Skip to content

Instantly share code, notes, and snippets.

@fabaff
Created July 9, 2016 08:52
Show Gist options
  • Save fabaff/637dd0ecbda9f35f29e388189a3c8d58 to your computer and use it in GitHub Desktop.
Save fabaff/637dd0ecbda9f35f29e388189a3c8d58 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"# matplotlib for plotting the data\n",
"%pylab inline"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sqlalchemy import create_engine\n",
"from sqlalchemy.orm import scoped_session, sessionmaker\n",
"\n",
"from homeassistant.components.recorder.models import Base, Events, States, RecorderRuns\n",
"import homeassistant.util.dt as dt"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Your database url as specified in configuration.yaml\n",
"# If using default settings, it's sqlite:///<path to config dir>/home-assistant_v2.db\n",
"DB_URL = 'sqlite:///<path to config dir>/.homeassistant/home-assistant_v2.db'\n",
"SENSOR = 'sensor.aare'"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"engine = create_engine(DB_URL)\n",
"Base.metadata.create_all(engine)\n",
"session_factory = sessionmaker(bind=engine)\n",
"Session = scoped_session(session_factory)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Query"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data = list(engine.execute(\"SELECT state, last_changed FROM states where entity_id = '{}'\".format(SENSOR)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare data for graph"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"values = []\n",
"timestamps = []\n",
"for x in data:\n",
" timestamps.append(dates.date2num(dt.parse_datetime(x[1])))\n",
" values.append(float(x[0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot the graph"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.text.Text at 0x7f902a92f668>"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVPXVx/HPARQRE5oICEFsYEUhKgbbolEUiTUqMZao\nUR41xpgn9gISjcYnGruxR1SsYEFEFHVjUKwgK0oEEVEMYKEIKgjL7/njzMgKs7uzO/fOnbv7fb9e\n82KYuXPvuZQ5+2vnZyEERERE1tQk6QBERKQ0KUGIiEhOShAiIpKTEoSIiOSkBCEiIjkpQYiISE6x\nJggzu9PM5ptZRZXXdjCziWY22cxeN7Od4oxBRETqJ+4WxN1A/zVeuwoYEkLoBQwB/i/mGEREpB5i\nTRAhhAnAwjVeXgW0yjxvDXwaZwwiIlI/zRK45lnAODO7GjCgbwIxiIhILZIYpD4VODOE0BVPFncl\nEIOIiNTC4q7FZGabAKNDCD0zv18UQmhd5f3FIYRW1XxWhaJEROohhGCFnqMYLQjLPLI+NbO9AMxs\nH2B6TR8OIaz1GDJkSM7X0/rQ/ZT2Q/dT2g/dz9qPqMQ6BmFmI4AyoJ2ZfYzPWjoZuN7MmgLLgFPi\njEFEROon1gQRQji6mre09kFEpMSlciV1WVlZ0iFESvdT2nQ/pU33E5/YB6kLYWahlOMTESlFZkZI\nySC1iIikkBKEiIjkpAQhIiI5KUGIiEhOShAiIsU0ejT8+c9JR5EXzWISESmGr76Cs86CMWNgvfXg\no49iu5RmMYmIpMW//gU77ABNm0JFBcybByn44TeJct8iIo3DsmVw4YXw4INw221w4IH++nrrwcKF\n0LZtsvHVQi0IEZE4vPUW9O4Nn3zirYZscgDo1Anmzk0utjwpQYiIRGnFChg2DA44AC66CB56CNq1\n++ExKUkQ6mISEYnKf/4Dxx0HbdrA5MnQuXPu4zp2TEWCUAtCRKRQq1bB9dfDHnvACSfAM89UnxxA\nLQgRkUbh44/hN7/xAemJE2GLLWr/TKdO8OmnsYdWKLUgRETqIwS45x746U9hv/3g3//OLzmAWhAi\nIg3WZ5/B4MEwcyaMH+9rHOoiJQlCLQgRkbp4/HFPCD16wBtv1D05QGoShFoQIiL5WLwYzjwTJkyA\nRx+F3Xar/7nat4cvvogutpioBSEiUpsXXoCePaFFC3j77cKSA0Dr1p5wVq2KJr6YqAUhIlKdb7+F\n88/3FsPtt/vityg0awYbbOBJok2baM4ZA7UgRERyeeMNL5Uxf76XyogqOWS1bev1mEqYEoSISFUr\nVsCQITBwoP/6wAPxFNVr0wYWLIj+vBFSF5OISNZ778Gxx0KHDl4qY+ON47uWWhAiIimwahX8/e+w\n116+vmHMmHiTA6gFISJS8j76yEtlrFwJr74Km29enOuqBSEiUqJCgLvugp13hgEDfNe3YiUH8ASh\nFoSISImZPx9OPtkL7b3wAmy/ffFjaNMGPv+8+Netg1hbEGZ2p5nNN7OKKq89aGaTMo9ZZjYpzhhE\nRH5g5Egvj7H99vD668kkB1ALArgbuAEYnn0hhDAo+9zM/gYsijkGERFYtAjOOMPHGR57DH72s2Tj\nSUGCiLUFEUKYANQ0CnMk8ECcMYiIMH68l8r48Y+9VEbSyQG8i6nEB6kTG4Mwsz2AeSGEmUnFICIN\n3DffwLnnegXWO+/0fRtKRWNvQdTiV6j1ICJxee016NXLf0qvqCit5ACeIObPh8rKpCOpViItCDNr\nChwG9K7t2KFDh37/vKysjLKystjiEpEG4LvvYNgwL653003wy18mHVFuXbpA9+7esjnllIJOVV5e\nTnl5eTRxVWEhhMhP+oMLmHUDRocQtq/y2v7AuSGEfrV8NsQdn4g0IFOneqmMLl08QXTsmHRENXv7\nbejfH6ZNi7Tek5kRQrBCzxP3NNcRwCtAdzP72MxOyLx1FOpeEpGoVFbC3/4G/frB734HTz5Z+skB\nYMcd4fDD4ZJLko4kp9hbEIVQC0JEavXhh14qwwz++U/YdNOkI6qbL7+ErbdePdMqAqloQYiIxCYE\n70baZRc4+GB48cX0JQeAdu3g0kt9jUaJ/UCsFoSIpM/cufDb3/qv994L226bdESFqayEnXbyKbmD\nBtV+fC3UghDJWrAAli9POgoplkce8b77n/7UV0WnPTkANG0KN9wAZ58NS5cmHc331IKQ9DvmGF+V\nesMNSUcicVq40Aeg33oLhg/3rqWG5te/hm7d4PLLCzqNWhAiWdOm+Vzyzz5LOhKJy7hxPoC74YYw\naVLDTA4AV10Ft94KH3yQdCSAWhCSdiF4fZ2BA32A8i9/SToiidLXX3u3y1NPwd13wz77JB1R/P76\nV5gwAUaPrvcp1IIQAZg3D1q08MRw662weHHSEUlUXnnFxxq+/tpLZTSG5ADwhz/A++/D008nHYkS\nhKTc9Omw5ZbeehgwAG6+OemIpFDLl8MFF/gCsquugnvugdatk46qeJo3h2uv9USR8OQLJQhJt+nT\nvZ4NwHnnwXXXeQVPSaeKCh9fePddL0Nx6KFJR5SMAQOgRw9PFAlSgpB0q5ogtt3W6/zfeWeyMUnd\nVVZ63/s++8BZZ3l57g4dko4qWX//O/zf/8GnnyYWghKEpFu2iynr/PP9P9V33yUXk9TNzJmw117w\nzDPw5pury2Y0dltsAYMHwznnJBaCEoSk24wZ3hTP2mUXb1GMGJFcTJKfEOAf/4Bdd/WS3M8/D5ts\nknRUpeX88+Gll3xWUwI0zVXSq7ISWrb0BVQtWqx+/YUX4LTTvB+7adPk4pPqffqpl8r4/HMvlbH1\n1klHVLoefNC73958M+9/z5rmKjJ7tvdTV00O4CWfW7f2jeml9Dz4IPTu7S2HiROVHGpz1FHQqhXc\ndlvRL53YntQiBVtz/CHLzKdJXnqpT5VUf3Zp+PJLOP10mDIFxozx4nRSOzO4/nr4+c/hyCO9+muR\nqAUh6VV1BtOaBg70gepnny1uTJLb2LGwww6w8cZeKkPJoW569vTkcPHFRb2sEoSk14wZ1SeIJk18\nXYRKbyRr6VKfiXPqqT7WcM01a3cJSn6GDYORI319SJEoQUh61dSCAO+7/eQTePnl4sUkq02Y4K2G\nFSu8W6lfjVvQS23atoU//7moGwspQUg6rVzpszp23LH6Y5o18w1YrriieHGJl4c491w44ghvMdx1\nlw+ySuFOOskrBTzwQFEupwQh6TRxos+Z33jjmo87/niYPLmozfJG7e23fXxhxgwvm3HwwUlH1LBk\nNxY655yibCykBCHp9NRTPhBdm/XW89INV14Zf0yN2cqVPt6z775ennvkSGjfPumoGqa+fWHvveGy\ny2K/lBbKSTptvz3ccQf06VP7sUuWwGabwWuv+a8SrRkz4LjjfNHiXXdB165JR9TwzZ3r/wdeeWXt\ncbihQ7FLL9VCOWmkli/3L6XevfM7/kc/8lIOo0bFG1djE4KXV+/bF44+2qcUKzkUR6dOPkvvrLN+\n+HoIcMstkV1GCULS58MP/YtonXXy/8zAgd4tJdGYMwf69/e9GiZM8Jk1TfR1UlS//70XOqz67/qj\njyItL6O/UUmf2qa35tKvny/QWrQonpgaixDg/vu99bbHHj6FuGqxRCmeddf1/U/+8AdYtsxfe/VV\nL3kfESUISZ/6JIj114c99/SS0lI/X3zhq3n/8hf/c7z4Yp9KLMnp3x+2286nE4MniF13jez0ShCS\nPvVJEAAHHug1gKTunnrKF71tsgm89Vb+4z8Sv2uugauv9m6/iBOEZjFJ+uy1FwwZ4lP96uLjj/2L\nbf58lQHP11dfwR//6Hs13HOPt8Kk9Fx8sZe3HzcOPv8ca9lSs5ikkapvC6JrV+jc2X/Kktq99JK3\nGsx80ZuSQ+k6/3yvLLDVVt6dGpFYE4SZ3Wlm882sYo3XzzCzaWb2jplpBZPkb8kS/6m2thXU1Tn0\nUB9kleotWwZ/+hMMGuSrdm+/3acKS+laf31fF3TKKZGeNtYuJjPbHVgKDA8h9My8VgZcAAwIIaw0\nsw1DCF9U83l1MckPTZoEJ55Y/9IZc+fCNtv49MC2baONrSGYNAmOPdb/jG65BTbcMOmIpB5SsaNc\nCGECsHCNl08FrgwhrMwckzM5iORU3+6lrE6d4KCD4NZbo4upIVi50iuF7r8/XHghPPywkoMkMgbR\nHdjTzF41sxfNTDuHSP4KTRDgq09vvNE3FBJ4/33YbTf497+9BXH00dqFT4BkthxtBrQJIexqZjsD\nDwPVFsgZOnTo98/LysooKyuLOz4pZdOnw377FXaOHXf0wbyHH4ZjjokmrjRatQpuusm3Zh02zDf1\nUWJIpfLycsrLyyM/b+zTXM1sE2B0lTGIp4G/hhD+lfn9B0CfEMKXOT6rMQj5oV128f15C53r/dRT\ncMklPqe/MX4pfvIJnHACfP01DB+ee29vSa1UjEFkWOaR9TiwN4CZdQfWyZUcRNYSgrcgovgyGzDA\nvxxfeqnwc6VJCJ4QeveGffbxbiUlB6lGrF1MZjYCKAPamdnHwBDgLuBuM3sHWA4cF2cM0oBkF7i1\na1f4uZo08Ro211/vC+8ag88/9/2hZ8yA556reTc+EbSSWtLk3nvhsceiK9u9YAF06+aJp0WLaM5Z\nqp54Av7nf3zfhmHDoHnzpCOSGEXVxaRKW5Ie+e4il6+2bf2n6PJyOOCA6M5bShYv9pbSSy/BI4/A\n7rsnHZGkSF5jEGbWxcz6ZZ43N7OW8YYliQjBv1C++sqfl5IVK3xDmgEDoj1vQ94n4sUXvVRG8+Yw\nZYqSg9RZrQnCzE4EngTuyLy0CfBEnEFJQq68Elq3ho4dfQe2xYuTjmi1UaNg6609tigNHAhPPulT\nPhuKb7/1tR7HHOM7vv3jH7DBBklHJSmUTwvi98CuwFcAIYTpwEZxBiUJeeMNePBBWLgQNtoIdt4Z\npk5NOiqfbXT22XDFFdGfe5ttoFUrmDgx+nMn4c03fYbS3LleYC/qFpc0KvkkiGUhhO+XnJpZU344\nbVUaioqK1V0St9wCF13kO7ElXdzuiiu8eySu2UZHHQUPPRTPuYtlxQoYOtT3vBgyxBN9FLO9pFGr\ndRaTmV0NzAdOAE4DTgdmhBDOjz04zWIqniVLoEMHH3+oukvYlCne3dS/v29KUuzZLzNnQp8+Hkfn\nzvFcY/p0Tz5z5pTmPhGffebjCeCD6mtu8TltmhfYa98e7ryz/pVupcEo5kK5c4AlwH+AM4HngQsL\nvbCUmKlTvbtlzS0kd9jBu57mzPEv0U8+KW5ct90Gv/1tfMkBvLZTp06lu2juzDPhssvgvPO8kF7W\nqlVw7bW+N/TJJ8PTTys5SKRqTBCZ7qS7Qwi3hBAODSEcknnegEb0BFjdvZRL69Y+SHzooT4uMX58\n8eIaM8avG7dS7WZatgzGjvU/89tu8/EhgNmzfSX0I4/4BkiDBzfOkiESqxoTRAihEtjMzNYpUjyS\nlClToGfP6t9v0gTOPRceeMAXW11+efwzf2bP9u6VnXeO9zrgCWLkSO/LLyXjx3vi7tDB1218+SXc\nfTfstJOv3XjpJdhii6SjlAYqn4VyM4F/m9kTwNfZF0MI18cWlRRfRQUceWTtx/Xr511ORxzhP7kO\nHw5t2sQT00MP+ZdgkyKUDOvWDTbfHF54wcdbSsXIkXDYYf58ww09kV97re8RXVNCF4lAPv/zPgae\nA9YH2ld5SEMRArzzDmy/fX7Hd+7sq48328x/kp08OZ64HniguOW4Bw3y2T+lYsUKGD16dYLo2hUe\nfxxef13JQYpCtZgEZs3ygc45c+r+2QcfhDPOgKuu8vLRUfnwQ/jZz+C//y3ezKJPP/UkOXduadQq\nGj/eB6Vfey3pSCRlilaLycyeA9b6lg4hFLhri5SMmgaoazNokP80e/jh8Morvsn9eusVHtOoUXDw\nwcWddtq5syeIZ5+FX/yieNetTtXuJZEE5NPFdBFwceZxOT7ddUqcQUmRVVQU1mWxzTbe7bFokW9d\nOWtW4TE98ognnWI76qjS6GaqrPTuJCUISVCtCSKE8FqVx79CCL8H9ixCbFIstc1gysePfuRbeB57\nrO/29vTT9T/X9Omrp3EW2+GH+9Tab74p/rWrmjjRF75pMx9JUD7F+n5c5dHazPYBYpq2IokopIup\nKjMvLT1ypC/cuuQS/0m4ru67D371q7UX7RVDhw4+rbaQBBeFUaOSaUGJVJFPqY1P8DEIA1YCs4BL\ns3tKxxqcBqnj9/XX/pPqmiU2CjVvno9PNG/utZw23DC/z4Xg000ffdSLziXhjjtg3Djv5kpCCLDp\npj6DKd+ZZSJVFLPUxmYhhK4hhJ+EEDYNIewNvFzohaVETJ0KW20V/U/rHTuuXuS1006+diIfL7/s\nu7v16hVtPHVx2GE+UL1kSTLXnzQJ1l0XttsumeuLZOSTIHLNsXs96kAkIVF1L+XSrJlPf73mGi87\n/Y9/1L4R0b33+jhGkmUj2rb16rGjRydz/ezsJZXOkIRV+2OjmW0EdAJamNn2rC7x/WN80Zw0BIXO\nYMrHYYf5T8OHH+6Dr7fcAuvn+Ce0bJl3Lb39drzx5CNbm+noo4t73RA8Qdx3X3GvK5JDTS2IA4Eb\ngS7AzcBNmccF+JRXaQimTImvBVFV9+5emqOy0hfAzZix9jFjxng565/8JP54anPwwb5afNGi4l73\nvfd8R7iddirudUVyqDZBhBDuDiHsAZwUQtijymNACCGh0TuJVAjegijWQGjLlt6FNHiwr5d4Yo2d\na7PdS6WgVSvYe29fi1BM6l6SEpJXqQ0z6w9sC3y/RDaE8JcY48peV7OY4jR79upyFsX26qteHPDo\no32vg0WLvCrpJ5/4mopS8NBDXjn1mWeKd80dd/TV6HvsUbxrSoNTtFlMZnYzcDzwR6AFcAyg+sIN\nQZwD1LXZdVd46y1/7LeffykOGFA6yQFg4EAfM/nii+Jcb+ZMnx7ct29xridSi3xmMe0eQjga+DKE\ncDHQByWIhqEYA9Q1ad/efzrv2xeGDSud7qWsli1h//2926cYRo2CQw4pzW1PpVHKJ0Esy/5qZh0z\nv9e+hg1BFCU2CtW0qXcxffCBfxmXmkGDirfTnIrzSYnJJ0E8bWatgb8BbwMfAQ/HGZQUSZJdTGva\nfPPSHJg94ADf72Lu3HivM2eOz+zq1y/e64jUQW17UjcBxoYQFmVmLm0KbB9CuKAo0Ul8vvnGB6l7\n9Eg6ktK23npe+vvRR+O9zmOP+ZjHOtrdV0pHbXtSrwJurfL7b0MIC/I9uZndaWbzzayiymtDzGyO\nmU3KPEqwX6ERePddTw76QqpddtFcnFScT0pQPl1ML5rZwfU8/91Arg1+rwkh9M48ijiHUL5XSt1L\npW7ffWHaNJ+CG4fPP/durP20B5eUlnwSxG+Ax8zsWzNbYGYLzSyvVkQIYQKwMMdbJdjZ3MgkPYMp\nTdZdFw491Pe7iMMTT0D//tHsxCcSoXwSxIbAOsAGQPvM79sXeN3TzextM7vDzFoVeC6pj1KYwZQm\nce40N3KkupekJNVa4zmEUGlmg/Cy338xsy5AB+Ctel7zZmBYCCGY2WXANcBJ1R08dOjQ75+XlZVR\nVlZWz8vK97IlNtTFlL9+/eDjj30x2+abR3feRYu8xHlcrRNpFMrLyykvL4/8vPlsGHQj3oLYM4Sw\ntZm1BcaFEHbO6wJmmwCjQwhr/bha03uZ91VqIw5z5ngxuHnzko4kXU47zQsJnn9+dOe87z7fmGjN\nulQiBSjmhkF9QwiDySyYy8xiWrcO1zCqjDlkFttlHQZMrcO5JArFquDa0AwaFH03kxbHSQnLZxux\nFZn1EAHAzNoBq/I5uZmNAMqAdmb2MTAE6GdmO2bO8REwuO5hS0E0QF0/u+/udZmmTYOtty78fF9/\nDS+8AHfdVfi5RGKQT4K4CRgJtDezS4EjgUvzOXmmhtOa7s4/PIlFRYUXxpO6adIEjjjC10RUGRur\nt7FjvWhhmzaFn0skBrV2MYUQhgMX4aU2FgBHhBBims4hRaEupvrL1maKYmxs1Ch1L0lJy2cMAqAp\nsAL4rg6fkVK0bBnMmgVbbZV0JOnUp4/v+FZRUfuxNVm+3FsQhxwSTVwiMchnP4gLgQfwCq5dgBFm\nFuE0Dimq996DLbf0xV9Sd2bRlN4YP9538uvQIZq4RGKQT2vgOGDnEMJFIYQLgV3w1dWSRupeKlw2\nQRTSzaTFcZIC+SSIufxwMLtZ5jVJI81gKlyvXr6PxZtv1u/zK1fCk096+Q6REpZPglgAvJspi3E7\n8A7whZldY2bXxBueRE4lNgpXaDfTv/4Fm20GXbtGG5dIxPJZSV1tGQyAEMKdkUb0w2trJXWUQvBt\nPqdOhY4daz9eqjd1qm8mNHu2T3+ti9NO8+Rw3nnxxCaNXlQrqfOpxRRbApAimzvXv8w0MFq47baD\nVq1g4kTYbbf8P7dqlW8O9NJL8cUmEpF8ZjHtb2ZvmNlndS33LSUm271Uilt7plF9KrxOnOituC23\njCcmkQjl0za+ES+H0Znoyn1LElTBNVpHHeVbkVZW5v8ZLY6TFMknQcwB3g4hrAghVGYfcQcmMdAM\npmh17w6dOuXfXRSCprdKquRTi+kcYLSZlQPLsy+GEK6PKyiJyZQpcPbZSUfRsGS7mfr1q/3YyZN9\nD/Dttos/LpEI5NOCuBSoBFrjXUvZh6TJ8uW+2U0UVUhltaOO8m6jFStqPzbbetAYkKREPi2In4QQ\n9CNP2k2b5juhNW+edCQNS7du/uf6/POw//41HztqFNxzT1HCEolCPi2IcWa2d+yRSLxUYiM+2Qqv\nNXnvPd//Yee8NmIUKQn5JIgTgfFmtlTTXFNMA9TxOeII3zJ0+fLqj8nOXlL3kqRIPgliQ3xP6lZo\nmmt6KUHEp3Nnr8w6blz1x2hrUUmhfDYMqgSOAM7NPO8E7Bh3YBKhENTFFLeaajN9+CH89791W3Et\nUgLyWUl9I9APODbz0jfAP+IMSiI2f76XeOjUKelIGq7DD4cxY+Cbb9Z+b9Qo3xioadPixyVSgHy6\nmPqGEAYDywBCCAsA7TaTJtnuJfV/x6dDBx+Afvrptd/T4jhJqXwSxAozawIEADNrB6yKNSqJlrqX\niiNXbaZPP4Xp06GsLJGQRApRbYIws+waiZuAkUB7M7sUmAD8tQixSVQ0QF0chx0Gzz0HS5asfu2x\nx2DgQG3xKqlUUwvidYAQwnDgIuBvwELgiBBCHUtYSqJUpK842raF3Xf33eKyVJxPUqzaDYPMbHII\noVeR41kzBm0YVKjvvoPWrWHBAlhvvaSjafiGD/cKr08+CZ9/7mW9586FFi2SjkwakWJsGNTezP5Y\n3ZshhMaz3eiIEXDQQdCsmZdKOOkkf54G//mPl4NQciiOgw+GM86AhQs9SfTvr+QgqVVTF1NTYAPg\nR9U8GoePPoJjj4UZM+CZZ+B3v4MDD4RFi5KOLD8aoC6uVq1g773h8cdh7FgffxBJqZp+DJ4bQhhW\ntEhK1XXX+RqCykqf537llb4Pcd++8NRTvvl8KdMAdfENGgR33AGTJsENNyQdjUi91dSC0KT5RYu8\nS6lLF1i50hPEQQfB9dfD6af7ytgJE5KOsmZKEMU3cCCMH+/dkFqcKClWU4LYp9CTm9mdZjbfzCpy\nvPe/ZrbKzNoWep3Y3HYbDBgAHTt6t0Hr1qv3Ej79dPjnP+HQQ+GddxINs0bqYiq+li2hTx/Ya6+k\nIxEpSLWzmCI5udnuwFJgeAihZ5XXuwB3AD2An2ZWZ+f6fHKzmL77zruPRo+GjTf2chWdO0O7dj88\n7qSTYNdd4eSTk4mzJvPn+wZBX36pVdTF9u233jXZsmXSkUgjVIxZTAULIUwws01yvPV34GzgyRzv\nlYaHH4YePaBXZqZvhw65j+ve3VfKlqJ33lGJjaRo5pI0APmU2oiUmR0EfBJCKN1+mRDg6qvhf/+3\n9mNLOUGoe0lEClDUyfxm1gK4ANi36ss1fWbo0KHfPy8rK6OsGDVtXnjBN3+pbQtJ8DGJUk0QFRWw\n555JRyEiMSsvL6e8vDzy88Y6BgGQ6WIaHULoaWbbAePxkuEGdAE+BXYJIXyW47PJjEEMGODlEX77\n29qP/fZbaNMGli4tvcVzvXr5QLu2uRRpVFIxBpFhmQchhKlAx+/fMJsF9A4hLCxCHPl5912fvz5q\nVH7Ht2jhs5xmz/bN60vFihXw/vuw7bZJRyIiKRXrGISZjQBeAbqb2cdmdsIahwRKbb3FNdf4FNa6\nlKYoxXGI99+Hrl1h/fWTjkREUiruWUxH1/J+aS1DnjfPWw4zZtTtc716wcSJcMAB8cRVH6rgKiIF\nKvosppJ2003wq1/BhhvW7XMHHuirrEvJlClaQS0iBVGCyPrmG7j1VjjrrLp/tm9fmDXLdw8rFSqx\nISIFUoIAX/H6xz/6F322lEZdNGvmZZ3Hjo0+tvpSF5OIFKjE5mUmYPFiOOYYL8z3yCP1P0+fPt6t\nUwq++AK+/hp+8pOkIxGRFGvcLYhp02CXXWCTTeD55326an2V0kymbPeSSmyISAEab4J4/HFfZXze\neXDjjYVvKl9qCULdSyJSoMbXxbRqFQwd6qW6x4zxFkQUunXzvYeXLUt+e88pU3w8RUSkAI2rBbFo\nkW/4U14Ob7wRXXIAH6ju1g1mzozunPWlGUwiEoHGkyDee88Twqab+nhDdeW7C1EKhftWrvSxle22\nSzYOEUm9xpEgHnvMd/e64ALfI3iddeK5TimMQ0yf7lukaqMaESlQwx6DWLUKhgzxfaWffjr+qqbd\nu8Prr8d7jZosWwZnn51fmXIRkVo03ASxaBH8+tdehvuNN+LpUlpT9+5w//3xXyeXb7+FQw7xfbOv\nvjqZGESkQWmYXUzZ8YbNN4fx44uTHCC5LqZvvoFf/MJrSN1/f3xdaCLSqDS8BDFqlI83XHghXH99\ncb8sN97YWyyLFxfvmkuX+gZHXbrA8OGlt2mRiKRWw/k2qaz08YZ77/WaSDvtVPwYzHwm04wZxbn+\nkiWeHHpyKnSmAAAMCklEQVT08J3jmjS8fC8iyWkYCWLN8YaNNkoulmw3U9wJYvFi33+iZ0+4+WYl\nBxGJXPq/Vd5912cnZccbkkwOUJy1EIsWwX77Qe/ecMstSg4iEot0f7OMHAllZXDRRcUfb6hOjx6+\nUC0uCxbAPvt4KY0bblBBPhGJjYUQko6hWmYWcsZXWQmXXAL33eeD0j/9afGDq87s2d69NG8eNG0a\n7bm/+AJ+/nPYd1+46iolBxHJycwIIRT8BZG+FsTChT6l8+WXfbyhlJIDeOnwTp2iXzD32Wew994+\nKK3kICJFkK4EMXWqr2/Yckt47rnkxxuqE/Ue1fPmQb9+cOihcPnlSg4iUhTpSRAjR/qX5MUXw3XX\nlcZ4Q3UGDoTRo6M513//6+MsgwbBpZcqOYhI0ZT+GMTKlZ4U7r+/9MYbqlNZ6au3J08ubNvPOXO8\nW+mEE+D886OLT0QatMYzBjFwIEycCG++mY7kAD44fcABhXUzzZ7tK8JPOUXJQUQSUfoJYqut4Nln\noX37pCOpm4ED658gZs3ybqUzzoA//SnSsERE8lX6XUwlHF+NFi2Crl19gHn99fP/3MyZ3q10zjlw\n+unxxSciDVbj6WJKq9atfaXziy/m/5np073lcMEFSg4ikjgliDgNHAhPPZXfsf/5j7cchg6FwYNj\nDUtEJB+xJggzu9PM5ptZRZXXhpnZFDObbGbPmFnHOGNIVDZB1NZN9u67nhwuvxxOOqk4sYmI1CLu\nFsTdQP81XrsqhLBDCKEXMAYYEnMMyenRA9ZdF955p/pjKiq8fMbf/gbHH1+82EREahFrggghTAAW\nrvHa0iq/bQmsijOGRJnV3M00ebJXZb32Wjj66OLGJiJSi0TGIMzsMjP7GDgauCSJGIrmwANzJ4i3\n3oL994ebboKjjip+XCIitYh9mquZbQKMDiH0zPHeuUCLEMLQaj6b3mmuWcuXe82oDz5YvZbjtde8\n4ODtt8PBBycbn4g0OFFNc016R7kRwNPA0OoOGDp09VtlZWWUlZXFHVO0mjf3/RvGjoXjjoNXXoFD\nDoG77vLuJxGRApWXl1NeXh75eYvRguiGtyC2z/x+ixDCB5nnZwB7hBCOrOaz6W9BgCeDcePgd7+D\nww+H4cO9e0lEJAZRtSBiTRBmNgIoA9oB8/EZSwcCPYBKYDbwPyGEudV8vmEkiHnzvET5euvBAw/4\nrCURkZikIkEUqsEkCIBTT4Ujj/SS5SIiMVKCEBGRnFSLSUREYqUEISIiOSlBiIhITkoQIiKSkxKE\niIjkpAQhIiI5KUGIiEhOShAiIpKTEoSIiOSkBCEiIjkpQYiISE5KECIikpMShIiI5KQEISIiOSlB\niIhITkoQIiKSkxKEiIjkpAQhIiI5KUGIiEhOShAiIpKTEoSIiOSkBCEiIjkpQYiISE5KECIikpMS\nhIiI5KQEISIiOSlBiIhITrEmCDO708zmm1lFldeuMrNpZva2mY00sx/HGYOIiNRP3C2Iu4H+a7z2\nLLBtCGFHYAZwfl1PWl5eXnhkJUT3U9p0P6VN9xOfWBNECGECsHCN18aHEFZlfvsq0KWu5y2lP8Ao\n6H5Km+6ntOl+4pP0GMSJwNiEYxARkRwSSxBmdiGwIoQwIqkYRESkehZCiPcCZpsAo0MIPau89hvg\nZGDvEMLyGj4bb3AiIg1UCMEKPUezKAKphWUe/huz/YGzgT1rSg4QzQ2KiEj9xNqCMLMRQBnQDpgP\nDAEuANYFvswc9moI4bTYghARkXqJvYtJRERSKoQQyQNYUsv7LwK9c7zeDZ/uOh14AGiWef0gYAow\nGXgd2C3HZ1sATwHTgHeAv1R5b13gQXytxUSga5X3xuLTb5/Mcc7LgfeBSuB3Ud1Plfd3BlYAh6X5\nfoC9gEXApMzjojTfT+a9ssy/t6nAi2m+H+BPmXuZlIl1JdA6xffzY+BJ4O1MrL9J+d9Pa2AU/h33\nKrBNke/n3Zru5/vjazsg3wfwVS3vV/cH+BBwROb5LcDgzPP1qxyzPTCtmj/AvTLPmwEvAf0zvz8V\nuDnz/CjgwSqf6wccuOYfIPAb4J/Z+wE2jOp+Mr9vAjyf+UuvLkGk4n7wBLHWP8AU30+rzH+azpnf\nr3XuNN3PGscMBMan+X7wBbVXZP9u8C7qNX/4StP9XAVcnHneo9h/P9X9G18rhtoOyPcBLMG/NEZX\nee0G4Lha/gA/B5pknu8KPJPjmJ8B7+YRw7XASZnnzwB9Ms+bAp+vcexaX3DAa8Bmcd0PcGbmL/Yu\nciSIlNzP2CrXG13bPaTofk4FhjWA+8n1/+f+bJwpvJ/s3895wI2Z55sC01N+P09RpVcE+ABoX6z7\nyfcR9TqIkHnkxczaAQvD6pXVc4CNq7x/iJlNA0bji+pqOldr4BfA+MxLnYFPAEIIlcAiM2tbS0ib\nA4PM7A08e28c1f2YWWfgkBDCLVSZ1ZXC++lc5ZBdzWyymY0xs21Sfj/dgbZm9qKZvWFmx6b0fjZe\n45gWwP7AyJTeT/bv50ZgGzP7L94tc2bK72cKcFjmuF2ArtRQVSLq+8n8n92itntIeiV1jUIIj4cQ\ntgYOAS6r7jgzawqMAK4NIcyu7rA8Ltkc+CaEkB0nOK+OIdfk78C5+cSTkvt5C9gkhNAL/8/7eHUH\npuR+mgG9gQPwL9SLq/sPlJL7yfoFMCGEsKi6A1JyP/sDk0MIGwO9gJvMbINcB6bkfq4E2pjZJOB0\nfLyoMteBMd3PHXhPRo2iThAr8eZO1no1HRxC+BJobWbZOLoAn+Y4bgKwWQ0Z8jbg/RDCDVVemwP8\nBL7/A/5xCGFBLfF/AjxW5V42I7r72Ql40MxmAb/E/4EflNb7CSEsDSF8k3k+Flgn5X8/c4BxIYRl\nmeNeAnZI8f1kDcIHR2uShvv5DT6oSwhhJjAL2Cqt9xNCWBJCODGE0DuEcDywEfBhse4nhPAY0LPm\nw6NNEAGYjTcD18k0ifbJ43MvAkdknh8PPAFgZptnDzCz3sC6uf4AzOwy/A/nrDXeGp05H5nzv7Dm\nR1k76z4O7J153gSfIRDJ/YQQNss8NgUeBU4LITyZ1vsxsw5VYt4FnzKd2r+fzK+7m1lTM1sf6IPP\nHknr/WBmrfC+6CdyfC5t9/Mx8PNMzB3wLsG1vlDTcj9m1srM1sk8Pxn4VwhhabHux8zK8NlMNavL\ngEUNgyffD5IAf81c+Bn8izA7iPMCuQdxNsUHT6bjI/7rZF4/B59uOAl4GfhZjs92Blbhs0+yU/pO\nzLzXHHgY/0t9FehW5XMv4Qv3vsb/4e2beb0VPnhUgTcpt4/qftY4JucgdZruB28WT83E+QqZAbO0\n3k/mvT9lYq0AzmgA93M8MKKG/7epuR+gEzAuc+4K4Fcpv59dM+eZljlPqyLfz8vA9rV9t0eyUM7M\ndgBuDSHsWvDJSoDup7Tpfkqb7qfhKLiLycwG49PoLiw8nOTpfkqb7qe06X4aFpXaEBGRnEp6mquI\niCRHCUJERHJSghARkZyUIEREJCclCGmwzKxtplbUJDOba2ZzMs8nm9mEGK63l5mNzjz/hZmdE/U1\nRIqpGFuOiiQi+MruXgBmdgmwNIRwTdyXzVx7NL7aVSS11IKQxuIHZQfMbEnm173MrNzMHjezD8zs\nCjM72sxeM7MpZrZp5rgNzezRzOuvmVnfGi9mdryZ3ZB5freZXWdmL2eucViV4/5kZq+b2dtmNiT6\n2xapPyUIaayqLgDqCZwCbAMcC2wZQugD3AmckTnmOuCazOu/xKth1uUaHUMIu+HVVf8KYGb7Zq61\nC97S2cnMdq//LYlES11MIvBGCOEzADObCTybef0dfBtS8EJxW5tZtiWygZmtHzIVbfPwOEAIYZqZ\nbZR5bT9g30zJZwNaAlsCkY+PiNSHEoQILK/yfFWV369i9f8RwwsSrojgGlbl1ytCCLfX85wisVIX\nkzRW+WywUtWzVNnFLFPArdBrjwNONLOWmXNubGbtCzivSKSUIKSxqq4IWXWvn4mPEUwxs6nA4AKu\nlZ3p9By+U9hEM6sAHgFy7pImkgQV6xMRkZzUghARkZyUIEREJCclCBERyUkJQkREclKCEBGRnJQg\nREQkJyUIERHJSQlCRERy+n9RogPAvC+RKgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f902aa5b7b8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot_date(x=timestamps, y=values, fmt=\"r-\")\n",
"plt.ylabel('Temperature')\n",
"plt.xlabel('Time line')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment