Skip to content

Instantly share code, notes, and snippets.

@gangulymadhura
Last active October 21, 2020 06:38
Show Gist options
  • Save gangulymadhura/66043d380f78c2d2050950413459fc17 to your computer and use it in GitHub Desktop.
Save gangulymadhura/66043d380f78c2d2050950413459fc17 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:13.946251Z",
"start_time": "2020-10-21T06:35:12.482Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Attaching package: 'zoo'\n",
"\n",
"The following objects are masked from 'package:base':\n",
"\n",
" as.Date, as.Date.numeric\n",
"\n",
"Loading required package: lattice\n",
"Loading required package: survival\n",
"Loading required package: Formula\n",
"Loading required package: ggplot2\n",
"Registered S3 methods overwritten by 'ggplot2':\n",
" method from \n",
" [.quosures rlang\n",
" c.quosures rlang\n",
" print.quosures rlang\n",
"\n",
"Attaching package: 'Hmisc'\n",
"\n",
"The following objects are masked from 'package:base':\n",
"\n",
" format.pval, units\n",
"\n",
"Warning message:\n",
"\"package 'pracma' was built under R version 3.6.3\""
]
}
],
"source": [
"#library(Hmisc)\n",
"suppressWarnings(library(zoo))\n",
"suppressWarnings(library(Hmisc))\n",
"suppressMessages(library(pracma))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Read data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.072249Z",
"start_time": "2020-10-21T06:35:12.484Z"
}
},
"outputs": [],
"source": [
"df = read.table(\"airlines_passengers_data.csv\",sep=',',header=1)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.097249Z",
"start_time": "2020-10-21T06:35:12.485Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<table>\n",
"<thead><tr><th scope=col>Month</th><th scope=col>Passengers</th></tr></thead>\n",
"<tbody>\n",
"\t<tr><td>1949-01</td><td>112 </td></tr>\n",
"\t<tr><td>1949-02</td><td>118 </td></tr>\n",
"\t<tr><td>1949-03</td><td>132 </td></tr>\n",
"\t<tr><td>1949-04</td><td>129 </td></tr>\n",
"\t<tr><td>1949-05</td><td>121 </td></tr>\n",
"\t<tr><td>1949-06</td><td>135 </td></tr>\n",
"</tbody>\n",
"</table>\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" Month & Passengers\\\\\n",
"\\hline\n",
"\t 1949-01 & 112 \\\\\n",
"\t 1949-02 & 118 \\\\\n",
"\t 1949-03 & 132 \\\\\n",
"\t 1949-04 & 129 \\\\\n",
"\t 1949-05 & 121 \\\\\n",
"\t 1949-06 & 135 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| Month | Passengers |\n",
"|---|---|\n",
"| 1949-01 | 112 |\n",
"| 1949-02 | 118 |\n",
"| 1949-03 | 132 |\n",
"| 1949-04 | 129 |\n",
"| 1949-05 | 121 |\n",
"| 1949-06 | 135 |\n",
"\n"
],
"text/plain": [
" Month Passengers\n",
"1 1949-01 112 \n",
"2 1949-02 118 \n",
"3 1949-03 132 \n",
"4 1949-04 129 \n",
"5 1949-05 121 \n",
"6 1949-06 135 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"head(df)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.122250Z",
"start_time": "2020-10-21T06:35:12.487Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"df \n",
"\n",
" 2 Variables 144 Observations\n",
"--------------------------------------------------------------------------------\n",
"Month \n",
" n missing distinct \n",
" 144 0 144 \n",
"\n",
"lowest : 1949-01 1949-02 1949-03 1949-04 1949-05\n",
"highest: 1960-08 1960-09 1960-10 1960-11 1960-12\n",
"--------------------------------------------------------------------------------\n",
"Passengers \n",
" n missing distinct Info Mean Gmd .05 .10 \n",
" 144 0 118 1 280.3 135.9 121.6 135.3 \n",
" .25 .50 .75 .90 .95 \n",
" 180.0 265.5 360.5 453.2 488.1 \n",
"\n",
"lowest : 104 112 114 115 118, highest: 535 548 559 606 622\n",
"--------------------------------------------------------------------------------"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"describe(df)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.144290Z",
"start_time": "2020-10-21T06:35:12.489Z"
}
},
"outputs": [],
"source": [
"# create date feature from year and month\n",
"yr <- substr(df$Month,1,4)\n",
"mo <- substr(df$Month,6,7)\n",
"dates <- as.Date(paste(yr,mo,'01',sep=\"-\"))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.163288Z",
"start_time": "2020-10-21T06:35:12.490Z"
}
},
"outputs": [],
"source": [
"# create zoo object\n",
"df_2 = zoo(df$Passengers,order.by=dates)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.226135Z",
"start_time": "2020-10-21T06:35:12.491Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO2di7ZrMBBAR9/taev///YUfdASCSNG7L3WvaXNmCC7iJySHABG\nI3NXACAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEAlA\nAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRA\nJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEOnBQUQO\nr5nHdOPD5/z32wB1aB15KclHE0SCAdA68vxcinR+ziESDIDWkefbx4mdyLbjUwwCD2gk+U0k\nyzcit2r2cwS6bYorp+YRqXi5PMzbX6vS90Mm2aEKvR8fH8juXF94Uf70WPj+ufTz7vHOpgpo\nlG8G1xf7nfK2f1h/egv+VbSqdFtVGrkfYY9abS/NsDy/PBYu+0v+W6ffRRbbrSIr61KvSSOZ\nu1ppgEhFV8MxP767Gz7GbMrD1I9Ih/JMUMpmfcuqmb/adOPYVrSb8s2sbFLbZ5EioFG+GVxf\n7HfKv2e5Z4W+i5aVbq1KPfe7xKGxru8yu/y7Ti2LfDhXGXcpl9OoSSOZs1qJgEjF1+k9v7+/\nXj/GSHnh9CPSk/0zttIkL9vVo/j90YROn4V/ym8ec6dHG7qX6u6+yjeD64vtSvmsUEvRc2tV\nGrk/S7nU13X3XvTue4VaFvn3FK4I+2vWpJnMVa1UQKRL9QW5e329fowpmkKLSNmlbFbFbNVe\n7vuXccVR514586Qo/2hkl6xc/OsEsoxulG/MNBb7lfJczZ2zlhq8K91WlUbuR1h2LZv0phb2\n2BRyeiztWAnWXcHmIm+/lW4kc1YrFRDpadDl9fX6MeZbrNrb92p2VxzMynd31Tfy6+rijTy7\nAy/P40n+WWajfGOmsdjflGWxc0sN3pVurUo993Mp983xVgvbvw4Vh7K23RV88jwfPpRhzZrU\nk3lVa+msXqT3OV32bggvY8rZls6Gz+vnLCsrm5X8tJRX+fz1LXw7H7bVaVmjfGOmsdivlNln\ngT81eFe6tSr13O9qvRZ1r78WxxhnBZvbrtpyzZrUk/VVKwlWL9Lp0wCqr+MvYzxFKuYOr4Z0\n+yz+azHnTVf5+kxzsT8p884avD9sq0o9949IzcrmPRV8UR7YngfbZk0aK+qsViKsXqRNrQGU\nx4wQkbJGe8zv56qzqtYpJY0DW3E+ttmfrs+lNMrXZjJHM/86IrUXbatKI3enSO8jUuaq4Ivy\n+nJbnbg1atJcUVe1UmHtIv1JnWdfbZ57ivTuofhw2TcaqTyPc9Ul2OZZvlakUf4501xse8pz\nWw2afjSr0si9/b5GKovsmtdI3RV8U/ShPKVr1KS5oq5qpUJ6axTG4TM26FRdOoeIdK765M7l\nV+zmfaWRfZZf6Hmueu1O7+jqi7pRvjHTWGxLystzWNN3Dd5F26rSyP3Ta1cW+eq1665gffNJ\ncRvuuyaNZM5qpcLaRXqfzby7xUJE+tyO+avOc2557dbus9yTou1sy88uVdd1o3wzuL7YzpS/\nNagb8VOVRu5P2Km+ru/bqOUByVHBF7eycLUF6zVpJnNVKxVWLtK53iu9a7kB2yPS5dl2yobx\nupT+GtlQvV1eX79OJLOytTXKN2Yai21PuZWWGrwr3VKVZu6/rC3sbdL+dylta1ddYj67u+s1\naSZzVSsVVi7Stn5if2kZEtQjUjVkbfdcRnn2v23ctS/KnTeSHapv7eujRLa/3qrW1yjfmKkv\n9jtlsYztpbUGHyNaqtLMXQyM+w17xGW1/unuCr4oTjFfpes1aSRzVisRVi7S5NTaqC53Gxca\nJxvVmB9EmhZ1kaTqHbluGyMI5uKapXi9MwREmhZ1kT79AT8979GpqnGduxomQKRpURfp/acI\nBo4EZTWOc9fCBog0LfrXSPdj8ccOmYUBa8UfGaX4R3pDQCQABRAJQAFEAlAAkQAUQCQABRAJ\nQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAU\nQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQIEI\nIgnAwhjQyvXFmSEFgCaIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgA\nCiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgG0ENoEEQmgBUQCUCD0\nFx8RCaAFRAJQAJEAFEAkAAUksBEiEkALiASggGmR/o678lEyu8PfVCkAVDAs0n1TeyzTdpIU\nAEpIYCuMKNJBsvO1nLpdMjlMkQJACcMiZXJ9T18lmyIFgA6S2xWp0TPv7qZHJJgXef8XEjAg\nxwA4IsFisCzS4xrpciunuEYC41gWKd/Weu0290lSAKhgWqT871DeR8p2R+4jgWmk9n9AwIAc\nk4JIMC+IBKCAbZEYIgQLwbJIDBGCxWBZJIYIwWKwLBI3ZGExWBapZ4iQ1BmYAkAHyyJxRILF\nYFkkhgjBYrAsEkOEYDGYFokhQrAUbItkKQWAA0QCUMC0SPdD0VV33IhszxOlAFDBski3TCS/\nZwwRAvtI48U/YECOYPayuz/+298eTu3p/gbLWBZJ5P7873GWxw1ZsIxtkfJieENtRj0FgA6W\nRdoXQ4SO1Tihu/siCZFgVuTr1T9iQJJQrpIdrvkue5h02chlihQAKpgWKb9knyFCx2lSAGhg\nW6Q8P+/Lv5LdHW+TpQAYj3WRDKUA6AaRABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACR\nABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAfmZ8I4YkGQ6EAnmRFqm\nvEMGZJkMRII5QSQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCSAVsJaFCIBtIJIAONx\nP/v7t3jLlHfIgCyTgUigCiIBjEc4tQMYDyIBjEfobAAYDyIBKIBIAOORHJEARoNIAOOR939h\nIV9T3iEDskwGIoEaiASgACIBKCC1/0MiwsIQCRIHkQAUGCWSdxwiQeIgEoACiASgACIBKIBI\nAAogEoACiAQwHmm8hIQExSESpA0iASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASgQ\nLpJ0zvgGTRZiMAWsBEQCUACRABRAJAAFEAlAAUQCUACRABSQr1f/iKAwRIK0QSQABRAJQIGR\nIvnGIRIkjfxM+IeExCESJA0iASiASAAKhIskzlnPqIlCDKaAdYBIAAokKdLfcScFu8PfVCkA\nGiQo0n0jH7aTpAD4IkGRDpKdr+XU7ZLJYYoUAF8kKFIm1/f0VbIpUgB8kaBIIl0zaikAvkhQ\nJI5IEJ8ERXpcI11u5RTXSBCLBEXKt7Veu819khQATVIUKf87lPeRst2R+0gQhyRFspQCFkpg\n20AkgDYQiSFCMB73fZOW8j8TvgFhcQwRgkURXSTPQIYIwaJAJG7Iwnhk8msk+yL1DBGSOgNT\nQOqEiiQtU74RQYEckWBJIBJDhGA8Eto2pHXSMyIkjiFCsCAQqYQhQjAORDKXApYIIplLAQtE\n3v8FRfxMekaExMUX6bQR2V0mTQGJMotIfoHR7yM9exycnXaIBK0gUhlXBB7kcM/z20FOU6SA\npJHa/0EhIXELESmTst/7LpspUkDSxBCppZRJkV6jf/gVIQgGkaq4InD/EokhQhAKIlVxsjue\nLnJ+TN4PDBGCYBCpivuM7BbJGCIEoSBSxfV6Ou12ZZfDwekRIkEbiGQwBSwPRDKYApYHIhlM\nAYtDGi9BMf5xbaV8IhEJlgIiWUwBiwORLKaAxTFAJOmY9osIiUQkWAqIZDEFLA5EspgCFkcM\nkVoLIRKkBCJZTAGLA5EspoDFgUgWU8DikK/XgBDvuPYyHpGIBEsBkSymgMWBSBZTwOJAJIsp\nYHEgksUUsDgiiNRRBJEgHeRnIiDGMw6RIHkQyWQKmJ3AvRxBpK4SiARmCX7k9gCRxDHXXz4k\nEpFgHiTGEUlLpDGhqiEGU8CsSG5QpO4CiAQ2QSREAgUQCZFAAYsiOT5HJLAJIiESjEdq/4fF\nBIUh0vQpYE4QaViIwRQwJ4g0LMRgCpgTRBoWYjAFzMksIvUEuj5FJDDJAJGkZco7xCcQkWBx\nINKwEIMpYE5GieQdh0iIlDiINCzEYAqYk6WJ1J8SkSA+0ngJigmJQyREShtEGhhiMAXMCCIN\nDDGYAmYEkQaGGEwBMyJfryExAWFBIo2wzKuASojBFDAjiDQwxGAKmJE4Iv0WG36rCJHAIIg0\nMMRgCpgRRBoYYjAFzIf8TIQEIZKpFDAfiDQ0xGAKmI8hIknHtGdIfyAiwdJApKEhBlPAfFgU\nqWeZiAT2QKShIQZTwHwg0tAQgylgPhBpaIjBFDAfcURqKYVIkBDhd4RyRBoGIqXMaJH8wtoK\ndQf2LXLs5zohBlPAbCDS4BCDKWA2FizS8HidEIMpYDYsiuR5DYRIYAdEGhxiMAXMBiINDjGY\nAmYDkQaHGEwBs4FIg0MMpoDZWK5Iw2/oKoUYTAFzET5G4acgItlJAXMRSaTWMogEyYBIw0MM\npoC5mFOkzkhEgqUR3m3wU05dpP4FIhIYA5GGhxhMAXOBSMNDDKaAuUCk4SEGU8BcIFJbyGmT\n57eNbP7Cl+ObAtICkVpCLvKYy+SBqkmIlDBxRPIyRtrf7gycTqStnPOrbPKzbMMX5JcCEmOZ\nIhVFXKVGilQckK5yqCb0QKSEsSPSu9F6nipOLNJOLogE3iiI5Hsq1ptc/GsxrUhbuV4kyz1P\n7f6Ou+JySnaHnisqRFoOofsqvNugpVxyIl0KL47FAenSG3ffyAe3d4i0HELPReYVqf7+R435\nRcpPWXGFlG/O/XEHyc7Xcup2qaI0awUzgUjeixgfUpLJ9T19Lc4H9VNAfCRwb8URqbOAUZF2\nzgPLV9x3L4VfCrDNOJF8g1MXKeS4zhEpSXoaWFt5x6xWlIdI8pmdX6SN3L3jHtdIl1s5xTVS\nOkgeQ6TvUroiedVhWpHuu63/2KBtrddu4xQQkRaDf0usB3TO+gWlJ1JNDY/Iv0N5HynbHbmP\nlArWROq76pHmxDJFGpQCTON/kdEI6Jr1C+oVqVe0ISJp949FaOWItBjMidSjRhIiMUQoPRYu\nkn9nydQiXXblwNVbfxxDhFLEnEg9algVaVtdHknWbxJDhFIEkfpq5BVyku29EOkk+944bsim\niD2RevrXvrr1ejrj6nFTipTJvTor9ei16xkiJDJRFyBMCSL11cgrpDyt8xSJI1KKfLVL74CO\nWb+gnlM3Z2O0KdLmeUQqfrehD4YIJYh8vfpHBAX+nr+4CoaI1CdILTDCNdJDjFN/IEOE0iNY\nJG8lhkX1n2naFCnfeXVnP2GIUHIgUk+FvEOK+0iy8/gD2eEpwC42RfJYlDmRJgGRlsKaRBrx\nqVbI9xL6FoFISyEBkXyrPqlI9UE//n91jkjJsHyRvKseSyRx3xr6KstvNqTBUkWS7zcG1CEw\nsTtknxU/aHfJ5C/fue8N5X8ZIiUHIgUupSPk8BytcJVtfu+7KXvfyba8I8upXTLEEem3zHCR\nqiLqfQOjT+1qE/2XbWeRc45I6SA/E94RIZEmRPJY6vCQ7H1Eyrz6P25b2d0RKRkQKSCxK6QY\nP5eX10gHzx/SPz4iECkVZhOpK2ypIr3Hz22LA5LHeLvHwWvT/2cSiLQQFDqREamiGiJUHJaK\np1J4sUekVECkgMQKIQZTgAaIFJBYIcRgCtBgqSLpNzBEghEoiOR9EPGKWqxIx43PSIVRKcAu\n1kTyPbyZE+nITxavGkQKyewI8foT83EpwDDBIvmfpA2KWqxIE/1wFiItA2md9IwIiExfpF3A\ng8YGpgC7LFKkopA5kW5ZwIPGhqUAuyBSWObuEJ6PtGoQKSxzdwgirZoZRWoPW6xIE4FIy2Cp\nIk3QvhAJhiMd034R/oFrEMn/QWODU4BVECkssyMk4EFjQ1OAWSKJ5O/MYkUKedDYwBRgF0QK\ny9wdEvKgsYEpwC6IFJa5OyTkQWMDU4BdECksc3dIyIPGBqYAs0jnjF+Ib+QKRAp60NiwFGCW\nhYo0yVDrsb12QQ8aG5YCrIJIoZkdITxobL2YE2n48IrRMLIBXgRv9VlFGnhvN6BYEIgELyKI\nNOx8bA0inTZ5ftvIRvevkhBpDoIvHRBp1DLrIeXPeJfPPVI1CZHmwJpI4v48KZG2ci7vIfn9\ngP6gFBCLcSJ57TQbIk2BwsiGa/GkPkY2LB9zIonz85bsyxZpJxdESoHgO/6I9JV/eMhWrpfi\nGWOc2i0fCd7ucUTqO/OrzS1XpEvRz3As1vmiVqUckWYhWCRxzvqEOANfB0gvkarCyxUpP2Xl\ns8w3ukMbEGkGJhRJnGW6T92ch5m0RJoGRJqB4JYYR6TOxSKSiRTwzZQiObsNEClnZENCzCZS\nt1/uKjW6jxcuEiMb0mHSUzv/q52v+vicML7rvlyRGNmQDsEdyKEi+Z2kNd5djUiMbEiHSUVy\nNnNEYmRDQowVyX0141ICkRjZkBDTiVQteYhIzvr8iDRnsxnf2cDIhkSQ2v8BAd3zzQ/8Di0h\n1ZGvqYkeH+nH6O5vRjakwsQiBSzIsyJJiTQNiDQDoSL9lESkyUMMpoAvpPHiH+B4o/cD1+cr\nFelvN7YmvSlgUhBpFGNFOvDoy0RYnkjvIt+vczBSpI9H9NotnODWqCdSa4F1iZTJOd/K7bZl\nrN3SQaRRjBSpOKM7Po5GV27ILp0ERJoTBZEuxZMouEZaOuNF6gwNE8m/Gz4hkXaPU7ubbPI/\nRFo6VkTq+cmTljATrWWkSOXfI5UPZOYZsgvHhkjS95MnLWEmWsvY7u9jMbeXcpyQHiY2zcow\nIZK8Z9Ym0jSY2DQrw4JINYcQSQMTm2ZlTCdS/xJXLtLtkEl2uGtW5zsFRCNUpJZyiDQo5Fb+\n6IlkN9UKNVJAPORnwrO88y3PBTaU8BYpoOTkjBBpL9t7ft/q9tc1U0A0pGXKM6AvEpHcIZkU\nZ3W34i/NtbGxbVaFBZHqOq1IpNedswlWxMa2WRWGRCpe/SqBSJ4pIBoaInWEIpI7BJFSApHG\ngUhQgkjjGCVSg5lrBeNApHEgEpQsViQjbWWESBNiZOOsiXlF+jq2+P5oKiLNnwKaSOukX0BP\n5HQi+R+7JgeRoCRUpNZC40SqHxQRSQUjG2dNINI4EAlKbInk2wAQafYU0GQ6kbwXh0jqGNk4\nK0I6pr0C3O8OEMm7Acz7TKQ6iAQFiDSSkSKVx2D9QUJWts56QKSRjBAp253+ECkRfEUSd5nB\nIg282klCpGpk0P58Q6Tl4y2SOMuMEWnITk9CpPvfafccZ7c/XeeuFYxCOme+y4mrBCINDBF5\n26RWpRyR4uMvkvMkTFrmphRp3oeL1dG5RnrY5PPLDX/HSrrdoechMFa2znoIEMnV5hFpQEjo\nNdJ9U/ujC/dTYKxsnfUQIpLj86/F9JRuKRyKmZYy5tTueto/tXgcm/p/J/Ig2bm6lLpdMveP\nhZvZPKvBU6S+HYNIA0OKs7q95zVSJp8eiav7R7zMbJ7VMIFI0nv8akauXKTc+xpJfgI1awVj\naLu26S/nLiC1fz41QCTPaySOSHZZrEhmGClSCI9rpEv1O+FcI1ljApHep3WeO3Ph+zyiSNWT\n/Z5snJ0TC9+oy0Ocsx4f/BZ49X377suF7/OYIuV/h/I+UrY7ch/JFvoiyesFkRRDDKaAOog0\nFkSCfEKRgv7YdcnEPbVjiJBRDIi0cCKKxBAhuyDSWOJ2fzNEKBKhG9BTpP7FytfravZlRJG4\nIRuPwA34XXy4SJ9OhoFVWSoRReoZIjTZL/KvkcAt+LszPMt1FlndHuSIlCSIFBuGCCVJ4Mg1\nRBoNQ4RSRAI3ISKNhiFCKYJI0WFkQ4pIHrYNEWk0iJQis4u0vh04g0inTDanaVOsHXn/F1De\n+Ybz7d8i69uBMUW67iQ75UeGCE0OIkUnokjX0qCD7O/5bSfOY9L69oMugSK1lGwP9llkqMSJ\nEFGkfXHv6FDdib3LZooUUDGRSF5LRKQJQ6q4ahPvajPaKaAk9PQKkcYTXaRzdU7HEKEJCe2C\nRqTxRD2127+GM9z3DBGakNlFWuH+iyjSPXufz4n7gLTGHaEJIsUn6n2kw0ufzHk8WuWO0ASR\n4sPIhgRBpPggUoIoiOT9XmuhFe4/REoQfZFCOtRllfsPkdJDvl59y3e/GfikozXuP0RKD/mZ\n8Czf+SYi9YJI6aEu0vOyx3txa9x9iJQeiDQDiJQe2iK9ehoQyQEipcc0Inn/xBciTRdiMEXC\nqIj0uxREcoFI6TGRSJzauUCk9JhKJO/0a9x9iJQcv1c3/gFt7wbvjFX+dDsiJUeoSB2FRogU\nGpACiJQcyiKF74tV7j1EWgJB2wOR5gCRFkDYRQcizQEiLYBJRepa+HCRVgki2Wf4w47647od\nRaQgEMk+I54a1hPoPNRJ4wXcIJJ5JA/aINI581PSvVRECgGRzDORSL0XXogUAiJZR97/BZRv\nnXGUcxRgX3iBSNaZWSR2hR+IZJzg5oxIs4BIxkGkZYBIxplKJI9bTKGZVw0i2Sb8il8ccz4f\nfJVgV/iBSLZBpIWASLYJFkmcsx4ffBVhV/iBSLYJHvGGSPOASLZBpIWASLaZWyT2hCeIZBr5\nmfCO6IlDJF0QyTSItBQQyTSjReoK9FkeIgWASKZBpKWASKYJFumnHCLFAZFMg0hLAZEsIy1T\nvhHuQK/lCXvCG0SyjLROekY44xBJGUSyzOwisSN8QSTLINJiQCTLKIjUEYhIyiCSZRBpMSCS\nYaRj2i/CFei7NHaEL4hkGERaDohkGERaDogUl6A1m0QkCVlaujtCG0SKS8iaSedMyOJHiLTO\nxyoPA5GiEtQyxTHnFdL2loQMoUt2P+iDSFGZQaSfxSDSFCBSVEJE+jmUhMe0vCchQ+iS3Q/6\nIFJMgkaBDhCpv4dOgmqR6n6YAESKiRWRfCuR6n6YAESKSP/ViXzO/Vp72zwSuN+s+uwS3b5z\ngkgR8RDp41KASJ3y/bz5XHSi23dOECkiXiK9/p9QpFS375wgUjw8boU6RHJEitMPRIoBIsXD\nW6T2TomhItXeTnO7mgCR4jGdSO5FI1IEECka7X0ILUXy9h7qPpE6P0ekCCBSNDyuTz4itZRy\nieS8Q+XuiwAVECkaISK1lXKK4rrJikgRQKRYyNerq0zYh303WREpAogUi9EiuTsTBt9mAhUQ\nKRYTizQ2NYwDkSLhdViYVqQEt6odECkSiJQ2iBQJREobRIoEIqUNIsXBb3QBIi0WRIqDtE52\nFwr5uH9reYxOgnEgUhw0ROr6HJEMgEhRkI7p7lIBn3uKlNxGNQUiRQGRUgeRojClSB4bC5Em\nB5GigEipg0hRmFmkskxyG9UUiBQD6ZzpLub9OSJZIKpIf8edFOwOf1OlsImSSO0FEMkCEUW6\nb+TDdpIUVhHHnM8HzgKIZIGIIh0kO1/Lqdslk8MUKaxiQaTUtqkxIoqUyfU9fZVsihRW8RPJ\nd4RCcBgiTU9EkRq/KuD++enUdvrsIuU8DnZiOCLFAJGSJ+410uVWTnGN5FHKuwQiWSBm9/e2\n1mu3uU+SwibinO19v6cIIlkg7n2kQ3kfKdsd13Uf6Xt1Bg8+RSSzMLIhApOK5LeteLbYxCBS\nBCYSSXyjAorBQBgiFIFpROp4RKZnHUAXhghF4Gd1Bo8+/RSR1z1WRDIBQ4QiMIFI0vwP5oYb\nshHwE8mz9632gkh2sDNESOoMTGGT37VBpOTgiDSAQNk9+6zDRSpfjG+rtcAQoQEEHgn0RZLa\nnPFttRYYIjSAoH5nRFoFDBEKp3l65V3e8Zb/uSIiGYWRDeEoiNR2ZzVgWfVecNvbajUgUjjK\nIoWtbPP6DJGsEFOk+15ke3kuxLkU241Dvl59y7e/F7iu3yLZ3lTrIeYQoawaaFctJHWRekwZ\nJVL9cGZ7U62HqN3fp4dNp6wcZrd2kb4G+4QlRyR7RL0hW77css1t0SJ5HUykz5TQ88N6HCLZ\nI6JIr31+324RCZESI6JIG3ndhN1sVyBSjypDRfruqDO9qVZERJFOsn9O3WSbhEiOevaKFNyJ\n3rLkQfEwCTG7vw9vey499/FNtw4fkeonYOoimd46ayXqDdnr7jV126cvUo8q4l6CI73prbNW\noopkKcVgvM6raiJ1lUGkpECkUKRz5vttRFoRiBSKv0iNE7yOQoiUCIgUSqBI3b0qX3eE/Ctg\neeusFkQKJUCk3Nk5OVikATEwNYgUiodIPYMaah8iUiogUiDinHW82VoKkVIBkQKZXySwCCL1\n4zqZa6upb+3pf0sIROrHdQsWkaAEkfoJFMm78oiUEIjUT60P+6diiAQliNSL+2/0ft9CpDWC\nSL182rvXBVFA3U2tJowCkXpBJOgHkXoR50htn248x5IhERCpl+lEgnRYu0gev17/EqlnXF3r\nLKyF1YvUm+1domek9+8MrAhE6kv3KtFVyHW7FlbDykVyXPw0iiASuEGkvnwBIuHRekGkvnxP\nkTqLOMYPwXpApL58z7M/RAIX6xbJNYiu+YmjRh4LgeRBpJ6E/iLh0ZpBpJ6E/VVBJECk3oyI\nBD4gUk9Gj6p49FhA6qxaJJ97qYgEPiCSO6VPTRAJEKknpb9IeLRqEMmd0qsm/SNfIXUQyZ0S\nkcCLNYskjjn3u22FEGnVIJI7JyKBF4jkzOlZEcdfWcA6QCRnTkQCP1YskjhngyqCSKsHkZw5\nfSvCrw+vHURy5fSuByKtnXREEo+fqHMmaYlFJPAkIZFCA/tF8l9akMGQIMmIFD5ytFekMSR3\nagoAAAlMSURBVFbCylivSP3eIBJ4g0idb+AG+INIXW/gEQSQikjyMxGcw2foHUA7iNT+Dh5B\nEOsSya2KuD4EcJGcSM5YcbritwyAFhIRyfNgIk5XEAkGsyqRxH0KiEgwGERqi0QkCCQ9kRzB\nUvvUJRIeQShpiCSdMz/FHCI5PwNwsSaRpP4xIoEmCYrUGS0//3csBpEglCRE8hwlVz8WIRKo\nslSRXCdziATRWaxIjkEKHdGNTjlEAlUWKlLpQme7bw/vF8l1/QTgYsEidXfA9YjUuDHbvVgA\nfxCpc7EA/ixapK5+A+cFUDntvIxCJAhmmSI1ro6co+ba3+v89azuHj0AF8sWqavfoE8kdw85\nIkEwyxepV5q29xAJdFm4SHn7bwV7HqQ6SiESBLNIkRr3Ynt7FrwWWSuGRxDO0kXq7er2W2K9\nHCJBOIj0Uw6RIJzFi+RXwrvOiASDWKJIPhUQ56wzEJEgHET6CUQkCCd5kUI7tBEJhrBAkbzy\nf0TqGPzQGYhHMIDlieR/Q+j5EvZkWQ5IMITFiRTQj/1+QSSYmlWIpJUboIuoIv0dd1KwO/wN\nTRFyQyikOMAoIop038iH7bAUQd1vYeUBRhBRpINk52s5dbtkcpgixc8yEAniEFGkTK7v6atk\nU6T4XgYeQSQiitTohXZ3SSMSLIx0j0iMP4WIxL1GutzKqSjXSAz2gYjE7P7e1nrtNvdJUjQX\ngkgQi7j3kQ7lfaRsdxx8HykARIJ4LG5kQ/SlAHiASAAKLG2IEIBJFjZECMAm6Q4RAohIwjdk\nAeJhZ4iQ1BmYAmAmOCIBKJDwECGAeCQ8RAggHgkPEQKIR8ojGwCigUgACiASgAKIBKAAIgEo\nEHVkg/fgBUSChRFRpBMiQbLEPLW7Zu4/nlBIATAPUa+Rru6BQRopAGYhbmfDqTZudaIUAHNA\nrx2AAogEoAAiAShgVCSAhTGgleuLMzExaxwxV5qpUl0ta9mHQDNYUKpUV8ta9iHQDBaUKtXV\nspZ9CDSDBaVKdbWsZR8CzWBBqVJdLWvZh0AzWFCqVFfLWvYh0AwWlCrV1bKWfQg0gwWlSnW1\nrGUfAs1gQalSXS1r2YdAM1hQqlRXy1r2IdAMFpQq1dWyln0INIMFpUp1taxlB0gERAJQAJEA\nFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAXMi3R6\n1fCQyfZSTtV/6Pzxbna4x8l12ujl6kn14E9r1/Skuu5F9rcoue6ae6slVX1dVBuGB9ZFur5a\n1rbcHcfqrfeuqd7dRMl1KKcylZ3Tk+rBPVPaNT2pLopr1ZPrllW5VKxtSVVfF9WG4YNxka7Z\n62gg23t+3xdP27zK7vXxn2TXosxfhFxX2d+Lz/bTpyrYDXm2yIBU2WML3ne+zwMelWtfZjlM\ntgVr66LaMLywLdJjKz2317bcJrdiI52qr5+CgxTH9PPnjQlz7aoPNdp3X6q8WCcdkfpSncvG\nfZcsQi6ZeAvW1kWzYfhhW6THlmlufdkWG/H0+nwnxWnC13f5RLlexRS2WH+q27uhTJxq7/lE\nbY1cz5NVDWlbU9XWRbNheNYoWqYhXL+/xoqXnVz2jwvJr3cnz1VxL/bY9Km2ctMRqS/VRvJj\nVp60Tp/r+Dy1UzhMtKaqrYtmw/DDtkj5e1tsyq+Yv2rXlGxz9e3lzFVxkkuEVEc56zWCni1Y\nzmic2fXmyk9Fb0P2fYxXS1VbF0T64bktjrK759dttb3ORU9qccowjUjtuUpumdLJgjNVeUqi\nLVLXFiwu0PdaFxPuLXj8dLBNk+q9Loj0w2tblF2nta6se9G3OY1I7bnKiUzhxK4/1abowdUW\nqWsLFtcVN62OYmeuU3Fq92joOoek31S1dUGkH17b4rEDsmN9yxST2TQiteYq2KrdmHCl2pen\nj+oita7VRF9Frbk2Uly+3JWk/U1VWxflhuFTnWiZBtLYFtfaTqhOwIsT5JtW54wz1yPPZqs1\nAsCZSt5MnkqzU783l660v6lq66LcMHyqEy3TQJ7bKyu/zU7Flqkmy410LL+7Lzq3E3tyPdJo\nndf1pJpGJNcWvGmtmjNXdZjQuWfVlqq2LsoNw6c60TIN5Lm9yvvhf5viyvVQnmqXt9yUb2A7\nc6k1tv5U9RITp3pcUZQDA84Rcj0m7883JklVWxdGNvzw3F73apzW7jP5vA3S7J2eMNd+isNE\nx2rVSkyd6hhvCz4HwOke/Gqp6uui2zB8qhMv1TBe7en2aMi76tu6GES8Ob0nM7XjtzPXNBcu\n7atVLzF1qss21hZ8DsmeLlVtXXQbhk91IuYCSBZEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQA\nBRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAA\nkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEsky2O1XPUb+ddt2P\nMC4fV6f2gD8YBJvfMiLFo4bz6gG2XYU2UhWNVCdohc1vGZFNdSDKNt2iCCIZgM1vGZGDXB+v\n18crIpmGzW8ZkYsUDwQ/yfkpymnzfsj6bSfZ8fm09VKkQzlfPttbtpf5ar1KEMkyInfZPV53\ncqtE2pbabMuPsmLy+BFpV0ycCuvkOQXxQCTLPAwpuxIkq07dzpJd82sm5+Kj7f3hzOZzavea\nz4qzwXMxBfFAJMuU52t/+Z/sK112UpyxXYpDkjzeryR6ifSZ57QuPohkmYcX58fZ2/FxCCp1\neV4o1fVpdjYU/x8eZ3nX61xVXiuIZJmHF7fH4WcrtwCR8mNx9ZTdZqrzSkEkyxReZHJ/XCKF\niPQ4+TtsuEaKCyJZpvBiL4dieEPjGmnXI1JjCmLA5rZMYcP5cZ52zlt67V4FRG55fX5TfEyv\nXWQQyTKFFzcpTfm9j/QqsJH3qd/bPKk68SAaiGSZ0o6s8OR1qnbK3iMbXv//bZoiVSMb8Cgu\niASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBI\nAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASg\nACIBKIBIAAr8A1RwnsHJX+HwAAAAAElFTkSuQmCC",
"text/plain": [
"Plot with title \"Airlines passengers across years\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# plot time series\n",
"plot(df_2,xlab=\"Months\",ylab=\"# Passengers\",main=\"Airlines passengers across years\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.246174Z",
"start_time": "2020-10-21T06:35:12.492Z"
}
},
"outputs": [],
"source": [
"# take log to remove increasing variance in seasonality\n",
"df_2_log = zoo(log(df$Passengers),order.by=dates)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.310134Z",
"start_time": "2020-10-21T06:35:12.493Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO2dh7aiMBBAB9tTV+X//3YpFmoKDCGEe8+uAmaYUO4DQhTJAWA2\nsnYFAFIAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAU\nQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFE\nAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQouInL5\njBTDrQ/f493JAE3YO/JKkp8miAQTYO/I81sl0u09hkgwAfaOPD8WJ3Yix5FPMQgcYCfJnyJZ\nfhB51qO/I9DzUF45tY9I5du9MO/8qEu/Lplklzr09Vd8IKdbc+Zl+Wsx8/N77rdTMeVQB7TK\nt4Obs+2mfJ4L669fwTtF60oPVaWVuwgranW8t8Py/F7MXM73vF+n/izL9VaTVXVp1qSVzFyt\nNECksqnhL//7Njf8jDlUh6meSJfqTFCq3fqZ1SP/GsOtY1u531QTs2qXOr6LlAGt8u3g5my7\nKf+9y70r1C1aVXqwKs3c3xKX1rJ+y5zybp0GZlk4Vxt3r+bTqkkrmbFaiYBI5Z/TV/76/nn9\nGSPVhVNPpDfnd2ytSV7tV0XxV7ELXX8z/5U/FGPXYh96VeqeOuXbwc3ZjqV8V2ig6G2wKq3c\nv7ncm8t6+s761F2ggVn+ewtXhv1r16SdzFStVECke/0H8vT58/ozptwVBkTK7tVuVY7W+8vr\n/DGuPOq8amfelOWLneyeVbP/nEBW0a3yrZHWbDspb/XYLRuowbfSQ1Vp5S7Cske1Sx8aYcWq\nkGsxt79asPEKtmf57Fe6lcxYrVRApLdB98+f158xXbEak1/16Kk8mFVTT/Vf5M/VxRd5Nwfe\n38eT/DfPVvnWSGu2/ZRVsdtADb6VHqxKM/d7Lq/D37MRdv4cKi5Vbccr+OZ9Pnypwto1aSZz\nqtbW2b1I33O67LsjfIypRgcaG37vv7OsrNqtpLenfMrnn7/Cz9vlWJ+Wtcq3Rlqz7aTMfjPs\n1eBb6cGqNHN/q/WZ1av5Xh5jjBVsr7t6zbVr0kxmq1YS7F6k628HqP8cd4xxFKkcu3x2pOdv\n9p3Z3A5j5Zsj7dn2UuajNfh+OFSVZu6eSO3K5pYKfqgObO+DbbsmrQU1VisRdi/SobEDVMcM\nH5Gy1v6Yv251Y1WjUUpaB7byfOxwvj7ec2mVb4xkht28c0QaLjpUlVbuUZG+R6TMVMEP1fXl\nsT5xa9WkvaCmaqXC3kX6J03ebbV57ijSt4Xix/3c2knlfZyrL8EO7/KNIq3y75H2bIdT3oZq\n0PajXZVW7mP3GqkqcmpfI41X8EvZhvKWrlWT9oKaqpUK6S2RH5df36BrfensI9KtbpO7VX9i\nD98rjew3/1LPW91qd/1G13+oW+VbI63ZDqS8v7s1dWvwLTpUlVbuXqtdVaTTajdewebqk/I2\nXLcmrWTGaqXC3kX6ns18m8V8RPrdjvlXn+c888at3Xe5N+W+c6w+u9dN163y7eDmbEdT9mvQ\nNKJXlVbuX9i1uazf26jVAclQwQ/PqnC9Bps1aSczVSsVdi7SrdkqfRq4AWsR6f7ed6od43Mp\n3enZUE+urq8/J5JZtbe1yrdGWrMdTnmUgRp8Kz1QlXbuf9lQ2Nekc38uQ0tXX2K+m7ubNWkn\nM1UrFXYu0rF5Yn8f6BJkEanusnZ6z6M6+z+27tqX5W4HyS71X+1HUSI7P5713tcq3xppzrab\nspzH8T5Yg58RA1Vp5y47xvXDiris0T49XsEP5Snmp3SzJq1kxmolws5FWpzGPqrLK44LjWsc\n1VgfRFoWdZGkbh15HFs9CNbikaV4vTMFRFoWdZF+7QG9lvfg1NV4rF2NKECkZVEX6ftVhAiO\nBFU1/tauRRwg0rLoXyO9/sovO2QxdFgrv2SU4pf0poBIAAogEoACiASgACIBKIBIAAogEoAC\niASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBI\nAAogEoACM0W6Nn75GmC/TBWp/rm2Yyw/VQiwLrNEukj5kIXnRVJ8vACAB7NEyupHTL3eD+wG\n2C2zRPo9QkirOgDbZJZI549IPCIHds50kU5/13v1qJ7XhdYG2DvTRaqpBrOXtTxA0ky+unk8\nrtfTqWpyuOAR7B2aCQAUQCQABRAJQAEVkcz3kQRgY0xwYKo8bVWM8mikAAjHWiKtngJAE0QC\nUACRABQIKdLrUnaw+zuIHG8LpQBYh4AiPTOR/JXVrQnHRVIArERAkc5yehUv52fh1NncaRWR\nYGMEFEnK7/TJ54t9xq9RIBJsjKAi5eU3ZBsj6ikAViLoqd0jz//Kl/KIZLxIQiTYGAFFekh2\neeSnrDDpfhDjD3IhEmyMkM3f9+zXB+hvmRQA6xD2huztfCgtOv09F0sBsAb0bABQAJEAFEAk\nAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEABvDdBREJYADfn4RDJIABEAlAAfHcCREJYABE\nAlBAPPdCRALoI98Xn4AJOZYFkWBdEAlAAWm8egRMyLEoiATrgkgACiASgAKIBKAAIgEogEgA\nCiASgAKIBKCAtN7cAybkWBJEgnVBJID5SOfdPWJCkgVBJFgVRAJQAJEAFEAkAAUQCUABRAJQ\nAJEAFEAkAAUQCUABRAJQAJEAFEAkgPnIwJBzyIQsi4FIsCaIBKAAIgEogEgAg/jtUYgEMITn\nY8MQCWCA6Q87QiSAD8KpHcB8EAlgPpIjEsBc5PviF9IZcg6ZkGUxEAnUQCQABaTx6hPhF4ZI\nkDiIBKDALJGc4xAJEgeRAOYjrTefEK84RIK0QSQABRAJQAFEAlAAkQAUQCQABfxFktER16DF\nQiJMATsBkQAUQCQABRAJQAFEAlBAOu/uEV5hiARJI70B9xCfOESCpEEkAAX8RRLjqGPUQiER\npoB9gEgACiASgAKIBKAAIgEogEgACiASwBCe+wYiAQzg+cgwf5G65RAJUiS4SI6BiARbYvln\n7yES7ABEii0FbBHx3TdkcNAxwicOkWBDIFJ0KWCDSI5IsaWADSLfF6+I3qBjhE8gIsFmkMar\nV4hH3EApRIK0QKQIU8D2QKQIU8D2QKQIU8D2QKQIU8DmkNabV4x73FApl0hEgq0wQSQZGXaL\n8IlEJNgKiBRjCtgcIUQaLIRIkBKIFGMK2ByIFGMK2BwzRZrhg0MkIsFWQKQYU8DmkM67R4hr\n3EgRRIKEQKQYU8DWkN6AR4xb3FgJRIJokcV/WKtbEpEgOUqLohNpvMB0B3VDIkwBqyI5IiES\nzCZGkQyfIxLECSIhEsxHGq9+MV5hiLR8ClgTRJoWEmEKWJNVRLIEmj5FJIiSCSLJwJBziEsg\nIsHmQKRpIRGmgDVBpGkhEaaAFZHWm1eMT5yeSHNu5mqGRJgCVgSRJoZEmAJWJEaRZljmVEAl\nJMIUsCLSefeJ8QhDJERKmzAi9YtNb09AJIgQRJoYEmEKWI8JfRQQaRKIlDRTRJKRYccQeyAi\nwdaIUSTLPBEJ4gORpoZEmALWA5GmhkSYAtYDkaaGRJgCVkMGhjyCXMMGSiESJMSEPgpKIhki\nbfOc+7lOSIQpYDVmi+QW5iWS4xFnuog6IRGmgNVApMkhEaaA1UCkySERpoDVQKTJIRGmgLWY\n0JDdLbmWSNNb/ZRCIkwBazFJJDGMOYVYAhEJtkYgkQbLjAXaZ4hIEBlrijQWiUiwOfyvdnrl\n9i7Sv7+TlJwu/5ZKAdGDSNNDKl4H+XFcJAVsAESaHlJxkez2qIae90wuS6SADRCRSDI8eTQw\nDpEyeXyHH5ItkQI2QBiRnA49Mjh1NNBULKBIradYmx9pjUgJE49I4iFSWSYSkTgiJYnvtppw\na7VfzvFUzDJZPqPbEqm4Rro/qyGukRLCfG4xUN4w5ho1XaTm9J8a2xIpPzZa7Q6vRVJAcMRz\nayHSjJA3/y7VfaTs9Md9pGSYJ5JrsG/UaAFpDW1UpJhSgA621qzBgPFRrShHkayt2q1ARILF\ncN8TmwGjo25BGiLJ7xWRYHUa+6NPwNioW5AhynayNkMk7Ts2Kns595ESITqRLGqkL5I00UgB\nIdi4SO7XeJGKtHoK0CE6kSxqIBJEydZE6l5EWdoQujO2zdYHRIIf8YlkcSMBkV6XsoPd30Hk\neFsoBQRGOu/uEV6B/StqU0njNXa3Wc/5hrJ6+9jUvfyZFVV5ZXyxLyViE6luakhbpLOcXsXL\n+Vk4dabTahp4i+R+bJkUZT/TnC7SjE+1Quo4eb1firM8vkaRBnGK5DCrTYuUl19Kaoyop4DQ\nbF8k56pHI9K5/GLfX/3tvpf5IgmRtsJWRZLuhAl18EysEVLxkOzyyE9ZYdL9IPclUkBoEMlz\nLvNCau7Zrw/Q3zIpIDDbE+ndsOeS1YeQIuX57Vz9tt3p77lYCgiJ9AacI3wi+2V2LlJEKUAD\nRPJIrBASYQrQYDWRxsIQKXQK0EChERmRFgSRNsJWRdLfwRAJZoBIHokVQiJMARpo9A9wPRtz\nikKk0ClAg9hEcj28IRLEhH//APdjy6QoRAqeAhTYpEhlIUSCmEAkv8yzQyJMAQqsKNJwGCIF\nTwEKbFWkBfYvRILpyMiwW4R7ICJNBJG2QSCR3J1BpOApQAFE8ss8OyTCFKAAIvllnh0SYQpQ\nAJH8Ms8OiTAFzEdGR9xCXCOVRfJ+frTTPIOERJgC5rNZkZxK+YFIMBlEmjVPREoU77W+qkgT\nb0l5FPMCkeBDAJG8DiNiLoBIUaSAHt7X4IFEGvl8ukhLgEjwYZ5IThvNTyQxfj6QHZHCp4Ae\niDQDRIIP3jcqw4hkvYT6jSFS+BTQRbzX+7IiicWOzhWaOFZhIRAJ3niLJMbRwY8miDQ6W0SK\nIgV08d4TPUQyNsAh0mIg0goEEMm9ITu3i9T6BJHWSgFdlhTJ42qnUx+XE8Zv3REpfAro4t3u\n5SuS20laayoizQORVmBRkYy7OSItBSKtwFyRzFczJiXGRTLWB5FiSAFdpPHqETA+3v7A7dDi\nUx3pDC3xfT1nEAneLCySx4wcK4JIMaSALog0B0SCN74i9Uoi0uIhEaaADtJ6cw8wTLB+YPrc\nQyTpTlgBRIKa7YnUEwiRVkgBHbz3Rj2RBgsgkgKIFJ5oRHI/NMYg0AdEgppYRLJ8nW8gLIq9\nBZGgZr5Io6EeIsmnBwQiaRDFqtkZUYgk7Re3sCj2FkSCmhhEahyMEEmDKFbNzkCkWSAS1CDS\nLBAJanr9BFzLGyc5zrClhLNIHiUXB5GgQgaGHANskc4iNXVCJA3iWDe7IiKRqndE0iCOdbMr\nIhPJrRKItH4KaKMh0kgoIqmFRJgC2iDSPBAJKhBpHogEFTGJlLs+F8O5VWJ5EAkq1hWpc2xB\nJCUiWTl7QgYH3QIska4iNV12tzmSfQWRoMJXpMFCiLRwSIQpoE1cIrnuAIi0egpog0jzQCQo\nkZFhpwDzVOfZeV+meZwDLg4iQQkizQSRoASRZoJIUOIqkpjLTBZp4tUOIq2eAlrI6EinnBhL\nzBFpykZHpNVTQAtnkWqV3EQyS9ebsVM5jaglQCQocRfJuPeGFmndJ1A0QSQo8RHJ8HlnNpbS\nA4V9iWZPQSQo8RLJeTaIpBwSYQpo4SiSbcN0Gv8QSTkkwhTQZOjaxl7OXEAa/11qgEj6RLN6\n9sICIn2PRo4bM5pmg2kgEuRxiORWLFbminQ95PnzIId/WhXqp4DlEeOowwe9AvJ9QySHkHt5\nQM6kQNWkja/U7bGgSK7bcuPbfKZIR7nlDznkNzmqVSnf/ErdHog0l5kilQekh1y0LxU3vlK3\nx2Iibb0NwRkFkU5yR6SNg0hzmX1q97hLlnNqFxm+K1BdpJ9QO9mW8xsbRP7K1XVXq1KOSLNZ\nTaRGa93EqmyU2c3fWXmFlB9uSvUZSAH+eB4HuqXHoh3mikhLhkSYIm1mijS2AaaItBNminS6\nqNVkLAVMwLPnGiLNRqHVbgF2txmUce9P8C1vmWCcPFBkd1twpkgHealVZSQF+INIwZkp0ut0\n1O1l108B/kjutw4RaTazT+2+qFUp3+FmUGZ1kfa3AREpReT74lHeOME4uV9kfxuQ5u8UQaTg\nIFKKrCiSd+5EmC3S/VR1XH0q1WcoBfjiuTMPlBwMdpojIk0KOdaXR5KpmrS/7aALIgVnpkhX\nOb5Kka5yVqtSvsftoIrvdQoizWemSJm83j8GTatdPPjey0Gk+Sh0EUKk2FhdpB1uP4UuQvXX\nzQ9qVcp3uSE0QaTw6Fwj3TO5qlUp3+WG0ASRwjO31e707teg+k3zPW4ITRApPCr3keSk+wXZ\nPW4ITRRE6kzzaAdEpAVDIkyRMuoieT6gZY/bD5HSQzrvruXHJyKSldnN31+Oit863+GGUER6\nA47lxya+z9bcZ7fD7acnkpS/b7dereDL6iLtcfPNPbU7Z+UP2t0z+ZefRO2YtMctoYe2SJ+W\nBkQyMFOkizyq94cc85feTdk9bgk9lhHJufMKIk0I+a7cb18hFfa4JfRQFqm5id1mt8fNN1Ok\n7HtEyhApFlREGpgLIhmYfWr3uUa6aP6Q/h63hB5LieScfo+bb25jw/HXRUj0+tvtcUvogUgr\noNRFqDwslU+lUGKPW0KNfjOBe8DQVO+NsZcnubSgZ0Ny+Io0UmiGSL4BKYBIyaEskv+22OXW\nQ6Qt4LU+EGkN5or0d+CXVhfHb+Ui0hrMFOmPnywOwKIijc18uki7ZPYNWdWvmA+lgOlPDbPH\njTuKSF5odRHShY3XZDmRjJtPWm9gZqZIJx40tjgyvbHBHGj5K4hIPswU6ZnxoLGlkdxrhcjo\nSKec9XBlnQX8mH1qR2PDwsj3xaP84IihnKEA28IJRIodRNoE3JCNHGm8egQMjRjKqWTeNYgU\nOYi0DWaLxIPGlgWRtsFckXjQ2MIsJZLDvVrfzLtmpkg8aGxp5ok0HohIuszuIsSDxhbFv+kM\nkVZBoYsQIi2It0hiHHX4oFOCTeHGTJF40NjCrCiS9x2sXaNzjcSDxpZCOu/OAbY4RNJlbqsd\nDxpbFkTaCCr3kXjQ2GKsLRJbwhF6NkSN9AacIyxxiKRLeJGuh/fv4C2XIh1mizQaiEi6zBXp\nesjz50EODt9KqlvI3z/Nan4CDJvvDSJthZki3Us7stIMu0mVSBe5vAr1LuZWPjbfm8VEcpkf\nInkwU6Sj3Kp7SC4/oF+JlNXfTbc8S4nN9waRtoJCz4ZHeZ7m0LOh1QPCXJ7N98ZbpF45RAqD\ngkgnubuLdP6IZHzgLJvvDSJthdmndo976YTbqd3p73qX8pbT62JubWDz1cjAkGuEOdBpfsKW\ncGZ+Y4OUj3MRsTRol3G/H3cQyYw/48Xmq5HBQccIYxwiKTO7+Turji0Hl64Nj8f1ejpVTQ4X\n88/hsflqVheJDeEKPRtiBpE2AyLFjIJII4GIpEzAng1TU+wYRNoMAXs2tGfCfSQ7MjLsGGIK\nRCRlAvZsaM+kfzLfxL9WKeIv0kCpwUDXubEhXAnYs2Fiih2DSNshYM+GiSl2DCJth4A9Gyam\nSAuvJVtEJPGZW7obQpuAPRve7PuLfT5LJqMjPrNHpCAE7NnAF/s8z4DFMOYUMjSplmNyGyCM\nEPCGLF/sQ6R0CS3Szr/Yt4JIvdkg0hJoifTvZI+TPN/7F/t8ROodSvxjBqbJ59/U2cEgc0W6\nuN9D5Yt9HrtwvpBI4lWLVLfDAswU6eeRy/eRdv/FvqVFst8zQqSFmClSVnhxlOfz6PQrQrv/\nYp91F24e2BcUKdX1uyIKPRv+iqPRw+WG7O6/2Ge/zJefSoP3fxwSGCfWw/Rl1EdBpHvZlE0X\nIQdcRPquSg+RxFgGkUIwU6RTcWr3lEP+D5EccBMpR6QNMlOk6vtIVWcFniFrpWGJschIwfHI\n7z0Fwzxbw2mu31WZ2/z9V7dpW7r8zEqRDF4i9cspiDR2/QWzmSvSMqS5oZ1FGm7ds4o0VkAG\nhkAZRArHciKZZ41IAZgj0vOSia0hexpJbnDzYaP94dCtHptIo58jUgBmiPSsfvREsqdqhVop\nksJLpIFiJpGMt3rNjXqgwgyRznJ85a+jbntdO0VSOLSYGY8dFpGMH9tTwzxmiFR/I+Jp7n46\njSS3uJdIPh/W53WItCozRPq0FS2weVLc4i5Nz9NFmn6/FlRApFDMFsncKodI64JIoVhYpLmp\nYR6IFIr1RUpxrUbDLJEW+5XhBDe50/kVIm0WRAoEIqXNnJ4Ny5HgJkektEGkQCBS2iBSGIx9\nFpw+Q6SoQaQwIFLiIFIYZHDQUMrjU/vaEsdyMBlECoOTSLbFHvkckSIAkYIgI8PjpTw+R6QI\nQKQgxCBScis1KmaK1PphfD2S2+aIlDozRMpO13+I5AYipc7sLkLn2xORrCBS6swQ6fXvenr3\nsztfH2vXKm6WFMlhZSHS4sy+RvrapFalPMFtvrJIVZnkVmpU6FwjFTap/nJDctsckVKHa6QQ\nyOjIeDHnAogUA3NO7R7X8/saqTg2qf5OZGrbHJGSR+Ea6cw1kg0xjLl8YCyASDGgc0OWayQz\nMYiU2jqNDHo2hACRkmemSAuR2kZHpORBpBC4ieTYQ8E/rCqU2jqNDEQKASIlDyKFAJGSB5FC\ngEjJg0ghEOOoZbKtCCLFACIFoLs4iJQeiBQAREofRApADCIltkqjA5ECEIFIqa3S6ECkACwk\nkrhGeRSDiSBSAHqLM7x8niIJIkUEIgVgEZGEI1JMIFIAlhBJPmOJrautgkgBWEAkab/A2iBS\nAPRE+pRpnNUltq62CiIFwE0kxxurjTdEigdEWp6BpZnRQ6HxhkjxgEgT8Py1l8VE+rU4wNog\n0gQ8jwSItAMQaQKriySNscjX1V5ApAl43QlFpF2ASBNAJOiCSP60r1OcyxumubdeIFKkIJI/\n2iL5fFeoczCU2NfVbkAkf5RF8lvYdkMHIsUCIvkjnXfX8sPTPJcVkeIEkfxBJOiBSP44iWQ5\nd1MTKe5VtR8QyR9PkYaLiflj43ybksa9qvYDIvmjKpLvoiJSnCCSPy4HE7GVQqS0QCRvnC5v\nEGlnIJI3iAR9EMmbqESKe1XtCETyxlEkiypTRereOop6Ve0IRPLGcofo+4lFFbHNwj7nSfGw\nCIjkjYtIzRMwdZGiXjt7BZG8URXJf0kRKUoQyRtXkSzHHERKCkTyxlOksTKIlBSI5IuMjnSn\nI9KOQCRfXESS3qu5jF/+mNfObkEkX9xFal0pjZRBpERAJF+0RLJ8asgf89rZLYjky9oi0b0u\nShDJF0+RjJ0fJi1ozCtnvyCSLx4imU/DECklEMkXB5G+U41nYYiUEojkixjGuhONy4FIKYFI\nnohx1DBxsBQipQIiebK+SBAjiOQJIsEQiOSJg0iutZeoFxS8QCQ7pna6eSLFtZwwA0Syg0hg\nBZHsyMjw0PjYtOH5xrWcMANEsuMpknPlESkhEMlOo39Cr2KIBBWIZMckktOUsflGtpwwA0Sy\nYv7RVESCEkSy4imSR935ZlE6IJKVn0hOTXQ+Ik2rEEQIIllBJLCDSFa+Irn1q0OkXYJIVr5d\n4pxE8ql6VIsJs0AkK8uJBOmASFYQCewgkpWPSMOVcujECjtg7yJJiaWIUaTOZETaKbsXyZ7N\nRyQ82iuIZMv2LYFIMA4i2dJ9SowVkpFh2BWIZEuHSODAzkUytGu3iriJhEf7BZFs6RAJHEAk\nW763SKNFZGAIdgci2fIhEjiASLZ8iAQOIJIt3/syaryI9AZgfyCSLZ+1PQKRAJHsCREJHNi3\nSA4O2I9ZDjJC8iCSJaG9KogEiGRNiEjgAiJZEiISuIBIloyIBC4gkiUjIoELiGTJ6FAVh5tR\nkDqIZMmISODCrkWSkeGxMuYiiLRnEMmSEpHABUSypHQWCY92DSKZU7rUBJEAkSwpnWoiziUh\nVRDJnBKRwAlEMqdEJHACkcwpEQmcQCRzSkQCJ4KK9O/vVD394XT5t1QKH8QwZp46VAiRdk1A\nkV4H+XFcJIUfiARqBBTpItntUQ0975lclkjhh5pIVSlE2jUBRcrk8R1+SLZECj9URcKjfRNQ\npNZPw5kfk4dIsDE4IhlzOlYEkXZP2Guk+7Ma2s41EiKBGyGbv4+NVrvDa5EUXiASqBH2PtKl\nuo+Unf5iuI8kxlGviiDS7tlxzwZFkXLD0ypgFyCSMScigRuIZMyJSODGWiJFcB/JQSTneiDS\n3olHJGmikcJaBePo6LTheeHRzknn1M7bwG7ZgVhEAkcSEsk30C6Sx9wQaecgkiEpIoEr4UW6\nHkROd/0U+iLNmRnsjOC9v9/9hIxd7WbUasZBBJFgOqFFusjllefPi1yXqZV7pN0b5ABnQouU\nSdVb9SUH5RT6IuERuBNapE87sfoNWUSCNQkt0vmzw2t/sQ+RYE2CinT6u97lVgy+Lupf7FMX\nCY/Ag6AifTsfiGTaX+xDJFiTkPeRHo/r9XSqmhwuRo/m1Mqjn6lxAh6BD6n0bJDegHcORILp\nINLwBDwCLxBpeAoigReINDgFj8CPfYlkPuYgEkwmOZGMsa4i4RF4sjORjAcdRILJJCKS41mZ\nGF1BJJgMIg1FIhJ4siuRxOwKIsFkdiaSsXUPkWAyiDQUiUjgSXoiGYIRCZZibyKZeokjEkwG\nkYYCEQk8SUMkx47briLhEfiCSAORiAS+7E6kz8eIBJrsSSRpfoxIoAkiDUQiEviSoEij0YgE\ni7E/kVpXSsOzQSTwJQmRxDjanY5IoA8iDQQiEviCSAOBiAS+bFUkUzsdIkFwNiuSoXedRaRW\nB4fRAgA+7EikVlc6RAJVNitSs0y3+HC4XSTTPSYAE9sVqS2GQzgiwXJsVKRWgwEiwersUce+\nxZQAAAjcSURBVKTW4WygCB6BN1sWafQAgkgQGkQanS2AO4g0OlsAdzYt0tiObxOpfReqVwSR\nwJsEROoXNt5trYYRCXRJUqTBeESCBUGkfiFEAm+2KVLrDhIiwfpsW6SxTgo2kUYTIBJMA5H6\nhRAJvEGkfiFEAm+2L5JVGrdZNkohEniDSP1SiATeIFK/FCKBNxsXKZfhso69HYZLIRJ4g0j9\nUogE3mxSJGkOqoo0dq4IYGYvIrlWGpFgEpsXabgoIkFYti7SSFFEgrAgUq8cIoE/iNQrh0jg\nz+ZFciyCSLAoOxHJuc6IBJNApF5BRAJ/tiiSSwUQCYKCSL1ARAJ/EKkXiEjgDyL1AhEJ/Ele\nJN/+3IgEU0CkXiAigT8bFMkp/08kcQ35BCIS+JOqSN9S3iLhEUwgdZHE99YQIsEUtieSY3pE\ngpDsQCQ/NxAJpoBIE+cP0GRzInl8H+L7hkiwNLsQSSs3wBiINDUBQANEmpoAoMHWRPL5YpFP\ncYBZIBKAAsmKNKG9DmAyGxPJq/epX3mAGSASgAIbE8l3HogEYUAkAAUQCUCBtEXCIwgEIgEo\ngEgACiASgALpiuT5FXOAOSASgAKIBKAAIgEokLRIeAShQCQABRAJQAFEAlAAkQAUQCQABRAJ\nQIGEReL38CEcSYukMhcABxAJQAFEAlAAkQAUQCQABVIWCSAYiASgACIBKIBIAAogEoACiASg\nACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAog\nEoACiASgQKQiAWyMCXu5vjgLE7LGAXOlmSrVxYot+xTYDTaUKtXFii37FNgNNpQq1cWKLfsU\n2A02lCrVxYot+xTYDTaUKtXFii37FNgNNpQq1cWKLfsU2A02lCrVxYot+xTYDTaUKtXFii37\nFNgNNpQq1cWKLfsU2A02lCrVxYot+xTYDTaUKtXFii37FNgNNpQq1cWKLTtAIiASgAKIBKAA\nIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEoEL1I108N\nL5kc79VQ84fOi6nZ5RUm1/Wgl8uSquCf1qaxpHqcRc7PILlemltrIFVzWVR3DAdiF+nx2bOO\n1eb4qyd9N0099RAk16UaylQ2jiVVwStT2jSWVHfFpbLkemZ1LhVrB1I1l0V1x3AhcpEe2edo\nIMdX/jrLo1yFp8/H/yR7lGX+Bcj1kPOr/Oy8fKqS05Rni0xIlRVr8HWSS4Bc5yrLZbE12FgW\n1R3DibhFKtbSe30dq3XyLFfStf7zU3KR8ph++01YMNep/lBj/7alystl0hHJlupW7dwvyQLk\nkoXXYGNZNHcMN+IWqVgz7bUvx3IlXj+fn6Q8Tej8LV8o16eYwhqzp3p+d5SFU9V/ynWw5Xqf\nrGpIO5iqsSyaO4ZjjYJlmsKj+2esfDvJ/VxcSHamLp6r5lVuseVTHeWpI5It1UHyv6w6aV0+\n19/71E7hMDGYqrEsmjuGG3GLlH/XxaH6E/Ov3jQVx1x9fRlz1VzlHiDVn9z0dgLLGqxGNM7s\nrLnya9nakHWP8WqpGsuCSD3e6+JPTq/8cazX161sSS1PGZYRaThXxTNTOlkwpqpOSbRFGluD\n5QX6WetiwrwG/34NbMuk+i4LIvX4rIuq6bTRlPUq2zaXEWk4VzWQKZzY2VMdyhZcbZHG1mB5\nXfHUaig25rqWp3bFjq5zSOqnaiwLIvX4rItiA2R/zTVTDmbLiDSYq+SodmPClOpcnT6qizS4\nVAv9KRrMdZDy8uWlJG0/VWNZlHcMl+oEyzSR1rp4NDZCfQJeniA/tRpnjLmKPIejVg8AYyr5\nsngqzUZ9ay5dafupGsuivGO4VCdYpom811dW/TW7lmumHqxW0l/1t/uuczvRkqtIo3VeZ0m1\njEimNfjUWjRjrvowoXPPaihVY1mUdwyX6gTLNJH3+qruh/87lFeul+pUu7rlpnwD25hLbWez\np2qWWDhVcUVRdQy4BchVDL7eExZJ1VgWejb0eK+vV91P6/QbfN8GabdOL5jrvMRhYmSxGiWW\nTvUXbg2+O8DpHvwaqZrLortjuFQnXKppfPanZ7Ejn+q/1mUn4sP1O5ipHb+NuZa5cBlerGaJ\npVPdj6HW4LtL9nKpGsuiu2O4VCdgLoBkQSQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAU\nQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFE\nAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQKSYyU7X+jnqz+tp/BHG1ePq\n1B7wB5Ng9ceMSPmo4bx+gO1YoYPURQPVCQZh9ceMyKE+EGWHcVEEkSKA1R8zIhd5FO+P4h2R\noobVHzMidykfCH6V21uU6+H7kPXnSbK/99PWK5Eu1Xj1bG853ter9S5BpJgRecmpeD/Jsxbp\nWGlzrD7KysG/n0incuBaWifvIQgHIsVMYUjVlCBZfep2k+yRPzK5lR8dX4Uzh9+p3Wc8K88G\nb+UQhAORYqY6X/uX/5NzrctJyjO2e3lIkmJ6LdFHpN84p3XhQaSYKby4FWdvf8UhqNLlfaHU\n1Kfd2FC+XoqzvMdjrSrvFUSKmcKLZ3H4OcrTQ6T8r7x6yp4r1XmnIFLMlF5k8ioukXxEKk7+\nLgeukcKCSDFTenGWS9m9oXWNdLKI1BqCELC6Y6a04Vacp93ygVa7TwGRZ94cP5Qf02oXGESK\nmdKLp1Sm9O8jfQoc5Hvq9zVP6kY8CAYixUxlR1Z68jlVu2bfng2f13+Htkh1zwY8CgsiASiA\nSAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogE\noAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAK\nIBKAAv8B/1HA3iYuruYAAAAASUVORK5CYII=",
"text/plain": [
"Plot with title \"Airlines passengers across years\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# plot time series\n",
"plot(df_2_log,xlab=\"Months\",ylab=\"# Passengers\",main=\"Airlines passengers across years\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.339136Z",
"start_time": "2020-10-21T06:35:12.494Z"
}
},
"outputs": [],
"source": [
"# par(mfrow=c(2,2))\n",
"# plot(df_2_log[1:12],xlab=\"Months\",ylab=\"# Passengers\",main=min(yr[1:12]))\n",
"# plot(df_2_log[13:24],xlab=\"Months\",ylab=\"# Passengers\",main=min(yr[13:24]))\n",
"# plot(df_2_log[25:36],xlab=\"Months\",ylab=\"# Passengers\",main=min(yr[25:36]))\n",
"# plot(df_2_log[37:48],xlab=\"Months\",ylab=\"# Passengers\",main=min(yr[37:48]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-20T15:11:47.923619Z",
"start_time": "2020-10-20T15:11:47.905Z"
}
},
"source": [
"### Calculating Periodogram by hand"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.363137Z",
"start_time": "2020-10-21T06:35:12.496Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<table>\n",
"<thead><tr><th scope=col>Passengers</th></tr></thead>\n",
"<tbody>\n",
"\t<tr><td>-0.105217793</td></tr>\n",
"\t<tr><td>-0.063080421</td></tr>\n",
"\t<tr><td> 0.038988495</td></tr>\n",
"\t<tr><td> 0.005950595</td></tr>\n",
"\t<tr><td>-0.068119645</td></tr>\n",
"\t<tr><td> 0.031316206</td></tr>\n",
"</tbody>\n",
"</table>\n"
],
"text/latex": [
"\\begin{tabular}{r|l}\n",
" Passengers\\\\\n",
"\\hline\n",
"\t -0.105217793\\\\\n",
"\t -0.063080421\\\\\n",
"\t 0.038988495\\\\\n",
"\t 0.005950595\\\\\n",
"\t -0.068119645\\\\\n",
"\t 0.031316206\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"| Passengers |\n",
"|---|\n",
"| -0.105217793 |\n",
"| -0.063080421 |\n",
"| 0.038988495 |\n",
"| 0.005950595 |\n",
"| -0.068119645 |\n",
"| 0.031316206 |\n",
"\n"
],
"text/plain": [
" Passengers \n",
"1 -0.105217793\n",
"2 -0.063080421\n",
"3 0.038988495\n",
"4 0.005950595\n",
"5 -0.068119645\n",
"6 0.031316206"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# remove trend from data\n",
"df_detrend = data.frame(\"Passengers\"=detrend(log(df$Passengers), 'linear'))\n",
"head(df_detrend)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.384144Z",
"start_time": "2020-10-21T06:35:12.497Z"
}
},
"outputs": [],
"source": [
"# create zoo object\n",
"df_detrend = zoo(df_detrend$Passengers,order.by=dates)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:14.444138Z",
"start_time": "2020-10-21T06:35:12.498Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO2di3qiMBBGg1rbtSrv/7areCkohMxkEkI85/u2RZjh55KjeKnr\nWgCIxi29AQA1gEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEY\ngEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGI\nBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgA\nBiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAA\nIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiAS\ngAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEY\ngEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYgEgABiASgAGIBGAAIgEYkEEkB7AyFKPc\nXpwFIgAsQSQAAxAJwABEAjBgAZF+Grf5SRsBkJmcIh13rvlpv7vXOLZpIgCWIaNIx86gvfs6\nt6ed8z4mIRKsjIwifbl92+5dc50+u02KCICFyCjS7T0rt+vdsI4AWIjsIv27XdPdHpisIwAW\nIuul3eXZ0Y1zd5lnHwGwEBlFOjfP6znnf0BCJFgbWd9H2j/0abyPR4gEq4NPNgAYgEgABiAS\ngAFLicT7SFAV5YgU+eeGAEvCpR2AAYgEYAAiARiQVaTf7133DGi3/00VAbAIOT8itOm9msAf\n9tUC56ojo0h71/w7dlOnQ8OHVmuBc9WRUaTGHZ/TR/6MohZ056q6M5z975HGbphFQH50b/pV\n91Yhj0gQh1Kk2s5x3udIh1M3xXOkIlFepCHSlZwvf297r9ptzr7Kyg7ySsgrUmUnOe/7SPvu\nfaRm9837SAWSWaS6zjKfbIAHiBQBIsED7QvZmj5EQqRqQaQIEAkeqC7SdK8auOePWkAkeIBI\nESASPECkCBAJHiBSBIgED7QiKU4XIulaCoyANxApAkSCB4gUASLBA0SKAJHgASJFgEjwQC2S\n/Hwhkq6lwAh4Rf9ZH0RCJHiS8x0h1/tZB4gEdxApBkSCO4gUAyLBHUSKAZHgToRI4kZE0rUU\nGAGvZBTJDX5VASLBHUSKAZHgDiLFgEhwB5FiQCS4g0gxIBLcUYmkUwKRlC0FRsArqs9xI9Id\nRII7iBQDIsEdRIoBkeAOIsWASHAHkWJAJLiDSDEgEtxBpBgQCe4gUgyIBHcQKQZEgjuIFAMi\nwZ18IrmX3zWASHDHPX9ImxAJkeBJjEiyPkTSthQYAa8gUgyIBHdWIlKhYwOR4A4ixYBIcGcd\nIqm+6T8DiAR3ECkGRII7iBQDIsGd/CKpRl+hYwOR4Ibr/RQ2SfsiRNL9J04ZQCS4gUhRIBLc\niPqwDyIhEtxYhUiu2LGBSHADkaJAJLiBSFEgUl7K3TNEigKR8lLunuUTyY1MhXcWegQRKS/l\n7hkiRYFIedHtWY7jgUhRIFJWlB9wQaS/+kLHBiJlRSdSls+XrUAkp+jJBSJlBZHaZURKfgQR\nKSuI1C4iUvojiEhZQaQWkSJaCoxYBtUJVXxQU39aqxQpw0ddESkriNSuRCTNC4rpWwqMWAZE\namNFUuybUzQhUsnoLjEQaVCOSEVFLIJKpBzDoK1ZJKdtSlmvaykwYhHyiaS62+79kjXVKJJq\n21K3FBixCCsQKYMSmUXSvUSBSCWDSPquFpGKjFgEjUhZLkzajCK50cnwTkQ6fzm3PdxX4l0L\nIvV7EGlQ/vEinRt3ZXdbyYeKVOhT5RaRXrvKFWnvfi42/TTbbiWfKJL6ddjyRRK0qUVSva5Y\noUjNrfHUbE6IJOpR3HUj0rBNcf+l2rjELbe+e+N5u0UkUU+1Isk2E5FubNz5MbVFJEkPIvWL\nP16kH/d1nzq5LSIJejTPylXPxaRRiDRMkUYo2T/tOThEEvQgUr8Ykdrj7jF1+kKk8J4cIrm3\nCUkTImUVqaSIJUCk18piRRIfQUTKh/aMyrsQ6bVN06TZuMQtBUYsACK9VSJSLJ/4YgMivVVm\nE0lxBNcqkutjEVEcGpF0gweR3tpqFWnxiAVApLdKREoLIg160g+DikXKdAQRKR+I9FZZtEja\nQ5Gw5c7v9+72J0n731QRJYNIb5WIpOC86b2asE0SUTTqa3VdFyJFdxUq0t41/47d1OnQuH2K\niKJBpPdKRFLQuONz+uiaFBFFg0jvlYikYPDu0Ae+IYtI75WIpIBHpL+fwqZCRdIpgUj6lo7L\nc6TDqZviOZKwCZF6xflE0h6LdC03tr1X7TZnXyUiDZsQqVeMSO3vvnsfqdl9f+L7SJlFEva4\nkanwHkTKKlJJEflBpJiuFpEU1ChSxmGgUTabSG7yRmAnIhUVkR1EGinUvC6GSEVFZAeRRgoR\nKS2INGxCpBaRNCDSsAmRWkTSgEjDJkRqEUkDIg2bqhVJM1QRqaiI7CDSWCEiJQWRhk2I1CKS\nBkQaNq1ApOA2RIpoKTAiNzFKINKgVLVjiFQJumEQ04VI/WpEqgREGq1DpKQgkkGXLgiReuWI\nVB6INFqHSElBJIsuSQ8iRTYhUiYQabQOkZJSuEiazUOk0TpESkrpIsUcNUTSdLWIpAGRLLoQ\nqVeNSAUi/a/j2/4eIZKmq0UkDYgU04VII12IVCBOvoWINF5XtkjaY5GspcCIGAoXSTN2ECmy\nC5EUuFa8iTWKpFMCkSJaCoyIAZFGChFJCiK55w9Zy8tU6i6lSImVQKSIlgIjYkCkkbrUIsW9\n8IJIJYJII3WIJOXjRXK9n7IeaR8ijVUiUkkREShE0jyXbxFpvBKRSoqIAJHG6hBJCiL1fopa\nxH2INFapO/KJ9UMkOYg0VodIUhCp91PUIu5DpLFKRCopIgI3+CVp0bchEiIpQKTX2lpFCt9I\nRFKASK+1iIRIChApoguRRtsQqTgQaawusOu1DJFSgkgRXYg02oZIxbEWkZRRiIRIeUCksTpE\nkoJIg1+SFmFbPpHc5I3QptA2RIppKTAiAkQarUMkIYg0+CVpEbYh0mghIpUUEUFCkSafdiAS\nIilApLdbmlOKSIhUMilFmhzRiCRvGRQjUnHEieTtQ6SAxvQixV4cJ2spMCKClCJNViKSvGVQ\njEjFIRcpeJwORFKNbkSaaEOk4pIiL6ARSROGSBqKFin2KPtFmhow5YmkU0Ir0tQdTHAfIqVN\nkkdVL1JSJTKLpHscQyR5EiK9VxYuku7ZKSIlThJnJRZpYv2IJO9pESl9xDMJkd4qEUnehEji\nsNQiPQsQaaIOkQqK+EtCJESa6kIkSZIwDZHGqxBJCCK9ToS3zLX1RdIM7mElIiFSLhBJnYVI\n40EpWwqM6CUhEiJNdCGSJKg0kQY/Y8IQCZEygUhjlYgkb0KkikUKb0Kk2C5EKkmkwbMjRJqq\nQ6SCInpBiIRI0V31iKTarLEhGx6kO8qIJO9CJB0qkfT2FSmSG10kC1uBSKHbiEh/fUOsIxDp\nvVBzdx/chkjjLYoUGT+JRdLvS2kidb8RabLsw0Vqj802YQQivRciUpUitUe3TxfhNG2INFaH\nSPKurCJdru6OySIQ6b0wq0hhbYgU05IjYmTwhQYhkiYLkcZbFCnJKFkkNzoZ3PPhIr3XIFJC\ntCKJGxFprA6R5F3ViKS5SCtZpNcqRBK3DEsrFcn8fSREGilEJM3ZWrlIwe/W+raqEpHa9zfF\ncooU1odIE0EJWzJE1C6SSoqUIumUWIVI0ac4WUuGiJJFcp5b44sQyVeGSAkjEoo06QEiZepq\nEWnA7/euewa02/+aR8SINNM27YFiECCSoqtFpB7nTe/VBP/HV6sWydOFSEGNHy7S3jX/bh+1\nOx0a/8dXc4nkXn6HbA0iTdWkFMlN3ghuq0akpveJ1aNrjCMQaaQOkWK7ShRp8O5QGW/IFiuS\n/hIIkaYqqxEpxyOSsBORxusQSdyU9znS4dRNpXuOhEiqIYdIU10litRue6/abc5ptgqREGmi\nsh6R2t999z5Ss/tO9T4SIiHSVGVFIqWMqEwk2bLJOkSK7EIkUQ4iybMQaTIpXUuGiJQiTZ7F\nAkWatl6wbkQSNyHSfBcihfQgkhREGp0OiJntWkiktypEEjfVIlKYErouRApqyieSbngjkqQj\ngUgvn3tDpKkaRJJRoUgzI3jydCBSni5EUrIWkXQDFZGkXYikBJFkyybLEEnRhEjiTkQar0Kk\nqKR0LekjEGm0LKtIIW2IFNWSPgKRRssQSdGESOJORJqoUimBSDIQaerWbMxc0yeKFLaNiKTi\nQ0Xyrq0MkZyvpBKRopvStaSPUInkHRW9ZYg0suAzRAruQqTZNkQaWzBWgUgiihZJ1IpIU1XT\nm+i7x0IkEYg0dWs+x99UrUixF4SIpKQukd6KproQaRKdSColEEncuiqRVFIgkrwJkcStCpFC\nr9K8RWsW6bFIJ5LymRUiKckukq9tzSIpN9BcJNXj2HQRIqWKCHts8cQgUlgbIoU0JWtJHpFW\npOnVI1JYFyLZtCSPyCXSa9kHinRfhkiepmQtySMQaaIKkcRNiCRuTSmSb90JRbIxHZHiopK1\nJI9ApIkiRBI3IZK4FZGmirxb6KYqEEnEB4sUrMSqRBqpsRbpsQiR4lqSRyDSRFEqkUYLEEkE\nIo2vInzd6xdpfHk6kZz3ZmBbUv0QabYNkV7nu4nliCQCkcZXEb7u1Ys0sRiRRHyYSL1nBKIR\n59mk1YsUvqLHAkQyaUkegUgTRUlEEqzosWBFIhnYl6wleQQiTRQVIZLzHUFESkgekcIewhOI\nNNVVsUiei0JESkeZIklGwcpFst3CpUSy6MogkhsiX5HhVgVdpHlTECmkb2Z1ni5EmmxBJE8b\nIr3MdpPLP16kjl1zuPz8bb7k6wmNEDYgkrQJkTxlmUTau2P3++j28hWFRUjrEUnalE2k8cWI\ndJ12rxMmzK9sem8RSdqESJ6yTCI1z0ekRr6isIiQCkSaKipJJN06x2rqE2nvmt/Lr0PjvuUr\nCosIqUCkqaJiRGqnPumKSB3b+2t2O/l6QiMCKrKINFqBSKFdkxf/iNTxb3fV6CBfTXjEaMWk\nBSlEmr7CR6TQLkuRAk/yqkRKwupFGtQjkrcVkdJRlUgjJabD1F8T0JRHJGmTtwaRrCIQKbAG\nkYRNC4n0vVnmI0KIFFhTvkiaTaxOpO+lPmuHSIEliCRsWkakxv3IVyCLmKqYkgeR4psQSdoU\nK5LtA9FoxFRFfSLNbTkiSVreq0oWaefO8hXIIqYqECmoBJGETcuIdGq2v/I1iCKmCnKLJBr8\nMyKJpAxePlqCSMKmpS7tlnmxAZFCS0Ie3MOzPkAknX2INNuGSOErK0skE/t0j2OpWswjECm0\nBJFkTZ8nUr9IJVLgtTAiha8MkSQMWw6761Xd7iRfT3DERIEb3BI0y7pqFcl5KxBJ1hUt0vb2\n9Mg1piatXSTXX1aqSM6zfYgk7IoV6cdtz9cT8uNMv0YIkTTLR0t8++XcZAUiybpiRWrc+XY6\n8r9qV4ZIvmFYvEivx3G2D5GC24Qt7nG/Vq1ITyeqFEn4UItIwW3Cls39EenoNvIVhUVMF7jB\nrfDm8TrvIJj85g5ECliOSLMt9+dIh7BPgf9+727flLKf+VwRImmWj5bMiDS5Z4gk6ooVqd3d\nP9ewne87b3qfg/DXI5Jo+dRFblDTxEV5hSKl1C9apO59JLf7F9C3d82/29dJni6PYN6vOEYk\n0fJiRJI8ugnW+hEihfP4VtYrM9/MWpxIwi+TWpNIlpd2iCSh37ITfHf+YCz6X+VDJNHyOJEE\nixEpPEzWInnV2/wR6e/qRNY8XodI84uXEslGiZJF2gj+QvbyHOlw+yCR0XMkRHpbgEjmXXlE\nOu8EfyG77b1qt/EKiEii5X8bV6RI6v2arqhOJNkf9v3uu1fLm923yftIKxYp3K6Q5YiUsKtE\nkVQRnoKcIgWuZWS7yhRJFYZI4WFJWswjEGmwAJHSdSGSMKQGkUYqPlckwWWuryjXpd19ohH+\n15cW7yN9mkjTUiBS0GpVXXlFOkmfI73XOxf+hMuN/RrbvoCVzLQhkqAJkSQ8Wg6DoZ/1zyjW\nJNJ4ZzaRZvZLloVIgrTwlv6nuTemX7hankihaxnMQyR9lL+iLpHasSs0ExBJtC2IFLbagkWS\nYfaHfd4nIR8oku8CFJHiunKJFP69doZ/2IdIL/M/TaSQk7wukQTfa2f4h31ekZS7jkjzyxFJ\nkCZqkXyvneGfUSDSy/w8ImlGvDJqrqI2kSTfa2f4h31li+QGE4iESPMtku+1+5hHJEQStikK\nahNJ8r12hn/YtxKRuqmViuTfMUETIoW0iL7Xzu4P+yxECuxCJEFPjSIph5O0RfC9doZ/2IdI\nL/MRyahpMZEE32unjphejkj3+eMHwteESJZdBiIloX6RVON0elWIFLTWZPp9mkjOU7VqkW6L\nEGmmpEyR3BD5ivRblU8kzdjpiTR9YDQnDJEEm4JIAVu1FpGM22ZEEu0BIhlGBVdNt+yaw+Xn\nb2P6P1/KRHorXlgk7YEvWaTxe6zAtS4j0lhFuSLt759WOPrfYI2J8C1HpMfsQkTSDV9E6v1J\n2XKXdojU+ydqCg5ziKSJE7Q0z0ck4bcIhUf4liPSY7aTGoNIoV2ZLu2a64cUDo37lq8oLMK7\nfPSO2COSm65CpOkCN3GXFbZaRApoeXx+bidfT2iEbzkitRlEeqwckWRxopZ/3UeEDvLVhEd4\nFiNSi0iGW7KgSElAJMnG3Ab5VHu8SM+DjEiyOG2L3St3iCTZGI1IkjBECgCR/F3pRXp+LASR\nBAWIFBfxulgmkusvSiVS4EFwg4nR/QjdmMQiuedPRJLFaVvWLdJ4W1Ei+aTw7HT43NEKRAoB\nkfxtmUS6/kQkQQEixUW8Lkak2cTFRVJfsvoKMooUdkYRyd+WS6ThtoVmBSXG7tfyIpmtFJGm\nFo+f3ql2RArtad82EJHkjdoWRArrGJY9JkKO3spEcu+z5pvCliuuBtN1BRcFtqxApJfW+S5E\n+nvILEkkVU+hIu1fP/CNSGEdw7L3ifCsoMbViuQ9MhWJ9Pzeb3skIgke90sS6e8wBtZP1+YS\nKWRL+zXBf8VUjEiq4ysoGm9x7oRIbxXBB8QNfol6gub6FyNS+PLUIn0t9i1Crj+JSIgUurxM\nkc47RHqvQKTetBNG+bcgpMe/vEyRuumFL+0QaX4VS4n0ONp5RXLe5f5tmdsORW9oCyJVK9Lb\nkAw61yqRpvbLJ0VlIiUCkYKywiIRab7LuzS1SMt9ZXHBIoUfhrWI9HeBVbtIc6v0gkj+LkRa\nm0je41qkSB2LfPd3PpHEgwCR+lPLiaS5SltSpGW++ztCpN64COlCJETKItIi3/092ICyRBIc\nhdWJFLSphiL9ndoPEGmR7/4uS6SXzQmmTpGGxxeRQlsW+e5vE5HeaxBptEQp0t94RqSQliW+\n+7tckSRHE5FmtuazRFriu7+1Ig0uNBApMEw4QhYXyXs9qRJJfF0SiKLFNgKRQub6FyOSYCEi\njcxGpNDY5UXybYK9SNPLEGlkdkqRNFIg0lQJIsUjEElwkBHpeVOwX8uLJLonQKTwCDd5w9+O\nSM+biCRZhkgjsxEpNHXNIk0vFW7EbJekJr7FNqJUkWQHxjNI5qMC5k4trl6kv8bwLv8yRBqb\nPTk+ViCSbEyNL0Yk8bKPFcl7z/3hIoX+74A2IvkG9UjT60y5SM6fiUiTSxFJKFLoo0QxIomu\nZxFJEIFIATOnFmcSqecTItm1mEa8DozgfrlIQbuqFMk3SuazZuZNFyCSaCNmuyQ18S2mEYg0\nP2+6oBaRfOd4+iv4EEmWj0iTBasSybetiBQbgUjz86YLPlsk38YgUmgJIrWFijS5X552RIqN\nQKT5eZMFznsvP9YWK5LsGL7MQ6Q4ChEpbE8RydOlF+lxeDQiaZxQKSariW8xjUCk+XmTBYgk\nX1KpSPq9QiSFSNKz/Xp4w77w0FYklS6RYw6RPF11iuQbne9tiDSzLLzEoMUyApEC5k0WrE6k\nyXZEioyIFWn6WEeKpBpyiDSVgkgGJBFpOOADRArd0enHuPk2RHpNGfy/LEqRgoIEnYg0NvOT\nRZp74vHellkk5wZrQKQ4EMkfNTtvqqBwkZx7XcN0OyJFRiBSwLypAolIqg2MFOltDYgUhSdC\nesn9PrMkkZTDdHbeVEF6kV4Pb6xIcy1Bc0OWI1JoESIhUhUiCf7z5iJECt5PRHpPcy+3g5oQ\nKYgfRHprQ6RBESIFcWy28RGIFDJvqiCXSK+RQU1jIs22BM0NWb4ikcL/73NE8kfNzpsqeOw7\nIok6SxPpcnV3jI1ApJB5EwWPLQ2LXUik2Ys633rVInkbixPJICKbSOG7iUi+LkQybLGLCAz3\nDThEyipSeBMimYNI/qjZeRMFhYs0otNcS9jcgOWIFFw2EGl+RCISIoWuNazEoGVkJcoNNxBp\ncgQj0kgfIgWsNazEoGVkJaWLJNhLpUjXBt0wnZ01VYFIOpEkxzictV/aIdIaRBI8zs7PDShA\npOAyRHr+RiRh45pECvsgHiKFzJqoKFekQVfgGkYrPkOk3+9dp8lu/6uMCM2OFkmyk6sTKTAW\nkcJXm1Ok86b3kOP/+CoizWTNzJqoQKQqRNq75t/to3anQ+P/+Oq6RBpe4YvaEGmkC5H8NL1P\nrB5do4pApKBZExX1i6Qf8CsSafAUV/k+UoRIbjCFSGFZ8pONSKEs+YgUSqxIsg1Qi6QcprOz\nJioQqQqRLs+RDqduSv8cKRREGqsQxn2SSDONRYnUbnuv2m3OSSI8K0gtkmbIxYnk3mf5mxCp\nDpHa3333PlKz+9a+jxTKJ4jkahUpMPiDRcoX8QEiDb8kO6gpm0iR+iGSFUuLpBhxuUVyJV/a\nIVII8aN8dg2I5I1qB/uASP55QRWIFLyC4YXbykVyr9MhTYg0XYFIwStApNJFcqM3vC0h84Iq\nECl4BYiESNMViBS8AkRCpNeK4DOOSKOzKhFp8DO4SZalGx+IFEL0KM8QgUiTTbIsRNKsNwxE\nGm1EpL+2lYjkEEmxhlpFClgHIo1XIJJmDfMiDc+kNKw+kXRK2IgUvlez86YrEEmzhg8WKfga\n8L0NkRTrDQSRRvsQKaZrCZFc+AlHpNE5hYgU+v1yb1GI9GgJmTdZ0YtBpOA1uOG0qUjDYSBo\n04rU1wmRZuZNViCSZg2IVLRIgy5EsuJTRNK2VC5SG/TsUSfSIAWR5GtAJEQalvRPGiIFr8EN\nb6xVpIE8iBQyb6pEIpJBgUlL/ghEeg+qTKSxGkSyjkCk9yBEGpQgkmoNiJRPJOV+5RXJvd0Q\nZomTDVryRyDSexAi9UsQSbeGoUjjAYj02qbbQkQKApFGGxcQKTh3FSK5iRuelpBZUyWIpFtD\napHUUmh6EOlWFTJrqgSRdGuQiJTpyQQiTXUhkhEfIpIGROpVhcyaKnFvP4VZ4mSDlvwRiPTW\nhEiDEkTSrQGREGlQgkiqNQxvI1Jg1npECt5FRIpaAyIh0rALkVRrQCTFFi4nUtAa3kWS6IdI\nqjUgEiINuga/ECl4Dc6/eDgXkR5tC4kUtgZEyhCRVyTl4NGASONFiJQmApHeuqoWySFSmghE\neuvKtleKL0dCpDQgkiept32INGxHJPMIRJruEmQhUugG1SrSjDmIFNaFSKEbhEgjc1cj0nWq\nEpGGXdlECm1DpKCbL3MR6dGlU0LThEgpSC6SvweRHl2IFLpBiDRShEiPrpwiRXUgUqoI57k1\n14NIjy5EGsnSFZi0LBCBSNNd4VkVinQvQiTVKgJX+HJvJUmrUSTt62+apjiRnGAXESliFYiE\nSMM2RFKtApEqFOn9OCCSfcTw+U49Ig3dQaTnFCKliUCkl6Z8pxqRwkCksUZEyt+FSBkiMouU\nzaMViKQjViTRsfirRKTAVSDSva7QUx2ThUgZIp4iDY9bUBMi9doKxkKkwKtyREKke12hpzoG\nRMoQkVekjEMOkZ4Mrs8QKU3EZ4gUOAyCB9l7W8kgUoaITxEpLBiRXroQSboKJ7mqqVak0Eeu\n96ySySjSbFGZY8ZOJMHH61tEGskqGUTKEFGxSP0sRHpOIFKSiD8nBM8PEOm1q2gQKUMEInm6\nwrOKBpEyRCCSpys8q2gQKUMEInm6KgGRMkQgkqerEoYiiZRYtUjnL+e2h/tKvGtZn0j5QKQn\nbvj7U0Q6N+7K7rYSRFKCSE9MRAo8MAWJtHc/F5t+mm23EkRSgkhPXkUSKLFmkZpb46nZnLKK\nJBhEiLQqPlSkx36et9uyRSp7yCHSE71I7uV2eJZ2uU1Lx8adH1NbRFKDSE8+VKQf93WfOrlt\ncpF6UiASIr10rVqkdv/c04NDJC2I9ORTRWqPu8fU6SunSMGrW59IoRuLSIO2lYuUNQKRPF11\nYCOSJGu6D5Hem8oecoj0BJFyRPT2HJHqFOlldH+kSDlfbEAkRHrpQiRBwt9PREKkYVc9IqWP\nqFWkl/GCSH97hkgpInpOIBIiDbtqFsn1sVjf80fqpszoRCp8p3R8qki/37vbnyTtf1NFvKyj\nfpGCu6w3owQ+U6TzpveQs00S8baOKkXK2FU4nynS3jX/jt3U6dC4fYqIt3UgUlxX4XymSI07\nPqePrkkR8bYORIrrKpzcInnaMoo0uLbP9D4SIsV1Fc5nisQjkg2I9ET67saza9UiXZ4jHU7d\nFM+RYkCkJ58pUrvtvWq3OfsqEckDIj3RiqQd9YWI1P7uu/eRmt037yPpQaQnutO1fpGyRiCS\nQVfhIFKGCEQy6CqcDxdp/jMuiOQBkZ4gUuqIFpFMugoHkVJHtBWLBE8QKXVEi0ifACKljnAj\nHRUAAAnLSURBVGgR6RNApNQRLSJ9Ah8uUp4IRKqfjCJ1PYiUtAmWApEyRCBS/SBShoiZHfcE\nI9JaQKQMEYhUP8rTpfr6GEQSByPSWkCkDBGIVD+IlCPCIVL1qO4tEUm8EsUxtkqHHKjOsVok\nXxsivScj0mpApAwRiFQ/SpESRCHSezIirQZEyhCBSPWDSBkiEKl+EClDBCLVDyJliECk+kGk\nDBFakfBoPSBShghEqh9EyhCBSPWDSBkiEKl+EClDBCLVT8bThUjpm2ApEClDBCLVDyJliECk\n+kGkDBGIVD+IlCFC+4WaiLQeEClDBCLVj+6btZRRiCRLRqT1gEgZIhCpfhApQwQi1Q8iZYhA\npPrJKpI3CpHekhFpPSBShghEqh9EyhCBSPWDSBkiEKl+EClDBCLVDyJliECk+kGkDBGI9AGo\nvsZbl4RIwmREWhGIlD5C+1+FItKKQKT0EYj0ASBShgjlf4ODSCsCkTJEIFL95BNpJgqR3qIR\naUVkPFmIJIxGpBWBSBkiEKl+EClDBCLVDyJliFCtBZFWBSJliECk+kGkDBGIVD+IlCECkeoH\nkTJEIFL9IFKGCEQCQ/zjApHemhAJxkAkYRMiwRiIJGxCJBgDkYRNiARjIJKwCZFgDEQSNiES\njPG5IimjEQnGQCRhNCLBGMWJ9NO4zU/aiAgQCcYpR6TjzjU/7be7sk0TEU/GLwGAVVGMSMfO\noL37OrennfM+JiESrIyMIn25fdvuXXOdPrtNiggDEAk0ZBTpNkTdrnfDOsIARAIN2UX6d7um\nuz0wWUcYgEigIeul3eXZ0Y1zd5lnH2EAIoGGjCKdm+cgdf4HJESCtZH1faT9Q5/G+3iESLA6\n+GRDSdmwWhCppGxYLYhUUjaslqVEKvZ9JEQCDYhUUjasFi7tSsqG1YJIJWXDailHJNcnTUTY\ndiyYDaslq0i/37tOk93+N1VEPIgECnJ+RGjTe8gp9g/7EAk0ZBRp75p/x27qdGiK/dAqIoGG\njCI17vicPhb7ZxSIBBqy/z3S2A2zCAsQCRTwiFRSNqyWvM+RDqduiudIUBs5X/7e9l6125x9\nlYgEKyPv+0j77n2kZvdd8PtIAArK+WRD5ggASxAJwIAlRJr/KB0iwcpAJAADEAnAAEQCMACR\nAAxAJAADePkbwABEAjAAkQAMQCQAAxAJwABEAjAAkQAMQCQAAxAJwABEAjAAkQAMQCQAAxAJ\nwIBCRQJYGYpRbi9OYnJuccasOqNq3a3S0jUwDFYUVetulZaugWGwoqhad6u0dA0MgxVF1bpb\npaVrYBisKKrW3SotXQPDYEVRte5WaekaGAYriqp1t0pL18AwWFFUrbtVWroGhsGKomrdrdLS\nNTAMVhRV626Vlq6BYbCiqFp3q7R0DQyDFUXVululpQNUAiIBGIBIAAYgEoABiARgACIBGIBI\nAAYgEoABiARgACIBGIBIAAYgEoABiARgACIBGIBIAAYgEoABxYv089jCfeO2h26q/0Xnl7nN\n/pwn62djlzUTdeHX6tTMRB2/nPs6Zck6W56tkaj+vpgOjABKF+n4GFnb7nR832Y9T81t7iZL\n1r6bakxOzkzUhXNjdGpmog6GezWTdWpuWSbWjkT198V0YIRQuEjH5vFo4Lbn9vzljtdDuHss\n/nXN8VrzmyHr6L7O12Vf6aOu7DT/t4giqrkcwfPO7TNkfXUp+2RHsLcvpgMjiLJFuhyl+/Ha\ndsfkdD1IP7e7nyt7d31M//c3I2HW7rbQYnzPRbXXfbIRaS7qXze4z67JkOUSH8HevlgOjDDK\nFulyZIZH322vB/HnsXznrpcJL/flibIeZQZHbD7q9BwoiaNud+U2zGXdL1YtpB2N6u2L5cAI\n3KJsSRqOr3dj1187d/i6PJF8mZs868b5esbSR23dyUakuaiNa7+b7qI1fdb3/dLO4GFiNKq3\nL5YDI4yyRWqfx2LT3cX83k5Nx7Y1P17erBs/7pAh6tv9sxsEM0ewu2FxZTeb1f5cX21oXh/j\nzaJ6+4JIb9yPxbfbndvj9na8/l1fSb1eMqQRaTyr49QYXSx4o7pLEmuRpo7g9Qn6l9WTCf8R\n/P57gS1N1HNfEOmNx7HoXjrtvZR1vr62mUak8axuojG4sJuP2lxfwbUWaeoIXp9XnKxeKPZm\n/Vwv7S4D3eYh6T2qty+I9MbjWFxOQPPdPzLXySaNSKNZV7Zmb0z4or66y0dzkUb3KtFd0WjW\nxl2fvpyNpH2P6u2L8cAI2ZxsSUoGx+LYOwm3C/DrBfLJ6sUZb9YlZ7O1+gSAN8o9SR5l+aL+\nbJattO9RvX0xHhghm5MtScn9eDXdvdnP9cjcJruD9N3ddx9s3k6cybrEWF3XzUSlEcl3BE9W\nu+bNuj1M2LxnNRbV2xfjgRGyOdmSlNyPV/d++O/m+sx1311qd2+5Gb+B7c0yG2zzUf2KxFGX\nZxTdBwP+Zci6TJ7vM5JE9faFTza8cT9e59vntHZ/k/e3QYavTifM+krxMDGxW72K1FHf+Y7g\n/QNwtg9+vaj+vtgOjJDNyRel4zGeTpeBvLvdW18/RLz5eU42Zo/f3qw0T1zGd6tfkTrqsM11\nBO8fyU4X1dsX24ERsjkZswCqBZEADEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEADEAk\nAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIw\nAJEADEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJHWwPj/3mf2f/pBPJyLNYBIxcO5WAOI\nVDycizWASMXDuVgDnTLOnXau+e5m7Bu3v4v0s3HN9T8N37rfy89f97XcZn4yiLQG7iI17sLV\npO11YtfN3V0n3bZtT6653Gya87Kb+qkg0hq4i7Q9tz9u07b/XHNsj8117uE687x1h8tD08Wx\nb/dv6W39UBBpDdxF+r1P7rqpw23y+gh0drv2+jj10/2GBUCkNXAX6TF5f5XhNnmnvV7cXZ5G\nLbiVHw0irYEwkdq92y+3jR8OIq0Bn0h/VTwiLQgirYEXkXbX1xba37/JG7vLc6TtQlv48SDS\nGngR6fD3ql33Al7bvcjw73Jh9+1+Ft7UTwWR1sCLSLc3j766ye4tJdec2nPTvY/Exd0yINIa\neBWp/R58ssF9Xez5un+ygYu7RUAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEADEAkAAMQ\nCcAARAIwAJEADEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIwAJEA\nDEAkAAMQCcAARAIwAJEADEAkAAMQCcAARAIw4D8TD3xDZb4r0QAAAABJRU5ErkJggg==",
"text/plain": [
"Plot with title \"\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# plot detrended time series\n",
"plot(df_detrend)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fourier transform"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:37.740809Z",
"start_time": "2020-10-21T06:35:37.716Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
" 1949-01-01 1949-02-01 \n",
"-2.042810e-14+0.000000e+00i -3.413459e+00+1.836112e-01i\n",
" 1949-03-01 1949-04-01 \n",
"-1.385319e+00-5.684846e-01i 1.836019e+00+1.359261e+00i\n",
" 1949-05-01 1949-06-01 \n",
" 8.815098e-02+2.633051e-02i 1.121880e-01+7.153653e-01i\n",
" 1949-07-01 1949-08-01 \n",
" 6.001707e-01-9.846591e-01i 2.247522e-02-5.483008e-01i\n",
" 1949-09-01 1949-10-01 \n",
" 2.532679e-01+4.666718e-01i 1.001089e-01-3.796122e-01i"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# get fourier transform of time series\n",
"fft_df = fft(df_detrend)\n",
"fft_df[1:10]\n",
"n = length(fft_df)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:38.234997Z",
"start_time": "2020-10-21T06:35:38.213Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1] \"2nd Fourier coefficient \" \"-3.41345865984196+0.18361121180606i\"\n",
"[3] \"144th Fourier coefficient \" \"-3.41345865984196-0.18361121180607i\"\n",
"[1] \"3rd Fourier coefficient \" \"-1.38531925117481-0.56848455637024i\"\n",
"[3] \"143th Fourier coefficient \" \"-1.38531925117481+0.56848455637024i\"\n"
]
}
],
"source": [
"# FFT values are symmetric\n",
"print(paste(c(\"2nd Fourier coefficient \" ,as.character(fft_df[2]) ,\"144th Fourier coefficient \" ,as.character(fft_df[n]))))\n",
"print(paste(c(\"3rd Fourier coefficient \" ,as.character(fft_df[3]) ,\"143th Fourier coefficient \" ,as.character(fft_df[n-1]))))\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:39.096653Z",
"start_time": "2020-10-21T06:35:39.077Z"
}
},
"outputs": [],
"source": [
"# FFT values are symmetric hence we only consider the fourier coffecicients till (n+1)/2 and multiply by 2\n",
"\n",
"periodogram = (abs(fft_df)^2)/n\n",
"periodogram = 2*periodogram[1:((n+1)/2)]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:35:41.868362Z",
"start_time": "2020-10-21T06:35:41.811Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAeQ0lEQVR4nO3d60LiSBCA0eYiKiq8/9uu4OyMFzqdJkU6jef82NEZpErNt0JA\nTUdgstR6AbgHQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIA\nQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIA\nQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIA\nQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIA\nQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIA\nQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAQoIAM4SUoDNXHOXx4TQYAZGEBAGEBAGEBAGEBAGE\nBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGElLeM\nLeiCkPKWsQVdEFLeMragC0LKW8YWdEFIecvYgi4IKW8ZW9AFIeUtYwu6IKS8ZWxBF4SUt4wt\n6IKQ8paxBV0QUt4ytqALQspbxhZ0QUh5y9iCLggpbxlb0AUh5S1jC7ogpLxlbEEXhJS3jC3o\ngpDylrEFXRBS3jK2oAtCylvGFnRBSHnL2IIuCClvGVvQBSHlLWMLuiCkvGVsQReElLeMLeiC\nkPKWsQVdEFLeMragC0LKW8YWdEFIecvYgi4IKW8ZW9CF+UN6Wqe03d90RJBlbEEXZgwpnd9w\nk852NxkRaxlb0IW5Q9ql3eF4fNulp1uMCJWWsQZdmDukVTqcXj6k9S1GhBIS480dUkqfXgkf\nEUpIjDd3SA//h7S6xYhQQmK8WUPaPj7t0/P7i4fd8NmGRRzBQmK8WUP6cH5xdbjFiFBCYrw5\nH0d6fX162m7Ppxx2gx0t4wgWEuN5ZkOWkBhPSFlCYjwhZQmJ8VqF5HEk7spyQkqfRYyYSkiM\n56ZdlpAYT0hZQmI8IWUJifGElCUkxhNSlpAYT0hZQmK8Bk9aHXGGexFHsJAYb8aQnoTE3Zr1\n2d+rza1HRBIS4816H+m18MODAkYEEhLjzXuy4Sm93npEHCExnrN2WUJiPCFlCYnxhJQlJMYT\nUpaQGE9IWUJiPCFlCYnxhJQlJMYTUpaQGE9IWUJiPCFlCYnxhJQlJMYTUpaQGE9IWUJiPCFl\nCYnxhJQlJMYTUpaQGE9IWUJiPCFlCYnxhJQlJMYTUpaQGE9IWUJiPCFlCYnxhJQlJMYTUpaQ\nGE9IWUJiPCFlCYnxhJQlJMYTUpaQGE9IWUJiPCFlCYnxhJQlJMYTUpaQGE9IWUJiPCFlCYnx\nhJQlJMYTUpaQGE9IWUJiPCFlCYnxhJQlJMYTUk5axhr0QUg56biMPeiCkHKERAUh5QiJCkLK\nERIVhJQjJCoIKUdIVBBSjpCoIKQcIVFBSDlCooKQcoREBSHlCIkKQsoREhWElCMkKggpR0hU\nEFKOkKggpBwhUUFIOUKigpByhEQFIeUIiQpCyhESFYSUIyQqCClHSFQQUo6QqCCkHCFRQUg5\nQqKCkHKERAUh5QiJCkLKERIVhJQjJCoIKUdIVBBSjpCoIKQcIVFBSDlCooKQcoREBSHlCIkK\nQsoREhWElCMkKggpR0hUEFKOkKggpBwhUUFIOUKigpByhEQFIeUIiQpCyhESFYSUIyQqCClH\nSFQQUo6QqCCkHCFRQUg5QqKCkHKERAUh5QiJCkLKERIVhJQjJCoIKUdIVBBSjpCoIKQcIVFB\nSDlCooKQcoREBSHlCIkKQsoREhWElCMkKggpR0hUENLgCgtYhC4IaXCFBSxCF4Q0uMICFqEL\nQhpcYQGL0AUhDa6wgEXogpAGV1jAInRBSIMrLGARuiCkwRUWsAhdENLgCgtYhC4IaXCFBSxC\nF4Q0uMICFqELQhpcYQGL0AUhDa6wgEXogpAGV1jAInRBSIMrLGARuiCkwRUWsAhdENLgCgtY\nhC4IaXCFBSxCF4Q0uMICFqELQhpcYQGL0AUhDa6wgEXogpAGV1jAInRBSIMrLGARuiCkwRUW\nsAhdENLgCgtYhC4IaXCFBSxCF4Q0uMICFqELQhpcYQGL0AUhDa6wgEXogpAGV1jAInRBSIMr\nLGARuiCkwRUWsAhdENLgCgtYhC4IaXCFBSxCF4Q0uMICFqELQhpcYQGL0AUhDa6wgEXogpAG\nV1jAInRBSIMrLGARuiCkwRUWsAhdENLgCgtYhC4IaXCFBSxCF4Q0uMICFqELQhpcYQGL0AUh\nDa6wgEXogpAGV1jAInRBSIMrLGARuiCkwRUWsAhdENLgCgtYhC4IaXCFBSxCF2YN6eVxm062\nu5dbjQgjJGrMGNJhnf7Z3GREICFRY8aQdmn1/Hp+6W2/SrtbjAgkJGrMGNIqvf59+TWtbjEi\nkJCoMWNIKeVeCRsRSEjU8BVpcIUFLEIX5r2PtH87v+Q+EvdmYkjrx7fxb7j5dNZufQjeKpqQ\nqDExpFMS41t62Z0fR1ptHz2OxH2ZGNLh+aGupfoRjQiJGgH3kV4e19EtLeD4FRI1Yk42vK7e\nvy49Td9mYMTchESNkJD2mxFP+/l2JQt/HCl9+QMKpod0eHz/crTeH95r2lZcyY/B6bP6rYKl\nb3/CoKkhvZxONuw+HmmNO/7bH75CosrUx5Hevxg9/f+Q0PCzFa4d0YaQqDL1caTtPmyVzIg2\nhESVqY8jhS2SHdGGkKgy+ZkNf15Yhd2s+z6iDSFRJSikt9gTbe0PXyFRZUJI+y8nrNflt0uj\nz3C3P3yFRJUpX5E+/wyGdeFpqO+ehMTdirqPNMbrauxzH9ofvkKiyqw/jut1+Nv5IkZEERJV\nJoR0+mpU+ayep0/fbR68VTAhUWXekG64VTAhUWXWm3ZLGjFyg/ab0AUhDW/QfhO6MDWkp/Xx\n+LYec/b76hFNCIkqE0Pan+4bnb49NoWW1P7wFRJVJoa0Sc/H17Q+Pld9e2zViDaERJWAB2TP\njw45a8evFhDSNu2FxC83+abd6/70jbFu2vG7TT/ZkNLj6QtS6HfKtj98hUSVyae/P34c/vo5\naJ8LI5oQElU8IDu8QftN6IKQhjdovwldENLwBu03oQtTQ3pce/Y3TA3p0bdRwHFySKvI30Fx\neUQbQqLKnD+z4boRbQiJKhND2qab/KzV9oevkKgyMaS31Sb2O5F+jmhDSFSZfNPOyQYQUmmD\n9pvQBQ/IDm/QfhO6IKThDdpvQhcmh7Tfnr+57y1on0sjWhASVaaGtPm4e5RWoSW1P3yFRJWJ\nIT2lzeEU0lN6CFvpuITDV0hUmfwUocPHsxucteNXC3iKkJBgYkjrP1+RXkf8xr4rR7QhJKrE\n3EfaBz8LvP3hKySqTD1rt/3zvIbQn8a1gMNXSFQJeRwpbWN/iNACDl8hUcUzG4Y3aL8JXRDS\n8AbtN6EL00LaP5x+9slmF/09Se0PXyFRZUpIb5u/30Ox8Vw7frUJIR1Wab0/faf52/P69IP0\nA7U/fIVElQkh7T6d896cfpJ+nPaHr5CoMiGkdfp3e+7Nr3XhV5sQ0pen13muHb+akIY3aL8J\nXRDS8AbtN6ELQhreoP0mdGFSSF803iqYkKgipOEN2m9CFzzXbniD9pvQBSENb9B+E7ogpOEN\n2m9CF4Q0vEH7TeiCkIYXaL4JfRBSYYHmq9AFIRUWaL4KXRBSYYHmq9AFIRUWaL4KXfDMhsIC\nzVehC0IqLNB8Fbrgpl1hgear0AUhFRZovgpdiArpZTt1k+KIOQmJOlND2rmPBJND+tfRPmyl\n4wKOXiFRZ2JIq/R83KS3t00K/anFzY9eIVFnYkinW3SP71+NXu/s59oJiToBIe1Pv63PfSR+\ntYkhbd9v2r2l9fFFSPxqE0PanwI6/1KKh7CVjgs4eoVEnamnvx9Prz2ktAva58KIFoREHc9s\nKCzQfBW6MPU+UuxXoksjmhASdQLO2t1A86NXSNSZGNI6HcJWyYxoQkjUmRjSYbuJ/kXM30c0\nISTqTL5p50mrIKTiAs1XoQtOfxcWaL4KXRBSYYHmq9CFqNPfq1XENpdGNCEk6gSF9OY+Er/a\nhJD2X34a17rxVrGERJ0pX5HWnzvyHbL8Zp4iVFig+Sp0wVm7wgLNV6ELU0M67E6n61a72Kfc\nNT96hUSdiSG9rc437lJavUVt9H1EE0KizsSQNunh9LXosEt+0iq/WdTJBo8j8atNDGn15/uR\nDkLiV5sY0i6dvx/pZRP700+aH71Cos7Us3abPw/Ihv6g1fZHr5CoM/lxpOftKaOnoHUujmhA\nSNTxgGxhgear0AUhFRZovgpdmBzSfns6YbcNfTy2/dErJOqEnGx4/zvPbOBXmxjSU9qcH0J6\n8kP0+dUCHpD982y7qI2+j2hCSNQJeIqQkGBiSOs/X5Fefas5v1rMfaT9KoU+JNv86BUSdaae\ntdt6ihAEPY6Uts9B61wc0YCQqOOZDYUFmq9CF4RUWKD5KnQh5tnfD/ugdS6OaEBI1In6fqTQ\nH9nQ/ugVEnUmf4fs6vTFyOlvfrnJTxF6Pf/pAVl+Nz9FqLBA81XowuSbdv9/RfJz7fjNpp5s\neDzfR3pZeWYDv9rkm3ZfNNwqlpCoI6TCAs1XoQue2VCa33oXuiCk0vzWu9CFKSEdducXX9Zp\ndWc/IFJIVJoS0sfvRtrf4fcjCYlKE0I6fXfs+x+r1evxsEmh35HU+uAVEpUmhLRJp59l95Ie\nz/8N/ZLU+uAVEpUmhPRxtnuXXv69EqX1wSskKk0OaZ0+vRKl9cErJCpNCGl9umn39vEjVg9p\nFbhU84NXSFSaENLudLLhIZ2/OfbOfmSxkKg0IaTD6u9576f051ngQVofvEKi0qQHZB/Sx6+O\nTSn2V8g2P3iFRKWQpwil7UvAKoMj5iUkKnmuXWl+613ogpBK81vvQheEVJrfehe6IKTS/Na7\n0AUhlea33oUuCKk0v/UudEFIpfmtd6ELQirNb70LXRBSaX7rXeiCkErzW+9CF4RUmt96F7og\npNL81rvQBSGV5rfehS4IqTS/9S50QUil+a13oQtCKs1vvQtdEFJpfutd6IKQSvNb70IXhFSa\n33oXuiCk0vzWu9AFIZXmt96FLgipNL/1LnRBSKX5rXehC0IqzW+9C10QUml+613ogpBK81vv\nQhfmD+lpndJ2f9MRkwmJSjOG9PG7yDbn391c+KH7rQ9eIVFp7pB2aXc4Ht926ekWI6IIiUpz\nh7RKp9+Efjyk9S1GRBESleYO6f/fNTv8O2dbH7xCotLcIT38H9Lg75xtffAKiUqzhrR9fNqn\n5/cXD7vhsw2tD14hUWnWkD6cX1wdbjEiipCoNOfjSK+vT0/b7fmUw26wo+YHr5Co5JkNpfmt\nd6ELQirNb70LXRBSaX7rXehCq5A8jsRdWU5I6bOIERMIiUpu2pXmt96FLgipNL/1LnRBSKX5\nrXehC7OG9PK4Pd8D2u5ebjUihpCoNGNIh/Wnswmbm4yIIiQqzRjSLq2eX88vve1XnrSan0iH\nZgxplV7/vvzq2yjyE+nQ7D+z4dIrYSOiCIlKviKV5guJEea9j7R/O7+09PtIKfvKPCPpz5yn\nvzefztqtl/yNfWngtVlG0p15H0fanR9HWm0fl/04kpCo5ZkNxfFCokxIxfFCokxIxfFCokxI\nxfFzLJNav8tMJKTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTi\neCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTieCFRJqTi\neCFRJqTi+HneXyH1TUjF8TO9v0rqmpCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK\n44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK\n44VEmZCK44VEmZCK42+/TJpnDDckpOJ4IVEmpOL4mUJq/U4ziZCK44VEmZCK44VEmZCK44VE\nmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK44VE\nmZCK44VEmZCK44VEmZCK44VEmZCK44VEmZCK42++TJppDjckpOJ4IVEmpOL0uUJSUs+EVJ5+\n622EdAeEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqE\nVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ4uJIqEVJ5+423Sjxfoj5DK04VEkZDK\n04VEkZDK0+cKSUkdE1J5upAoElJ5upAoElJ5upAoElJ5upAoElJ5upAoElJ5upAoElJ5upAo\nElJ5upAoElJ5upAoElJ5upAoElJ5upAoElJ5upAoElJ5upAoElJ5upAoElJ5+m23SRdfpDNC\nKk8XEkVCKk8XEkVCKk+fLSQl9UtI5elCokhI5elCokhI5elCokhI5elCokhI5elCokhI5elC\nokhI5elCokhI5elCoqjbkG64hZCoJqTyVQuJIiGVr1pIFPUaUrrhGkKimpDK04VEkZDK04VE\nkZDK04VEkZDK02/6DqfsK/Sk35But4eQqNZpSOmWewiJakIqT58vJCV1S0jl6UKiSEjl6UKi\nqOOQbraIkKgmpPJ0IVHUZ0jpposIiWpCKg8XEkVCGjH8lu+xkO5DzyHdaBMhUU9II4YLiZIu\nQ0rf/rz1cCFRIqQRw4VEiZBGDBcSJUIaMVxIlHQd0m1WERL1hDRi+A3f4zT4Kt3oMaR04aWb\nDhcSJUIaMVxIlAhpxHAhXe3u3qGcvkO6yS4tQ7q7A+/e3p8sIY0YLqRr3fKnpi2LkEYMF9K1\nhBT7JqEj0oiXY4cL6VpCin2T0BGZeJKQFicd7+09yuo8pC9n8IIWE1IYIQW/SeiIyyGlsMWE\nFEZIwW8SOuJiSIGfsrsPabZDO806ra17CiloMyHFDvodJfUXUrr0WuSn7N5Dmu9MmpCi3yRy\nxKUn1aTL/xY1XEhXDvr8x50T0ojhdxXSfCcAQj8rS3cXIaXMv0UNF9LVkz7/edfuK6SQ3e47\npPnut8T+723pugvpwpGX8v8aM/x27/GPa77HkH5FSbOG9PK4TSfb3cvVI34eemnoX68gpMhJ\nc01rbcaQDuv0z+baEcMhRXzO7jqkGe+3zB5S015nDGmXVs+v55fe9qu0u3JE4dAT0riB85zU\nuPTyDQe2LGnGkFbp9e/Lr2l15YjCdCGNnDfTbciZhh2/31me3Ywhfb0zM3gt14c0/YN54Qpm\nDOnGB8N9h9SypN6+IhWHT/1YXnz7sO91Kk+76bEw48Edfot71Lx2Jc17H2n/dn5pwn2kW4eU\ne/MbfYaEFDyuWUlznv7efDprtz5cN6I8/NJNs9ErDwy+yadISMHTfkVIx5fd+XGk1fbx6seR\nrgjplMDIDK6943a1eUOa8eBOg6/ecFqrkmYNKWDEiOHfDpf09c8r546/ioovXZcuep8hzTis\nUUl3HtLnQ7V8hJcvUDr5fr7A2C9/l89rjHrbq8x5cGdn1fyP5rphbUrqLKSaLyvpx+es8Dmc\n+AXn0z+NOFhyF5n00U0/3+eBq56x2f9Pqv35H03s5HlvRo5b4kZvcuFKrrs7Mmp2uhTR/2Mv\nGn/dx0vHQfp5AP+7RZku/OvAu58urzlqrfT1hUvXXPibCJf3TV8+bmPeo4H3ffhjk75epmb3\n6y0npFHHzbiQqj94tR/wMUf5t38a28WoQ+eS8sWvuNJr5N6v2uEDl8x/+C58DGd4547d3bSD\nZRISBBASBJg1pIhv7IMlmjGkmG/sgyWaMaSYb+yDJZoxpJhv7IMlmjGkmG/sgyXyFQkCzHsf\nafo39sEizXn6O+Ib+2CR5n0cafo39sEieWYDBBASBBASBBASBBASBBASBBASBBASBBASBBAS\nBFhoSNCZK47y+HC6mG0DG4RuICQbtHYXGwjJBq3dxQZCskFrd7GBkGzQ2l1sICQbtHYXGwjJ\nBq3dxQZCskFrd7GBkGzQ2l1sICQbtHYXGwjJBq3dxQZCskFrd7FB+3cC7oCQIICQIICQIICQ\nIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIMDsIe1WabU7DP3F7Bscj0/zfhh+\nbPC0bvwxODyk9PA64wIXP+0vs34avm9w9c/P/3jrkJ3G25yXXQ/8xewbHI+vV3/4YjbYnf9i\nNV9JPzZYnf9ixpIufdoPqzk/Dd83eO0qpJe0ej2+rtJL9i9m3+B4em3OD8OPDV7Tw+H0VfGh\n2Qa70+xd2s61wOVP+3bOT8OFz8Kkd3/mkHZp//7f5/SY/YvZN3g/gjezhvRjg+3H9PmW+LHB\nKh1mXeDip/35+i8HERs8TTsGZw5pm96OX+L/8Rezb3BMuzkPofy7PN8SmQ3Saq4FLm3wNu//\nz35s8JSeplzfzCGl7//z/fEXs29wfJ31/8XZd/mQNm032E07kqZusElvc34afmywTfuHtNpd\nfX0BO9WMW2BIs47PbXD6P+K+5QbvN6yuPogiNnhMz7N+Gi6EdHbt/82ENO/43AbHt9V8d/Uv\nbfC0Xc13R/XnBufbWE1DSu8lHw9Xf1kW0rzjcxscVrPdsMt+0B/mu233Y4P16eR/05A+HK59\nJGbmkFbf1//xF7NvMO/43AabGR9Jy33QD/Odbfi+wcP5du2cn4bcgXftDk3O2r19P2v3NvdZ\nu28DG5y1+7LB23rz1naDs7nPG/7bIP3VaoP/dRLS4/n/PPt/92t//MXsG5zMGtLPDfbznbC7\nvMHH40hv8z3B5PsG84eU/Rhc+b90z2w4afvMhreZO8o8s+Gwne8+0uVPe9NnNuxOTR121547\nnfu5dut/5xg/PmzrSScdIzY4zhzSjw0e5v6/8c+PwWoJn4V5Pw3fNzh8fAyuvWk0d0iH83Nu\nP0anb3/RaIPj3CF932D2mzUXPgbvf7Ge7/HYy5+FeT8NF4/E6z8Gc4cEd0lIEEBIEEBIEEBI\nEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBI\nEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIEEBIrbw+rNJD/heWzvtLBJnKp6uR3cdv\nu1y/Zf5dSH3x6WrjMa3evxod3v/IlCSkvvh0NfH2f0AP6eHyJYTUF5+uJnbp8eOFw/bpkNYf\nL57/3K3S5tTYR0hP67T6+EXb+01Km393qd7/eff3t8H/vVRKh3Xafrq2///8dD3b9OftPl2Y\nyYTUxCa9/ntlm15Ofzyf4tqc7jitDn9C2p7vR23eX3r6uEv197fXp/T4/z99ulRK7y/vfl7r\nv0s8flzP7tuFmUpITXy54bb/uHn3kN7eD/vN4f2F3ccl9qfXDpv0/oVodSrv+c9XmfMVrF6P\nr6v0/OVS6fTiz2v9conn0/Wk49cLM5WQmvh6D2idTkf0qZLzl5FDWn1cYnv++8Pp9ldK+29X\ncHp9f/qnL5d6uXytfy/xafyXCzORkJr4GtLT6ebXy+k///7+9FL63/ls+fb19ccVfLvUl6v9\nfK1/L3E8vu0fN39CuuE7+Ov4YDax/XsfaX/48yXo8f02WD6k4+PqdOfp7fM//7zUlzY+X+u/\n69n8fUlIkXwwm3j8/6zdy8epuvcbauvTC99D+vw2+936832kS5f6+gYXrvX9LtP6af8mpHA+\nmE38fRxpcz4R95o2r+e0Nt/uI317CtHnzk53cM4nFD5d6msbf6/1+yWEFM8Hs42H8zMb3ran\nZo6nEwOr022w9/s1m8P7V5I/Z+2eT6fm3v9ue7rA88Wzdvsvl/rWxv/X+uUSL8dX95Hi+WA2\nsvnyXLt9+tPI18eRPi50+uL1/HHxv+fZUjr/2/b45VLf2vh6redL/HmK3+mKhBTJB7OV5+17\nDM9/Xjmk/+80nU7PfXlmQ3o4t3Z+ZsO/89Xv/7x9v7vz8crfS31r49+1/rueh9PV7C98+WIS\nH8xFeP/akXsa+GWjKqi+Vq4mpEXY/HvyzzijQqq+Vq4mpAX4/0lzVW9yi2vlakJagFX9k7BH\nhHTFtXI1IUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEA\nIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUEAIUGA/wAWbc/qS8bu0wAAAABJRU5ErkJg\ngg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# plot periodogram\n",
"spec_freq =(0:((n+1)/2-1))/n\n",
"spec_perdiodogram = periodogram\n",
"plot(spec_freq, spec_perdiodogram, xlab=\"Cycles per year\", ylab=\"Spectral Density\", type=\"l\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The data shows spikes at 1 cycle per year and 2 cycle per year, which can be interpreted as an annual cycle that repeats once every year and there is a 6 month cycle that repeats twice each year."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Spectral Analysis\n",
"\n",
"**Spectrum** function in R removes any linear trend in data and estimates the strength at each frequency also known as the periodogram.\n",
"\n",
"Documenatation :\n",
"https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/spectrum\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:36:06.265229Z",
"start_time": "2020-10-21T06:36:06.197Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAgAElEQVR4nO3d6ULiMBSA0ZRNRYH3f9thU5Em2ktDWOacH4qA3Kh8A5TCpA0w\nWrr1AuAZCAkqEBJUICSoQEhQgZCgAiFBBUKCCoQEFQgJKhASVCAkqEBIUIGQoAIhQQVCggqE\nBBUICSoQElQgJKhASFCBkKACIUEFQoIKhAQVCAkqEBJUICSoQEhQgZCgAiFBBUKCCoQEFQgJ\nKhASVCAkqEBIUIGQoAIhQQVCggqEBBUIqb101M2Wv5/r4lNpzp+jvfRt8eu5fr+M6utiBH+O\n9k5CSu+/nev3y6i/MC7nz9HeZwTLLqX5yMvgTvhztPcVwcfx0HrRpW6x+jxxNdnd5fs613K+\nPTj/fDi1mndp8lo+NaXp16lfl7V5m20PTw4jdie+TtJke2P42qVp+TaRACG1931rcji06k7u\n5u2u8NsYvs81Pd4JnO2/ej98MR106tdlfZ5rP+J4hm1kiz/uXTKckNo7vUXqtp+6z614xxO3\n3r7ONft6OLVvpfv6csCpn5f1uk1nvdksDuf6Okt32iDjCKm9s8dIh6v5er7PZ397sf4+13L7\n6XV76sv28/b+29v26r88fGf51LfuO6T9ZW1vllbfF3k49nV3c/Wx/3SL38HT8VtsL5342N+q\nHMs53l4sP8+1/bjN63X/5WIf3ex46vLXU9++Q1qeDT58fP/x6eo/8P/Ab7G9k46WP77sDl+t\nP891+uVq//XX1T57avfz1O+Tt2d4W0zT1zdtep8YyW+xvc9upov16Zc/ruYnqWxOvg6d+v31\n26Q/QUhV+S22d3bd7X58+cttTvfXqZlbpP2Xu7t6k/nrh5Cux2+xvbPr7uzHI5mzVGa/Pgr6\n/dSvy5ocjxfS9fgttnd23d1ta3vff5pueiGdbZd7/bldrrDVLp1FcvzsFumK/BbbO7/ufj37\n82Mr2vHA13Oph72Jzp4p+v3Uz8ua7veO/dxmLqRr8Fts7/y6uzxe9xc/Tjyp4LuUz30XZvlT\nj5c0PYvk+E27Z2DfhXQdfovt9a6768X2Ucxs+fPErwPLeVfcm+781I/dqcteJLuju/nHav9U\nlZCuwW/xCa2PuxvRjpCeSDrsZfQxtQNdc0J6It+bHtJvL2LnCoT0RFZfW+1+eQk7VyGkZ7J+\n2W3O6+Zuj5oTElQgJKhASFCBkKACIUEFQoIKhAQVCAkqEBJUICSoQEhQgZCgAiFBBUKCCoQE\nFQgJKhASVCAkqEBIUIGQoAIhQQVCggqEBBUICSoQElQgJKhASFCBkKACIUEFQoIKhAQVCAkq\nEBJUICSooEFICR7MBdfy+uHcYATUJCSoQEhQgZCgAiFBBUKCCoQEFQgJKhASVCAkqEBIUIGQ\noAIhQQVCggqEBBUICSoQElTQMqTVPHUvm83rJHWLK42A22gY0rrbvSL39WX/wtzpVUbAjTQM\naZG2t0OLLs3Xm/X+cP0RcCMNQ+r235jSev+pu8YIuJGGIaX0/XHz+7uuCIkHc4NbpN3H9R3f\nIqmYuBs8Rlqsj4frj6hCSMTZandfw3lQnke6r+E8KHs23NdwHpSQ7ms4D0pI9zWcB3WrkO74\neSQhEXc/IY38PzLqERJx7trd13AelJDuazgPSkj3NZwH1TSk95fZ/hHQbPF+rREVCIm4lrsI\nTU62JthFiKfSdKfV7u1jf2i17Oy0ylNp+jKKj6/DH15GwVNp/sK+3BfVRlQhJOLcIt3XcB5U\n28dIy9X+kMdIPJuWm7+nJ1vtJuurjKhBSMS1fR5psX8eqZu9eB6J52LPhvsazoMS0n0N50EJ\n6b6G86CEdF/DeVBCuq/hPCgh3ddwHpSQ7ms4D0pI9zWcByWk+xrOgxLSfQ3nQQnpvobzoITU\nn60kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTU\nny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTU\nny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTU\nny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTU\nny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTU\nny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTU\nny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUny0kwoTUHy0kwoSU\nGa0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSU\nGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSU\nGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSU\nGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kooSU\nGS0kooSUGS0kooSUGS0kooSUGS0kooSUGS0kolqGtF50248vk5Smb1caMZ6QuETDkFZdSpv1\n9sPO9CojKhASl2gY0jzN1tsP89W2qXlaXGNEBULiEg1DSml9/LC9l5e6a4yoQEhcomlI2w9d\nOvmi+ogKhMQlmt61+9hsXnYfdrdIvz5IEhIPpmFIH6lbfGxm3bak5SQtrzGiAiFxiZabv5fH\nLXY7L9cZMZ6QuETbJ2Tf5pNdRbOX1dVGjCUkLmHPhsxoIRElpMxoIRElpMxoIRF1q5A8j8RT\nuZ+Q0qkaIy4jJC7hrl1mtJCIElJmtJCIElJmtJCIahrS+8ts/whotni/1ojRhMQlGoa0npxs\nTfDCPp5Kw5AWqXvb7/q9WS07L+zjqTQMqTu8gmLvwwv7eCqtX9iX/aLaiPHSjefzoNwi5SYL\niaC2j5GWh5dP3PFjJCFxkZabv6cnW+0m66uMGE1IXKTt80iL/fNI3ezlbp9HEhIXsWdDbrKQ\nCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQ\nCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQ\nCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQ\nCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQ\nCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQ\nCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQCBJSbrKQ\nCBJSbrKQCBJSbrKQCBJSbrCQCBJSdrCSiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQ\niBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQ\niBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQiBFSdrCQ\niBFSdrCQiBFSdrCQiBFSdrCQiBkb0qJLR7VW1BvRkpC4zMiQFikJCcaGlNJrtaUURjQlJC4z\nOqRqKymNaEpIXGb0Xbt1taUURjQlJC4zdmPDdLqqtZTSiJaExGXGhrS0sQFGh/Riqx1sRofU\n2WoHG1vtCoOFRMzou3a22sH4jQ0v0/daSymNaElIXGb0XTsbG0BIhcFCIsbLKLKDhUSMkLKD\nhUSMkLKDhUSMx0jZwUIiRkjZwUIips5du/fpbPxSfh/RhpC4TKXHSOs0H72UP0Y0ISQuU2tj\ng7t2/NcqhfSautFL+WNEE0LiMtU2NrxUW9JGSDycSiFN6r4sSUg8GE/IZgcLiZiRIc0W1VZS\nGtGUkLiMV8hmBwuJmJEhTbxCFjajQ1rPvEIW7GtXGCwkYm4S0p9nFhIP5iabv4XEs2kYUvrp\nGiNGExKXqbX5u/t7X7v3Tkg8q0ohrYY8RlrP0uH/rrjbu3apdwAGGRHS8scNzGTIt76l9LZ5\nhJCURMyYW6TJaUfDnk5aTdNsLSSeTvNdhF5StxQSz6b95u+Pyd9POgmJBzM2pPVit7muW0R2\nuZsLiWczMqRVt48ipa7qfyUrJB7MyJCmab67LVovUtX34xISD6bWxoboVof7fEJWSFxoZEjd\n8fVI6/EhDd7t4YqExIVGhrRI+9cjvU9T1decC4kHM3ar3fR4EzKttaD+iIaExIVGP4/0Nttl\nVPfduITEo2n6hOz7y2x/8zVb/LFDkZB4MA1DWp/um/f7XUEh8WBGh7Sc7baxzQY8H7tI3dvH\n/tBq2f2+cUJIPJgqGxu2xw3Ys6FLH1+HP35/030h8WBGhvSapvunkF4H/P9IP54d8oQsT6XC\nE7LHve3+/D63SDyvCrsIDQ1p+xhpebgD6DESz2ZkSJPjLdLHkJeaT0+22k1+fd2FkHgwdR4j\nbW9hhjwl+77YP4/UzV48j8RzGbvVbmYXIaj0PFKavVVaTnZEO0LiQu3fs+FORvwxV0iECCk/\nV0iE1Nn7e76stJzsiHaExIVqvR6p6ls2CIlHM/oVst3uxmjg5u+LRrQkJC40ehehw24/g56Q\nvWxES0LiQrd6F6HhI1oSEhcafdfu8xbJ+9rxPxu7seFl/xjpvbNnA/+10XftrvJ2dELiwQgp\nP1dIhNizIT9XSIQIKT9XSISMDel1stmsJkP/58uLRjQkJC40MqT9/2LZ7R4eVS1JSDyYkSFN\n09t+r4a3uq/sExIPpsKeDR+7NzKxZwP/tQohzdJSSPznRt+1+1ju3qLOXTv+b+M3NqT0srtB\nqvrSPiHxYEZv/j681eOk7rufCIkH4wnZ/FwhESKk/FwhESKk/FwhESKk/FwhESKk/FwhESKk\n/FwhESKk/FwhESKk/FwhESKk/FwhESKk/FwhESKk/FwhESKk/FwhESKk/FwhESKk/FwhESKk\n/FwhESKk/FwhESKk/FwhESKk/FwhESKkwlglESGkwlghESGkwlghESGkwlghESGkwlghESGk\nwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGk\nwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGk\nwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGk\nwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGk\nwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGk\nwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwlghESGkwtg2S5Dr\nsxBSYayQiBBSYayQiBBSYayQiBBSYaqQiBBSaWqTNQjpWQipNFVIBAipNFVIBAipNFVIBAip\nNFVIBAipNLXFGpKSnoWQSlOFRICQSlOFRICQSlOFRICQSlOFRICQSlOFREDLkNbzlKbL44X8\neilC4sE0DGndpZ3Z4UKEtBHSE2kY0iK9bmt67ab7CxHSRkhPpGFI3eEbV91kJaTPGUJ6Eg1D\n+mxnPZ0K6XOGkJ5Ew5Amaf15aCqk4wwhPYmGIb2m+fHQKk2FdJghpCfRcvP34queZRLSYYaQ\nnkTTJ2Q/Zp+HVnMhbYT0ROzZUJoqJAKEVJoqJAKEVJoqJAJuFZKNDYcRQnoS9xNSOlVjRNgt\nQlLSk3DXrjRVSAQIqTRVSAQIqTRVSAQ0Den9ZXZ4SdLi/VojxhASF2v5wr7JydaE6VVGjCMk\nLtb0hX3d28f+0GrZpcU1RowjJC7W9IV9H1+HP1J3jRHjCImL3eCFff0vqo0YR0hczC1SaaqQ\nCGj7GGm52h/yGOl7hJCeQ8vN39OTrXaT9W/nFBIPpu3zSIv980jd7MXzSJ8jhPQc7NlQmiok\nAoRUmiokAoRUmiokAoRUmiokAoRUmnr9NaQ2Y2hBSKWpQiJASKWpjUJS0nMQUmmqkAgQUmmq\nkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmq\nkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmmqkAgQUmnq1deQGs2hBSGVpgqJACGVhrYK\nSUlPQUjFoddehJCeiZCKQ4XEcEIqDhUSwwmpOFRIDCek4lAhMZyQikOFxHBCKg4VEsMJqThU\nSAwnpOJQITGckIpDhcRwQioOFRLDCak4VEgMJ6TiUCExnJCKQ4XEcEIqDhUSwwmpOPTKi0i9\nAzwwIRWHConhhFQcKiSGE1JxaKuQlPQMhFQcKiSGE1JxqJAYTkjFoUJiOCEVhwqJ4YRUHCok\nhhNScaiQGE5IxaFCYjghFYcKieGEVBwqJIYTUnGokBhOSMWhQmI4IRWHConhhFQcKiSGE1Jx\nqJAYTkjFodddRMoe5FEJqThUSAwnpOJQITGckIpDm4WkpCcgpOJQITGckIpDhcRwQioOFRLD\nCak4VEgMJ6TiUCExnJCKQ4XEcEIqDhUSwwmpOFRIDPdgIV1ztpC4nJCKly0khhNS8bKFxHAP\nFtI1hwuJywmpeNFCYjghFS9aSAwnpOJFC4nhHi2kK05vGlIqfsFDElLxkoXEcEIqXrKQGE5I\nxUtuF5KSHp+QipcsJIZ7uJCuN15IXE5IxQsWEsMJqXjBQmI4IRUvWEgMJ6Ti5QqJ4R4vpGvN\n719su9dsCOnhCal8sUJiMCGVL1ZIDCak8sUKicEeMKQrLUBIjCCk8qUKicGEVL5UITGYkMqX\nKiQGE1L5Uq/4g6Zfv+TxPGJI11mBkBhBSOULFRKDCal8oUK62NP9QH8SUvlC24X0dFe8Z/t5\n/vaQIV1lCUKqJz3bD/Q3IZUvU0iXEtKVvqX2iFQ4XHemkC4lpCt9S+0RJ6cnId2dtHm2n+hv\njx9SrfUIqRohXetbqo9IJweEdG+EdK1vqT4inXwW0mUzrztISNf4luojTkOqtCAh1R30n5X0\n2CHV/JM9e0jttqQJ6WrfUn3Ez79VlRUJqdqg00//iwcN6ed9OiENm9jmul31r/IwHjmk0013\n15gppIsnnX7+PzxFSFWW9NwhtXvcUveft4fxwCH9eFb2GjOv94P2LvkZQ/q/Smoa0vvLLO3M\nFu+jR/zYNUhIwyYK6WoahrSepG/TsSN+7mNX4W/21CE1fNzSPKT76LVhSIvUvX3sD62WXVqM\nHJF++eoiQqo6qc20Tcvnx37VMKQufXwd/khd1RFCGjiv0X3IRsM25w+Wb6dhSD8f1fx6KfER\no3+ZmQtoGNKVrwzPHdJdlPQkt0ijf5fZ76/2Wqe/p131utDwyl39HvegeXdQUtvHSMvV/lCN\nx0ijv2PQt1/pLySkyuNuX1LLzd/Tk612k/X1VzX8BqV8xuvcKAmp8rT/K6TN+2L/PFI3exn/\nPNKf37JLYGAGlR+vXTLwmteEhlfu9OuXV5x285KahnTVEWdXl/Tz84hxwy4icNOVO+tzhtRw\n2K1Les6QTq+qf1/D/z7DH+c4VDT05i+/XWPQ916k5ZW7OCvyD81lw25c0vOFlHp/sz/+hiNv\ncE5OGnBlKZ1l1C819X/mXy66YbOfG9WO/9DUndz2buRfbhVS7eeRDt9UukKlvNCs/kWn/hX4\n+x5lypz6y0+d8ssctKz080Dukv84pob8etOP39uQn+iXn/333036eZ7I2geJ/XM15AJHLOb7\nQjIbB0JXoNxFRr8tOmrItfzspKFdDLrq5Px99gsu9BKlnys6/Jdzln99md9h7Z/vr7v3fyyu\nzrfc4QioSUhQgZCggrZPyFZ8YR/ck4Yh1X1hH9yThiHVfWEf3JOGIV31ZRRwUw1DuuoL++Cm\n3CJBBW0fI13vhX1wUy03f1/1hX1wS22fR7riC/vgluzZABUICSoQElQgJKhASFCBkKACIUEF\nQoIKhAQVCAkquNOQ4MFccC2vH84djrQCK7jyAoRkBf/rCoRkBVZwbwsQkhX8rysQkhVYwb0t\nQEhW8L+uQEhWYAX3tgAhWcH/ugIhWYEV3NsChGQF/+sKhGQFVnBvCxCSFfyvK3j0kOD5CAkq\nEBJUICSoQEhQgZCgAiFBBUKCCoQEFQgJKhASVCAkqEBIUIGQoAIhQQVCggpahbToUrdY/3ZE\n8xVsNq9t/xnpreB1cuPfwXqe0vyj4QKyf/b3ln+G8wVc/K75Zxr9DNP9aie/HNF8BZvNR4Xf\n35gVLPZHdO1K6q2g2x/RsKTcn33dNfwznC/g47FCek/dx+ajS+/FI5qvYLP7qmVIvRV8pPl6\nd6s4v9kKFrvZizRrtYD8n33W8M+Q+SNU+unb/AyLtNx+fEsvxSOar2B7DZ42Dam3gtlhertF\n9FbQpXXTBWT/7G81bg8uXsBrratgm59hllabH/X3jmi+gk1atLwKlX/kdosorCB1rRaQW8Gq\n6b9nvQW8ptc6l9zmZ0jn//j2jmi+gs1H03+Liz/yOk1vu4JFravSZSuYplXDP0NvAbO0nKdu\nUeGSx1/EkCl3GFLT8aUV7P5JXN5yBds7VhWuRZev4CW9tfwzZELaG/+PmZBuuoLNqmv3UD+3\ngtdZ1+6Ban8F+ztZtwwpbUPerCvcKgvppitYd83u2BV/6fN29+16K5jsNv7fMqSD9fgnYtr8\nDN35+ntHNF9B2/GlFUwbPpNW+qWv221tOF/BfH+/tuGfoXS9G7+EllvtVudb7Vatt9qdDbzB\nVrsfK1hNpqvbrmCv9XbD7xWkLzdawKdHCell/y/P8vtxbe+I5ivYaRpSfwXLdhvs8is4PI+0\nareDyfkKmodU/BWM/hf9P96zoXFIvRWsGndU2LNhPWv3GCn/Z7/lng2LXVPrxfhNp41+hsn3\nRsbDr21Saavj5SvYNA6pt4J543+NM7+D7h7+Ck3/DOcLWB9+BePvGTX6Gdb7nW4PE9PZETda\nwaZ1SOcraH23Jvc72B4xafd8bP6v0PTPkL0i1vgVNL0qwbMSElQgJKhASFCBkKACIUEFQoIK\nhAQVCAkqEBJUICSoQEhQgZCgAiFBBUKCCoQEFQgJKhASVCAkqEBIUIGQoAIhQQVCggqEBBUI\nCSoQElQgJKhASFCBkKACIUEFQoIKhAQVCAkqENLdWc9r/FeMtCWkuzNLKb3cehEECenupLS6\n9RIIE9LdaftfRFOHP9qdOf5H5ymtJ2m2/fp1krrjf7q96LZ3+XaZHVI7fPw6fXtDNkvdy+c5\np6vNOk32X31+5oqEdGe+QprtNznM9l9Od6dMd4dezkL6Pj2lLh0fXe3P2a23J77vzvjmIdf1\nCenu7APZxrHeflruPq2nabnLofvYfHQ/Qzo5ff8dr7sbn7fdofk2w2Wa784496Dr+oR0d44h\n7W9MZmmX03p3J2+2q2Xbxo+QTk4/fMfhyPfdcd1mM9mf7J5dA0K6O8eQjoePTo45Dal3+sk5\nt153d+re3bNrQEh3p2JI+5ulF/fsGhDS3fkZ0s+j+yGdnX525GJ7f3Dinl0DQro7pyEdHhid\nHHz/KuX98HBo+ePb9h+nX4+RNh9p+uGeXQtCujunIe031W0f6sx2mxm+ttpN0utuU136cfp3\nSK+7rXaLw/56k9S5Z9eCkO7OaUiHp4RSt2thsX/G6FBK2j/P9OP0kyeXPp9H2uy38rln14KQ\n7s6PkHZ7LqT56vPg7HDCS5fm33s2HE4/3d1h29zs8D1rO8C2IaQHE9wTb2kX2DaE9GCCIU3T\n65UWwg9CejChkD530+PqhPRgQiF1+x3IaUBIUIGQoAIhQQVCggqEBBUIqZmB29syZzvfx3s5\n9OIWXeoW6/wRJwd37/vw42yECamZaiFNUuF85w474k2yR5wcXKTvffO4kJCauTyks1PTwJDe\nj/uLv2eOODn4kebr3Y6w80HLI09IzTQPabF/sdLJewidHHFycNZ7DSFxfnvNbK+pi+1jkf3h\n5SwdD569Hd1i9yYmhxuH5eFFe/P0ftyl+3Dq5vul5YvPb8yb7fdX/fjeu+HkiN5pQhrHb6+Z\n/UuIDju/vRzeaGGx6b8d3e5lRt3+rzI/vDQvdScvMpqdhrS/uNfvi/9+/4bPY04//Tyid9ra\nXnmjCKmZdHxY8rY7+La7X3V44dH329F9vgT2ZXfy7vybw72vr9fC/nxbu89v/Lz4USG9fr9o\nnQsIqZl0fGO62fcR+w8/3o5u/8Z1q92tw/v2Fudjd0O0Ojv1K6TPbywPPP20+TWkVWf31lGE\n1MyP6+5q+TI9eSns2XV7mnZvurB725J9U8V346oW0rpzx24cITVzet2dft0Jy4a03CbUTXZv\npPVyuCc4IKT+XbvuPKSTI85Om3pjh5GE1MxJCvM0eV2uyiFt0uQ9LbY3Suv9mw5fGNJhy9zq\nfKvd6nur3fG01WTq9egjCamZdHyU8/nWWechnbxx3Tah+far5fbjvH/q0Lt2L8cHZYvMEaen\nLW2wG09IzXxutVsemvo4f4x08sZ1u2AON0X76/vZqYf3M/k7pIF7Nqx0VIGQmknb25fdU6z7\nnlQAAACESURBVEGbz73b9jdRJz3snxeaH46Y7LdrT/dbwM9Pnew3jA/Yv2GSPp+42nxe6tcR\n3wfn53cJuYDfXjOnuyJsr7zT9+XPN0jdv13d4vPg/k7Xy/E52Z+nvk8GhrTe7+G9+T7fyRHf\nB3uPrbiA3x5UICSoQEhQgZCgAiFBBUKCCoQEFfwDnR56kSbfxH0AAAAASUVORK5CYII=",
"text/plain": [
"Plot with title \"Periodogram\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"density_spectrum <- spectrum(log(df$Passengers),log='no',main=\"Periodogram\",taper=0)\n",
"n = length(df$Passengers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The frequency is number of cycles per observations, this is equivalent to cycles per month in this case as data in months.\n",
"\n",
"We can convert this to cycles per quarter or cycles per year as well."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"ExecuteTime": {
"end_time": "2020-10-21T06:36:10.412441Z",
"start_time": "2020-10-21T06:36:10.356Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAMFBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////QFLu4AAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAboElEQVR4nO3d3UIaSRSF0UIQFRHe/21HcExEqrRP96GgyVoXEzPB3vjzRWjQ\nlD0wWbn2FYB7ICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRI\nICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRI\nICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRI\nICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRI\nICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRIICRI\nICRIICRIICRIICRIICRIICRIICRIICRIICRI0CGkAjMz4rM8P5wrTEAmIUECIUECIUECIUEC\nIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECIUECId3W\nODMlpNsaZ6aEdFvjzJSQbmucmRLSbY0zU0K6rXFmSki3Nc5MCem2xpkpId3WODMlpNsaZ6aE\ndFvjzJSQbmucmRLSbY0zU0K6rXFmSki3Nc5MCem2xpkpId3WODMlpNsaZ6aEdFvjzJSQbmuc\nmRLSbY0zU0K6rXFmSki3Nc5MCem2xpkpId3WODMlpNsaZ6aEdFvjzJSQbmucmRLSbY0zU0K6\nrXFmqn9Izw+lrDYXnZhGSMR1DKkcX3FZjtYXmUghJOJ6h7Qu691+/7Yuz5eYyFCURFzvkBZl\nd3h5Vx4uMZFBSIzQO6RSvvwmfSKDkBihd0iPnyEtLjGRQUiM0DWk1dPzpry8v7hb/3y2QUjM\nTNeQPhxfXOwuMZFBSIzQ83Gk7fb5ebU6nnJY/9iRkJgbz2w43xYSYUI63xYSYUI63xYSYdcK\nyeNI3JXbCal8lTExkpAYwU27820hESak820hESak820hESak820hESak820hESak820hEXaF\nJ60OOMMtJGamY0jPQuJudX3292J56YkEQmKErveRtr/88KCEiemExAh9TzY8l+2lJyYTEiM4\na3e+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTC\nhHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTC\nhHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTC\nhHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTChHS+LSTC\nhHS+LSTChHS+LSTChHS+LSTChHQ+LSTChFSZVhJRQqpMC4koIVWmhUSUkCrTQiJKSJVpIREl\npMq0kIgSUmVaSEQJqTItJKKEVJkWElFCqkwLiSghVaaFRJSQKtNCIkpIlWkhESWkyrSQiBJS\nZVpIRAmpMi0kooRUmRYSUUKqTAuJKCFVpoVElJAq00IiSkiVaSERJaTKtJCIElJlWkhECaky\nLSSihFSZFhJRQqpMC4koIVWmhUSUkCrTQiJKSJVpIRElpMq0kIgSUmVaSEQJqTItJKKEVJkW\nElFCqkwLiSghVaaFRJSQKtNCIkpIlWkhESWkyrSQiBJSZVpIRAmpMi0kooRUmRYSUUKqTAuJ\nKCFVpoVElJAq00IiSkiVaSERJaTKtJCIElJlWkhECakyLSSihFSZFhJRQqpMC4koIVWmhUSU\nkCrTQiJKSJVpIRElpMq0kIgSUmVaSEQJqTItJKKEVJkWElFCqkwLiSghVaaFRJSQKtNCIkpI\nlWkhESWkyrSQiBJSbVlJBAmptiwkgoRUWxYSQUKqLQuJICHVloVEkJBqy0IiSEi1ZSERJKTa\nspAIElJtWUgECam2LCSChFRbFhJBQqotC4kgIdWWhUSQkGrLQiJISLVlIREkpNqykAgSUm1Z\nSAQJqbYsJIKEVFsWEkFCqi0LiSAh1ZaFRJCQastCIkhItWUhESSk2rKQCBJSbVlIBAmptiwk\ngoRUWxYSQUKqLQuJICHVloVEkJBqy0IiSEi1ZSERJKTaspAIElJtWUgECam2LCSChFRbFhJB\nQqotC4kgIdWWhUSQkGrLQiJISLVlIREkpNqykAgSUm1ZSAQJqbYsJIKEVFsWEkFCqi0LiSAh\n1ZaFRJCQastCIkhItWUhESSk2rKQCBJSbVlIBAmptiwkgrqG9Pq0Kger9eulJqYSEqN0DGn3\nUP5aXmRiOiExSseQ1mXxsj2+9LZZlPUlJqYTEqN0DGlRtn9e3pbFJSamExKjdAyplNZv0iam\nExKj+IpUWxYSQX3vI23eji+5j8S96Xn6e/nlrN3D7iITkwmJUfo+jrQ+Po60WD15HIn74pkN\ntWUhESSk2rKQCBJSbVlIBF0rpBt9HKlceZ+5up2QylcZE2OUb7/CMG7aVYeFRIyQqsNCIkZI\n1WEhESOk6rCQiBFSdVhIxAipOiwkYrp+P9LgM9xCYmY6hvQsJO5Wz5t228XPP/IkYWIqITFO\n1/tI25+/nS9jYiIhMc7UkNaLyLN6nr98t3nytcohJMaZGNL6Mk+PExIzMzGkUp7Trkpjoish\nMc7kkNKuSWuiKyExzuSbdj/+EJOxhMTMTD3ZsFy+ZV2V1kRPQmKcqSFtnGyAySE9OWsH+8kh\nLZy1g72zdo1hIREz+aads3Yw/WTD0/KXnz48ipCYmck37ZxsACE1hoVEjG81rw4LiRghVYeF\nRExWSK+rqdfk14kehMQ4k7+xz30kSPzGvk3aVdoLidmZ/BShl/2yvL0tS+rDSUJiZhKeIvT0\n/tVoW4b+gKDwRFdCYpyEkDaHJ666j8Q/bWJIq/ebdm/lYf8qJP5pE0PaHAJaHk42PKZdpb2Q\nmJ3JT1o9/O6xDP3Jj2MmehIS43hmQ3VYSMRMvY+U+5WoNtGVkBjHd8hWh4VEzMSQHnyHLOwn\nh7Rb+Q5Z8I19jWEhESOk6rCQiHH6uzosJGKEVB0WEjF5N+2WiQ8pCYmZyQuplMU1r1XusJCI\nmXrT7nFx+NbYzaK87ld5T7gTEjMz+VvNP/515cM39u3KQ851EhKzk/UUocMLeafAhcTMTP6Z\nDZ9fkRZC4h82+abd532k9f4l7+c2CImZmXqyYfl58vvwBSntHx0TEjMz+QHZzeo9o9Xhy1J5\nyrlKZxMdCYlxPLOhOiwkYoRUHRYSMZNDejncS1q9JF2d6kRHQmKcxJMNiYTEzEwM6fnP6e+0\nM3bfJ7oSEuNM/pkNnw/Ipj096PtEV0JinMynCOUREjOT9hUp73so9kJidtxHqu4KiRhn7eq7\nSiJk+uNIqzt6HElIjOSZDfVdIREipPqukAiZEFI5deVrlbwrJEKEVN8VEiFTb9qtjqe/Xxep\n//KlkJibtJ8ilPovjgmJmfEUofqukAjJ/ClCeYTEzEz/KUKHf2hss0j8gQ17ITE7WU8RWmVd\nofOJjoTESElPEdokXZ3qRD9CYiTPbKjvCokQIdV3hUSInyJU3xUSIb4fqb4rJEJ8h2x9V0iE\n+ClC9V0hEeIpQvVdIRHipwjVd4VEiPtI9V0hEeKsXX1XSIT4KUL1XSER4pkN9V0hESKk+q6Q\nCJn0w09OfgDKla9V8q6QCBFSfVdIhLhpV98VEiETQ1ql/vCg6kRPQmKkrKcI5RISMzP5KUK7\ntKvSmOhJSIw0MaTdavmadl3qEz0JiZEm37Rz1g6E1NoVEiFOf9d3hUSIkOq7QiJkckib1eFW\n3eot6frUJvoREiOlfD/S+/9bpJYkJGZm8nfILneHkJ5L6r80JiRmZmJIi7L7eHaDs3b80xKe\nIiQkSHiK0KEhP9eOf1vOfSQ/RYh/3NSzdis/RQiSHkfyU4T413lmQ31XSIQIqb4rJEKmhPS2\nXpTF+hLf2SckZmZCSG+L42mG3CcHnU70JiRGmhDSY1nu9rtl7pODTid6ExIjTQhpcfx5DW+5\n/6DL6URvQmKkCSH9/6ygS/wgISExM0Kq7wqJECHVd4VEiJDqu0IiZFJIJ658rZJ3hUSIkOq7\nQiLEU4Tqu0IiREj1XSERIqT6rpAIEVJ9V0iECKkxqyQihNSYFRIRQmrMCokIITVmhUSEkBqz\nQiJCSI1ZIREhpMaskIgQUmNWSEQIqTErJCKE1JgVEhFCaswKiQghNWaFRISQGrNCIkJIjVkh\nESGkxqyQiBBSY1ZIRAipMSskIoTUmBUSEUJqzAqJCCE1ZoVEhJAas0IiQkiNWSERIaTGrJCI\nEFJjVkhECKkxKyQihNSYFRIRQmrMCokIITVmhUSEkBqzQiJCSI1ZIREhpMaskIgQUmNWSEQI\nqTErJCKE1JgVEhFCaswKiQghNWaFRISQGrNCIkJIjVkhESGkxqyQiOgf0vNDKavNRSfGEhJj\ndQypHF9xWY7WF5mYSEiM1TukdVnv9vu3dXm+xMREQmKs3iEtyu7w8q48XGJiIiExVu+QSvny\nm/SJiYTEWL1DevwMaXGJiYmExFhdQ1o9PW/Ky/uLu/XPZxuExMx0DenD8cXF7hITEwmJsXo+\njrTdPj+vVsdTDusfOxISc+OZDY1ZIREhpMaskIgQUmNWSERcKySPI3FXbiek8lXGRJyQGMtN\nu8askIgQUmNWSEQIqTErJCK6hvT6tDreA1qtXy81MYmQGKtjSLuHL2cTlheZmEhIjNUxpHVZ\nvGyPL71tFp602nGFy+sY0qJs/7y89W0UHVe4vO4/s6H2m7SJiYTEWL4iNWaFRETf+0ibt+NL\nN3ofqTR/02eSGet5+nv55azdww1+Y1/54XddJpmvvo8jrY+PIy1WTzf5OJKQGM0zG1qrQiJA\nSK1VIREgpNaqkAgQUmu1x3UoSroXQmqtCokAIbVWhUSAkFqrQiJASK1VIREgpNaqkAgQUmtV\nSAQIqbUqJAKE1FoVEgFCaq0KiQAhtVaFRICQWqtCIkBIrVUhESCk1qqQCBBSa1VIBAiptSok\nAoTUWhUSAUJqrQqJACG1Vvu8mUK6E0JqrXZ6M5V0H4TUWhUSAUJqrQqJACG1VoVEgJBaq0Ii\nQEitVSERIKTWqpAIEFJrVUgECKm1KiQChNRaFRIBQmqtCokAIbVWhUSAkFqrQiJASK1VIREg\npNaqkAgQUmtVSAQIqbUqJAKE1Fq9/HUofWboQUitVSERIKTWaqeQlHQfhNRaFRIBQmqtCokA\nIbVWhUSAkFqrQiJASK1VIREgpNaqkAgQUmtVSAQIqbUqJAKE1FoVEgFCaq0KiQAhtVaFRICQ\nWqtCIkBIrVUhESCk1qqQCBBSa1VIBAiptSokAoTUWr34dSidduhBSK1VIREgpNZor5CUdBeE\n1By99JUQ0j0RUnNUSAwnpOaokBhOSM1RITGckJqjQmI4ITVHhcRwQmqOConhhNQcFRLDCak5\nKiSGE1JzVEgMJ6TmqJAYTkjNUSExnJCao0JiOCE1R4XEcEJqjgqJ4YTUHL3wlShnLzBjQmqO\nConhhNQcFRLDCak52iskJd0DITVHhcRwQmqOConhhNQcFRLDCak5KiSGE1JzVEgMJ6TmqJAY\nTkjNUSExnJCao0JiOCE1R4XEcEJqjgqJ4YTUHBUSwwmpOSokhhNSc1RIDCek5qiQGE5IzdHL\nXolSfZG5ElJzVEgMJ6TmqJAYTkjN0W4hKekOCKk5KiSGE1JzVEgMJ6TmqJAYTkjNUSExnJCa\no0JiOCE1R4XEcEJqjgqJ4YTUHBUSw80spEtuC4nxhNQ8tpAYTkjNYwuJ4WYW0iXHhcR4Qmoe\nWkgMJ6TmoYXEcEJqHlpIDDe3kC643jWk0vwNsySk5pGFxHBCah5ZSAwnpOaR+4WkpPkTUvPI\nQmK42YV0uXkhMZ6QmgcWEsMJqXlgITGckJoHFhLDCal5XCEx3PxCutT++WH7fc+GkGZPSO3D\nConBhNQ+rJAYTEjtwwqJwWYY0oWugJCYQEjtowqJwYTUPqqQGExI7aMKicGE1D7qBd/Q8uNv\nmZ85hnSZayAkJhBS+6BCYjAhtQ8qpNHu7g36lZDaB+0X0t194t3b2/O7WYZ0kasgpDzl3t6g\n3wmpfUwhjSWkC71K9kRpvJy7KaSxhHShV8me+PLnRUg3p+zv7S363fxDyro+QkojpEu9SvpE\n+fKCkG6NkC71KukT5cuvQhq3edkhIV3iVdInvoaUdIWElDv0j5U075AyP2T3HlK/M2lCutir\npE+cfqxSrpGQ0oa+/vKvmGlIp7fphDRssc/ndupHZTbmHNLXU3eX2BTS6KWvv/4b7iKklKt0\n3yH1u9+S+9fbbMw4pJNHZS+xebk39OzI9xjSv1VS15Ben1blYLV+nTxx8tQgIQ1bFNLFdAxp\n91D+Wk6dOH2OXcLH7K5D6ni/pXtIt9Frx5DWZfGyPb70tlmU9cSJ8sPvRhFS6lKftX3Px8d+\n1DGkRdn+eXlbFqkTQhq41+k2ZKex/fc7y9fTMaTTezU/HiU+MfmdWTlAx5Au/Mlw3yHdREl3\n8hVp8vuy+vpp3+v0+9pFPxc6fnKn3+IetHcDJfW9j7R5O76UcR9p8msMevULfYSElDx3/ZJ6\nnv5efjlr97C7/LUa/gWlfcHLfFESUvLavxXS/nV9fBxpsXqa/jjSr69ySGBgBsn318YMXvIz\noeMnd/nxtxdcu3pJXUO66MS3T5dy+uuEuWGHCHzpql30PkPqOHbtku4zpK+fqr9/hv9+gV8u\n8VHR0C9/9fMag153lJ6f3M2tyF8048auXNL9hVTOPma/fAwnfsH58kcDPllaF5n0Ti3nb/MP\nh+7Y7OdJtf//osld7nsz8jfXCin7caSPV2p9QpW60Nb5ocv5J/DfW5Sl8qc/vNWlfjUHXa1y\n+kLtyL/8nwz161tO3m9D3qIf3vaf3zfl9DKR6z5I7K+rIQeccGX+HqRyciD0CVQ7ZPTVolND\nPsu//dHQLgZ96tT8fvERBx2j9XZFx3+4ZPvdV3kfZr99v928/+XK5bzKDU5AJiFBAiFBgr4P\nyCZ+Yx/cko4h5X5jH9ySjiHlfmMf3JKOIV302yjgqjqGdNFv7IOr8hUJEvS9j3S5b+yDq+p5\n+vui39gH19T3caQLfmMfXJNnNkACIUECIUECIUECIUECIUECIUECIUECIUECIUGCGw0JZmbE\nZ3l+ODc12XPM1j+8JSRbtm7tYDc4OdsPjK15bQnJlq1bO9gNTs72A2NrXltCsmXr1g52g5Oz\n/cDYmteWkGzZurWD3eDkbD8wtua1JSRbtm7tYDc4OdsPjK15bQnJlq1bOxj8q4QECYQECYQE\nCYQECYQECYQECYQECYQECYQECYQECYQECYQECYQECYQECYQECXqHtF6UxXrXbe6529v3/NDt\nDds9lvK47TJ19NrpnTj6B9iPsT28E9/yjtc5pOXxXfXQa27b68OyXx/fsEWXkhbHrW4l7RZ9\n3onbniFtsj9efUN6LYvtfrsor33m3pd6/f1WHneHr3+PHbbWh5V1WXWYOlp1eidu+71J738Z\nvX8i7lZlnXbAviGty+b9vy/lqcvac1n2Cmn1sdNlblF2vaYOXnp9kXju9Glx8HJMaFcWaUfs\nG9KqHG6V9vqr5/2d1e3T7f/FfnOJnwM/euv2t9Fzee6yc/CYfsv4Kp9ovW4rdP3M3h/+hlv2\nmlr3+qxblrdO78RV2TyWRd6NrZ88lP3T4nhzPMs9h9R16eD5eMu1g/ebW30+4fZP5aXXO3H1\nca6hy99FpRzXEr+qCynP26LXveXn1aLPHYrjrfBO78Ty3ux+1+dLbTmc9do9Jr4ThZRmt+h2\nw25/uJXf4xPu4XCCuOvfRrsuD458PHrwlrjVN6TFPYe07Pbw2EHmGaemx+Nt1b63j7us5f+N\nfo2zdm/9HjDo9znw9rBMfJx8gB5vWvnj8lt/NzuM5D9c0Tekp+PfcJte95Q7hrTpd8Lu43Gk\nzJslTV1D+ny7evwt+/GJ+Jb4QbvrZzb0CynzQ/Kb4zMbdqt+j7p0eieuD3+/7tZdzny+/zW0\nO5xseEk7Yufn2j30O8N51Cukx543gRb3+U7cfbxdfW6tPGW/DzuHtDs++7vfXq+Q+t6XeH8n\nPvR7FkC3d+Ku59u1WeZ+Ivp+JEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEgg\nJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEggJEgg\nJEggJEggJEggpGvZPi7KY/vfS+35D4kznQ/Xlaw//qnMh7fGnwtpXny4ruOpLN6/Gu3ef2mU\nJKR58eG6irfPgB7LY/0SQpoXH66rWJenjxd2q+ddefh48fjrelGWh8Y+Qnp+KIuPf+d7syxl\n+fcu1fsfr//8s9x/LlXK7qGsvhzt89cvx1mV/1/vy4WZTEhXsSzbv79ZldfDLy+HuJaHO06L\n3f8hrY73o5bvLz1/3KV6/nydUp4+/+jLpUp5f3l9ftS/l3j6OM7624WZSkhXcXLDbfNx8+6x\nvL1/2i937y+sPy6xOfxutyzvX4gWh/Je/v8qczzAYrvfLsrLyaXK4cXzo55c4uVwnLI/vTBT\nCekqTu8BPZTDZ/ShkuOXkV1ZfFxidfz/u8Ptr1I23w5w+P3m8Ecnl3qtH/XPJb7Mn1yYiYR0\nFachPR9ufr0e/vP3/x9eKp+OZ8tX2+3ZAb5d6uSwX4/65xL7/dvmafl/SBd8A/853plXsfpz\nH2mz+/9L0NP7bbB2SPunxeHO09vXPz6/1EkbX4/69zjLPy8JKZN35lU8fZ61e/04Vfd+Q+3h\n8ML3kL6+zmb98PU+Uu1Sp69QOer7XaaH582bkNJ5Z17Fn8eRlscTcduy3B7TWn67j/TtKURf\nOzvcwTmeUPhyqdM2/hz1+yWElM878zoej89seFsdmtkfTgwsDrfB3u/XLHfvX0n+P2v3cjg1\n9/7/VocLvFTP2m1OLvWtjc+jnlzidb91Hymfd+aVLE+ea7cp/zdy+jjSx4UOX7xePi7+5zxb\nKcc/W+1PLvWtjdOjHi/x/1P8DgcSUibvzGt5Wb3H8PL/b3bl807T4fTcyTMbyuOxteMzG/6e\nr37/49X73Z2P3/y51Lc2/h7173EeD4fZVL58MYl35k14/9rRehp43aAKwkdlNCHdhOXfJ/8M\nMyik8FEZTUg34PNJc6FXucRRGU1IN2ARfxL2gJBGHJXRhAQJhAQJhAQJhAQJhAQJhAQJhAQJ\nhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJhAQJ\nhAQJhAQJ/gNUQ+84ndrRYQAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# frequency as cycles per year\n",
"sampling_freq = 12\n",
"spec_freq = density_spectrum$freq * sampling_freq\n",
"spec_perdiodogram = 2 * density_spectrum$spec\n",
"plot(spec_freq, spec_perdiodogram, xlab=\"Cycles per year\", ylab=\"Periodogram\", type=\"l\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.6.1"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "384px"
},
"toc_section_display": true,
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment