Last active
May 6, 2024 12:02
-
-
Save ezwiefel/a295f5b3d6c4c7985819c65746d1f676 to your computer and use it in GitHub Desktop.
Azure Machine Learning environment as Conda kernel in Jupyter / Jupyterlab
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Create an AzureML Environment as a local Conda kernel in your Jupyter / JupyterLab" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### 1. Download the Conda Dependencies file from AzureML" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from azureml.core import Workspace, Environment\n", | |
"\n", | |
"ws = Workspace.from_config()\n", | |
"\n", | |
"tf_env = Environment.get(ws, 'AzureML-TensorFlow-2.0-GPU')\n", | |
"tf_env.python.conda_dependencies.save(\"./CondaDependencies.yaml\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"CONDA_ENV_NAME = 'amltf2'\n", | |
"KERNEL_DISPLAY_NAME = 'AzureML - TensorFlow-2.0 - GPU'" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### 2. Create the Conda Environment" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"%conda env create --name {CONDA_ENV_NAME} --file ./CondaDependencies.yaml" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### 3. Install ipykernel in the new Conda environment" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"%conda install -n {CONDA_ENV_NAME} ipykernel -y" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### 4. Run ipykernel in the new Conda environment to register the kernelspec" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"!/anaconda/envs/{CONDA_ENV_NAME}/bin/python -m ipykernel install --user --name {CONDA_ENV_NAME} --display-name \"{KERNEL_DISPLAY_NAME}\"" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### 5. Wait for a few minutes and the new kernel will show up in Jupyter/Jupyterlab under the available kernels" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3.6 - AzureML", | |
"language": "python", | |
"name": "python3-azureml" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.9" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello @ezwiefel ,
I've tried to setup AzureML Env as Conda Kernel in Jupiter but unfornunately i have an error message on jupiter notebook user interface on AML depiste being able to correctly activate env on terminal interface
FYI, my Azure ML workspace is behind a VNET