Last active
January 7, 2016 17:40
-
-
Save emallson/0e9ff54c14c85ba486e3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import h5py\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Generate Some Data ###\n", | |
"\n", | |
"A 10,000 x 10,000 random float matrix. Approximately 763MB when stored in the `test.h5`" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"with h5py.File(\"test.h5\") as f:\n", | |
" f['/test'] = np.random.rand(10000, 10000)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Define numpy mmap ###" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def _mmap_h5(path, h5path):\n", | |
" with h5py.File(path) as f:\n", | |
" ds = f[h5path]\n", | |
" # We get the dataset address in the HDF5 fiel.\n", | |
" offset = ds.id.get_offset()\n", | |
" # We ensure we have a non-compressed contiguous array.\n", | |
" assert ds.chunks is None\n", | |
" assert ds.compression is None\n", | |
" assert offset > 0\n", | |
" dtype = ds.dtype\n", | |
" shape = ds.shape\n", | |
" arr = np.memmap(path, mode='r', shape=shape, offset=offset, dtype=dtype)\n", | |
" return arr" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Experiment 1: Load Data, Slice rectangle [:2, :3]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### h5py" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"10 loops, best of 3: 2.01 s per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n 10 -r 3\n", | |
"f = h5py.File(\"test.h5\", 'r')\n", | |
"x = f['/test'][...]\n", | |
"print(x[:2, :3])\n", | |
"f.close()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### numpy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"10 loops, best of 3: 3.42 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n 10 -r 3\n", | |
"x = _mmap_h5('test.h5', '/test')[...]\n", | |
"print(x[:2, :3])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Experiment 2: Don't Load, Just Slice [:2, :3]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### h5py" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"10 loops, best of 3: 4.36 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n 10 -r 3\n", | |
"f = h5py.File(\"test.h5\", 'r')\n", | |
"x = f['/test']\n", | |
"print(x[:2, :3])\n", | |
"f.close()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### numpy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"[[ 0.35610554 0.88638298 0.61585581]\n", | |
" [ 0.52239096 0.26190995 0.02339244]]\n", | |
"10 loops, best of 3: 3.67 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n 10 -r 3\n", | |
"x = _mmap_h5('test.h5', '/test')\n", | |
"print(x[:2, :3])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Experiment 3: Aggregate over all data" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### h5py" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"50000732.3183\n", | |
"10 loops, best of 3: 4.68 s per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n 10 -r 3\n", | |
"f = h5py.File(\"test.h5\", 'r')\n", | |
"x = f['/test']\n", | |
"# h5py.Dataset does not have a sum() function. \n", | |
"# The options are to use [...] to load all, or use np.sum on the dataset itself\n", | |
"print(np.sum(x))\n", | |
"f.close()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### numpy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"50000732.3183242\n", | |
"10 loops, best of 3: 276 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n 10 -r 3\n", | |
"x = _mmap_h5('test.h5', '/test')\n", | |
"print(x.sum())" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Conclusion\n", | |
"\n", | |
"`np.memmap` and `h5py` perform equally well when you don't load the entire dataset (`[...]`). However, when the entire dataset is loaded or aggregation is performed, then `np.memmap` significantly outperforms `h5py`" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Final Timings\n", | |
"\n", | |
"| Method | Experiment 1 | Experiment 2 | Experiment 3 |\n", | |
"|-------------|--------------|--------------|--------------|\n", | |
"| `h5py` | 2.01s | 4.36ms | 4.68s |\n", | |
"| `np.memmap` | **3.42ms** | **3.67ms** | **276ms** |" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment