Created
June 20, 2018 23:25
-
-
Save fabianp/6efa423158b98f1393adfaf6d3ed29cb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%pylab inline\n", | |
"\n", | |
"\n", | |
"lw=6\n", | |
"\n", | |
"colors = {'FW': '#66c2a5','AdaFW': '#fc8d62', 'AdaPFW' : '#8da0cb', 'PFW':'#e78ac3',\n", | |
" 'AFW' : '#a6d854', 'AdaAFW' : '#ffd92f', 'LSFW': '#756bb1', 'MP': '#998ec3', 'AdaptiveMP' : '#f1a340'}\n", | |
"\n", | |
"plt.rcParams['figure.figsize'] = (3 * 10.0, 1 * 8.0)\n", | |
"plt.rcParams['font.size'] = 35\n", | |
"\n", | |
"\n", | |
"import matplotlib as mpl\n", | |
"import matplotlib.pyplot as plt\n", | |
"import matplotlib.font_manager as font_manager\n", | |
"\n", | |
"font_dirs = ['/home/fabian/Dropbox/fonts/Open_Sans/', ]\n", | |
"font_files = font_manager.findSystemFonts(fontpaths=font_dirs)\n", | |
"font_list = font_manager.createFontList(font_files)\n", | |
"font_manager.fontManager.ttflist.extend(font_list)\n", | |
"\n", | |
"path = '/home/fabian/Dropbox/fonts/Open_Sans/OpenSans-Light.ttf'\n", | |
"prop = font_manager.FontProperties(fname=path)\n", | |
"\n", | |
"matplotlib.rc('font', family='sans-serif') \n", | |
"# matplotlib.rc('text', usetex='false') \n", | |
"matplotlib.rcParams['font.family'] = 'Open Sans'\n", | |
"matplotlib.rcParams['font.weight'] = 'light'\n", | |
"matplotlib.rcParams.update({'font.size': 35})" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"plt.rcParams['figure.figsize'] = (2 * 10.0, 1 * 8.0)\n", | |
"plt.rcParams['font.size'] = 25\n", | |
"\n", | |
"\n", | |
"matplotlib.rcParams['xtick.direction'] = 'out'\n", | |
"matplotlib.rcParams['ytick.direction'] = 'out'\n", | |
"\n", | |
"np.random.seed(0)\n", | |
"n_samples = 100\n", | |
"A = np.random.rand(n_samples, 2)\n", | |
"A[:, 0] *= 4\n", | |
"b = np.sign(np.random.randn(100))\n", | |
"alpha = 2./n_samples\n", | |
"\n", | |
"from sklearn.linear_model import logistic\n", | |
"from scipy import optimize\n", | |
"\n", | |
"def f_obj(x):\n", | |
" return logistic._logistic_loss(x, A, b, alpha)\n", | |
"\n", | |
"delta = 0.025\n", | |
"x = np.arange(-3.0, 2.0, delta)\n", | |
"y = np.arange(-3.0, 2.0, delta)\n", | |
"X, Y = np.meshgrid(x, y)\n", | |
"\n", | |
"Z = np.zeros_like(X)\n", | |
"for i in range(X.shape[0]):\n", | |
" for j in range(X.shape[1]):\n", | |
" xx = np.array((X[i, j], Y[i, j]))\n", | |
" Z[i, j] = f_obj(xx)\n", | |
"\n", | |
"sol = optimize.minimize(f_obj, (0, 0))\n", | |
"plot_x = []\n", | |
"plot_y = []\n", | |
"plot_x2 = []\n", | |
"plot_y2 = []\n", | |
"xt = np.array((-3, -3))\n", | |
"L = 0.25 * linalg.linalg.norm(A) ** 2 + alpha\n", | |
"L_adaptive = 0.01 * L\n", | |
"step_size = 1 / L\n", | |
"xt2 = xt.copy()\n", | |
"for i in range(25):\n", | |
" f, axarr = plt.subplots(1, 2, sharex=True)\n", | |
" CS = axarr[0].contour(X, Y, Z, 20)\n", | |
" #plt.clabel(CS, inline=1, fontsize=10)\n", | |
"\n", | |
" plot_x.append(xt[0])\n", | |
" plot_y.append(xt[1])\n", | |
" axarr[0].plot(plot_x, plot_y, marker='^', markersize=10, lw=2)\n", | |
" f.suptitle('Theoretical (left) vs Adaptive (right) Step Size, iteration %s' % i)\n", | |
"\n", | |
" xt = xt - step_size * logistic._logistic_loss_and_grad(xt, A, b, alpha)[1]\n", | |
" axarr[0].set_xticks(())\n", | |
" axarr[1].set_xticks(())\n", | |
" axarr[0].set_yticks(())\n", | |
" axarr[1].set_yticks(())\n", | |
"\n", | |
" # axarr[0].scatter(*sol.x, s=100)\n", | |
" \n", | |
" \n", | |
" ## second plot\n", | |
" CS = axarr[1].contour(X, Y, Z, 20)\n", | |
" plot_x2.append(xt2[0])\n", | |
" plot_y2.append(xt2[1])\n", | |
" axarr[1].plot(plot_x2, plot_y2, marker='^', markersize=10, lw=2) \n", | |
"\n", | |
" L_adaptive *= 0.1\n", | |
" f_grad = logistic._logistic_loss_and_grad(xt2, A, b, 0)[1]\n", | |
" x_next = xt2 - (1 / L_adaptive) * f_grad\n", | |
"\n", | |
" while True:\n", | |
" if f_obj(x_next) <= f_obj(xt2) + f_grad.dot(x_next - xt2) + (L_adaptive/2.) * (np.linalg.norm(x_next - xt2) **2):\n", | |
" xt2 = xt2 - (1 / L_adaptive) * f_grad\n", | |
" break\n", | |
" else:\n", | |
" L_adaptive *= 1.1\n", | |
" x_next = xt2 - (1 / L_adaptive) * f_grad\n", | |
" \n", | |
" plt.savefig('lr_adaptive_%02d.png' % i)\n", | |
" plt.show()\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment