Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save grigorisg9gr/55015fcc8718592e1451ff6177558ec5 to your computer and use it in GitHub Desktop.
Save grigorisg9gr/55015fcc8718592e1451ff6177558ec5 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Imports a video, acquires some frames and \n",
"# performs (face) detection in those."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from os.path import isdir, isfile\n",
"from functools import partial\n",
"from numpy.random import randint\n",
"import menpo.io as mio\n",
"from menpo.visualize import print_progress\n",
"from menpodetect.dlib import load_dlib_frontal_face_detector\n",
"\n",
"try:\n",
" %matplotlib inline\n",
" from menpowidgets import visualize_images\n",
"except NameError:\n",
" print('Maybe this is a terminal.')\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Parse the video"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"p = '/vol/atlas/homes/grigoris/videos_external/5_2016_kollias_dimitris/part_c/450_500/mp4/453BeatDropVines3Reaction.avi'\n",
"assert isfile(p)\n",
"v = mio.import_video(p, landmark_resolver=None, normalize=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import video frames"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"max_frames = 20\n",
"ims = []\n",
"for i in range(min(max_frames, len(v))):\n",
" idx = randint(0, high=len(v))\n",
" ims.append(v[idx])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Detect and visualise the results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"detector = partial(load_dlib_frontal_face_detector())\n",
"for im in print_progress(ims):\n",
" detector(im)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"visualize_images(ims)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.5"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment