ZCSkoIPP/wQb731FgDgv//9L8rLy7Fu3TpYWlqiT58+SExMxNtvv42ZM2c299NCLSA5JxnlleXoYN0Bvk6+apdj0MWpC/p79MeRrCPYdmobHg16VO2SiIiIiIhIZVZmVtg4caNqj91QZ86cQX5+viHkGDBgAD744AOsW7cODg4OOHjwILRaraEp6i+//AIAWLx4MYYPH45BgwY1/RdQjaozQcrLyxEXF4fw8HDDMY1Gg/DwcMTGxtZ6m9jYWKPzASAiIsJw/tmzZ5GRkWF0jpOTE0JDQ+u8TwC4evUqXFxcjB7nzjvvNFoeExERgZSUFFy5cqVxXyi1SgnpCQDkLJDGrG9rCfrZIDtO70B5ZbnK1RARERERkdoURYG1ubUql8a8X4qLi4OlpSX69u0LAJg6dSqys7MNO8LEx8fD3d0dPj4+htusXr0a586dw+rVq5vyKauVqjNBcnJyUFlZCU9PT6Pjnp6eSE5OrvU2GRkZtZ6fkZFhuF5/rK5zrnfq1Cm89957hlkg+vvx8/OrcR/66zp06FDjfsrKylBWVtWopqCgAABQUVGBioqKWh+b1BOfFg+dToe+bn1vanz0t2mOsR3gMQCu1q7ILsnG3tN7cZffXU3+GNR4zTnm1DpxzE0Tx930cMxND8fcNLWlca+oqIAQAjqdDjqdTu1yGiUuLg59+/aFmZkZdDodzMzM4OLiAiEEhBCIi4tDcHCw4etav349fvnlF3z77beGc+qi0+kghEBFRQXMzMyMrmvouKq+HEZtly9fRmRkJCZOnIgZM2bc0n2tXLkSS5curXF8586dsLW1vaX7pqZ1rfIaYs/HQkAg60gWth7fetP3FRMT04SVVfEs8MSxvGNYs2sNrnW81upmq5iy5hpzar045qaJ4256OOamh2NumtrCuJubm8PLywtFRUWG7WXbipdffhkvv/yyYVLA9fSTDwoKCvDzzz/jyy+/xH//+18UFxff8L7Ly8tx7do17N+/H1qt1ui6kpKSBtWnagji5uYGMzMzZGZmGh3PzMyEl5dXrbfx8vKq93z9v5mZmUZ7DmdmZiI4ONjodmlpaRg5ciSGDBlSo+FpXY9T/TGuN2/ePMyZM8fweUFBAXx8fDBmzBg4OjrWehtSx+8Xf4f7NXd0ceyCyZGTb+o+KioqEBMTg9GjR8PCoum31x1aNhQpm1NQoauAf6g/err1bPLHoMZp7jGn1odjbpo47qaHY256OOamqS2Ne2lpKS5evAh7e3tYWzd8V5a25qmnnoK7uzsiIiIAAMuWLcP48ePrPL+0tBQ2Nja48847azwvdYUu11M1BLG0tERISAh2796N6OhoAHJ6y+7duzF79uxabxMWFobdu3fj2WefNRyLiYlBWFgYAMDPzw9eXl7YvXu3IfQoKCjAwYMHMWvWLMNtLl++jJEjRyIkJASffvopNBrj9ihhYWF45ZVXUFFRYXiBxMTEoEePHrUuhQEAKysrWFnVbBhjYWHR6l9kpiYpOwkajQYhnUJueWyaa3xdLVwxwm8Edp/djR1nd6Cfd78mfwy6OXxNmx6OuWniuJsejrnp4ZibprYw7pWVlVAUBRqNpsZ71faksf02NRoNFEWpdQwbOqaqP5tz5szBJ598gg0bNuDEiROYNWsWiouLDbvFPProo5g3b57h/GeeeQbbt2/Hv/71LyQnJ2PJkiU4dOiQITRRFAXPPvssXn31Vfz0009ISkrCo48+io4dOxqClsuXL2PEiBHo0qUL3nrrLWRnZyMjI8OoZ8jf/vY3WFpa4rHHHsOxY8fwzTff4J133jGa6UFtkxACiRmJAFrX1ri1uTvwbgBy5sqVa2zIS0REREREdCtU7wkyefJkZGdnY9GiRcjIyEBwcDC2b99uaEJ64cIFo+RryJAh+PLLL7FgwQLMnz8fAQEB2LRpk6HzLAC8+OKLKC4uxsyZM5Gfn4+hQ4di+/bthukyMTExOHXqFE6dOoXOnTsb1aNvwuLk5ISdO3fiySefREhICNzc3LBo0SJuj9sOpBelI6skC+Yac/T16HvjG6jI38UfPV17Ijk3GTtO78CDfR9UuyQiIiIiIqI2S/UQBABmz55d5/KXffv21Tg2ceJETJw4sc77UxQFy5Ytw7Jly2q9ftq0aYbteerTv39//Prrrzc8j9oW/SyQXm69YG3e+tfX3d3jbiQfSMa2U9vwQO8HYK5pFS9bIiIiIiKiNkf15TBELS0hPQFA618KozfEZwg6WHdA3rU8xF6MVbscIiIiIiKiNoshCJmUSl0ljmQdAQAM8BqgcjUNY64xR2T3SADA5pObVa6GiIiIiIio7WIIQiblZO5JlFSUwN7SHv4u/mqX02CR3SNhppjhRM4JnLlyRu1yiIiIiIioBeh7VpLUFM8HQxAyKfp+IEGeQdAobefb38XGBXf43AEA+PnkzypXQ0REREREzUm/3WtJSYnKlbQu+ufjVrY4ZodFMikJGW2rH0h14wPHY/+F/fjl/C+YHjwdDlYOapdERERERETNwMzMDM7OzsjKygIA2NraQlEUlatSjxACJSUlyMrKgrOzM8zMzG76vhiCkMkoqShBSm4KgLbTD6S6nm490c25G87kn8HO0ztxf+/71S6JiIiIiIiaiZeXFwAYghACnJ2dDc/LzWIIQiYjKTMJOqGDt703PO091S6n0RRFwd097sY7B9/B1tStuLfXvW1qSQ8RERERETWcoijw9vaGh4cHKioq1C5HdRYWFrc0A0SPIQiZDH0/kLa4FEbvTt87sS5hHbJKsvDX5b8Q2jlU7ZKIiIiIiKgZmZmZNcmbf5L4Z2QyGW25H4iepZklIvwjAHC7XCIiIiIiosZiCEImIackB5cLL0OBgiDPILXLuSVjA8ZCgYLDmYdx8epFtcshIiIiIiJqMxiCkElISJezQAJdA2FnaadyNbfGw84DoZ3kMhhul0tERERERNRwDEHIJOj7gbTFXWFqc3ePuwEAe87tQXF5scrVEBERERERtQ0MQajdE0IgMTMRQNvuB1JdP49+8HH0Qam2FHvO7lG7HCIiIiIiojaBIQi1e2eunEFBWQGsza3Rw62H2uU0CUVRMD5wPABgS+oWCCFUroiIiIiIiKj1YwhC7Z5+V5h+Hv1grmk/u0Lf5XcXbC1scbnwsuFrJCIiIiIioroxBKF2r731A9GzNrdGuF84ADZIJSIiIiIiagiGINSulVeW43j2cQDtpx9IdeMCxgEADqUdQnphusrVEBERERERtW4MQahdO5Z1DBW6CrjauKKzY2e1y2lynRw7IcQ7BAICW1O3ql0OERERERFRq8YQhNo1fa+MYK9gKIqicjXNIyogCgAQcyYGpdpSlashIiIiIiJqvRiCULvWXvuBVDeo4yB423ujuKIY+87tU7scIiIiIiKiVoshCLVb+aX5OJt/FkD77AeipyiKYTbIlpPcLpeIiIiIiKguDEGo3TqccRgA0M25G5ysnVSupnmFdwuHlZkVzl09h2PZx9Quh4iIiIiIqFViCELtVvV+IO2dnaUdRnYdCYDb5RIREREREdWFIQi1S0KIqn4g3u23H0h1UYFySUzspVjklOSoXA0REREREVHrwxCE2qVLBZeQey0XFhoL9HbvrXY5LaKrc1f08+gHndBhW+o2tcshIiIiIiJqdRiCULukXwrTx70PLM0sVa6m5YwPHA8A2H56O8ory1WuhoiIiIiIqHVhCELtkn4pjCn0A6kutFMo3GzdUFBWgN8u/KZ2OURERERERK0KQxBqd7Q6LZKykgCYTj8QPTONGcZ2HwuADVKJiIiIiIiuxxCE2p3knGSUakvhZOUEP2c/tctpcRH+ETDXmCM1LxUpOSlql0NERERERNRqMAShdke/FCbIMwiKoqhbjAqcrJ1wZ5c7AQBbUreoXA0REREREVHrwRCE2h1T7QdSnb5B6q8XfkV+ab66xRAREREREbUSDEGoXSkqL8LJ3JMATK8fSHUBrgHo4doDWp0WO07tULscIiIiIiKiVoEhCLUrRzKPQECgs0NnuNm6qV2OqvSzQbae2gqtTqtyNUREREREROpjCELtin4pjCnPAtEb2mUonK2dkXctD39c+kPtcoiIiIiIiFTHEITaFfYDqWKuMUekfyQAbpdLREREREQEMAShdiSjKAPpRekwU8zQz6Of2uW0CmMDxsJMMcOx7GM4e+Ws2uUQERERERGpiiEItRv6WSA9XHvAxsJG3WJaCRcbF4R1DgPA2SBEREREREQMQajdSEhPAMB+INe7u8fdAIB95/ehsKxQ5WqIiIiIiIjUwxCE2gWd0OFI1hEA7AdyvV5uveDn7IfyynLsOrNL7XKIiIiIiIhUwxCE2oVTeadQVF4EOws7BLgEqF1Oq6IoCu4OlLNBfj75M3RCp3JFRERERERE6mAIQu2Cvh9IP49+MNOYqVtMK3Sn752wt7RHVkkWDqUdUrscIiIiIiIiVTAEoXaB/UDqZ2VuhTHdxgAANqdsVrkaIiIiIiIidTAEoTavVFuK5NxkAOwHUp+owCgoUJCYmYhLBZfULoeIiIiIiKjFMQShNu9o1lFodVp42HrA295b7XJaLQ87DwzuNBgAsOXkFpWrISIiIiIianmqhyBr1qxB165dYW1tjdDQUPz555/1nr9x40b07NkT1tbW6NevH7Zu3Wp0vRACixYtgre3N2xsbBAeHo7U1FSjc1asWIEhQ4bA1tYWzs7OtT6Ooig1Ll9//fUtfa3UPPT9QAZ4D4CiKOoW08qNDxwPANh1dhdKKkpUroaIiIiIiKhlqRqCfPPNN5gzZw4WL16M+Ph4BAUFISIiAllZWbWef+DAAUyZMgWPPfYYEhISEB0djejoaBw9etRwzptvvol3330Xa9euxcGDB2FnZ4eIiAiUlpYazikvL8fEiRMxa9aseuv79NNPkZ6ebrhER0c3yddNTUvfD4RLYW4syDMInR06o1Rbij1n96hdDhERERERUYtSNQR5++23MWPGDEyfPh29e/fG2rVrYWtri3Xr1tV6/jvvvIPIyEjMnTsXvXr1wvLlyzFw4EC8//77AOQskNWrV2PBggW455570L9/f3z22WdIS0vDpk2bDPezdOlSPPfcc+jXr1+99Tk7O8PLy8twsba2brKvnZpG3rU8XCi4AAUKgjyD1C6n1VMUxTAb5OeTP0MIoXJFRERERERELUe1EKS8vBxxcXEIDw+vKkajQXh4OGJjY2u9TWxsrNH5ABAREWE4/+zZs8jIyDA6x8nJCaGhoXXeZ32efPJJuLm5YfDgwVi3bh3fMLZC+lkg3V26w8HKQeVq2oa7/O6CjbkNLhdexuHMw2qXQ0RERERE1GLM1XrgnJwcVFZWwtPT0+i4p6cnkpOTa71NRkZGrednZGQYrtcfq+uchlq2bBnuuusu2NraYufOnXjiiSdQVFSEp59+us7blJWVoayszPB5QUEBAKCiogIVFRWNenxqmLi0OOh0OvR179viz7H+8dra2JrDHCN9R+Ln1J+x6cQm9HHto3ZJbUZbHXO6eRxz08RxNz0cc9PDMTdNHPf2raHjqloI0totXLjQ8PGAAQNQXFyMVatW1RuCrFy5EkuXLq1xfOfOnbC1tW2WOk2ZEAJbL2xFcWUxCs0KsfXi1hvfqBnExMSo8ri3wqrcCllZWdiatRV+uX5wtnBWu6Q2pS2OOd0ajrlp4ribHo656eGYmyaOe/tUUtKwjR9UC0Hc3NxgZmaGzMxMo+OZmZnw8vKq9TZeXl71nq//NzMzE97e3kbnBAcH31K9oaGhWL58OcrKymBlZVXrOfPmzcOcOXMMnxcUFMDHxwdjxoyBo6PjLT0+1XQu/xzsiu3gYuaCGdEzYGFm0aKPX1FRgZiYGIwePRoWFi372E3h9C+nkZiZiPKu5RgXNE7tctqEtj7m1Hgcc9PEcTc9HHPTwzE3TRz39k2/EuNGVAtBLC0tERISgt27dxt2XdHpdNi9ezdmz55d623CwsKwe/duPPvss4ZjMTExCAsLAwD4+fnBy8sLu3fvNoQeBQUFOHjw4A13grmRxMREdOjQoc4ABACsrKxqvd7CwoIvsmZwNOcoNBoN+nv1h621ejNt2ur4RveKxpHsI9hzfg8eDX4UVuZ1f2+TsbY65nTzOOamieNuejjmpodjbpo47u1TQ8dU1eUwc+bMwdSpUzFo0CAMHjwYq1evRnFxMaZPnw4AePTRR9GpUyesXLkSAPDMM89g+PDh+Ne//oWoqCh8/fXXOHToED7++GMAcueLZ599Fq+++ioCAgLg5+eHhQsXomPHjkbb2164cAF5eXm4cOECKisrkZiYCADo3r077O3tsXnzZmRmZuL222+HtbU1YmJi8Nprr+GFF15o0eeH6peYkQiAW+PerJCOIfC080RmcSZ+Of8LxviPUbskIiIiIiKiZqVqCDJ58mRkZ2dj0aJFyMjIQHBwMLZv325obHrhwgVoNFUb2AwZMgRffvklFixYgPnz5yMgIACbNm1C3759Dee8+OKLKC4uxsyZM5Gfn4+hQ4di+/btRtvbLlq0CBs2bDB8PmDAAADA3r17MWLECFhYWGDNmjV47rnnIIRA9+7dDdv5UutQXlmOo9lHATAEuVkaRYOogCisS1yHzSmbMbrbaCiKonZZREREREREzUb1xqizZ8+uc/nLvn37ahybOHEiJk6cWOf9KYqCZcuWYdmyZXWes379eqxfv77O6yMjIxEZGVnn9aS+5JxklFeWo4N1B/g6+apdTpsV3i0cXyR9gXNXz+F49nH08eBOMURERERE1H5pbnwKUeuTkJ4AQM4C4eyFm+dg5YCRXUcCAH4++bPK1RARERERETUvhiDUJun7gQzwGqBuIe3A+MDxAIADlw4gtyRX5WqIiIiIiIiaD0MQanMKywpx+sppAECQV5DK1bR9XZ27oq97X+iEDttObVO7HCIiIiIiombDEITanMOZhyEg4OvkCxcbF7XLaReiAqMAANtPbUdFZYXK1RARERERETUPhiDU5sSnxwPgrjBN6fbOt8PVxhVXy67itwu/qV0OERERERFRs2AIQm2KEIL9QJqBucYcY7uPBQBsSd2icjVERERERETNgyEItSlphWnILsmGucac27k2scjukTDXmCMlNwWpualql0NERERERNTkGIJQm6KfBdLLrResza3VLaadcbJ2wrAuwwBwu1wiIiIiImqfGh2CVFRUwNzcHEePHm2OeojqlZCRAID9QJqLfrvc/Rf242rpVZWrISIiIiIialqNDkEsLCzQpUsXVFZWNkc9RHWq1FUiKSsJAPuBNJdA10AEugRCq9Nix+kdapdDRERERETUpG5qOcwrr7yC+fPnIy8vr6nrIarTydyTKKkogb2lPfxd/NUup93SzwbZmroVlTqGnURERERE1H6Y38yN3n//fZw6dQodO3aEr68v7OzsjK6Pj49vkuKIqtP3Awn2DIZGYTub5jK0y1D8v4T/h9xrufjj0h+4o8sdapdERERERETUJG4qBImOjm7iMohujP1AWoaFmQUi/CPw7fFv8fPJnxmCEBERERFRu3FTIcjixYubug6iepVUlCAlNwUAMMCb/UCa29iAsfjuxHc4mn0U5/LPoatzV7VLIiIiIiIiumW3tKYgLi4OX3zxBb744gskJCQ0VU1ENSRlJkEndPC294aHnYfa5bR7brZuCOscBgDYcnKLytUQERERERE1jZsKQbKysnDXXXfhtttuw9NPP42nn34aISEhGDVqFLKzs5u6RiLDUhjuCtNy9A1S957bi6LyIpWrISIiIiIiunU3FYI89dRTKCwsxLFjx5CXl4e8vDwcPXoUBQUFePrpp5u6RqKqpqjsB9Ji+rj3QVenriirLMOuM7vULoeIiIiIiOiW3VQIsn37dnzwwQfo1auX4Vjv3r2xZs0abNu2rcmKIwKA7OJsXC68DAUK+nv2V7sck6EoimE2yJaTW6ATOpUrIiIiIiIiujU3FYLodDpYWFjUOG5hYQGdjm+UqGnpZ4EEugbCztKu/pOpSY3oOgJ2FnbIKM5AXFqc2uUQERERERHdkpsKQe666y4888wzSEtLMxy7fPkynnvuOYwaNarJiiMC2A9ETVbmVhjjPwYA8PPJn1WuhoiIiIiI6NbcVAjy/vvvo6CgAF27doW/vz/8/f3h5+eHgoICvPfee01dI5kwIQQOZx4GwH4gahkXMA4KFMRnxONywWW1yyEiIiIiIrpp5jdzIx8fH8THx2PXrl1ITk4GAPTq1Qvh4eFNWhzRmStnUFBWAGtza/Rw66F2OSbJy94LgzoOwl9pf2FL6hbMDJmpdklEREREREQ3pdEhSEVFBWxsbJCYmIjRo0dj9OjRzVEXEYCqpTD9PfrDXHNTmR01gbsD78ZfaX9h15ldeKT/I7CxsFG7JCIiIiIiokZr9HIYCwsLdOnSBZWVlc1RD5ERbo3bOgR7BaOTQydc017D3nN71S6HiIiIiIjoptxUT5BXXnkF8+fPR15eXlPXQ2RQXlmO49nHAQADvNkUVU2KoiAqIAqAbJAqhFC5IiIiIiIiosa7qfUF77//Pk6dOoWOHTvC19cXdnbG25bGx8c3SXFk2o5lHUOFrgJutm7o5NBJ7XJM3qhuo/DZkc9wseAijmQeQZBXkNolERERERERNcpNhSDR0dFNXAZRTfp+IMGewVAUReVqyNbCFqP8RmFL6hZsPrmZIQgREREREbU5jQ5BtFotFEXB3//+d3Tu3Lk5aiICACSkyxCES2Faj/GB47EldQv+vPwnsoqz4GHnoXZJREREREREDdboniDm5uZYtWoVtFptc9RDBADIL83HuavnAABBnpxx0Fp0duyMYM9gCAhsTd2qdjlERERERESNclONUe+66y788ssvTV0LkYF+V5huzt3gZO2kbjFkZHzgeADAztM7UV5ZrnI1REREREREDXdTPUHGjh2Ll19+GUlJSQgJCanRGHXChAlNUhyZLm6N23rd1uk2eNh6IKskDNbF+gAAWIxJREFUC7+c+wWj/UerXRIREREREVGD3FQI8sQTTwAA3n777RrXKYqCysrKW6uKTJoQwtAUlf1AWh+NokFUYBQ+TfwUP5/8GeHdwtm4loiIiIiI2oSbWg6j0+nqvDAAoVt1qeAS8q7lwUJjgd7uvdUuh2oxuttoWJpZ4kz+GSTnJKtdDhERERERUYM0KgQZN24crl69avj89ddfR35+vuHz3Nxc9O7NN610a/SzQPq494GlmaXK1VBtHKwcMNx3OABg88nNKldDRERERETUMI0KQXbs2IGysjLD56+99hry8vIMn2u1WqSkpDRddWSS9P1AuBSmddM3SD1w8QDyruXd4GwiIiIiIiL1NSoEEULU+znRrdLqtEjKSgLApqitXbcO3dDbrTcqRSW2pW5TuxwiIiIiIqIbuqmeIETNJTknGaXaUjhZOcHP2U/tcugG9LNBtp/eDq1Oq3I1RERERERE9WtUCKIoSo1dILgrBDUl/VKYIM8gfm+1AWE+YXCxcUF+aT5+v/C72uUQERERERHVq1Fb5AohMG3aNFhZWQEASktL8c9//hN2dnYAYNQvhOhmJKRza9y2xFxjjrHdx+K/Sf/F5pObMbzrcLVLIiIiIiIiqlOjQpCpU6caff7www/XOOfRRx+9tYrIZBWVFyE1LxUA+4G0JRH+Efjm2DdIyU1Bam4qAlwD1C6JiIiIiIioVo0KQT799NPmqoMIRzKPQECgs0NnuNm6qV0ONVAHmw4Y6jMU+87vw5bULXjW9Vm1SyIiIiIiIqoVG6NSq8GlMG2XvkHq/vP7cbX0qsrVEBERERER1Y4hCLUa+qaoXArT9gS6BiLAJQAVugrsPL1T7XKIiIiIiIhqxRCEWoWMogxkFGfATDFDP49+apdDjaQoCqICogAAW09tRaWuUuWKiIiIiIiIamIIQq2CfhZIT7eesLGwUbcYuinDfIfB0coROSU5OHj5oNrlEBERERER1aB6CLJmzRp07doV1tbWCA0NxZ9//lnv+Rs3bkTPnj1hbW2Nfv36YevWrUbXCyGwaNEieHt7w8bGBuHh4UhNTTU6Z8WKFRgyZAhsbW3h7Oxc6+NcuHABUVFRsLW1hYeHB+bOnQutVntLXyvVTd8PhEth2i5LM0tE+EcAALac3KJyNURERERERDWpGoJ88803mDNnDhYvXoz4+HgEBQUhIiICWVlZtZ5/4MABTJkyBY899hgSEhIQHR2N6OhoHD161HDOm2++iXfffRdr167FwYMHYWdnh4iICJSWlhrOKS8vx8SJEzFr1qxaH6eyshJRUVEoLy/HgQMHsGHDBqxfvx6LFi1q2ieAAAA6ocORrCMAgAFebIralo0LGAeNosGRrCM4n39e7XKIiIiIiIiMqBqCvP3225gxYwamT5+O3r17Y+3atbC1tcW6detqPf+dd95BZGQk5s6di169emH58uUYOHAg3n//fQByFsjq1auxYMEC3HPPPejfvz8+++wzpKWlYdOmTYb7Wbp0KZ577jn061d774mdO3fi+PHj+OKLLxAcHIyxY8di+fLlWLNmDcrLy5v8eTB1p/JOoai8CHYWduju0l3tcugWuNm64fZOtwMAfj75s8rVEBERERERGTNX64HLy8sRFxeHefPmGY5pNBqEh4cjNja21tvExsZizpw5RsciIiIMAcfZs2eRkZGB8PBww/VOTk4IDQ1FbGwsHnzwwQbVFhsbi379+sHT09PocWbNmoVjx45hwIDaZyuUlZWhrKzM8HlBQQEAoKKiAhUVFQ16bFN06NIh6HQ69HHrA12lDrpKndolNYh+TDm2xiK6ReC3C79h95ndeKjPQ7CztFO7pCbDMTc9HHPTxHE3PRxz08MxN00c9/atoeOqWgiSk5ODyspKo6ABADw9PZGcnFzrbTIyMmo9PyMjw3C9/lhd5zREXY9T/TFqs3LlSixdurTG8Z07d8LW1rbBj29qfkj7AVmlWSjXldfo8dIWxMTEqF1CqyKEAPKBi+UX8eb3byLUKVTtkpocx9z0cMxNE8fd9HDMTQ/H3DRx3NunkpKSBp2nWgjSHs2bN89opkpBQQF8fHwwZswYODo6qlhZ61WqLcW6TevgofPAjHEz4G3vrXZJDVZRUYGYmBiMHj0aFhYWapfTqpifNseHcR8iyz4LY8eOhaIoapfUJDjmpodjbpo47qaHY256OOamiePevulXYtyIaiGIm5sbzMzMkJmZaXQ8MzMTXl5etd7Gy8ur3vP1/2ZmZsLb29vonODg4AbX5uXlVWOXGv3j1lUbAFhZWcHKyqrGcQsLC77I6pCYlQgddPCy94KPs0+bfLPM8a0pvHs4vjj6BTJLMnEk5wgGdRykdklNimNuejjmponjbno45qaHY26aOO7tU0PHVLXGqJaWlggJCcHu3bsNx3Q6HXbv3o2wsLBabxMWFmZ0PiCnMunP9/Pzg5eXl9E5BQUFOHjwYJ33WdfjJCUlGe1SExMTA0dHR/Tu3bvB90M3lpiRCAAY4D2gTQYgVDtrc2uEd5O9edgglYiIiIiIWgtVd4eZM2cOPvnkE2zYsAEnTpzArFmzUFxcjOnTpwMAHn30UaPGqc888wy2b9+Of/3rX0hOTsaSJUtw6NAhzJ49GwCgKAqeffZZvPrqq/jpp5+QlJSERx99FB07dkR0dLThfi5cuIDExERcuHABlZWVSExMRGJiIoqKigAAY8aMQe/evfHII4/g8OHD2LFjBxYsWIAnn3yy1pkedPMSMhIAAMFeweoWQk0uKiAKChTEpcchrTBN7XKIiIiIiIjU7QkyefJkZGdnY9GiRcjIyEBwcDC2b99uaEJ64cIFaDRVOc2QIUPw5ZdfYsGCBZg/fz4CAgKwadMm9O3b13DOiy++iOLiYsycORP5+fkYOnQotm/fDmtra8M5ixYtwoYNGwyf63d72bt3L0aMGAEzMzP8/PPPmDVrFsLCwmBnZ4epU6di2bJlzf2UmJTcklxcLLgIBQqCPIPULoeamLeDN0K8Q3Ao/RC2pm7F4wMfV7skIiIiIiIycao3Rp09e7ZhJsf19u3bV+PYxIkTMXHixDrvT1EULFu2rN7AYv369Vi/fn29dfn6+rbJnUraEv1SmO4u3eFg5aBuMdQsxgeOx6H0Q4g5E4OH+z8Ma3PrG9+IiIiIiIiomai6HIZMm6EfiNcAdQuhZjPQeyA62ndESUUJ9pzdo3Y5RERERERk4hiCkCqEEEjMTATAfiDtmaIoiAqMAgD8lPITSrWlKldERERERESmjCEIqeL81fPIL82HlZkVerr1VLscakaj/EbBzsIOlwsvY/7u+bhaelXtkoiIiIiIyEQxBCFVJKTLXWH6evSFhRn36G7P7CztsHTEUjhYOiA1LxUvxryIjKIMtcsiIiIiIiITxBCEVMF+IKalh1sPrBq9Ch62HkgrSsPcmLk4c+WM2mUREREREZGJYQhCLa68shxHs48CYD8QU9LJsRNWjVkFP2c/5Jfm46VdLxnCMCIiIiIiopbAEIRa3InsEyivLIeLjQu6OHVRuxxqQS42Llg5aiX6e/RHqbYUS39Zil/O/aJ2WUREREREZCIYglCL0//1P8gzCIqiqFsMtTg7SzssGbEEw7oMg1anxVuxb+HHEz+qXRYREREREZkAhiDU4hIyZFNU9gMxXRZmFpg7ZC7u6XEPAGBd4jr8v/j/ByGEypUREREREVF7xhCEWlRBWYGhIWaQV5DK1ZCaFEXBYwMew9+D/w4A2JSyCW8deAtanVblyoiIiIiIqL1iCEIt6nDGYQgI+Dr5wsXGRe1ySGWKouDeXvdizu1zYKaYYf+F/Vi6bylKKkrULo2IiIiIiNohhiDUorgUhmoz0m8kFg9fDGtzayRmJmLernm4cu2K2mUREREREVE7wxCEWowQwtAUtV1sjVtRAbCHRZMZ4D0AK0ethJOVE87kn8HcmLm4XHBZ7bKIiIiIiKgdYQhCLSatMA3ZJdkw15ijr0dftcu5NampMHvsMfTesAEoLFS7mnaju0t3rBq9Ct723sgszsSLu17EydyTapdFRERERETtBEMQajH6WSC93XrDytxK3WJuRU4O8OqrQEEBHC5dgmbxYgYhTcjbwRurRq9CgEsACsoKMH/3fBxKO6R2WURERERE1A4wBKEWo+8H0qaXwpSWAsuXA3l5EJ07o8LODsqZM8CCBQxCmpCTtRNeG/UaBnoNRFllGZbvX47dZ3arXRYREREREbVxDEGoRWh1WhzJPAKgDYcgQgD//jdw5gzg5ATdokU4/vDDgLOzPDZ/PnD1qtpVthvW5tZYOHwhRnYdCZ3QYfXB1fj22LcQ7MNCREREREQ3iSEItYjU3FRc016Dg6UD/F381S7n5nz+OXDgAGBuDrzyCuDhgVJ3d1S++irQoQNw7pw8ziCkyZhrzPHc7c/hgV4PAAA+P/I5Por7CDqhU7kyIiIiIiJqixiCUIvQL4UJ8gyCRmmD33Z79gAbN8qPn34a6NWr6rrOnYGVKwEXF+D8eWDePCA/X5Uy2yNFUTA1eCpmDpwJBQq2pG7BG7+9gfLKcrVLIyIiIiKiNqYNvhultqhNb417/Djw3nvy40mTgJEja57TqRPw2msyCLl4US6NuXKlZets5+7ucTdevONFmGvMceDSASzeuxjF5cVql0VERERERG0IQxBqdsXlxUjJTQEADPAeoHI1jZSZCaxYAWi1wJAhwMMP131up07A668Dbm5VQUheXsvVagKGdhmKpSOWwtbCFkezj+KlXS8htyRX7bKIiIiIiKiNYAhCze5o1lHohA7e9t7wsPNQu5yGKykBli0DCgoAf3/guecARan/Nt7eckaImxtw6ZIMQnL5Jr0p9ffsjzfC34CLjQvOXz2PF2JewMWrF9Uui4iIiIiI2gCGINTs9P1ABni1oVkgOh3w5pvAhQtyicvChYC1dcNu6+0te4S4uwOXL8seITk5zVuvienq3BWrRq9CJ4dOyCnJwYu7XsSJ7BNql0VERERERK0cQxBqdvp+IG1qKcy6dUBcHGBpCSxYALi6Nu72Xl5yaYyHB5CeLmeEMAhpUh52Hlg1ehV6uPZAUXkRFuxdgIOXDqpdFhERERERtWIMQahZZRdn43LhZWgUDfp59FO7nIbZvh343//kx3PmAAEBN3c/Hh5yRoinpwxC5s0DsrObrk6Cg5UDVty1AoM7DkZ5ZTlW/LoC209tV7ssIiIiIiJqpRiCULPSzwIJdAmEnaWdusU0xJEjwNq18uOHHwbuuOPW7s/DQ84I8fICMjKAl18GsrJuvU4ysDK3wvxh8zGm2xgICKz5aw2+TPoSQgi1SyMiIiIiolaGIQg1K30/kDaxNe7ly7KpaWUlMGKE3A63Kbi5yRkh3t4yAJk3T+46Q03GTGOG2YNn48E+DwIAvjr6Fdb8tQaVukqVKyMiIiIiotaEIQg1GyFE2+kHUlgod4IpLgZ69ACeeurGO8E0hj4I6dSpKgjJyGi6+ycoioKH+j+EJ297EgoU7Di9A6/9+hrKtGVql0ZERERERK0EQxBqNqevnEZheSFszG0Q6Bqodjl102rlkpW0NLmjy4IFsiFqU3N1lTNNOnWSvUHmzZO9QqhJRXaPxPxh82FpZok/0/7Egj0LUFhWqHZZRERERETUCjAEoWajnwXSz6MfzDXm6hZTFyGAjz6SvUCsrYFFiwBn5+Z7PBcXGYR07ix3i5k3T4Yv1KRu73w7lo9cDjsLOyTnJuPFmBeRVcxeLEREREREpo4hCDWbhPQ20A9k82a5G4yiAHPnAl27Nv9jurjIpTE+PkBurgxCLl9u/sc1Mb3de2PV6FVws3XDpcJLmBszF+fyz6ldFhERERERqYghCDWLMm0ZjuccB9CK+4HExQH/+Y/8ePp0YPDglntsZ2cZhPj6Anl5Mgi5dKnlHt9E+Dj5YNXoVfB18kXetTy8tOslJGUmqV0WERERERGphCEINYtj2ceg1WnhZuuGTg6d1C6npvPngTfekMthRo8GoqNbvgYnJ2DFCjn75MoVGYRcvNjydbRzbrZueD38dfRx74OSihIs2rcIv134Te2yiIiIiIhIBQxBqFkYdoXxGgClKXdZaQpXr8qdYK5dA/r2BZ54oml3gmkMfRDi5wfk58sg5MIFdWppx+wt7bFs5DIM6TwEWp0Wb/7+JjanbFa7LCIiIiIiamEMQahZtNp+IBUVMnTIygK8vYH58wFzlZu2OjrKmrp1kwHN/PnAuXPq1tQOWZpZ4qWhLyEqIAoCAh/Hf4wNiRsghFC7NCIiIiIiaiEMQajJ5Zfm49zVcwCAIM8gdYupTgjgvfeAEycAOzu5E4yDg9pVSQ4OwKuvAt27yyDklVeAs2fVrqrd0Sga/CPkH3ik/yMAgO9OfIfVf6yGVqdVuTIiIiIiImoJDEGoyemXwnRz7gYnayd1i6nuu++AvXsBjQZ4+WW5TW1r4uAALF8OBAQABQUyCDlzRu2q2h1FUTCpzyQ8E/oMNIoGe87twfJflqNUW6p2aURERERE1MwYglCTM/QDaU27whw4AHz2mfz4H/8AgoNVLadO9vYyCAkMBAoLZRBy+rTaVbVL4d3CsWDYAliZWSE+Ix7zd8/H1dKrapdFRERERETNiCEINSkhBBIyWlk/kNOngbfflh+PHw+MG6duPTdiZycbt/boARQVySDk1Cm1q2qXbut0G1bctQIOlg5IzUvF3Ji5SC9MV7ssIiIiIiJqJgxBqEldLLiIvGt5sDSzRG/33mqXA+TlyZkVZWXAwIHA44+rXVHD6IOQnj2B4mJgwQIgNVXtqtqlHm49sGr0KnjYeiC9KB1zY+biVB5DJyIiIiKi9oghCDUp/a4wvd16w9LMUt1iyspks9HcXMDHB3jxRcDMTN2aGsPWVgYhvXpVBSEpKWpX1S51cuyEVWNWoZtzN1wtu4p5u+cZlnUREREREVH7wRCEmlSr6QciBLB6tZw94eAALFwoZ1e0NTY2wNKlQJ8+QEmJ/DqSk9Wuql1ysXHByvCVCPIMQqm2FEv2LcG+c/vULouIiIiIiJoQQxBqMlqdFkezjwJoBf1AvvwS+O03wNxc9tTw9la3nlthYwMsWQL07Qtcuya39j1xQu2q2iVbC1ssGbEEd3a5E5WiEv+K/Rd+PPEjhBBql0ZERERERE2AIQg1meScZJRqS+Fk5QQ/Zz/1CvnlF+Drr+XHs2fLWRRtnbU1sHgx0L///2/vzuObqvI2gD/3ZutGd7phgbIIKDtKp+BOoSw6oMgAw6uMIsw44IggKKIgIAOCIG4j6rjgKAPjvK+4IUNFEZRaGRaRVVZZ29I1bdpmPe8ft0mTNGnT0ja0eb6fzyE355577klOU3J/Pefc6kDI4cP+blWrpJbVeHzQ4xjTbQwA4J397+DtfW8zEEJERERE1ApcFUGQ1157DR07dkRQUBBSU1Px448/1lr+o48+Qvfu3REUFIRevXph8+bNLvuFEFiwYAESExMRHByM9PR0HHdbVLKwsBCTJk1CeHg4IiMjMWXKFJSVlTn2nzlzBpIk1Ug//PBD473wVsa+Hkif+D6QJMk/jTh6FHjpJWX7nnuAIUP8046mEBSkBD/69AEqK5WgyMGD/m5VqyRJEqb0n4IH+z4IAPjk2Cd4YdcLMFvNfm4ZERERERFdCb8HQTZu3IhZs2Zh4cKF2Lt3L/r06YOMjAzk5eV5LL9r1y5MnDgRU6ZMwb59+zBmzBiMGTMGB50uBlesWIGXX34Za9euRXZ2NkJDQ5GRkYHKykpHmUmTJuHQoUPIzMzE559/jh07dmDatGk1zvfVV1/h0qVLjjRgwIDGfxNaCft6IP0T+/unAXl5ykKoZjOQmgpMnuyfdjQlnU4JhPTtqwRCnn0W+Plnf7eq1bq7x92YnTYbalmNHWd3YPHOxTDajP5uFhERERERNZDfgyCrV6/G1KlT8cADD+C6667D2rVrERISgnfeecdj+ZdeegnDhw/HnDlz0KNHDyxZsgT9+/fHq6++CkAZBbJmzRo8/fTTGD16NHr37o33338fFy9exKZNmwAAR44cwZYtW/D3v/8dqampuOmmm/DKK69gw4YNuHjxosv5YmJikJCQ4EgajaZJ34+WqsxUhuOFymgbv6wHUlGh3Aq3pARISQEefxyQ/f7j3TS0WmWB1P79lTvgPPsscOCAv1vVat3W8TYsvHUhgtRB+DnvZ7x/8X0UVhT6u1lERERERNQAan+e3GQyYc+ePZg3b54jT5ZlpKenIysry+MxWVlZmDVrlkteRkaGI8Bx+vRp5OTkID093bE/IiICqampyMrKwoQJE5CVlYXIyEjccMMNjjLp6emQZRnZ2dm4++67Hfm//e1vUVlZiWuvvRZz587Fb3/7W6+vx2g0wmis/iuxXq8HAJjNZpjNrXsY/d4Le2G1WZEcnoxwTXjzvl6bDfLy5ZBOnQIiI2F98knlVrhN3Ab7a/RL30oSMHeu8rr37gUWLoT1qaeUESLU6K6PuR5Lbl2CRd8uwgnTCcz9ai4W3bYI7dq083fTqIn59XNOfsN+Dzzs88DDPg9M7PfWzdd+9WsQJD8/H1arFfHx8S758fHxOOrlNqA5OTkey+fk5Dj22/NqKxMXF+eyX61WIzo62lEmLCwMq1atwuDBgyHLMv73f/8XY8aMwaZNm7wGQpYtW4ZFixbVyN+6dStCQkI8HtNabL68GXmleehQ2aHGGi1Nrf1XXyHxhx9gU6txZNQolO3e3aznz8zMbNbzOZP69kXXkycRdfw4bH/5C3753e9Q0qmT39rT2mVIGSjQFODwr4dx/z/ux4SECWgXxEBIIPDn55z8h/0eeNjngYd9HpjY761TeXm5T+X8GgS5msXGxrqMOLnxxhtx8eJFrFy50msQZN68eS7H6PV6JCcnY9iwYQgPD2/yNvvTp5s/RVxwHO676T7ckHRD3Qc0EumrryCfOgXExcE2ezba3nxzs53bbDYjMzMTQ4cO9e80qREjIK9YAWn3biR8+y2sgwYpU2Wo0ZnNZmi3aJGlzcKpklPIFJmY23dus/7MU/O6aj7n1KzY74GHfR542OeBif3eutlnYtTFr0GQ2NhYqFQq5ObmuuTn5uYiISHB4zEJCQm1lrc/5ubmIjEx0aVM36qpAgkJCTUWXrVYLCgsLPR6XgBITU2tNWqo0+mg0+lq5Gs0mlb9IbtUegl55XnQqDTom9S3+V7rwYPAG28oa39MnAj5jjua57xu/N6/Gg3w9NPA888DP/wAeflyYP584AZemDeFUFUo/jrkr1iVvQp7Lu3B8qzlmHHjDAztPNTfTaMm5PfPOfkF+z3wsM8DD/s8MLHfWydf+9SvK0dqtVoMGDAA27Ztc+TZbDZs27YNaWlpHo9JS0tzKQ8ow5ns5VNSUpCQkOBSRq/XIzs721EmLS0NxcXF2LNnj6PM119/DZvNhtTUVK/t3b9/v0tghRT2u8J0j+2OYE1w85z00iXgr38FrFbg5puBiROb57xXK7UaeOIJYNAgwGIBli4FmnlaUCAJUgfh6VuexpCUIbAJG17+8WVsPLgRQgh/N42IiIiIiGrh9+kws2bNwuTJk3HDDTdg4MCBWLNmDQwGAx544AEAwP3334927dph2bJlAIBHH30Ut956K1atWoVRo0Zhw4YN+O9//4s333wTACBJEmbOnInnnnsOXbt2RUpKCp555hkkJSVhzJgxAIAePXpg+PDhmDp1KtauXQuz2YwZM2ZgwoQJSEpKAgCsW7cOWq0W/fr1AwD83//9H9555x38/e9/b+Z36OpnD4I0211hDAZg8WKgtBTo2hWYOVNZKDTQqdXAnDnACy8A33+vBImefFK5XTA1OrWsxqOpjyI6OBofHf4IH/z8AQorCvHHG/4IWWqldyYiIiIiImrh/B4EGT9+PC5fvowFCxYgJycHffv2xZYtWxwLm549exay061OBw0ahPXr1+Ppp5/GU089ha5du2LTpk3o2bOno8zcuXNhMBgwbdo0FBcX46abbsKWLVsQFBTkKPPhhx9ixowZGDJkCGRZxtixY/Hyyy+7tG3JkiX49ddfoVar0b17d2zcuBH33ntvE78jLYtN2PBT7k8AgH4J/Zr+hFYrsHw5cP48EBurTAPRapv+vC2FWq3cHliSgO++U96rJ54AfvMbf7esVZIkCff3uR/RwdF4c8+b2HxiM4orizF70GxoVfy5JCIiIiK62vg9CAIAM2bMwIwZMzzu2759e428cePGYdy4cV7rkyQJixcvxuLFi72WiY6Oxvr1673unzx5MiZPnuy90QQAOF5wHAazAaGaUHSJ7tL0J3zzTWD/fkCnA555BoiObvpztjT2QIgsAzt2KIGQuXOVqTLUJO689k5EBUXhhawXsOv8LpR8U4Knb3kaYdowfzeNiIiIiIiccMw2XRH7VJje8b2hklVNe7LPPwc2b1ZGOTz+OMBbwXqnUgGzZgG33qqMnnn+eWVkCDWZwe0HY/FtixGiCcGhy4fwROYTyC/P93eziIiIiIjICYMgdEXsQZAmnwqzb58yCgQA7r+f0zt8YQ+E3H47YLMBK1cCO3f6u1WtWq/4Xng+/XlEB0fjrP4s5mTOwdmSs/5uFhERERERVWEQhBqs0lKJowVHATTxoqjnzilTOoQAhgwBxo5tunO1NrKsLBw7ZEh1IGTHDn+3qlXrGNkRLwx9Ade0uQb55fmYmzkXhy8f9neziIiIiIgIDILQFfg592dYbBbEh8YjsU0T3TpYr1fuBFNeDlx/PTB9Ou8EU1+yDDz6KDB0qBJIeuEF4Jtv/N2qVq1taFusGLoC3WO6w2A24Omvn0bWuSx/N4uIiIiIKOAxCEIN1uRTYSwWYNkyICcHiI8H5s0DNJqmOVdrJ0nAI48Aw4YpgZAXXwS+/trfrWrV2uja4Lk7nkNqu1SYbWYs+24Zvjz+pb+bRUREREQU0BgEoQbbl7MPQBNNhRECeO014OBBICQEWLAAiIho/PMEEkkCZswAhg9X3t81a4Bt2/zdqlZNp9Zh3k3zkNE5AwICf/vv3/DBgQ8ghPB304iIiIiIAhKDINQgBeUFOKc/BwkSesf3bvwTfPwx8NVXyoX73LlA+/aNf45AJEnAn/8MjBypBEJeegnIzPR3q1o1lazC9Bun4/c9fw8A2HhoI1758RVYbVY/t4yIiIiIKPAwCEINYp8K0yW6C9ro2jRu5dnZwHvvKdtTpwIDBjRu/YFOkoA//Qm4804lEPLyy8B//uPvVrVqkiRhYq+JmH7jdEiQkHkqE0t3LoXRYvR304iIiIiIAgqDINQg9qkwjb4eyKlTysKdQgAjRigX6tT4JAmYNg246y7l+auvAl9yvYqmNrzLcMy/eT60Ki12X9yN+V/Ph96o93eziIiIiIgCBoMgVG9CCMdIkEZdD6SoCFiyBKisBPr0US7SeSeYpiNJykib0aOV53/7G7B5s3/bFABSr0nFc7c/hzBtGI4VHMPczLnIM+T5u1lERERERAGBQRCqtzPFZ1BiLIFOpUP32O6NU6nJBCxdCuTnA+3aAU8+CajVjVM3eSdJwJQpwN13K89ffx34/HP/tikA9GjbAyvSVyA2JBYXSi/g8a2P43TRaX83i4iIiIio1WMQhOrNPgqkZ1xPaFSNcMta+wKdx44BYWHKnWDCwq68XvKNJAEPPACMHas8f+MN4NNP/dumAJAckYwXhr6AjhEdUVRZhCe3PYkDuQf83SwiIiIiolaNQRCqt0ZfD2TjRmDHDkClAubNA5KSGqde8p0kAZMnA+PGKc/fegvYtMmvTQoEMSExWJ6+HD3b9kS5uRwLty/Ezl93+rtZREREREStFoMgVC8mqwmHLh8CAPRLbIQgyHffAR9+qGw//DDQuwlut0u+kSTgvvuA8eOV52+/rdyqmJpUqDYUi25fhMHJg2GxWbBi1wr8+/C/UVJZ4u+mERERERG1Olx0gerlyOUjMFlNiA6ORnJ48pVV9ssvwIsvKtujRwMZGVfeQLoykgRMmqQ8btgAvPMOYLUC997r75a1alqVFnMHz8Vbe97C58c/x7qf1mHdT+uQGJaI7rHd0S2mG7rHdkfHyI5QySp/N5eIiIiIqMViEITqxXFXmPi+kK7kzi35+cBzzykLot54I/Dgg43TQLpy9kCILAPr1wPr1gE2G/C73/m7Za2aLMmYNmAaktok4csTX+Kc/hwulV3CpbJL+ObMNwAAnUqHrtFd0T22uyNFBEX4ueVERERERC0HgyBUL/b1QK7o1riVlcqtcIuKgA4dgMcfVy646eoycaLSLx98APzjH8oCtvapMtQkJEnCXd3uwl3d7oLBZMCxgmM4ln8MR/OP4ljBMRjMBhy8fBAHLx90HJMQmuASFOFoESIiIiIi7xgEIZ+VVJbgVNEpAFcQBBECWLUKOHUKiIhQ7gQTEtJ4jaTGNX68Egh5/30lGGKzKcERanKh2lD0T+yP/on9AQBCCJzXn8fR/KM4kn8ER/OP4pz+HHIMOcgx5GD7r9sBcLQIEREREVFtGAQhn/2U+xMEBDpGdERUcFTDKnn/feCHHwC1Gpg/H4iLa9xGUuMbN06ZIrNunTI9xmYDfv97JY+ajSRJSI5IRnJEMoZ2HgoAMJgM+KXgFxzNP1qv0SIdIjtALfPXPxEREREFHn4LJp851gNp6CiQbduAf/9b2X70UaBHj0ZpFzWDe+9VbmH8zjvKgqk2G/A//8NAiJ+FakPRL7Gf405NzqNF7ImjRYiIiIiIqjEIQj4RQlzZeiCHDwOvvqps/+53wG23NVrbqJncfbcyNebvfwf+9S9latN99zEQchVpjNEi3WKr70TD0SJERERE1NrwGy755GLpReSX50Mtq9Ezrmf9Ds7JAZYuBSwWYNAgZQQBtUyjRytBj7feAj76SBkRMnkyAyFXsYaOFtGqtLg2+lqOFiEiIiKiVoVBEPKJfRTIdbHXQafW+X6gwQAsXgzo9UDnzsBjj/GCuaX77W+VESFvvAH87/8qgZAHHmC/thC1jRY5VnDMERjxNFokPjS+xp1oOFqEiIiIiFoSfnslnzRoPRCrFVi5Ejh3DoiOBp55BggKapL2UTO7804lEPL668DHHyuBkClTGAhpoXwdLZJryEWuIRff/votgOrRIvYpNN1juyMyKNKPr4SIiIiIqHYMglCdLDYLDuQeAADHRZJP3n4b2LMH0GqVAEhMTBO1kPxi5EglEPLaa8AnnyiBkKlTGQhpBbyNFjleeNwlMFLXaJFuMd2QEpXC0SJEREREdNXgN1Oq0/GC46iwVKCNtg06R3X27aAvvwQ++0zZnjUL6NKl6RpI/jN8uBL0ePVVpb+FAKZNYyCkFQrVhqJvQl/HaLD6jBZxvxMNR4sQERERkb8wCEJ1sq8H0ie+DyRfLm737wfWrlW277sPGDy46RpH/peRoYwIeeUV4PPPlREhf/oTAyGtXH1Gixy6fAiHLh9yHGsfLdItRplGw9EiRERERNRc+K2T6mRfD8SnqTAXLgDLlysXwrffDowb17SNo6vD0KFKIOSll4DNm5X+//OfGQgJMN5GizgvuHq25Gydo0W6xXRDVHCUH18JEREREbVWDIJQrQwmA44VHAPgw6KopaXKnWAMBqB7d2DGDF4EB5IhQ5T+XrMG2LJFCYTwZyCgOY8WSe+UDsD30SJxIXEuU2g4WoSIiIiIGgO/UVKtDuYdhE3YkBSWhLjQOO8FLRZlBMjFi0DbtsD8+cqCqBRY7rhDCXq8+CKwdauyRsgjjzAQQg6eRotcKL3gEhQ5W3IWeeV5yDubhx1ndwBQRot0ieriEhjhaBEiIiIiqi8GQahWey/tBVDHKBAhlDVADhxQboG7YAEQGdks7aOr0O23K1NjVq0CMjOVESF/+YuSR+RGkiRcE34Nrgm/xutokWMFx1BmKsPh/MM4nH/YcWxcSByujbkW0cHRCNeFI1wXjoigCMd2uC4cbbRtoJJV/np5RERERHSVYRCEauXTeiCffgr85z/KX/vnzgU6dmyWttFV7NZblaDHCy8A27YpgZCZMxkIIZ/Ua7RIeV6d9YVpwxCurRkkidC5BkzsKUQT4tsi0ERERETU4jAIQl7lGfJwsewiZElGr7hengvt3g28/bay/eCDwI03Nl8D/aiyEjh+HLhwIQx5ecoMIM7+cXPzzUpgbOVK4JtvgIICoHdvIDlZSYmJgJq/gqhunkaLlJvL8UvBLzhddBp6ox4lxhLojXqXVGoqBQCUmcpQZirDxbKLPp1PJakcQZJQTSgu5V7CuT3nEBUS5XG0SbguHFoVfwEQERERtQS8AiGv7KNAro2+FqHa0JoFzpwBVqxQpsMMGwaMHt2s7WsuBgNw6hRw4gRw8qSSLlwArFYV8vKuxxdfqCDLQGioMgsoKqr60T1FRgIREYAqUEbn33STMvpjxQplutSBA9X7VCogKak6KGJP7doBOp3/2kwtQogmxGW0iCdWmxVlpjKvQRK9UY+Syur8EmMJjFYjrMKKosoiFFUWwWazIc+Qh/yT+ZBrGckUpA5CuNZzgMR9xElEUATCtGGQJY6MIiIiImpuDIKQV/su7QPgZT2QkhJgyRJlSESvXsDDD7eKxS/1+poBj0uXPJeNjgaMRiM0GsBqVYIlBoMSIKmNJAHh4TWDJZ4CJ2FhreBtHTRIWSh1zx7g/Hng7Fng3DnlZ+fcOSU5kyQgLg5o3x645holMGLfDvUQjCPyQiWrEBEUgYigCCQj2adjjBYjSk2ljgBJoaEQX+/6Gtdedy0MFoNrAKUqsGITNlRaKlFpqfRpeg4ASJCUaTpegiSeAihB6iBO0yEiIiK6QgyCkEdCCPyU+xMAoH9if9edJhOwdCmQl6dMaZg3r0VOaygqqg502IMely97LhsXB3TpAnTurKROnYCwMCs2b96PESOSYDbLKCqCSyoudn20bwuhxJBKSupuo1qtjBzxFihxfh4UdBUHTFJSlGQnhDI9xh4EsaezZ5VbLefmKmn3btd6oqNdgyL27fDwq/jFU0uiU+ugU+sQGxILADCbzSg7VIaRPUdCo9HUKC+EQLm5vMZIE+cRJu4jUQxmAwQESk2lKDWV4kJpHZHTKhpZ49MoE+fnvK0wERERkSt+OyKPThadRKmpFMHqYHSN6Vq9Qwjg1VeBI0eUv8ovXAi0aeO/hvrAfr3tHOw4eRIoLPRcPjFRCXQ4Bz08vUSzWXmUJOWtCA1VrstrY7Mp1/juARNPgZPSUuXOwwUFSqqLTuc5QOIpcOLhWq55SRIQG6ukfm6L7paU1AyOnDunvAmFhUr66SfXY9q0qTmtJjlZqZ/BEWpCkiQhVBuKUG0oktok+XSMxWZBqbHUa5DEJYhiUp6brCaYbWYUVBSgoMKHXwhVQjQhjkVh7aNJNCoNdCqd41Gr0tbIc95XW1LLao5OISIiohaFQRDyyL4eSO/43q5/SfzoI2WRS1kGnnxSWb/hKiKEMoDAHuiwJ0+jLiRJCVo4BztSUpp2xoUsKyM7IiLqvomO2ay02z1A4iloUlkJGI1ATo6S6hIa6nm9EvegSUSEH27oYn+DevZ0zTcYlOk0zlNqzp1TOry0FDh8WEnOgoI8B0fi4wNoYRa62qhlNaKCoxAVHOVTeSEEjFaj11Em3oIpAsoolXJzOXIMPvxiaAAJEjQqjSMoolPpoJE10KmVR61K69j29KhVaT3m1ZVUkorBFyIiImoQBkHII4/rgezaBfzjH8r2H/8I9O1b47jmJARw8WLNER4GQ82ysqzMmnAe4ZGSolwjX600murBEnWprPQcKPH03GKpXr/k/Pna65Wk6uk4ntYscQ6cNPn6JaGhQLduSnJmMlUHR+xTas6dU3447LfxOX7c9Ri1WomAua850q7dVTBMhsiVJEkIUgchSB2EuNA4n44RQjgWhXVORqsRJqvpipOAUM4D4chrThKk6sCLPYDiNpLFEZTxYZSLe54kJFw2XcaF0gvQaXRQySrIkgxZkqGSnLbd8hmYIbp6CCFgFVbYhM1jqjRWosRSgtyyXKjUKke+t2OsNi/5fijvXlZAIFgdjGBNMEI1oQjRhNSaQrWh0Kl0/J1FAYtBEKrBaDHicL7yF/V+CVVTFU6cAFatUrbvugsYObJZ22S1Kte47iM8KitrllWrlVEWzgGPDh1a9y1sg4KUaTyJibWXEwIoK/O8Xol74KSkRClfXKykuqjVta9ZEh6uBErsSadrpKCJVqss0tKpk2u+xaIMi3Ffc+T8eSVwcuaMkpxJkvImeho9cjVHzIjcSJKENro2aKNrg3Zo3BF7QghYbBZH8MNsM8NoMToeGyPI4kg21+eONkAZHWO0Gh23Qm5MNpsNeXl5+PjLj2u9K5AndQVKfAmmNGZ+U9btnO8LCTV/6dfnIszX4z2V81if07Fmsxn5pnxcKL0AjbruYPiVnNd+0Wq/SBdCQEDAarM68p0vbh3bbvnux3sr555vz/O1XEPyPOXXp5y3gIBN2GCD50CAe7Cgzn6o+pxv3Lyx3p/z1kCCVGewxGsQRROKYE0wQjQhDKZQi8QgCNVw6PIhWGwWxIbEKnPcCwqUO8GYTED//sCUKU16fotFuVZ1HuFx+rRyendarTKiwzng0b59i1yntVlIkrJ8hn0JjdpYrcrdcmpb6NWeDAal3/LzleQLtVoZ3OEcGHF/7i35tAis82iPtLTqfCGUFXCdp9TYk8GgjCC5eBHIznatLzYWcrt2aF9cDEmtVn7wkpOv+jVxiBqbJClTYDQqDULRfHdsEkLAbDPDbDU7RrTYt90fPQVUatvnnirNlShTlSFUEwpIqHGBVRtfL8Do6mK/IP6/L/8vIC+IA5E9oGcfDWYP7LkE/SC75Hss4xYYrC3V9xhfywNApaUSFZYKGEwGx1TIGsmiPNqDTwazAQazhyHU9XwfQzQhCFHXI4iiDUWwOtixHaIJgUbWMJhCzYaXilSDfSpMv4R+kEwm4LnnlMUok5OBuXMbdS0Fkwn49VfX6SxnzigX1O6CgqrX7rAHPdq149IOTUWlqh7FUReTyXX9EvegSWGhElAxGJSRKFar0se+3iXHnSz7HjBxD7KEhEiQ4uKUW/7ccEN1pUIoDXZfc+TcOeVF5OdDystDYl4e5NOnqxdLiYhwnVLTvr3yPCqKi7ISNSJJqp4C09TBF7PZjM2bN2PkyJp3BXL/i7bzX6OdAyWNkd/YdTdJHVD+eu/yHsH1uTfux9V2rKeyHst5ON6XY202G0rlUoRpw1yCII19XgHhuJiVJAkSJKhkFSRIkCTJcdEtSZLjAleC07Zbvq/lnPPqKldXWV/zPOXXt5xzEMBjkMBDYMCXYyRJqvVz3prZ15kqN5ejwlyBcnM5DGaD47l925dk/11YZipDmansitqlklQ+jz6xT/lxn/4TrAmGVtWKh35To2EQhGqwL4raN74PsHq1EqEIDwcWLLiiVUMrK5URHc4Bj7NnlTumuAsNdQ12dO4MJCXxmvJqpdUCbdsqqS5CKIu4lpX5nuzBk7IyJXhiv8tOaQNGwdvv5lMzSCIhLCwaoaHRCAvrjbBeQFhaVfBElCGs5AJ0OSdxactmtI2KAi5cUEaU2CM5Bw+6nsh+uyD3W/rGx/MHmagFc75AAwAwEN8qBOoFMQUe53WmENzwepyDKfbRJ3WORPEwKqXCXKFMgRJWx63jr4RaVnscmWIffaKVtThVcgpR56MQ3yYeMSExiAqKgkrmL/NAwiAIuSiqKMKZkjMAgD7fHlMWQ1WrgaeeAhISfK7HYFACHs5TWs6fVy6A3YWHu96hpUsX5Y/0vE5snSRJGdUTFOTboq/OhFBGnfgaMHHPM5mq10Upq9cfLMIAdIMQXVFS0htduiQhPFxGWFsLwqwlCDMWIKziMsLKchCmv4iwkgsILalEWG4pwn7aizDV9whVG6GSbErEyB4QcU6JiZzHRURERC2CczAlOji6wfUIIVBhqWjQSBR7MpgNqLQoCwVabBbHYuCe2Gw25BXkYf+u/Y5RXxIkRAVHITY4FjEhMYgNiUV0cDRiQ2IRGxKLmOAYxITEcJRJK3JVfON+7bXXsHLlSuTk5KBPnz545ZVXMHDgQK/lP/roIzzzzDM4c+YMunbtiueffx4jnRbqFEJg4cKFeOutt1BcXIzBgwfj9ddfR9euXR1lCgsL8cgjj+Czzz6DLMsYO3YsXnrpJYSFhTnKHDhwANOnT8fu3bvRtm1bPPLII5g7d27TvAlXCfsokE4GLSI++UzJnDEDuP56r8eUllaP7LAHPC5d8lw2OrrmCI+YGAY8yDeSpCyoqtMpPzf1ZQ+g1BYo8ZaMRiWAUlmpRl6efe0TNYCYqnStchIVgEgbYKwEKiqBkgqgsgKoqECwWY8wuRxheysRpq5AmKoSYeqDCFPtRpjWhNC4UIQlhSMkIRwqnRoqrUpJOjXUOmVb1mmgDlI78lVBGiXp1Eq5EC1knZInaTWcL0ZERERXLUmqXqD1StiEzTG9p7akr9TjB8MPiI2JRZGxCIUVhbAKKworClFYUQgUej9HG20bxAQrQRJ7sMQeILFvh2hCuLZJC+D3IMjGjRsxa9YsrF27FqmpqVizZg0yMjJw7NgxxMXVvBXgrl27MHHiRCxbtgx33nkn1q9fjzFjxmDv3r3o2bMnAGDFihV4+eWXsW7dOqSkpOCZZ55BRkYGDh8+jKCqOzxMmjQJly5dQmZmJsxmMx544AFMmzYN69evBwDo9XoMGzYM6enpWLt2LX7++Wc8+OCDiIyMxLRp05rvDWpm+3P2A2Vl6PeDHkASMHYsMGSIY39xsevdWU6cAPLyPNcVF+e6hkfnzr6tL0HUVLRaJRAX3YA/WFgsQFGRFZ9++hMGDrwDRqNcS+BERllZSFWqvotRhRCoMBpxucIeGKkEyqu2rTbgrC8tEQDMVal2smSDShJQqQCVSkBd9SirJGVbLUGlVuIkarUEWS1BpZahVgOyWoZaI0GlkZVyGtklqbXKo6xRVQVoZKg01UEbewBHrVNB1lYFcdRSVVu8J7W69n2yXHOb3zWIiIgCmyzJCNWGIlRb+9R9s9mMpEtJGDlEmfomhEBxZTHyy/NRUFGAgvKCGtv5FfkwWU2O6Tr2UfOeBKmDlMCIU3DEOVgSExyDyKBIBkr8TBK+rvjURFJTU3HjjTfi1VdfBaAMUUpOTsYjjzyCJ598skb58ePHw2Aw4PPPP3fk/eY3v0Hfvn2xdu1aCCGQlJSE2bNn4/HHHwcAlJSUID4+Hu+99x4mTJiAI0eO4LrrrsPu3btxQ9XCiFu2bMHIkSNx/vx5JCUl4fXXX8f8+fORk5MDbdW9VZ988kls2rQJR48e9em16fV6REREoKSkBOHh4Vf0PjUHIQT+sGECCvd+jyVnOuOaLr/FydGzcPKU5Ah4FHqJjiYmuo7w6NRJmebSmnH+cOBpaJ9bLNUjTTwGTkoFynINMFzSoyynDBUlJlgtojpZBawWpR77ttValWzKI2wCELaqR7/+WvdOlpTIhWR/lJU898caZZyfVz3ay0sSJFmCJAllrQanw5RtT3mu+ySXMq7lAYELF88jOTkZarUMSZaqyznXIyt/zZJVVcer3PJkp3Kyspihc132Nrm/TOdH5+RpX215zgnwHDhy3+deprmO9bXOpmyrxWLBrl3fY/DgwVBXTVNraDuvNP9qqc95f23vb23q86upKX6N1Van2WzGN998g9tvv73qwqhx6r3SOhpSd33rao5zNKSuulzJNaQkKX3+7bff4tZbb63xf/qV1t2QfVd6Xvt6vvbf/e55zv8v1LXP/f+N+qSrXUO+ywmh3EknvzwfBeUFnoMlFfk+Lw6rltWIDop2BEU8BUuig6Ohlv0+XqHF8fX626/vrMlkwp49ezBv3jxHnizLSE9PR1ZWlsdjsrKyMGvWLJe8jIwMbNq0CQBw+vRp5OTkID093bE/IiICqampyMrKwoQJE5CVlYXIyEhHAAQA0tPTIcsysrOzcffddyMrKwu33HKLIwBiP8/zzz+PoqIiRLXCIQ07fjyOAz8cg7EsCc8fWoay8lTgoOtvM0lSljNwHt3RqdMVrZdK1Oqp1cpNZCIivJWQoKw7EuatQK2EUBaLtVqVR4vJBmulGdYKE6xGCyxGK2yVVduVFliNVclkVcqZrK7JaIHFZIPNbFXqsuebbS7JYhawWaq3XQI39uCNUMEiZNiEDItQwSpk2ITk2LYKGVZbVap67rLPZdvzbStFVWoKAgImowmnDxogoYm+3UlOG5JThnQlec77POx33+dhE+6v90qO95Rf5/F1lK21Td7q9q39QgB6fQy2/+Ni9V/ram2Dt/Z6bVgD338vGXW2rR511XlcXXXVscNb3b627YrO6SVDAmw2gcLCrvj4HxWQ5cp61OW9zlrLSLX0n6fPcp3lqv7x+vPoYTvA2Wwq5OX1xBdfqBwX/3TlnIOkTR1waUgSQsavv/bADz/I0OmU72h1JwlqdRjU6jCoVB2h0QBt1UCCCtBoAHW0MjJVyEaUWgtQas1HqbUAeksB9OYClJjyUWwuQImxACWmIlglC3Isecgz5NX6cYwMinSsUxITHI0YbSRig6IRq4lAjDYCMepwBEGtfAE0m6tvv+ic3PM8la3teJ0OePjhpvuB8RO/BkHy8/NhtVoRHx/vkh8fH+91tEVOTo7H8jk5OY799rzayrhPtVGr1YiOjnYpk5KSUqMO+z5PQRCj0Qij0eh4rtcrC/KYzWaYzXUPXfe3Levfx0V9GMILe0Dfrj9kWUL79lZ06gR06iTQubNASoqyoKW7FvDyGp29T1tC31LjuNr7XJKqpo4EAwiWgSgPH9bmJITyy8E5mUw18qQaZSprHmOxACYzbCYlgGMzmpUAjdHiCAIJAQibUJJTns1WnW/ftgmp+rkA4LRtsyqjaWxCgtVqw+XL+YiOjoUEyeU8LvVDqq5XADahfKuxCQkCEmyQleMg1ZEnQdi3qx6VBNiE7JZvz1MegapzQ3Yp7zhH1TctUdU24eGbl3CU8ZLvePTU3RIgatYrqv6xn7c+9dbeVtcy9W6rh3rtZW1CQkVFOYIRAslDXTWOq0c7vZ2zrtfRePW5t6/2nwtf6mvIJbXUZKFLp3NI9RnOAeiMRgQXatHUQQJPr91bW+v7PnlreY16nAMqboE+ycs+1xiM5FzQLQgjVb2emgEayUNZxzlrBGucdrgdI+znrzFkSdkWwr7f6biqukTVc5sANGXFiNQUQXJckbu1zbl+CdX1OuU5lxPuxzi1qcbrqH7RSptdOsH1GOXz5l6va31CSI47LgpU/V8l7P8HuD33lAdPo3Jq+SxIXp94KedrXQ1pg+91C5tA/uUwlOstkCRL9QhaUTWiVqDqUTj2ScK5jHNZ4eX4CEC0AUSHmvthgUVTApO2ECZdESy6Ilh0hbDqimDWFcIUVASztgSQLZCQB0kcgwQBGQKSVP2tQJKUPJ1FizBzCNoYQxFmDkG4KRgRZh0iTCGItOgQbQpCqE0NjWSDWrIqSbZC7fzcOclKvkqyQSNZoA4LQsRDD9XWQVcVX7+jc4xNI1q2bBkWLVpUI3/r1q0ICbmyxX6aQ5sOybhxZ1ckpKSg/7XfIS6uHBpN9W/D06eVRK4yMzP93QRqZuzzZmD/80vwFdy/rxF5WevZM/u3SFtV2MH+WPUlSK56VFftc/6CZS8PoDrP6UuXe569XtcyVu/HObfPfqxzu532SfZtp0f3si7fLZ2Ol9yO81ine1nncrWd11Odns7hqZ2+nMf9eCfu56rxmpwePbXZ2/vlte115Htsk6+vw5e66nPuWuY0SO77vJT11q7G2u/r+1Dv/bWcw2td9s+l87b9Z8fLtssx5J1weqzr7QqDL0tsBRTHjxuUYD1QHdh3ugR3CZxW57ke55wHD+U8HetrOZeyNcpVBXecyzmVsQoZFoO6arSqyvFogQpWoXbJs0IFiyNPdmzboIJZqB2jVpVjncs65yn5VqFyBJC1iIAWEQA61uwDCFi0BpiD9TAHFcMUXFK1XQJzkB7m4BKYgktgU5uUA2QLEKIHoK86Hi5BRdmmgdoYAU1lZNVjFNSmCGiMkVBXRkNjioTaFAFlHrASyBNVQbYgnQUzNm9utJ+vplZeXu5TOb8GQWJjY6FSqZCbm+uSn5ubiwQvt2NNSEiotbz9MTc3F4mJiS5l+vbt6yiT57aap8ViQWFhoUs9ns7jfA538+bNc5mqo9frkZycjGHDhrWINUFGAsAjD/q7GS2G2WxGZmYmhg4dyjVBAgT7PPCwzwMT+z3wtKg+dw6oOP707+kv1X5OgNMwPQ/77EFK9/KejnMZeueU557vvr+WY6xmMw4dPIjrr7sOKlmuUVZyPr4+9ft6jHMfejvWvR3ezu1cX20/L76Waei+egQG3Qq5PTYdIQQuX76Mtm3bKtMd7SuyO89/UakgNBrXfFlW5r64l/V0jPNK727lbLIaFqhhkbXKo6SBWagc2xb7dlWyQl0VRKkKykhqWGwyzFYZ5ZYKFBkLUGQsQImpACXmfOgtBSi1FKLUWohSaz4qbHrlx8ZmhhCXYROXYRGAWQDl9o+YDRBChtYSDY0lRknmaKiMsQjWxGLEiBFoKQu52mdi1MWvQRCtVosBAwZg27ZtGDNmDABlYdRt27ZhxowZHo9JS0vDtm3bMHPmTEdeZmYm0tLSAAApKSlISEjAtm3bHEEPvV6P7OxsPFw1nyktLQ3FxcXYs2cPBgwYAAD4+uuvYbPZkJqa6igzf/58mM1mx3+GmZmZ6Natm9f1QHQ6HXQ6XY18jUZz9f+HSg3G/g087PPAwz4PTOz3wMM+DxzCbMa5zZvRa+RIqNnnzcfPgRqzyYTdX32F4aNGQRMU5Dqtq5lo6y7iIw2AcAApXkuYrCYUVhQivzzf8eiywGvVwq4CAkBBVaoWpA6CRnNriwmC+Pr72+/TYWbNmoXJkyfjhhtuwMCBA7FmzRoYDAY88MADAID7778f7dq1w7JlywAAjz76KG699VasWrUKo0aNwoYNG/Df//4Xb775JgBAkiTMnDkTzz33HLp27eq4RW5SUpIj0NKjRw8MHz4cU6dOxdq1a2E2mzFjxgxMmDABSUlJAIDf//73WLRoEaZMmYInnngCBw8exEsvvYQXX3yx+d8kIiIiIiKils7TxXRzXmBrNLBpNMrIjBZyYX8ltCotEsISkBDmeSYDAFhtVhRXFqOgoqDGHXCUO++1vvfJ70GQ8ePH4/Lly1iwYAFycnLQt29fbNmyxbEI6dmzZyE7Ldk8aNAgrF+/Hk8//TSeeuopdO3aFZs2bULPnj0dZebOnQuDwYBp06ahuLgYN910E7Zs2YIgpxU9P/zwQ8yYMQNDhgyBLMsYO3YsXn75Zcf+iIgIbN26FdOnT8eAAQMQGxuLBQsWYNq0ac3wrhARERERERE1LZWsUu5AExKDa2Ou9XdzmoXfgyAAMGPGDK/TX7Zv314jb9y4cRg3bpzX+iRJwuLFi7F48WKvZaKjo7F+/fpa29W7d2/s3Lmz1jJERERERERE1DLwrthEREREREREFBAYBCEiIiIiIiKigMAgCBEREREREREFBAZBiIiIiIiIiCggMAhCRERERERERAGBQRAiIiIiIiIiCggMghARERERERFRQGAQhIiIiIiIiIgCAoMgRERERERERBQQGAQhIiIiIiIiooCg9ncDWjMhBABAr9f7uSXUFMxmM8rLy6HX66HRaPzdHGoG7PPAwz4PTOz3wMM+Dzzs88DEfm/d7Nfd9utwbxgEaUKlpaUAgOTkZD+3hIiIiIiIiKj1Ky0tRUREhNf9kqgrTEINZrPZcPHiRbRp0waSJPm7OdTI9Ho9kpOTce7cOYSHh/u7OdQM2OeBh30emNjvgYd9HnjY54GJ/d66CSFQWlqKpKQkyLL3lT84EqQJybKMa665xt/NoCYWHh7OX6IBhn0eeNjngYn9HnjY54GHfR6Y2O+tV20jQOy4MCoRERERERERBQQGQYiIiIiIiIgoIDAIQtRAOp0OCxcuhE6n83dTqJmwzwMP+zwwsd8DD/s88LDPAxP7nQAujEpEREREREREAYIjQYiIiIiIiIgoIDAIQkREREREREQBgUEQIiIiIiIiIgoIDIIQ1WHp0qUYNGgQQkJCEBkZ6bGMJEk10oYNG1zKbN++Hf3794dOp0OXLl3w3nvvNX3jqcF86fezZ89i1KhRCAkJQVxcHObMmQOLxeJShv3ecnXs2LHG53r58uUuZQ4cOICbb74ZQUFBSE5OxooVK/zUWmosr732Gjp27IigoCCkpqbixx9/9HeTqJE8++yzNT7T3bt3d+yvrKzE9OnTERMTg7CwMIwdOxa5ubl+bDE1xI4dO3DXXXchKSkJkiRh06ZNLvuFEFiwYAESExMRHByM9PR0HD9+3KVMYWEhJk2ahPDwcERGRmLKlCkoKytrxldB9VFXn//hD3+o8dkfPny4Sxn2eWBhEISoDiaTCePGjcPDDz9ca7l3330Xly5dcqQxY8Y49p0+fRqjRo3C7bffjv3792PmzJl46KGH8J///KeJW08NVVe/W61WjBo1CiaTCbt27cK6devw3nvvYcGCBY4y7PeWb/HixS6f60ceecSxT6/XY9iwYejQoQP27NmDlStX4tlnn8Wbb77pxxbTldi4cSNmzZqFhQsXYu/evejTpw8yMjKQl5fn76ZRI7n++utdPtPfffedY99jjz2Gzz77DB999BG+/fZbXLx4Effcc48fW0sNYTAY0KdPH7z22mse969YsQIvv/wy1q5di+zsbISGhiIjIwOVlZWOMpMmTcKhQ4eQmZmJzz//HDt27MC0adOa6yVQPdXV5wAwfPhwl8/+P//5T5f97PMAI4jIJ++++66IiIjwuA+A+Pjjj70eO3fuXHH99de75I0fP15kZGQ0YgupKXjr982bNwtZlkVOTo4j7/XXXxfh4eHCaDQKIdjvLV2HDh3Eiy++6HX/3/72NxEVFeXobyGEeOKJJ0S3bt2aoXXUFAYOHCimT5/ueG61WkVSUpJYtmyZH1tFjWXhwoWiT58+HvcVFxcLjUYjPvroI0fekSNHBACRlZXVTC2kxub+/cxms4mEhASxcuVKR15xcbHQ6XTin//8pxBCiMOHDwsAYvfu3Y4yX375pZAkSVy4cKHZ2k4N4+k7+eTJk8Xo0aO9HsM+DzwcCULUSKZPn47Y2FgMHDgQ77zzDoTT3aezsrKQnp7uUj4jIwNZWVnN3UxqJFlZWejVqxfi4+MdeRkZGdDr9Th06JCjDPu9ZVu+fDliYmLQr18/rFy50mW6U1ZWFm655RZotVpHXkZGBo4dO4aioiJ/NJeugMlkwp49e1w+s7IsIz09nZ/ZVuT48eNISkpCp06dMGnSJJw9exYAsGfPHpjNZpf+7969O9q3b8/+b0VOnz6NnJwcl36OiIhAamqqo5+zsrIQGRmJG264wVEmPT0dsiwjOzu72dtMjWP79u2Ii4tDt27d8PDDD6OgoMCxj30eeNT+bgBRa7B48WLccccdCAkJwdatW/HnP/8ZZWVl+Mtf/gIAyMnJcblYBoD4+Hjo9XpUVFQgODjYH82mK+CtT+37aivDfm8Z/vKXv6B///6Ijo7Grl27MG/ePFy6dAmrV68GoPRvSkqKyzHOPwNRUVHN3mZquPz8fFitVo+f2aNHj/qpVdSYUlNT8d5776Fbt264dOkSFi1ahJtvvhkHDx5ETk4OtFptjTWg4uPjHb/TqeWz96Wnz7nz/91xcXEu+9VqNaKjo/mz0EINHz4c99xzD1JSUnDy5Ek89dRTGDFiBLKysqBSqdjnAYhBEApITz75JJ5//vlayxw5csRlwbTaPPPMM47tfv36wWAwYOXKlY4gCF0dGrvfqeWpz8/ArFmzHHm9e/eGVqvFH//4Ryxbtgw6na6pm0pEjWzEiBGO7d69eyM1NRUdOnTAv/71LwaliVqxCRMmOLZ79eqF3r17o3Pnzti+fTuGDBnix5aRvzAIQgFp9uzZ+MMf/lBrmU6dOjW4/tTUVCxZsgRGoxE6nQ4JCQk1VpjPzc1FeHg4v3g1o8bs94SEhBp3jbD3cUJCguOR/X51uZKfgdTUVFgsFpw5cwbdunXz2r9A9c8AtRyxsbFQqVQe+5T92TpFRkbi2muvxYkTJzB06FCYTCYUFxe7jAZh/7cu9r7Mzc1FYmKiIz83Nxd9+/Z1lHFfDNlisaCwsJA/C61Ep06dEBsbixMnTmDIkCHs8wDEIAgFpLZt26Jt27ZNVv/+/fsRFRXl+GtxWloaNm/e7FImMzMTaWlpTdYGqqkx+z0tLQ1Lly5FXl6eYwhlZmYmwsPDcd111znKsN+vLlfyM7B//37Isuzo77S0NMyfPx9msxkajQaA0r/dunXjVJgWSKvVYsCAAdi2bZvj7l42mw3btm3DjBkz/Ns4ahJlZWU4efIk7rvvPgwYMAAajQbbtm3D2LFjAQDHjh3D2bNn+Tu7FUlJSUFCQgK2bdvmCHro9XpkZ2c77gaXlpaG4uJi7NmzBwMGDAAAfP3117DZbEhNTfVX06kRnT9/HgUFBY5AGPs8APl7ZVaiq92vv/4q9u3bJxYtWiTCwsLEvn37xL59+0RpaakQQohPP/1UvPXWW+Lnn38Wx48fF3/7299ESEiIWLBggaOOU6dOiZCQEDFnzhxx5MgR8dprrwmVSiW2bNnir5dFdair3y0Wi+jZs6cYNmyY2L9/v9iyZYto27atmDdvnqMO9nvLtWvXLvHiiy+K/fv3i5MnT4oPPvhAtG3bVtx///2OMsXFxSI+Pl7cd9994uDBg2LDhg0iJCREvPHGG35sOV2JDRs2CJ1OJ9577z1x+PBhMW3aNBEZGelyFyhquWbPni22b98uTp8+Lb7//nuRnp4uYmNjRV5enhBCiD/96U+iffv24uuvvxb//e9/RVpamkhLS/Nzq6m+SktLHf9nAxCrV68W+/btE7/++qsQQojly5eLyMhI8cknn4gDBw6I0aNHi5SUFFFRUeGoY/jw4aJfv34iOztbfPfdd6Jr165i4sSJ/npJVIfa+ry0tFQ8/vjjIisrS5w+fVp89dVXon///qJr166isrLSUQf7PLAwCEJUh8mTJwsANdI333wjhFBuodW3b18RFhYmQkNDRZ8+fcTatWuF1Wp1qeebb74Rffv2FVqtVnTq1Em8++67zf9iyGd19bsQQpw5c0aMGDFCBAcHi9jYWDF79mxhNptd6mG/t0x79uwRqampIiIiQgQFBYkePXqIv/71ry5fmIQQ4qeffhI33XST0Ol0ol27dmL58uV+ajE1lldeeUW0b99eaLVaMXDgQPHDDz/4u0nUSMaPHy8SExOFVqsV7dq1E+PHjxcnTpxw7K+oqBB//vOfRVRUlAgJCRF33323uHTpkh9bTA3xzTffePz/e/LkyUII5Ta5zzzzjIiPjxc6nU4MGTJEHDt2zKWOgoICMXHiRBEWFibCw8PFAw884PgjCF19auvz8vJyMWzYMNG2bVuh0WhEhw4dxNSpU2sEt9nngUUSwuk+nkRERERERERErZTs7wYQERERERERETUHBkGIiIiIiIiIKCAwCEJEREREREREAYFBECIiIiIiIiIKCAyCEBEREREREVFAYBCEiIiIiIiIiAICgyBEREREREREFBAYBCEiIiIiIiKigMAgCBEREREREREFBAZBiIiIiIiIiCggMAhCREREfiOEwOrVq5GSkoKQkBCMGTMGJSUlXssXFBQgLi4OZ86cqbXe2267DTNnzmzcxvrJhAkTsGrVKn83g4iIqFVgEISIiIj8Zs6cOXj99dexbt067Ny5E3v27MGzzz7rtfzSpUsxevRodOzYsdna6G9PP/00li5dWmtwiIiIiHzDIAgRERH5RXZ2NlavXo2NGzfilltuwYABAzB16lRs3rzZY/ny8nK8/fbbmDJlSjO31DOTydQs5+nZsyc6d+6MDz74oFnOR0RE1JoxCEJERER+8cILL2DIkCHo37+/Iy8+Ph75+fkey2/evBk6nQ6/+c1vXPINBgPuv/9+hIWFITEx0ePUEZvNhmXLliElJQXBwcHo06cP/v3vfzv2l5aWYtKkSQgNDUViYiJefPHFGlNqbrvtNsyYMQMzZ85EbGwsMjIyfKq7rv0A8O9//xu9evVCcHAwYmJikJ6eDoPB4Nh/1113YcOGDT68q0RERFQbBkGIiIio2RmNRnzxxRe4++67XfIrKysRERHh8ZidO3diwIABNfLnzJmDb7/9Fp988gm2bt2K7du3Y+/evS5lli1bhvfffx9r167FoUOH8Nhjj+F//ud/8O233wIAZs2ahe+//x6ffvopMjMzsXPnzhp1AMC6deug1Wrx/fffY+3atT7VXdf+S5cuYeLEiXjwwQdx5MgRbN++Hffccw+EEI7zDhw4ED/++COMRqOvbzERERF5IAnn/2GJiIiImkFWVhYGDRqEoKAgqFQqR77ZbMbtt9+OLVu21DhmzJgxiImJwdtvv+3IKysrQ0xMDD744AOMGzcOAFBYWIhrrrkG06ZNw5o1a2A0GhEdHY2vvvoKaWlpjmMfeughlJeX44033kBMTAzWr1+Pe++9FwBQUlKCpKQkTJ06FWvWrAGgjATR6/UuwZG66n733Xdr3b9+/Xrs3bsXAwYMwJkzZ9ChQweP79eBAwfQp0+fWssQERFR3dT+bgAREREFnl9++QWhoaHYv3+/S/6oUaMwePBgj8dUVFQgKCjIJe/kyZMwmUxITU115EVHR6Nbt26O5ydOnEB5eTmGDh3qcqzJZEK/fv1w6tQpmM1mDBw40LEvIiLCpQ4795EoddVd134A6NOnD4YMGYJevXohIyMDw4YNw7333ouoqChH+eDgYADKuihERETUcAyCEBERUbPT6/WIjY1Fly5dHHm//vorjh8/jrFjx3o8JjY2FkVFRfU+V1lZGQDgiy++QLt27Vz26XQ6FBYW+lxXaGhoveq+ePFirfsBQKVSITMzE7t27cLWrVvxyiuvYP78+cjOzkZKSgoAONrYtm1bn9tKRERENXFNECIiImp2sbGxKCkpcVn3YunSpRg5ciSuu+46j8f069cPhw8fdsnr3LkzNBoNsrOzHXlFRUX45ZdfHM+vu+466HQ6nD17Fl26dHFJycnJ6NSpEzQaDXbv3u04pqSkxKUOb+qqu679dpIkYfDgwVi0aBH27dsHrVaLjz/+2LH/4MGDuOaaaxAbG1tnm4iIiMg7jgQhIiKiZnfHHXegsrISy5cvx4QJE/Dhhx/is88+w48//uj1mIyMDMybNw9FRUWOqSJhYWGYMmUK5syZg5iYGMTFxWH+/PmQ5eq/87Rp0waPP/44HnvsMdhsNtx0000oKSnB999/j/DwcEyePBmTJ0/GnDlzEB0djbi4OCxcuBCyLEOSpFpfhy9117U/Ozsb27Ztw7BhwxAXF4fs7GxcvnwZPXr0cJxn586dGDZs2BW+60RERMQgCBERETW7+Ph4vPfee5gzZw6WLFmCO+64A999953L6Ah3vXr1Qv/+/fGvf/0Lf/zjHx35K1euRFlZGe666y60adMGs2fPRklJicuxS5YsQdu2bbFs2TKcOnUKkZGR6N+/P5566ikAwOrVq/GnP/0Jd955J8LDwzF37lycO3euxhokntRVd137w8PDsWPHDqxZswZ6vR4dOnTAqlWrMGLECADKHXM2bdrkcbFYIiIiqh/eHYaIiIhajC+++AJz5szBwYMHXUZ7NDaDwYB27dph1apVmDJlSpOdxxevv/46Pv74Y2zdutWv7SAiImoNOBKEiIiIWoxRo0bh+PHjuHDhQq2jRupr3759OHr0KAYOHIiSkhIsXrwYADB69OhGO0dDaTQavPLKK/5uBhERUavAkSBEREQU8Pbt24eHHnoIx44dg1arxYABA7B69Wr06tXL300jIiKiRsQgCBEREREREREFBN4il4iIiIiIiIgCAoMgRERERERERBQQGAQhIiIiIiIiooDAIAgRERERERERBQQGQYiIiIiIiIgoIDAIQkREREREREQBgUEQIiIiIiIiIgoIDIIQERERERERUUBgEISIiIiIiIiIAgKDIEREREREREQUEBgEISIiIiIiIqKA8P+Md4HAHy2KYAAAAABJRU5ErkJggg==", | |
"text/plain": [ | |
"<Figure size 1100x800 with 2 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Extract final magnetization components for each theta\n", | |
"step1_results = np.array([cur_item[1][-1] for cur_item in step1_magnetizations])\n", | |
"step2_results = np.array([cur_item[1][-1] for cur_item in step2_magnetizations])\n", | |
"\n", | |
"# Ensure the results align with thetas\n", | |
"assert len(thetas) == len(step1_results)\n", | |
"assert len(thetas) == len(step2_results)\n", | |
"\n", | |
"# Create the plots\n", | |
"plt.figure(figsize=(11, 8))\n", | |
"\n", | |
"# Left Plot: Final Mx, My, Mz for Step 1 and Step 2\n", | |
"plt.subplot(2, 1, 1)\n", | |
"plt.gca().set_prop_cycle('color', ['red', 'blue', 'green'])\n", | |
"plt.plot(thetas, step1_results, alpha=0.5, linestyle=\"dashdot\", linewidth=3, label=\"Step 1\")\n", | |
"plt.plot(thetas, step2_results, alpha=0.6, label=\"Step 2\")\n", | |
"plt.title(\"Final Magnetization Components\")\n", | |
"plt.xlabel(\" \")\n", | |
"plt.ylabel(\"Magnetization\")\n", | |
"plt.grid(True)\n", | |
"\n", | |
"# Right Plot: Error between Step 1 and Step 2\n", | |
"plt.subplot(2, 1, 2)\n", | |
"plt.gca().set_prop_cycle('color', ['red', 'blue', 'green'])\n", | |
"plt.plot(thetas, step1_results - step2_results, alpha=0.7)\n", | |
"plt.title(\"Error Between Step 1 and Step 2\")\n", | |
"plt.xlabel(\"$\\\\theta$ (degrees)\")\n", | |
"plt.ylabel(\"Error\")\n", | |
"plt.legend([\"$M_x$\", \"$M_y$\", \"$M_z$\"], loc=\"upper right\")\n", | |
"plt.grid(True)\n", | |
"\n", | |
"plt.tight_layout()\n", | |
"plt.show()\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "f2030e32-5160-4fed-aa86-2e1b1791f61c", | |
"metadata": {}, | |
"source": [ | |
"## **Detailed Evolution for Each $\\theta$**\n", | |
"\n", | |
"The following grid shows the evolution of $M_x$, $M_y$, and $M_z$ for all $\\theta$ values, comparing Step 1 and Step 2.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "ddcb74f5-5781-44b1-b632-63573dc4a079", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment