Last active
August 29, 2015 14:17
-
-
Save juliantaylor/169c94183dc3a96b6f8d to your computer and use it in GitHub Desktop.
casa log parse
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:a62328819ee51c59b87bcb21de0ca30a948cfdd8f409f00c2c79d57b8914c9bd" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib nbagg\n", | |
"import pandas\n", | |
"import datetime\n", | |
"from dateutil.parser import parse\n", | |
"import re\n", | |
"from collections import OrderedDict, defaultdict\n", | |
"import matplotlib.pyplot as plt\n", | |
"#plt.style.use('ggplot')\n", | |
"matplotlib.rcParams['figure.figsize'] = (16,8)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"inpfile = '/tmp/X164_sequential_casapy-20150313-142649.log'\n", | |
"inpfile = '/tmp/X164_1thread_parallel_casapy-20150318-083910.log'\n", | |
"inpfile = '/tmp/X291_sequential_casapy-20150323-142036.log'\n", | |
"inpfile = '/tmp/X291_16subms_casapy-20150325-115256.log'\n", | |
"ls = open(inpfile).readlines()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"!head $inpfile" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"2015-03-25 11:53:04\tWARN\tpipeline.infrastructure.renderer.logger::pipeline.infrastructure.renderer.logger::casa\tImageMagick is not installed. Thumbnails will not be generated, leading to slower web logs.\r\n", | |
"2015-03-25 11:53:06\tINFO\tcasa::::@almahpc03:MPIClient\t---\r\n", | |
"2015-03-25 11:53:06\tINFO\tcasa::::@almahpc03:MPIClient\tCASA Version 4.3.0 (DEV r32769)\r\n", | |
"2015-03-25 11:53:06\tINFO\tcasa::::@almahpc03:MPIClient\t Tagged on: 2015-03-19 19:40:15 +0000 (Thu, 19 Mar 2015)\r\n", | |
"2015-03-25 11:53:06\tINFO\tcasa::casapy::@almahpc03:MPIClient\tMPI Enabled at host almahpc03 with rank 0 as MPIClient using MPI version 2.1 from Open MPI v1.6.5 implementation \r\n", | |
"2015-03-25 11:53:06\tINFO\tcasa::::@almahpc03:MPIClient\tManaging Sakura lifecycle\r\n", | |
"2015-03-25 11:53:06\tINFO\tsakura::initialize_sakura \tinitialize_sakura is called. sakura was initialized successfully. \r\n", | |
"2015-03-25 11:53:13\tINFO\th_init::::@almahpc03:MPIClient\t\r\n", | |
"2015-03-25 11:53:13\tINFO\th_init::::@almahpc03:MPIClient+\t##########################################\r\n", | |
"2015-03-25 11:53:13\tINFO\th_init::::@almahpc03:MPIClient+\t##### Begin Task: h_init #####\r\n" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ls[0].split('\\t')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
"['2015-03-25 11:53:04',\n", | |
" 'WARN',\n", | |
" 'pipeline.infrastructure.renderer.logger::pipeline.infrastructure.renderer.logger::casa',\n", | |
" 'ImageMagick is not installed. Thumbnails will not be generated, leading to slower web logs.\\n']" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"tasks = defaultdict(list)\n", | |
"\n", | |
"log = []\n", | |
"for i, l in enumerate(ls[:]):\n", | |
" tup = l.strip().split('\\t')\n", | |
" if not tup:\n", | |
" continue\n", | |
" if len(tup) < 4:\n", | |
" continue\n", | |
" ts, level, origin = tup[:3]\n", | |
" message = '\\t'.join(tup[3:])\n", | |
" ts = parse(ts)\n", | |
" begin = re.search('##### Begin Task:(.*)#####', message)\n", | |
" end = re.search('##### End Task:(.*)#####', message)\n", | |
" if begin and 'MPIServer-' not in origin:\n", | |
" tasks[begin.groups()[0].strip()].append(ts)\n", | |
" if end and 'MPIServer-' not in origin:\n", | |
" tasks[end.groups()[0].strip()].append(ts)\n", | |
" log.append((ts, level, origin, message))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ntasks = dict()\n", | |
"taskcount = defaultdict(int)\n", | |
"for k, v in tasks.items():\n", | |
" for i in range(0, len(v), 2):\n", | |
" taskcount[k] += 1\n", | |
" ntasks['%s_%d' % (k, taskcount[k])] = v[i:i+2]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df = pandas.DataFrame.from_dict(ntasks, orient='index')\n", | |
"df.columns = ['start', 'end']\n", | |
"df['duration'] = (df['end'] - df['start']) / np.timedelta64(1, 's')\n", | |
"df['startts'] = (df['start'].astype(int) - df['start'].astype(int).min()) * 1e-9\n", | |
"df['task'] = df.index\n", | |
"df['task'] = df['task'].str.replace(r'(\\w)[0-9]+', '')\n", | |
"del df['end']\n", | |
"df = df.set_index('start')\n", | |
"df = df.sort_index()\n", | |
"#df['duration'].plot()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df['task'][0]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": [ | |
"'h_init'" | |
] | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#pandas.set_option(\"display.max_rows\", None)\n", | |
"#pandas.set_option(\"display.float_format\", lambda x: \"%.5g\" % x)\n", | |
"df" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>duration</th>\n", | |
" <th>startts</th>\n", | |
" <th>task</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>start</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2015-03-25 11:53:13</th>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> h_init</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 11:53:13</th>\n", | |
" <td> 3955</td>\n", | |
" <td> 0</td>\n", | |
" <td> hifa_importdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 11:53:13</th>\n", | |
" <td> 819</td>\n", | |
" <td> 0</td>\n", | |
" <td> importasdm</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:10:05</th>\n", | |
" <td> 871</td>\n", | |
" <td> 1012</td>\n", | |
" <td> importasdm</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:27:54</th>\n", | |
" <td> 980</td>\n", | |
" <td> 2081</td>\n", | |
" <td> importasdm</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:47:44</th>\n", | |
" <td> 170</td>\n", | |
" <td> 3271</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:50:34</th>\n", | |
" <td> 176</td>\n", | |
" <td> 3441</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:53:30</th>\n", | |
" <td> 187</td>\n", | |
" <td> 3617</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:56:44</th>\n", | |
" <td> 10</td>\n", | |
" <td> 3811</td>\n", | |
" <td> listobs</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:57:25</th>\n", | |
" <td> 11</td>\n", | |
" <td> 3852</td>\n", | |
" <td> listobs</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:58:03</th>\n", | |
" <td> 12</td>\n", | |
" <td> 3890</td>\n", | |
" <td> listobs</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 12:59:09</th>\n", | |
" <td> 1003</td>\n", | |
" <td> 3956</td>\n", | |
" <td> partition</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:15:53</th>\n", | |
" <td> 748</td>\n", | |
" <td> 4960</td>\n", | |
" <td> partition</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:28:22</th>\n", | |
" <td> 802</td>\n", | |
" <td> 5709</td>\n", | |
" <td> partition</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:42:02</th>\n", | |
" <td> 581</td>\n", | |
" <td> 6529</td>\n", | |
" <td> hifa_flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:42:22</th>\n", | |
" <td> 135</td>\n", | |
" <td> 6549</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:45:01</th>\n", | |
" <td> 142</td>\n", | |
" <td> 6708</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:47:47</th>\n", | |
" <td> 117</td>\n", | |
" <td> 6874</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:50:43</th>\n", | |
" <td> 17</td>\n", | |
" <td> 7050</td>\n", | |
" <td> flagcmd</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:51:00</th>\n", | |
" <td> 18</td>\n", | |
" <td> 7067</td>\n", | |
" <td> flagcmd</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:51:19</th>\n", | |
" <td> 18</td>\n", | |
" <td> 7086</td>\n", | |
" <td> flagcmd</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:51:45</th>\n", | |
" <td> 482</td>\n", | |
" <td> 7112</td>\n", | |
" <td> hifa_fluxcalflag</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:53:20</th>\n", | |
" <td> 24</td>\n", | |
" <td> 7207</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:53:47</th>\n", | |
" <td> 4</td>\n", | |
" <td> 7234</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:53:53</th>\n", | |
" <td> 25</td>\n", | |
" <td> 7240</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:55:57</th>\n", | |
" <td> 27</td>\n", | |
" <td> 7364</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:56:26</th>\n", | |
" <td> 4</td>\n", | |
" <td> 7393</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:56:32</th>\n", | |
" <td> 27</td>\n", | |
" <td> 7399</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:58:35</th>\n", | |
" <td> 23</td>\n", | |
" <td> 7522</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:59:00</th>\n", | |
" <td> 4</td>\n", | |
" <td> 7547</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:59:06</th>\n", | |
" <td> 25</td>\n", | |
" <td> 7553</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 13:59:49</th>\n", | |
" <td> 550</td>\n", | |
" <td> 7596</td>\n", | |
" <td> hif_refant</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:09:00</th>\n", | |
" <td> 798</td>\n", | |
" <td> 8147</td>\n", | |
" <td> hifa_tsyscal</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:09:09</th>\n", | |
" <td> 14</td>\n", | |
" <td> 8156</td>\n", | |
" <td> gencal</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:09:34</th>\n", | |
" <td> 17</td>\n", | |
" <td> 8181</td>\n", | |
" <td> gencal</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:10:01</th>\n", | |
" <td> 14</td>\n", | |
" <td> 8208</td>\n", | |
" <td> gencal</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:10:29</th>\n", | |
" <td> 35</td>\n", | |
" <td> 8236</td>\n", | |
" <td> plotbandpass</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:11:06</th>\n", | |
" <td> 170</td>\n", | |
" <td> 8273</td>\n", | |
" <td> plotbandpass</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:14:18</th>\n", | |
" <td> 29</td>\n", | |
" <td> 8465</td>\n", | |
" <td> plotbandpass</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:14:49</th>\n", | |
" <td> 172</td>\n", | |
" <td> 8496</td>\n", | |
" <td> plotbandpass</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:18:03</th>\n", | |
" <td> 45</td>\n", | |
" <td> 8690</td>\n", | |
" <td> plotbandpass</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:18:50</th>\n", | |
" <td> 181</td>\n", | |
" <td> 8737</td>\n", | |
" <td> plotbandpass</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:22:20</th>\n", | |
" <td> 1678</td>\n", | |
" <td> 8947</td>\n", | |
" <td> hifa_tsysflag</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:22:30</th>\n", | |
" <td> 0</td>\n", | |
" <td> 8957</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:22:37</th>\n", | |
" <td> 0</td>\n", | |
" <td> 8964</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:22:58</th>\n", | |
" <td> 0</td>\n", | |
" <td> 8985</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:23:04</th>\n", | |
" <td> 0</td>\n", | |
" <td> 8991</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:23:25</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9012</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:23:31</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9018</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:23:52</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9039</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:24:01</th>\n", | |
" <td> 1</td>\n", | |
" <td> 9048</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:24:07</th>\n", | |
" <td> 1</td>\n", | |
" <td> 9054</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:24:54</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9101</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:25:00</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9107</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:25:19</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9126</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:25:27</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9134</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:25:29</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9136</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:25:41</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9148</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:25:47</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9154</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2015-03-25 14:26:05</th>\n", | |
" <td> 0</td>\n", | |
" <td> 9172</td>\n", | |
" <td> flagdata</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1805 rows \u00d7 3 columns</p>\n", | |
"</div>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": [ | |
" duration startts task\n", | |
"start \n", | |
"2015-03-25 11:53:13 0 0 h_init\n", | |
"2015-03-25 11:53:13 3955 0 hifa_importdata\n", | |
"2015-03-25 11:53:13 819 0 importasdm\n", | |
"2015-03-25 12:10:05 871 1012 importasdm\n", | |
"2015-03-25 12:27:54 980 2081 importasdm\n", | |
"2015-03-25 12:47:44 170 3271 flagdata\n", | |
"2015-03-25 12:50:34 176 3441 flagdata\n", | |
"2015-03-25 12:53:30 187 3617 flagdata\n", | |
"2015-03-25 12:56:44 10 3811 listobs\n", | |
"2015-03-25 12:57:25 11 3852 listobs\n", | |
"2015-03-25 12:58:03 12 3890 listobs\n", | |
"2015-03-25 12:59:09 1003 3956 partition\n", | |
"2015-03-25 13:15:53 748 4960 partition\n", | |
"2015-03-25 13:28:22 802 5709 partition\n", | |
"2015-03-25 13:42:02 581 6529 hifa_flagdata\n", | |
"2015-03-25 13:42:22 135 6549 flagdata\n", | |
"2015-03-25 13:45:01 142 6708 flagdata\n", | |
"2015-03-25 13:47:47 117 6874 flagdata\n", | |
"2015-03-25 13:50:43 17 7050 flagcmd\n", | |
"2015-03-25 13:51:00 18 7067 flagcmd\n", | |
"2015-03-25 13:51:19 18 7086 flagcmd\n", | |
"2015-03-25 13:51:45 482 7112 hifa_fluxcalflag\n", | |
"2015-03-25 13:53:20 24 7207 flagdata\n", | |
"2015-03-25 13:53:47 4 7234 flagdata\n", | |
"2015-03-25 13:53:53 25 7240 flagdata\n", | |
"2015-03-25 13:55:57 27 7364 flagdata\n", | |
"2015-03-25 13:56:26 4 7393 flagdata\n", | |
"2015-03-25 13:56:32 27 7399 flagdata\n", | |
"2015-03-25 13:58:35 23 7522 flagdata\n", | |
"2015-03-25 13:59:00 4 7547 flagdata\n", | |
"2015-03-25 13:59:06 25 7553 flagdata\n", | |
"2015-03-25 13:59:49 550 7596 hif_refant\n", | |
"2015-03-25 14:09:00 798 8147 hifa_tsyscal\n", | |
"2015-03-25 14:09:09 14 8156 gencal\n", | |
"2015-03-25 14:09:34 17 8181 gencal\n", | |
"2015-03-25 14:10:01 14 8208 gencal\n", | |
"2015-03-25 14:10:29 35 8236 plotbandpass\n", | |
"2015-03-25 14:11:06 170 8273 plotbandpass\n", | |
"2015-03-25 14:14:18 29 8465 plotbandpass\n", | |
"2015-03-25 14:14:49 172 8496 plotbandpass\n", | |
"2015-03-25 14:18:03 45 8690 plotbandpass\n", | |
"2015-03-25 14:18:50 181 8737 plotbandpass\n", | |
"2015-03-25 14:22:20 1678 8947 hifa_tsysflag\n", | |
"2015-03-25 14:22:30 0 8957 flagdata\n", | |
"2015-03-25 14:22:37 0 8964 flagdata\n", | |
"2015-03-25 14:22:58 0 8985 flagdata\n", | |
"2015-03-25 14:23:04 0 8991 flagdata\n", | |
"2015-03-25 14:23:25 0 9012 flagdata\n", | |
"2015-03-25 14:23:31 0 9018 flagdata\n", | |
"2015-03-25 14:23:52 0 9039 flagdata\n", | |
"2015-03-25 14:24:01 1 9048 flagdata\n", | |
"2015-03-25 14:24:07 1 9054 flagdata\n", | |
"2015-03-25 14:24:54 0 9101 flagdata\n", | |
"2015-03-25 14:25:00 0 9107 flagdata\n", | |
"2015-03-25 14:25:19 0 9126 flagdata\n", | |
"2015-03-25 14:25:27 0 9134 flagdata\n", | |
"2015-03-25 14:25:29 0 9136 flagdata\n", | |
"2015-03-25 14:25:41 0 9148 flagdata\n", | |
"2015-03-25 14:25:47 0 9154 flagdata\n", | |
"2015-03-25 14:26:05 0 9172 flagdata\n", | |
" ... ... ...\n", | |
"\n", | |
"[1805 rows x 3 columns]" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"grp = df.groupby('task').sum().sort('duration', ascending=False)\n", | |
"grp['count'] = df.groupby('task').size()\n", | |
"#grp = grp[grp['duration'] > 100]\n", | |
"tasknames = list(grp.index)\n", | |
"grp" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>duration</th>\n", | |
" <th>startts</th>\n", | |
" <th>count</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>task</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>hif_applycal</th>\n", | |
" <td> 13984</td>\n", | |
" <td> 34866</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>plotms</th>\n", | |
" <td> 11059</td>\n", | |
" <td> 2755954</td>\n", | |
" <td> 66</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>gaincal</th>\n", | |
" <td> 9960</td>\n", | |
" <td> 1051040</td>\n", | |
" <td> 49</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_timegaincal</th>\n", | |
" <td> 6676</td>\n", | |
" <td> 28190</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_gfluxscale</th>\n", | |
" <td> 4667</td>\n", | |
" <td> 23522</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>applycal</th>\n", | |
" <td> 4269</td>\n", | |
" <td> 220827</td>\n", | |
" <td> 6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_importdata</th>\n", | |
" <td> 3955</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_bandpass</th>\n", | |
" <td> 3631</td>\n", | |
" <td> 18596</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>plotbandpass</th>\n", | |
" <td> 3522</td>\n", | |
" <td> 363524</td>\n", | |
" <td> 24</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>setjy</th>\n", | |
" <td> 3094</td>\n", | |
" <td> 357683</td>\n", | |
" <td> 15</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_setjy</th>\n", | |
" <td> 2778</td>\n", | |
" <td> 15817</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_wvrgcalflag</th>\n", | |
" <td> 2720</td>\n", | |
" <td> 10626</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>importasdm</th>\n", | |
" <td> 2670</td>\n", | |
" <td> 3093</td>\n", | |
" <td> 3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>partition</th>\n", | |
" <td> 2553</td>\n", | |
" <td> 14625</td>\n", | |
" <td> 3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_lowgainflag</th>\n", | |
" <td> 2469</td>\n", | |
" <td> 13347</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>flagdata</th>\n", | |
" <td> 1929</td>\n", | |
" <td> 1112612</td>\n", | |
" <td> 81</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_tsysflag</th>\n", | |
" <td> 1678</td>\n", | |
" <td> 8947</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>bandpass</th>\n", | |
" <td> 1618</td>\n", | |
" <td> 204466</td>\n", | |
" <td> 12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_bpflagchans</th>\n", | |
" <td> 1293</td>\n", | |
" <td> 22228</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_tsyscal</th>\n", | |
" <td> 798</td>\n", | |
" <td> 8147</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>wvrgcal</th>\n", | |
" <td> 645</td>\n", | |
" <td> 45603</td>\n", | |
" <td> 4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_flagdata</th>\n", | |
" <td> 581</td>\n", | |
" <td> 6529</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_refant</th>\n", | |
" <td> 550</td>\n", | |
" <td> 7596</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hifa_fluxcalflag</th>\n", | |
" <td> 482</td>\n", | |
" <td> 7112</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>plotcal</th>\n", | |
" <td> 477</td>\n", | |
" <td> 50237344</td>\n", | |
" <td> 1488</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_makeimlist</th>\n", | |
" <td> 292</td>\n", | |
" <td> 48851</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>hif_makeimages</th>\n", | |
" <td> 86</td>\n", | |
" <td> 49144</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>flagcmd</th>\n", | |
" <td> 53</td>\n", | |
" <td> 21203</td>\n", | |
" <td> 3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>gencal</th>\n", | |
" <td> 45</td>\n", | |
" <td> 24545</td>\n", | |
" <td> 3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>fluxscale</th>\n", | |
" <td> 33</td>\n", | |
" <td> 76466</td>\n", | |
" <td> 3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>listobs</th>\n", | |
" <td> 33</td>\n", | |
" <td> 11553</td>\n", | |
" <td> 3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>h_save</th>\n", | |
" <td> 1</td>\n", | |
" <td> 49231</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>h_init</th>\n", | |
" <td> 0</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>calstat</th>\n", | |
" <td> 0</td>\n", | |
" <td> 952250</td>\n", | |
" <td> 24</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>34 rows \u00d7 3 columns</p>\n", | |
"</div>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 10, | |
"text": [ | |
" duration startts count\n", | |
"task \n", | |
"hif_applycal 13984 34866 1\n", | |
"plotms 11059 2755954 66\n", | |
"gaincal 9960 1051040 49\n", | |
"hifa_timegaincal 6676 28190 1\n", | |
"hifa_gfluxscale 4667 23522 1\n", | |
"applycal 4269 220827 6\n", | |
"hifa_importdata 3955 0 1\n", | |
"hif_bandpass 3631 18596 1\n", | |
"plotbandpass 3522 363524 24\n", | |
"setjy 3094 357683 15\n", | |
"hif_setjy 2778 15817 1\n", | |
"hifa_wvrgcalflag 2720 10626 1\n", | |
"importasdm 2670 3093 3\n", | |
"partition 2553 14625 3\n", | |
"hif_lowgainflag 2469 13347 1\n", | |
"flagdata 1929 1112612 81\n", | |
"hifa_tsysflag 1678 8947 1\n", | |
"bandpass 1618 204466 12\n", | |
"hif_bpflagchans 1293 22228 1\n", | |
"hifa_tsyscal 798 8147 1\n", | |
"wvrgcal 645 45603 4\n", | |
"hifa_flagdata 581 6529 1\n", | |
"hif_refant 550 7596 1\n", | |
"hifa_fluxcalflag 482 7112 1\n", | |
"plotcal 477 50237344 1488\n", | |
"hif_makeimlist 292 48851 1\n", | |
"hif_makeimages 86 49144 1\n", | |
"flagcmd 53 21203 3\n", | |
"gencal 45 24545 3\n", | |
"fluxscale 33 76466 3\n", | |
"listobs 33 11553 3\n", | |
"h_save 1 49231 1\n", | |
"h_init 0 0 1\n", | |
"calstat 0 952250 24\n", | |
"\n", | |
"[34 rows x 3 columns]" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"df['r'] = 0.\n", | |
"df['g'] = 0.\n", | |
"df['b'] = 0.\n", | |
"df['a'] = 0.\n", | |
"#longtasks = list(grp[grp['duration'] < 100].index)\n", | |
"longtasks = list(grp.index)\n", | |
"longtasks = [x for x in longtasks if not x.startswith('hif')]\n", | |
"cm = plt.cm.Paired_r\n", | |
"lin = np.linspace(0, 1., len(longtasks))\n", | |
"for i, tn in zip(lin, longtasks):\n", | |
" df['r'][df['task'] == tn] = cm(i)[0]\n", | |
" df['g'][df['task'] == tn] = cm(i)[1]\n", | |
" df['b'][df['task'] == tn] = cm(i)[2]\n", | |
" df['a'][df['task'] == tn] = 1.0#cm(i)[3]\n", | |
" \n", | |
"for tn in set(longtasks).symmetric_difference(set(tasknames)):\n", | |
" df['r'][df['task'] == tn] = 0.\n", | |
" df['g'][df['task'] == tn] = 0.\n", | |
" df['b'][df['task'] == tn] = 0.5\n", | |
" df['a'][df['task'] == tn] = 0.4#cm(i)[3]\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def get_data(sfile, flags='-u', interval=[]):\n", | |
" import subprocess as sp\n", | |
" from datetime import datetime\n", | |
" if not isinstance(flags, list):\n", | |
" flags = [flags]\n", | |
" cmd = ['sadf', '-p', '-U'] + [sfile] + map(str, interval) + ['--'] + flags\n", | |
" env = os.environ.copy()\n", | |
" env['LC_NUMERIC'] = 'en_US.UTF-8'\n", | |
" p = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, env=env)\n", | |
" res = p.communicate()\n", | |
" if p.returncode != 0:\n", | |
" print \" \".join(cmd)\n", | |
" print res[1]\n", | |
" return None\n", | |
"\n", | |
" out = [x.split() for x in res[0].splitlines()]\n", | |
" data = defaultdict(list)\n", | |
" times = defaultdict(list)\n", | |
" for x in out:\n", | |
" data[x[-2]].append(float(x[-1]))\n", | |
" times[x[-2]].append(datetime.fromtimestamp(float(x[2])))\n", | |
" data = dict([(k.replace('%%', '%'), np.array(v)) for k, v in data.items()] + [('t', np.array(times.values()[0]))])\n", | |
" return data\n", | |
"\n", | |
"def get_sar(file, flags='-u'):\n", | |
" d = get_data(sfile=file, flags=flags)\n", | |
" #t = d.pop('t')\n", | |
" d = pandas.DataFrame.from_dict(d)\n", | |
"\n", | |
" d = d.set_index('t')\n", | |
" d = d.sort_index()\n", | |
" d = d[(d.index > df.index.min()) & (d.index <= df.index.max())]\n", | |
" d['startts'] = (d.index.astype(int) - df.index.astype(int).min()) * 1e-9\n", | |
" return d\n", | |
"\n", | |
"sarfile = '/tmp/sa25'\n", | |
"dcpu = get_sar(sarfile)\n", | |
"ddisk = get_sar(sarfile, flags='-b')\n", | |
"ddisk['read'] = ddisk['bread/s'] * 512 / 1024.**2\n", | |
"ddisk['write'] = ddisk['bwrtn/s'] * 512 / 1024.**2\n", | |
"dsar = pandas.merge(dcpu,ddisk)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib nbagg\n", | |
"df['normdur'] = df['duration'] / df['duration'].sum()\n", | |
"fig = plt.figure(figsize=(14,24))\n", | |
"ax = fig.add_subplot(311)\n", | |
"handles = dict()\n", | |
"for i, row in enumerate(df.sort('duration', ascending=False).iterrows()):\n", | |
" index, sdf = row\n", | |
" t = sdf['task']\n", | |
" if sdf['duration'] != 0:\n", | |
" bar = ax.bar(left=sdf['startts'], height=sdf['duration'], width=sdf['duration'],\n", | |
" color=np.array((sdf['r'], sdf['g'], sdf['b'], sdf['a'])).T, label=t)\n", | |
" handles[t] = bar\n", | |
"for i, t in enumerate(tasknames):\n", | |
" sdf = df[df['task'] == t]\n", | |
" if sdf['normdur'][0] > 0.001:\n", | |
" ax.annotate(sdf['task'][0], xy=(sdf['startts'][0], sdf['duration'][0]),\n", | |
" xytext=(sdf['startts'][0], sdf['duration'][0] + 500),\n", | |
" arrowprops=dict(facecolor='black', width=0.002, headwidth=0.002))\n", | |
" \n", | |
"lgd = ax.legend(handles=[handles[x] for x in tasknames if not x.startswith('hif') and x in handles],\n", | |
" bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.);\n", | |
"ax.set_xlabel('time [s]')\n", | |
"ax.set_ylabel('time in task')\n", | |
"ax.set_title(inpfile);\n", | |
"ax = fig.add_subplot(312)\n", | |
"ax.plot(dsar['startts'], dsar['%user'], label='user')\n", | |
"ax.plot(dsar['startts'], dsar['%system'], label='system')\n", | |
"ax.plot(dsar['startts'], dsar['%iowait'], '--', label='iowait')\n", | |
"ax.plot(dsar['startts'], dsar['%user'] + dsar['%system'], '--', label='user + system')\n", | |
"ax.set_ylabel('%cpu')\n", | |
"ax.legend()\n", | |
"ax = fig.add_subplot(313)\n", | |
"ax.plot(dsar['startts'], dsar['read'], label='read')\n", | |
"ax.plot(dsar['startts'], dsar['write'], label='write')\n", | |
"ax.plot(dsar['startts'], dsar['tps'] * (dsar['read'].max() / dsar['tps'].max()), label='norm. tps')\n", | |
"#ax.plot(dsar['startts'], dsar['wtps'] * (dsar['read'].max() / dsar['tps'].max()), label='rtps', '--')\n", | |
"#ax.plot(dsar['startts'], dsar['rtps'] * (dsar['read'].max() / dsar['tps'].max()), label='wtps', '--')\n", | |
"ax.set_ylabel('MB/s')\n", | |
"ax.legend()\n", | |
"\n", | |
"fig.savefig('/tmp/%s.pdf' % os.path.basename(inpfile), bbox_extra_artists=(lgd,), bbox_inches='tight')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"javascript": [ | |
"/* Put everything inside the global mpl namespace */\n", | |
"window.mpl = {};\n", | |
"\n", | |
"mpl.get_websocket_type = function() {\n", | |
" if (typeof(WebSocket) !== 'undefined') {\n", | |
" return WebSocket;\n", | |
" } else if (typeof(MozWebSocket) !== 'undefined') {\n", | |
" return MozWebSocket;\n", | |
" } else {\n", | |
" alert('Your browser does not have WebSocket support.' +\n", | |
" 'Please try Chrome, Safari or Firefox \u2265 6. ' +\n", | |
" 'Firefox 4 and 5 are also supported but you ' +\n", | |
" 'have to enable WebSockets in about:config.');\n", | |
" };\n", | |
"}\n", | |
"\n", | |
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", | |
" this.id = figure_id;\n", | |
"\n", | |
" this.ws = websocket;\n", | |
"\n", | |
" this.supports_binary = (this.ws.binaryType != undefined);\n", | |
"\n", | |
" if (!this.supports_binary) {\n", | |
" var warnings = document.getElementById(\"mpl-warnings\");\n", | |
" if (warnings) {\n", | |
" warnings.style.display = 'block';\n", | |
" warnings.textContent = (\n", | |
" \"This browser does not support binary websocket messages. \" +\n", | |
" \"Performance may be slow.\");\n", | |
" }\n", | |
" }\n", | |
"\n", | |
" this.imageObj = new Image();\n", | |
"\n", | |
" this.context = undefined;\n", | |
" this.message = undefined;\n", | |
" this.canvas = undefined;\n", | |
" this.rubberband_canvas = undefined;\n", | |
" this.rubberband_context = undefined;\n", | |
" this.format_dropdown = undefined;\n", | |
"\n", | |
" this.focus_on_mousover = false;\n", | |
" this.image_mode = 'full';\n", | |
"\n", | |
" this.root = $('<div/>');\n", | |
" this.root.attr('style', 'display: inline-block');\n", | |
" $(parent_element).append(this.root);\n", | |
"\n", | |
" this._init_header(this);\n", | |
" this._init_canvas(this);\n", | |
" this._init_toolbar(this);\n", | |
"\n", | |
" var fig = this;\n", | |
"\n", | |
" this.waiting = false;\n", | |
"\n", | |
" this.ws.onopen = function () {\n", | |
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", | |
" fig.send_message(\"send_image_mode\", {});\n", | |
" fig.send_message(\"refresh\", {});\n", | |
" }\n", | |
"\n", | |
" this.imageObj.onload = function() {\n", | |
" if (fig.image_mode == 'full') {\n", | |
" // Full images could contain transparency (where diff images\n", | |
" // almost always do), so we need to clear the canvas so that\n", | |
" // there is no ghosting.\n", | |
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", | |
" }\n", | |
" fig.context.drawImage(fig.imageObj, 0, 0);\n", | |
" };\n", | |
"\n", | |
" this.imageObj.onunload = function() {\n", | |
" this.ws.close();\n", | |
" }\n", | |
"\n", | |
" this.ws.onmessage = this._make_on_message_function(this);\n", | |
"\n", | |
" this.ondownload = ondownload;\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype._init_header = function() {\n", | |
" var titlebar = $(\n", | |
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", | |
" 'ui-helper-clearfix\"/>');\n", | |
" var titletext = $(\n", | |
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", | |
" 'text-align: center; padding: 3px;\"/>');\n", | |
" titlebar.append(titletext)\n", | |
" this.root.append(titlebar);\n", | |
" this.header = titletext[0];\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype._init_canvas = function() {\n", | |
" var fig = this;\n", | |
"\n", | |
" var canvas_div = $('<div/>');\n", | |
" canvas_div.resizable({ resize: mpl.debounce_resize(\n", | |
" function(event, ui) { fig.request_resize(ui.size.width, ui.size.height); }\n", | |
" , 50)});\n", | |
"\n", | |
" canvas_div.attr('style', 'position: relative; clear: both;');\n", | |
" this.root.append(canvas_div);\n", | |
"\n", | |
" var canvas = $('<canvas/>');\n", | |
" canvas.addClass('mpl-canvas');\n", | |
" canvas.attr('style', \"left: 0; top: 0; z-index: 0;\")\n", | |
"\n", | |
" function canvas_keyboard_event(event) {\n", | |
" return fig.key_event(event, event['data']);\n", | |
" }\n", | |
"\n", | |
" this.canvas = canvas[0];\n", | |
" this.context = canvas[0].getContext(\"2d\");\n", | |
"\n", | |
" var rubberband = $('<canvas/>');\n", | |
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", | |
" function mouse_event_fn(event) {\n", | |
" return fig.mouse_event(event, event['data']);\n", | |
" }\n", | |
" rubberband.mousedown('button_press', mouse_event_fn);\n", | |
" rubberband.mouseup('button_release', mouse_event_fn);\n", | |
" // Throttle sequential mouse events to 1 every 20ms.\n", | |
" rubberband.mousemove('motion_notify', mouse_event_fn);\n", | |
"\n", | |
" canvas_div.append(canvas);\n", | |
" canvas_div.append(rubberband);\n", | |
"\n", | |
" canvas_div.keydown('key_press', canvas_keyboard_event);\n", | |
" canvas_div.keydown('key_release', canvas_keyboard_event);\n", | |
"\n", | |
" this.rubberband = rubberband;\n", | |
" this.rubberband_canvas = rubberband[0];\n", | |
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n", | |
" this.rubberband_context.strokeStyle = \"#000000\";\n", | |
"\n", | |
" this._resize_canvas = function(width, height) {\n", | |
" // Keep the size of the canvas, canvas container, and rubber band\n", | |
" // canvas in synch.\n", | |
" canvas_div.css('width', width)\n", | |
" canvas_div.css('height', height)\n", | |
"\n", | |
" canvas.attr('width', width);\n", | |
" canvas.attr('height', height);\n", | |
"\n", | |
" rubberband.attr('width', width);\n", | |
" rubberband.attr('height', height);\n", | |
" }\n", | |
"\n", | |
" // Set the figure to an initial 600x600px, this will subsequently be updated\n", | |
" // upon first draw.\n", | |
" this._resize_canvas(600, 600);\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype._init_toolbar = function() {\n", | |
" var fig = this;\n", | |
"\n", | |
" var nav_element = $('<div/>')\n", | |
" nav_element.attr('style', 'width: 100%');\n", | |
" this.root.append(nav_element);\n", | |
"\n", | |
" // Define a callback function for later on.\n", | |
" function toolbar_event(event) {\n", | |
" return fig.toolbar_button_onclick(event['data']);\n", | |
" }\n", | |
" function toolbar_mouse_event(event) {\n", | |
" return fig.toolbar_button_onmouseover(event['data']);\n", | |
" }\n", | |
"\n", | |
" for(var toolbar_ind in mpl.toolbar_items){\n", | |
" var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
" var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
"\n", | |
" if (!name) {\n", | |
" // put a spacer in here.\n", | |
" continue;\n", | |
" }\n", | |
" var button = $('<button/>');\n", | |
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", | |
" 'ui-button-icon-only');\n", | |
" button.attr('role', 'button');\n", | |
" button.attr('aria-disabled', 'false');\n", | |
" button.click(method_name, toolbar_event);\n", | |
" button.mouseover(tooltip, toolbar_mouse_event);\n", | |
"\n", | |
" var icon_img = $('<span/>');\n", | |
" icon_img.addClass('ui-button-icon-primary ui-icon');\n", | |
" icon_img.addClass(image);\n", | |
" icon_img.addClass('ui-corner-all');\n", | |
"\n", | |
" var tooltip_span = $('<span/>');\n", | |
" tooltip_span.addClass('ui-button-text');\n", | |
" tooltip_span.html(tooltip);\n", | |
"\n", | |
" button.append(icon_img);\n", | |
" button.append(tooltip_span);\n", | |
"\n", | |
" nav_element.append(button);\n", | |
" }\n", | |
"\n", | |
" var fmt_picker_span = $('<span/>');\n", | |
"\n", | |
" var fmt_picker = $('<select/>');\n", | |
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", | |
" fmt_picker_span.append(fmt_picker);\n", | |
" nav_element.append(fmt_picker_span);\n", | |
" this.format_dropdown = fmt_picker[0];\n", | |
"\n", | |
" for (var ind in mpl.extensions) {\n", | |
" var fmt = mpl.extensions[ind];\n", | |
" var option = $(\n", | |
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", | |
" fmt_picker.append(option)\n", | |
" }\n", | |
"\n", | |
" // Add hover states to the ui-buttons\n", | |
" $( \".ui-button\" ).hover(\n", | |
" function() { $(this).addClass(\"ui-state-hover\");},\n", | |
" function() { $(this).removeClass(\"ui-state-hover\");}\n", | |
" );\n", | |
"\n", | |
" var status_bar = $('<span class=\"mpl-message\"/>');\n", | |
" nav_element.append(status_bar);\n", | |
" this.message = status_bar[0];\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", | |
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", | |
" // which will in turn request a refresh of the image.\n", | |
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.send_message = function(type, properties) {\n", | |
" properties['type'] = type;\n", | |
" properties['figure_id'] = this.id;\n", | |
" this.ws.send(JSON.stringify(properties));\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.send_draw_message = function() {\n", | |
" if (!this.waiting) {\n", | |
" this.waiting = true;\n", | |
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n", | |
" var size = msg['size'];\n", | |
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", | |
" fig._resize_canvas(size[0], size[1]);\n", | |
" fig.send_message(\"refresh\", {});\n", | |
" };\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", | |
" var x0 = msg['x0'];\n", | |
" var y0 = fig.canvas.height - msg['y0'];\n", | |
" var x1 = msg['x1'];\n", | |
" var y1 = fig.canvas.height - msg['y1'];\n", | |
" x0 = Math.floor(x0) + 0.5;\n", | |
" y0 = Math.floor(y0) + 0.5;\n", | |
" x1 = Math.floor(x1) + 0.5;\n", | |
" y1 = Math.floor(y1) + 0.5;\n", | |
" var min_x = Math.min(x0, x1);\n", | |
" var min_y = Math.min(y0, y1);\n", | |
" var width = Math.abs(x1 - x0);\n", | |
" var height = Math.abs(y1 - y0);\n", | |
"\n", | |
" fig.rubberband_context.clearRect(\n", | |
" 0, 0, fig.canvas.width, fig.canvas.height);\n", | |
"\n", | |
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", | |
" // Updates the figure title.\n", | |
" fig.header.textContent = msg['label'];\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", | |
" var cursor = msg['cursor'];\n", | |
" switch(cursor)\n", | |
" {\n", | |
" case 0:\n", | |
" cursor = 'pointer';\n", | |
" break;\n", | |
" case 1:\n", | |
" cursor = 'default';\n", | |
" break;\n", | |
" case 2:\n", | |
" cursor = 'crosshair';\n", | |
" break;\n", | |
" case 3:\n", | |
" cursor = 'move';\n", | |
" break;\n", | |
" }\n", | |
" fig.rubberband_canvas.style.cursor = cursor;\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_message = function(fig, msg) {\n", | |
" fig.message.textContent = msg['message'];\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n", | |
" // Request the server to send over a new figure.\n", | |
" fig.send_draw_message();\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", | |
" fig.image_mode = msg['mode'];\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.updated_canvas_event = function() {\n", | |
" // Called whenever the canvas gets updated.\n", | |
" this.send_message(\"ack\", {});\n", | |
"}\n", | |
"\n", | |
"// A function to construct a web socket function for onmessage handling.\n", | |
"// Called in the figure constructor.\n", | |
"mpl.figure.prototype._make_on_message_function = function(fig) {\n", | |
" return function socket_on_message(evt) {\n", | |
" if (evt.data instanceof Blob) {\n", | |
" /* FIXME: We get \"Resource interpreted as Image but\n", | |
" * transferred with MIME type text/plain:\" errors on\n", | |
" * Chrome. But how to set the MIME type? It doesn't seem\n", | |
" * to be part of the websocket stream */\n", | |
" evt.data.type = \"image/png\";\n", | |
"\n", | |
" /* Free the memory for the previous frames */\n", | |
" if (fig.imageObj.src) {\n", | |
" (window.URL || window.webkitURL).revokeObjectURL(\n", | |
" fig.imageObj.src);\n", | |
" }\n", | |
"\n", | |
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", | |
" evt.data);\n", | |
" fig.updated_canvas_event();\n", | |
" fig.waiting = false;\n", | |
" return;\n", | |
" }\n", | |
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", | |
" fig.imageObj.src = evt.data;\n", | |
" fig.updated_canvas_event();\n", | |
" fig.waiting = false;\n", | |
" return;\n", | |
" }\n", | |
"\n", | |
" var msg = JSON.parse(evt.data);\n", | |
" var msg_type = msg['type'];\n", | |
"\n", | |
" // Call the \"handle_{type}\" callback, which takes\n", | |
" // the figure and JSON message as its only arguments.\n", | |
" try {\n", | |
" var callback = fig[\"handle_\" + msg_type];\n", | |
" } catch (e) {\n", | |
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", | |
" return;\n", | |
" }\n", | |
"\n", | |
" if (callback) {\n", | |
" try {\n", | |
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", | |
" callback(fig, msg);\n", | |
" } catch (e) {\n", | |
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", | |
" }\n", | |
" }\n", | |
" };\n", | |
"}\n", | |
"\n", | |
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", | |
"mpl.findpos = function(e) {\n", | |
" //this section is from http://www.quirksmode.org/js/events_properties.html\n", | |
" var targ;\n", | |
" if (!e)\n", | |
" e = window.event;\n", | |
" if (e.target)\n", | |
" targ = e.target;\n", | |
" else if (e.srcElement)\n", | |
" targ = e.srcElement;\n", | |
" if (targ.nodeType == 3) // defeat Safari bug\n", | |
" targ = targ.parentNode;\n", | |
"\n", | |
" // jQuery normalizes the pageX and pageY\n", | |
" // pageX,Y are the mouse positions relative to the document\n", | |
" // offset() returns the position of the element relative to the document\n", | |
" var x = e.pageX - $(targ).offset().left;\n", | |
" var y = e.pageY - $(targ).offset().top;\n", | |
"\n", | |
" return {\"x\": x, \"y\": y};\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.mouse_event = function(event, name) {\n", | |
" var canvas_pos = mpl.findpos(event)\n", | |
"\n", | |
" if (this.focus_on_mouseover && name === 'motion_notify')\n", | |
" {\n", | |
" this.canvas.focus();\n", | |
" }\n", | |
"\n", | |
" var x = canvas_pos.x;\n", | |
" var y = canvas_pos.y;\n", | |
"\n", | |
" this.send_message(name, {x: x, y: y, button: event.button});\n", | |
"\n", | |
" /* This prevents the web browser from automatically changing to\n", | |
" * the text insertion cursor when the button is pressed. We want\n", | |
" * to control all of the cursor setting manually through the\n", | |
" * 'cursor' event from matplotlib */\n", | |
" event.preventDefault();\n", | |
" return false;\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.key_event = function(event, name) {\n", | |
" /* Don't fire events just when a modifier is changed. Modifiers are\n", | |
" sent along with other keys. */\n", | |
" if (event.keyCode >= 16 && event.keyCode <= 20) {\n", | |
" return;\n", | |
" }\n", | |
"\n", | |
" value = '';\n", | |
" if (event.ctrlKey) {\n", | |
" value += \"ctrl+\";\n", | |
" }\n", | |
" if (event.altKey) {\n", | |
" value += \"alt+\";\n", | |
" }\n", | |
" value += String.fromCharCode(event.keyCode).toLowerCase();\n", | |
"\n", | |
" this.send_message(name, {key: value});\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", | |
" if (name == 'download') {\n", | |
" var format_dropdown = this.format_dropdown;\n", | |
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", | |
" this.ondownload(this, format);\n", | |
" } else {\n", | |
" this.send_message(\"toolbar_button\", {name: name});\n", | |
" }\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", | |
" this.message.textContent = tooltip;\n", | |
"};\n", | |
"\n", | |
"mpl.debounce_event = function(func, time){\n", | |
" var timer;\n", | |
" return function(event){\n", | |
" clearTimeout(timer);\n", | |
" timer = setTimeout(function(){ func(event); }, time);\n", | |
" };\n", | |
"}\n", | |
"\n", | |
"mpl.debounce_resize = function(func, time){\n", | |
" var timer;\n", | |
" return function(event, ui){\n", | |
" clearTimeout(timer);\n", | |
" timer = setTimeout(function(){ func(event, ui); }, time);\n", | |
" };\n", | |
"}\n", | |
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"]];\n", | |
"\n", | |
"mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", | |
"\n", | |
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", | |
" // Create a \"websocket\"-like object which calls the given IPython comm\n", | |
" // object with the appropriate methods. Currently this is a non binary\n", | |
" // socket, so there is still some room for performance tuning.\n", | |
" var ws = {};\n", | |
"\n", | |
" ws.close = function() {\n", | |
" comm.close()\n", | |
" };\n", | |
" ws.send = function(m) {\n", | |
" //console.log('sending', m);\n", | |
" comm.send(m);\n", | |
" };\n", | |
" // Register the callback with on_msg.\n", | |
" comm.on_msg(function(msg) {\n", | |
" //console.log('receiving', msg['content']['data'], msg);\n", | |
" // Pass the mpl event to the overriden (by mpl) onmessage function.\n", | |
" ws.onmessage(msg['content']['data'])\n", | |
" });\n", | |
" return ws;\n", | |
"}\n", | |
"\n", | |
"mpl.mpl_figure_comm = function(comm, msg) {\n", | |
" // This is the function which gets called when the mpl process\n", | |
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n", | |
"\n", | |
" var id = msg.content.data.id;\n", | |
" // Get hold of the div created by the display call when the Comm\n", | |
" // socket was opened in Python.\n", | |
" var element = $(\"#\" + id);\n", | |
" var ws_proxy = comm_websocket_adapter(comm)\n", | |
"\n", | |
" var fig = new mpl.figure(id, ws_proxy,\n", | |
" function() { },\n", | |
" element.get(0));\n", | |
"\n", | |
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", | |
" // web socket which is closed, not our websocket->open comm proxy.\n", | |
" ws_proxy.onopen();\n", | |
"\n", | |
" fig.parent_element = element.get(0);\n", | |
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", | |
"\n", | |
" var output_index = fig.cell_info[2]\n", | |
" var cell = fig.cell_info[0];\n", | |
"\n", | |
" // Disable right mouse context menu.\n", | |
" $(fig.rubberband_canvas).bind(\"contextmenu\",function(e){\n", | |
" return false;\n", | |
" });\n", | |
"\n", | |
"};\n", | |
"\n", | |
"mpl.figure.prototype.handle_close = function(fig, msg) {\n", | |
" // Update the output cell to use the data from the current canvas.\n", | |
" fig.push_to_output();\n", | |
" var dataURL = fig.canvas.toDataURL();\n", | |
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n", | |
" // the notebook keyboard shortcuts fail.\n", | |
" IPython.keyboard_manager.enable()\n", | |
" $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", | |
" fig.send_message('closing', {});\n", | |
" fig.ws.close()\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", | |
" // Turn the data on the canvas into data in the output cell.\n", | |
" var dataURL = this.canvas.toDataURL();\n", | |
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype.updated_canvas_event = function() {\n", | |
" // Tell IPython that the notebook contents must change.\n", | |
" IPython.notebook.set_dirty(true);\n", | |
" this.send_message(\"ack\", {});\n", | |
" var fig = this;\n", | |
" // Wait a second, then push the new image to the DOM so\n", | |
" // that it is saved nicely (might be nice to debounce this).\n", | |
" setTimeout(function () { fig.push_to_output() }, 1000);\n", | |
"}\n", | |
"\n", | |
"mpl.figure.prototype._init_toolbar = function() {\n", | |
" var fig = this;\n", | |
"\n", | |
" var nav_element = $('<div/>')\n", | |
" nav_element.attr('style', 'width: 100%');\n", | |
" this.root.append(nav_element);\n", | |
"\n", | |
" // Define a callback function for later on.\n", | |
" function toolbar_event(event) {\n", | |
" return fig.toolbar_button_onclick(event['data']);\n", | |
" }\n", | |
" function toolbar_mouse_event(event) {\n", | |
" return fig.toolbar_button_onmouseover(event['data']);\n", | |
" }\n", | |
"\n", | |
" for(var toolbar_ind in mpl.toolbar_items){\n", | |
" var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
" var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
"\n", | |
" if (!name) { continue; };\n", | |
"\n", | |
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", | |
" button.click(method_name, toolbar_event);\n", | |
" button.mouseover(tooltip, toolbar_mouse_event);\n", | |
" nav_element.append(button);\n", | |
" }\n", | |
"\n", | |
" // Add the status bar.\n", | |
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", | |
" nav_element.append(status_bar);\n", | |
" this.message = status_bar[0];\n", | |
"\n", | |
" // Add the close button to the window.\n", | |
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", | |
" var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", | |
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n", | |
" button.mouseover('Close figure', toolbar_mouse_event);\n", | |
" buttongrp.append(button);\n", | |
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", | |
" titlebar.prepend(buttongrp);\n", | |
"}\n", | |
"\n", | |
"mpl.find_output_cell = function(html_output) {\n", | |
" // Return the cell and output element which can be found *uniquely* in the notebook.\n", | |
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", | |
" // IPython event is triggered only after the cells have been serialised, which for\n", | |
" // our purposes (turning an active figure into a static one), is too late.\n", | |
" var cells = IPython.notebook.get_cells();\n", | |
" var ncells = cells.length;\n", | |
" for (var i=0; i<ncells; i++) {\n", | |
" var cell = cells[i];\n", | |
" if (cell.cell_type == 'code'){\n", | |
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n", | |
" var data = cell.output_area.outputs[j];\n", | |
" if (cell.output_area.outputs[j]['text/html'] == html_output) {\n", | |
" var output = cell.output_area.outputs[j];\n", | |
" return [cell, output, j];\n", | |
" }\n", | |
" }\n", | |
" }\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"// Register the function which deals with the matplotlib target/channel.\n", | |
"// The kernel may be null if the page has been refreshed.\n", | |
"if (IPython.notebook.kernel != null) {\n", | |
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", | |
"}\n" | |
], | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"<IPython.core.display.Javascript at 0x7fc4dbe5e810>" | |
] | |
}, | |
{ | |
"html": [ | |
"<img src=\"\">" | |
], | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"<IPython.core.display.HTML at 0x7fc4dbe5e8d0>" | |
] | |
} | |
], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dsar" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>%idle</th>\n", | |
" <th>%iowait</th>\n", | |
" <th>%nice</th>\n", | |
" <th>%steal</th>\n", | |
" <th>%system</th>\n", | |
" <th>%user</th>\n", | |
" <th>startts</th>\n", | |
" <th>bread/s</th>\n", | |
" <th>bwrtn/s</th>\n", | |
" <th>rtps</th>\n", | |
" <th>tps</th>\n", | |
" <th>wtps</th>\n", | |
" <th>read</th>\n", | |
" <th>write</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0 </th>\n", | |
" <td> 97.61</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 1.45</td>\n", | |
" <td> 108</td>\n", | |
" <td> 0.45</td>\n", | |
" <td> 151.96</td>\n", | |
" <td> 0.04</td>\n", | |
" <td> 2.76</td>\n", | |
" <td> 2.72</td>\n", | |
" <td> 0.000220</td>\n", | |
" <td> 0.074199</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1 </th>\n", | |
" <td> 97.61</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 1.46</td>\n", | |
" <td> 708</td>\n", | |
" <td> 0.28</td>\n", | |
" <td> 164.33</td>\n", | |
" <td> 0.03</td>\n", | |
" <td> 1.94</td>\n", | |
" <td> 1.91</td>\n", | |
" <td> 0.000137</td>\n", | |
" <td> 0.080239</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2 </th>\n", | |
" <td> 97.61</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.94</td>\n", | |
" <td> 1.45</td>\n", | |
" <td> 1008</td>\n", | |
" <td> 0.32</td>\n", | |
" <td> 163.86</td>\n", | |
" <td> 0.04</td>\n", | |
" <td> 1.76</td>\n", | |
" <td> 1.72</td>\n", | |
" <td> 0.000156</td>\n", | |
" <td> 0.080010</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3 </th>\n", | |
" <td> 97.63</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.92</td>\n", | |
" <td> 1.45</td>\n", | |
" <td> 1309</td>\n", | |
" <td> 0.27</td>\n", | |
" <td> 164.00</td>\n", | |
" <td> 0.03</td>\n", | |
" <td> 1.97</td>\n", | |
" <td> 1.94</td>\n", | |
" <td> 0.000132</td>\n", | |
" <td> 0.080078</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4 </th>\n", | |
" <td> 97.62</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 1.45</td>\n", | |
" <td> 1608</td>\n", | |
" <td> 0.85</td>\n", | |
" <td> 171.84</td>\n", | |
" <td> 0.05</td>\n", | |
" <td> 2.55</td>\n", | |
" <td> 2.50</td>\n", | |
" <td> 0.000415</td>\n", | |
" <td> 0.083906</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5 </th>\n", | |
" <td> 97.62</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 1.44</td>\n", | |
" <td> 1908</td>\n", | |
" <td> 1.25</td>\n", | |
" <td> 173.63</td>\n", | |
" <td> 0.06</td>\n", | |
" <td> 2.27</td>\n", | |
" <td> 2.21</td>\n", | |
" <td> 0.000610</td>\n", | |
" <td> 0.084780</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6 </th>\n", | |
" <td> 97.63</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 1.44</td>\n", | |
" <td> 2208</td>\n", | |
" <td> 0.43</td>\n", | |
" <td> 171.80</td>\n", | |
" <td> 0.03</td>\n", | |
" <td> 2.22</td>\n", | |
" <td> 2.19</td>\n", | |
" <td> 0.000210</td>\n", | |
" <td> 0.083887</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7 </th>\n", | |
" <td> 97.63</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 1.44</td>\n", | |
" <td> 2508</td>\n", | |
" <td> 0.59</td>\n", | |
" <td> 171.98</td>\n", | |
" <td> 0.03</td>\n", | |
" <td> 2.52</td>\n", | |
" <td> 2.48</td>\n", | |
" <td> 0.000288</td>\n", | |
" <td> 0.083975</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8 </th>\n", | |
" <td> 97.63</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.94</td>\n", | |
" <td> 1.43</td>\n", | |
" <td> 2808</td>\n", | |
" <td> 0.88</td>\n", | |
" <td> 162.47</td>\n", | |
" <td> 0.05</td>\n", | |
" <td> 2.03</td>\n", | |
" <td> 1.98</td>\n", | |
" <td> 0.000430</td>\n", | |
" <td> 0.079331</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9 </th>\n", | |
" <td> 97.60</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.95</td>\n", | |
" <td> 1.45</td>\n", | |
" <td> 3108</td>\n", | |
" <td> 0.32</td>\n", | |
" <td> 138.08</td>\n", | |
" <td> 0.03</td>\n", | |
" <td> 1.59</td>\n", | |
" <td> 1.56</td>\n", | |
" <td> 0.000156</td>\n", | |
" <td> 0.067422</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td> 97.60</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.94</td>\n", | |
" <td> 1.46</td>\n", | |
" <td> 3408</td>\n", | |
" <td> 0.40</td>\n", | |
" <td> 153.08</td>\n", | |
" <td> 0.04</td>\n", | |
" <td> 1.71</td>\n", | |
" <td> 1.67</td>\n", | |
" <td> 0.000195</td>\n", | |
" <td> 0.074746</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td> 92.53</td>\n", | |
" <td> 0.76</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 3.83</td>\n", | |
" <td> 2.88</td>\n", | |
" <td> 3708</td>\n", | |
" <td> 11738.08</td>\n", | |
" <td> 26481.00</td>\n", | |
" <td> 73.02</td>\n", | |
" <td> 186.49</td>\n", | |
" <td> 113.47</td>\n", | |
" <td> 5.731484</td>\n", | |
" <td> 12.930176</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td> 89.99</td>\n", | |
" <td> 2.94</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 3.97</td>\n", | |
" <td> 3.10</td>\n", | |
" <td> 4309</td>\n", | |
" <td> 46276.16</td>\n", | |
" <td> 110146.77</td>\n", | |
" <td> 122.85</td>\n", | |
" <td> 440.29</td>\n", | |
" <td> 317.44</td>\n", | |
" <td> 22.595781</td>\n", | |
" <td> 53.782603</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td> 95.71</td>\n", | |
" <td> 0.07</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.32</td>\n", | |
" <td> 2.89</td>\n", | |
" <td> 4608</td>\n", | |
" <td> 6007.62</td>\n", | |
" <td> 718.51</td>\n", | |
" <td> 18.84</td>\n", | |
" <td> 41.52</td>\n", | |
" <td> 22.68</td>\n", | |
" <td> 2.933408</td>\n", | |
" <td> 0.350835</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td> 91.40</td>\n", | |
" <td> 2.02</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 3.52</td>\n", | |
" <td> 3.07</td>\n", | |
" <td> 4908</td>\n", | |
" <td> 36597.26</td>\n", | |
" <td> 110394.31</td>\n", | |
" <td> 94.71</td>\n", | |
" <td> 455.83</td>\n", | |
" <td> 361.12</td>\n", | |
" <td> 17.869756</td>\n", | |
" <td> 53.903472</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td> 90.16</td>\n", | |
" <td> 3.40</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 3.59</td>\n", | |
" <td> 2.85</td>\n", | |
" <td> 5208</td>\n", | |
" <td> 37475.28</td>\n", | |
" <td> 147772.19</td>\n", | |
" <td> 98.22</td>\n", | |
" <td> 542.32</td>\n", | |
" <td> 444.10</td>\n", | |
" <td> 18.298477</td>\n", | |
" <td> 72.154390</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td> 91.35</td>\n", | |
" <td> 0.59</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 4.27</td>\n", | |
" <td> 3.80</td>\n", | |
" <td> 5508</td>\n", | |
" <td> 65388.68</td>\n", | |
" <td> 8911.84</td>\n", | |
" <td> 177.82</td>\n", | |
" <td> 234.00</td>\n", | |
" <td> 56.17</td>\n", | |
" <td> 31.928066</td>\n", | |
" <td> 4.351484</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td> 94.71</td>\n", | |
" <td> 0.65</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 2.24</td>\n", | |
" <td> 2.41</td>\n", | |
" <td> 5808</td>\n", | |
" <td> 13294.22</td>\n", | |
" <td> 32336.87</td>\n", | |
" <td> 36.47</td>\n", | |
" <td> 171.67</td>\n", | |
" <td> 135.20</td>\n", | |
" <td> 6.491318</td>\n", | |
" <td> 15.789487</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td> 90.16</td>\n", | |
" <td> 2.79</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 4.12</td>\n", | |
" <td> 2.93</td>\n", | |
" <td> 6108</td>\n", | |
" <td> 40995.49</td>\n", | |
" <td> 131682.44</td>\n", | |
" <td> 102.74</td>\n", | |
" <td> 486.50</td>\n", | |
" <td> 383.77</td>\n", | |
" <td> 20.017329</td>\n", | |
" <td> 64.298066</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td> 90.38</td>\n", | |
" <td> 2.30</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 4.32</td>\n", | |
" <td> 2.99</td>\n", | |
" <td> 6408</td>\n", | |
" <td> 48864.95</td>\n", | |
" <td> 115628.90</td>\n", | |
" <td> 127.57</td>\n", | |
" <td> 476.67</td>\n", | |
" <td> 349.10</td>\n", | |
" <td> 23.859839</td>\n", | |
" <td> 56.459424</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td> 91.22</td>\n", | |
" <td> 0.29</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 4.61</td>\n", | |
" <td> 3.88</td>\n", | |
" <td> 6708</td>\n", | |
" <td> 56123.35</td>\n", | |
" <td> 988.48</td>\n", | |
" <td> 153.05</td>\n", | |
" <td> 184.57</td>\n", | |
" <td> 31.52</td>\n", | |
" <td> 27.403979</td>\n", | |
" <td> 0.482656</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21</th>\n", | |
" <td> 96.07</td>\n", | |
" <td> 0.02</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.91</td>\n", | |
" <td> 3.00</td>\n", | |
" <td> 7008</td>\n", | |
" <td> 492.81</td>\n", | |
" <td> 279.31</td>\n", | |
" <td> 9.63</td>\n", | |
" <td> 13.31</td>\n", | |
" <td> 3.68</td>\n", | |
" <td> 0.240630</td>\n", | |
" <td> 0.136382</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td> 93.85</td>\n", | |
" <td> 0.04</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.83</td>\n", | |
" <td> 5.27</td>\n", | |
" <td> 7308</td>\n", | |
" <td> 504.82</td>\n", | |
" <td> 362.28</td>\n", | |
" <td> 10.69</td>\n", | |
" <td> 15.96</td>\n", | |
" <td> 5.27</td>\n", | |
" <td> 0.246494</td>\n", | |
" <td> 0.176895</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23</th>\n", | |
" <td> 68.66</td>\n", | |
" <td> 21.14</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 5.17</td>\n", | |
" <td> 5.03</td>\n", | |
" <td> 7908</td>\n", | |
" <td> 92332.35</td>\n", | |
" <td> 68371.08</td>\n", | |
" <td> 232.90</td>\n", | |
" <td> 617.53</td>\n", | |
" <td> 384.63</td>\n", | |
" <td> 45.084155</td>\n", | |
" <td> 33.384316</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td> 66.74</td>\n", | |
" <td> 24.93</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 4.56</td>\n", | |
" <td> 3.77</td>\n", | |
" <td> 8208</td>\n", | |
" <td> 147597.26</td>\n", | |
" <td> 145404.20</td>\n", | |
" <td> 331.61</td>\n", | |
" <td> 881.90</td>\n", | |
" <td> 550.30</td>\n", | |
" <td> 72.068975</td>\n", | |
" <td> 70.998145</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25</th>\n", | |
" <td> 88.70</td>\n", | |
" <td> 6.34</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 3.16</td>\n", | |
" <td> 1.79</td>\n", | |
" <td> 8508</td>\n", | |
" <td> 130107.96</td>\n", | |
" <td> 142334.71</td>\n", | |
" <td> 332.75</td>\n", | |
" <td> 673.91</td>\n", | |
" <td> 341.16</td>\n", | |
" <td> 63.529277</td>\n", | |
" <td> 69.499370</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>26</th>\n", | |
" <td> 64.20</td>\n", | |
" <td> 23.86</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 6.38</td>\n", | |
" <td> 5.56</td>\n", | |
" <td> 8809</td>\n", | |
" <td> 137830.15</td>\n", | |
" <td> 127559.41</td>\n", | |
" <td> 368.16</td>\n", | |
" <td> 949.76</td>\n", | |
" <td> 581.60</td>\n", | |
" <td> 67.299878</td>\n", | |
" <td> 62.284868</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>27</th>\n", | |
" <td> 57.18</td>\n", | |
" <td> 35.03</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 4.16</td>\n", | |
" <td> 3.64</td>\n", | |
" <td> 9109</td>\n", | |
" <td> 149699.52</td>\n", | |
" <td> 146952.43</td>\n", | |
" <td> 332.41</td>\n", | |
" <td> 903.64</td>\n", | |
" <td> 571.22</td>\n", | |
" <td> 73.095469</td>\n", | |
" <td> 71.754116</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>28</th>\n", | |
" <td> 77.46</td>\n", | |
" <td> 8.01</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 8.78</td>\n", | |
" <td> 5.75</td>\n", | |
" <td> 9408</td>\n", | |
" <td> 96351.58</td>\n", | |
" <td> 81561.66</td>\n", | |
" <td> 269.42</td>\n", | |
" <td> 1433.92</td>\n", | |
" <td> 1164.51</td>\n", | |
" <td> 47.046670</td>\n", | |
" <td> 39.825029</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>29</th>\n", | |
" <td> 52.02</td>\n", | |
" <td> 35.51</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 9.21</td>\n", | |
" <td> 3.26</td>\n", | |
" <td> 9712</td>\n", | |
" <td> 156103.85</td>\n", | |
" <td> 131278.46</td>\n", | |
" <td> 348.25</td>\n", | |
" <td> 1108.06</td>\n", | |
" <td> 759.81</td>\n", | |
" <td> 76.222583</td>\n", | |
" <td> 64.100811</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>30</th>\n", | |
" <td> 63.29</td>\n", | |
" <td> 24.03</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 8.63</td>\n", | |
" <td> 4.05</td>\n", | |
" <td> 10008</td>\n", | |
" <td> 127101.64</td>\n", | |
" <td> 135936.61</td>\n", | |
" <td> 296.78</td>\n", | |
" <td> 2373.04</td>\n", | |
" <td> 2076.25</td>\n", | |
" <td> 62.061348</td>\n", | |
" <td> 66.375298</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31</th>\n", | |
" <td> 83.49</td>\n", | |
" <td> 1.33</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 2.10</td>\n", | |
" <td> 13.07</td>\n", | |
" <td> 10308</td>\n", | |
" <td> 20019.63</td>\n", | |
" <td> 29175.39</td>\n", | |
" <td> 129.03</td>\n", | |
" <td> 423.77</td>\n", | |
" <td> 294.74</td>\n", | |
" <td> 9.775210</td>\n", | |
" <td> 14.245796</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>32</th>\n", | |
" <td> 73.73</td>\n", | |
" <td> 0.59</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.11</td>\n", | |
" <td> 24.57</td>\n", | |
" <td> 10608</td>\n", | |
" <td> 16625.15</td>\n", | |
" <td> 54250.68</td>\n", | |
" <td> 53.43</td>\n", | |
" <td> 623.05</td>\n", | |
" <td> 569.63</td>\n", | |
" <td> 8.117749</td>\n", | |
" <td> 26.489590</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>33</th>\n", | |
" <td> 91.18</td>\n", | |
" <td> 0.05</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.95</td>\n", | |
" <td> 7.83</td>\n", | |
" <td> 10908</td>\n", | |
" <td> 222.46</td>\n", | |
" <td> 5702.34</td>\n", | |
" <td> 2.69</td>\n", | |
" <td> 62.23</td>\n", | |
" <td> 59.54</td>\n", | |
" <td> 0.108623</td>\n", | |
" <td> 2.784346</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34</th>\n", | |
" <td> 90.82</td>\n", | |
" <td> 0.04</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.92</td>\n", | |
" <td> 8.22</td>\n", | |
" <td> 11508</td>\n", | |
" <td> 233.13</td>\n", | |
" <td> 3128.16</td>\n", | |
" <td> 7.16</td>\n", | |
" <td> 45.62</td>\n", | |
" <td> 38.45</td>\n", | |
" <td> 0.113833</td>\n", | |
" <td> 1.527422</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>35</th>\n", | |
" <td> 94.67</td>\n", | |
" <td> 0.01</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.92</td>\n", | |
" <td> 4.40</td>\n", | |
" <td> 11808</td>\n", | |
" <td> 76.15</td>\n", | |
" <td> 1076.28</td>\n", | |
" <td> 0.50</td>\n", | |
" <td> 15.78</td>\n", | |
" <td> 15.28</td>\n", | |
" <td> 0.037183</td>\n", | |
" <td> 0.525527</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>36</th>\n", | |
" <td> 92.12</td>\n", | |
" <td> 0.91</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.26</td>\n", | |
" <td> 5.71</td>\n", | |
" <td> 12108</td>\n", | |
" <td> 246597.13</td>\n", | |
" <td> 756.70</td>\n", | |
" <td> 626.95</td>\n", | |
" <td> 636.56</td>\n", | |
" <td> 9.61</td>\n", | |
" <td> 120.408755</td>\n", | |
" <td> 0.369482</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>37</th>\n", | |
" <td> 91.93</td>\n", | |
" <td> 1.17</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.34</td>\n", | |
" <td> 5.57</td>\n", | |
" <td> 12408</td>\n", | |
" <td> 279104.11</td>\n", | |
" <td> 423.80</td>\n", | |
" <td> 696.47</td>\n", | |
" <td> 704.48</td>\n", | |
" <td> 8.01</td>\n", | |
" <td> 136.281304</td>\n", | |
" <td> 0.206934</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>38</th>\n", | |
" <td> 91.53</td>\n", | |
" <td> 1.46</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.61</td>\n", | |
" <td> 5.39</td>\n", | |
" <td> 12709</td>\n", | |
" <td> 273649.34</td>\n", | |
" <td> 585.47</td>\n", | |
" <td> 679.69</td>\n", | |
" <td> 694.79</td>\n", | |
" <td> 15.10</td>\n", | |
" <td> 133.617842</td>\n", | |
" <td> 0.285874</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>39</th>\n", | |
" <td> 91.63</td>\n", | |
" <td> 1.54</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.45</td>\n", | |
" <td> 5.38</td>\n", | |
" <td> 13008</td>\n", | |
" <td> 262699.21</td>\n", | |
" <td> 310.16</td>\n", | |
" <td> 658.65</td>\n", | |
" <td> 663.17</td>\n", | |
" <td> 4.53</td>\n", | |
" <td> 128.271099</td>\n", | |
" <td> 0.151445</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>40</th>\n", | |
" <td> 91.69</td>\n", | |
" <td> 1.75</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.35</td>\n", | |
" <td> 5.21</td>\n", | |
" <td> 13308</td>\n", | |
" <td> 258480.25</td>\n", | |
" <td> 1198.59</td>\n", | |
" <td> 635.53</td>\n", | |
" <td> 655.31</td>\n", | |
" <td> 19.78</td>\n", | |
" <td> 126.211060</td>\n", | |
" <td> 0.585249</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41</th>\n", | |
" <td> 91.67</td>\n", | |
" <td> 2.03</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.37</td>\n", | |
" <td> 4.93</td>\n", | |
" <td> 13609</td>\n", | |
" <td> 259427.48</td>\n", | |
" <td> 511.82</td>\n", | |
" <td> 642.83</td>\n", | |
" <td> 655.16</td>\n", | |
" <td> 12.32</td>\n", | |
" <td> 126.673574</td>\n", | |
" <td> 0.249912</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>42</th>\n", | |
" <td> 91.63</td>\n", | |
" <td> 2.03</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.59</td>\n", | |
" <td> 4.75</td>\n", | |
" <td> 13908</td>\n", | |
" <td> 259713.76</td>\n", | |
" <td> 1271.45</td>\n", | |
" <td> 639.72</td>\n", | |
" <td> 661.43</td>\n", | |
" <td> 21.71</td>\n", | |
" <td> 126.813359</td>\n", | |
" <td> 0.620825</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>43</th>\n", | |
" <td> 93.93</td>\n", | |
" <td> 0.61</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.36</td>\n", | |
" <td> 4.10</td>\n", | |
" <td> 14208</td>\n", | |
" <td> 48764.62</td>\n", | |
" <td> 589.02</td>\n", | |
" <td> 137.50</td>\n", | |
" <td> 146.76</td>\n", | |
" <td> 9.26</td>\n", | |
" <td> 23.810850</td>\n", | |
" <td> 0.287607</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>44</th>\n", | |
" <td> 94.63</td>\n", | |
" <td> 0.19</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.04</td>\n", | |
" <td> 4.14</td>\n", | |
" <td> 14508</td>\n", | |
" <td> 13878.14</td>\n", | |
" <td> 1181.64</td>\n", | |
" <td> 39.71</td>\n", | |
" <td> 55.44</td>\n", | |
" <td> 15.73</td>\n", | |
" <td> 6.776436</td>\n", | |
" <td> 0.576973</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>45</th>\n", | |
" <td> 94.66</td>\n", | |
" <td> 0.06</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.95</td>\n", | |
" <td> 4.32</td>\n", | |
" <td> 15108</td>\n", | |
" <td> 6531.28</td>\n", | |
" <td> 1525.06</td>\n", | |
" <td> 16.23</td>\n", | |
" <td> 36.67</td>\n", | |
" <td> 20.44</td>\n", | |
" <td> 3.189102</td>\n", | |
" <td> 0.744658</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>46</th>\n", | |
" <td> 94.52</td>\n", | |
" <td> 0.19</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.09</td>\n", | |
" <td> 4.20</td>\n", | |
" <td> 15408</td>\n", | |
" <td> 19409.83</td>\n", | |
" <td> 1287.18</td>\n", | |
" <td> 45.08</td>\n", | |
" <td> 62.57</td>\n", | |
" <td> 17.49</td>\n", | |
" <td> 9.477456</td>\n", | |
" <td> 0.628506</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>47</th>\n", | |
" <td> 94.68</td>\n", | |
" <td> 0.07</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.96</td>\n", | |
" <td> 4.29</td>\n", | |
" <td> 15708</td>\n", | |
" <td> 7488.10</td>\n", | |
" <td> 2104.38</td>\n", | |
" <td> 15.90</td>\n", | |
" <td> 38.67</td>\n", | |
" <td> 22.77</td>\n", | |
" <td> 3.656299</td>\n", | |
" <td> 1.027529</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>48</th>\n", | |
" <td> 94.61</td>\n", | |
" <td> 0.16</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.03</td>\n", | |
" <td> 4.20</td>\n", | |
" <td> 16008</td>\n", | |
" <td> 11680.98</td>\n", | |
" <td> 1187.50</td>\n", | |
" <td> 33.07</td>\n", | |
" <td> 49.88</td>\n", | |
" <td> 16.81</td>\n", | |
" <td> 5.703604</td>\n", | |
" <td> 0.579834</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>49</th>\n", | |
" <td> 94.62</td>\n", | |
" <td> 0.14</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.03</td>\n", | |
" <td> 4.21</td>\n", | |
" <td> 16308</td>\n", | |
" <td> 18109.12</td>\n", | |
" <td> 1717.74</td>\n", | |
" <td> 37.84</td>\n", | |
" <td> 58.31</td>\n", | |
" <td> 20.46</td>\n", | |
" <td> 8.842344</td>\n", | |
" <td> 0.838740</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50</th>\n", | |
" <td> 94.68</td>\n", | |
" <td> 0.02</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.86</td>\n", | |
" <td> 4.43</td>\n", | |
" <td> 16608</td>\n", | |
" <td> 871.41</td>\n", | |
" <td> 651.24</td>\n", | |
" <td> 3.88</td>\n", | |
" <td> 12.34</td>\n", | |
" <td> 8.46</td>\n", | |
" <td> 0.425493</td>\n", | |
" <td> 0.317988</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>51</th>\n", | |
" <td> 94.76</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.81</td>\n", | |
" <td> 4.43</td>\n", | |
" <td> 16908</td>\n", | |
" <td> 0.48</td>\n", | |
" <td> 222.77</td>\n", | |
" <td> 0.05</td>\n", | |
" <td> 3.67</td>\n", | |
" <td> 3.62</td>\n", | |
" <td> 0.000234</td>\n", | |
" <td> 0.108774</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>52</th>\n", | |
" <td> 92.44</td>\n", | |
" <td> 0.57</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.28</td>\n", | |
" <td> 5.71</td>\n", | |
" <td> 17208</td>\n", | |
" <td> 37566.09</td>\n", | |
" <td> 795.06</td>\n", | |
" <td> 140.09</td>\n", | |
" <td> 152.71</td>\n", | |
" <td> 12.63</td>\n", | |
" <td> 18.342817</td>\n", | |
" <td> 0.388213</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>53</th>\n", | |
" <td> 94.65</td>\n", | |
" <td> 0.02</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.91</td>\n", | |
" <td> 4.42</td>\n", | |
" <td> 17508</td>\n", | |
" <td> 761.49</td>\n", | |
" <td> 720.77</td>\n", | |
" <td> 8.81</td>\n", | |
" <td> 18.20</td>\n", | |
" <td> 9.40</td>\n", | |
" <td> 0.371821</td>\n", | |
" <td> 0.351938</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>54</th>\n", | |
" <td> 91.12</td>\n", | |
" <td> 0.14</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.93</td>\n", | |
" <td> 7.81</td>\n", | |
" <td> 17808</td>\n", | |
" <td> 1669.84</td>\n", | |
" <td> 1061.17</td>\n", | |
" <td> 11.93</td>\n", | |
" <td> 24.83</td>\n", | |
" <td> 12.89</td>\n", | |
" <td> 0.815352</td>\n", | |
" <td> 0.518149</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>55</th>\n", | |
" <td> 94.47</td>\n", | |
" <td> 0.26</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 1.18</td>\n", | |
" <td> 4.10</td>\n", | |
" <td> 18108</td>\n", | |
" <td> 35267.46</td>\n", | |
" <td> 700.49</td>\n", | |
" <td> 89.09</td>\n", | |
" <td> 100.76</td>\n", | |
" <td> 11.67</td>\n", | |
" <td> 17.220439</td>\n", | |
" <td> 0.342036</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>56</th>\n", | |
" <td> 92.72</td>\n", | |
" <td> 0.18</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.96</td>\n", | |
" <td> 6.14</td>\n", | |
" <td> 18708</td>\n", | |
" <td> 10930.26</td>\n", | |
" <td> 850.76</td>\n", | |
" <td> 27.21</td>\n", | |
" <td> 38.95</td>\n", | |
" <td> 11.74</td>\n", | |
" <td> 5.337041</td>\n", | |
" <td> 0.415410</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>57</th>\n", | |
" <td> 94.63</td>\n", | |
" <td> 0.13</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.97</td>\n", | |
" <td> 4.26</td>\n", | |
" <td> 19008</td>\n", | |
" <td> 16508.65</td>\n", | |
" <td> 1017.81</td>\n", | |
" <td> 47.57</td>\n", | |
" <td> 60.74</td>\n", | |
" <td> 13.17</td>\n", | |
" <td> 8.060864</td>\n", | |
" <td> 0.496978</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>58</th>\n", | |
" <td> 94.68</td>\n", | |
" <td> 0.02</td>\n", | |
" <td> 0.04</td>\n", | |
" <td> 0</td>\n", | |
" <td> 0.88</td>\n", | |
" <td> 4.39</td>\n", | |
" <td> 19308</td>\n", | |
" <td> 220.33</td>\n", | |
" <td> 734.83</td>\n", | |
" <td> 2.44</td>\n", | |
" <td> 11.69</td>\n", | |
" <td> 9.25</td>\n", | |
" <td> 0.107583</td>\n", | |
" <td> 0.358804</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>59</th>\n", | |
" <td> 90.85</td>\n", | |
" <td> 0.45</td>\n", | |
" <td> 0.00</td>\n", | |
" <td> 0</td>\n", | |
" <td> 3.52</td>\n", | |
" <td> 5.17</td>\n", | |
" <td> 19608</td>\n", | |
" <td> 56365.64</td>\n", | |
" <td> 3041.25</td>\n", | |
" <td> 133.80</td>\n", | |
" <td> 369.09</td>\n", | |
" <td> 235.28</td>\n", | |
" <td> 27.522285</td>\n", | |
" <td> 1.484985</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>135 rows \u00d7 14 columns</p>\n", | |
"</div>" | |
], | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 15, | |
"text": [ | |
" %idle %iowait %nice %steal %system %user startts bread/s \\\n", | |
"0 97.61 0.00 0.00 0 0.93 1.45 108 0.45 \n", | |
"1 97.61 0.00 0.00 0 0.93 1.46 708 0.28 \n", | |
"2 97.61 0.00 0.00 0 0.94 1.45 1008 0.32 \n", | |
"3 97.63 0.00 0.00 0 0.92 1.45 1309 0.27 \n", | |
"4 97.62 0.00 0.00 0 0.93 1.45 1608 0.85 \n", | |
"5 97.62 0.00 0.00 0 0.93 1.44 1908 1.25 \n", | |
"6 97.63 0.00 0.00 0 0.93 1.44 2208 0.43 \n", | |
"7 97.63 0.00 0.00 0 0.93 1.44 2508 0.59 \n", | |
"8 97.63 0.00 0.00 0 0.94 1.43 2808 0.88 \n", | |
"9 97.60 0.00 0.00 0 0.95 1.45 3108 0.32 \n", | |
"10 97.60 0.00 0.00 0 0.94 1.46 3408 0.40 \n", | |
"11 92.53 0.76 0.00 0 3.83 2.88 3708 11738.08 \n", | |
"12 89.99 2.94 0.00 0 3.97 3.10 4309 46276.16 \n", | |
"13 95.71 0.07 0.00 0 1.32 2.89 4608 6007.62 \n", | |
"14 91.40 2.02 0.00 0 3.52 3.07 4908 36597.26 \n", | |
"15 90.16 3.40 0.00 0 3.59 2.85 5208 37475.28 \n", | |
"16 91.35 0.59 0.00 0 4.27 3.80 5508 65388.68 \n", | |
"17 94.71 0.65 0.00 0 2.24 2.41 5808 13294.22 \n", | |
"18 90.16 2.79 0.00 0 4.12 2.93 6108 40995.49 \n", | |
"19 90.38 2.30 0.00 0 4.32 2.99 6408 48864.95 \n", | |
"20 91.22 0.29 0.00 0 4.61 3.88 6708 56123.35 \n", | |
"21 96.07 0.02 0.00 0 0.91 3.00 7008 492.81 \n", | |
"22 93.85 0.04 0.00 0 0.83 5.27 7308 504.82 \n", | |
"23 68.66 21.14 0.00 0 5.17 5.03 7908 92332.35 \n", | |
"24 66.74 24.93 0.00 0 4.56 3.77 8208 147597.26 \n", | |
"25 88.70 6.34 0.00 0 3.16 1.79 8508 130107.96 \n", | |
"26 64.20 23.86 0.00 0 6.38 5.56 8809 137830.15 \n", | |
"27 57.18 35.03 0.00 0 4.16 3.64 9109 149699.52 \n", | |
"28 77.46 8.01 0.00 0 8.78 5.75 9408 96351.58 \n", | |
"29 52.02 35.51 0.00 0 9.21 3.26 9712 156103.85 \n", | |
"30 63.29 24.03 0.00 0 8.63 4.05 10008 127101.64 \n", | |
"31 83.49 1.33 0.00 0 2.10 13.07 10308 20019.63 \n", | |
"32 73.73 0.59 0.00 0 1.11 24.57 10608 16625.15 \n", | |
"33 91.18 0.05 0.00 0 0.95 7.83 10908 222.46 \n", | |
"34 90.82 0.04 0.00 0 0.92 8.22 11508 233.13 \n", | |
"35 94.67 0.01 0.00 0 0.92 4.40 11808 76.15 \n", | |
"36 92.12 0.91 0.00 0 1.26 5.71 12108 246597.13 \n", | |
"37 91.93 1.17 0.00 0 1.34 5.57 12408 279104.11 \n", | |
"38 91.53 1.46 0.00 0 1.61 5.39 12709 273649.34 \n", | |
"39 91.63 1.54 0.00 0 1.45 5.38 13008 262699.21 \n", | |
"40 91.69 1.75 0.00 0 1.35 5.21 13308 258480.25 \n", | |
"41 91.67 2.03 0.00 0 1.37 4.93 13609 259427.48 \n", | |
"42 91.63 2.03 0.00 0 1.59 4.75 13908 259713.76 \n", | |
"43 93.93 0.61 0.00 0 1.36 4.10 14208 48764.62 \n", | |
"44 94.63 0.19 0.00 0 1.04 4.14 14508 13878.14 \n", | |
"45 94.66 0.06 0.00 0 0.95 4.32 15108 6531.28 \n", | |
"46 94.52 0.19 0.00 0 1.09 4.20 15408 19409.83 \n", | |
"47 94.68 0.07 0.00 0 0.96 4.29 15708 7488.10 \n", | |
"48 94.61 0.16 0.00 0 1.03 4.20 16008 11680.98 \n", | |
"49 94.62 0.14 0.00 0 1.03 4.21 16308 18109.12 \n", | |
"50 94.68 0.02 0.00 0 0.86 4.43 16608 871.41 \n", | |
"51 94.76 0.00 0.00 0 0.81 4.43 16908 0.48 \n", | |
"52 92.44 0.57 0.00 0 1.28 5.71 17208 37566.09 \n", | |
"53 94.65 0.02 0.00 0 0.91 4.42 17508 761.49 \n", | |
"54 91.12 0.14 0.00 0 0.93 7.81 17808 1669.84 \n", | |
"55 94.47 0.26 0.00 0 1.18 4.10 18108 35267.46 \n", | |
"56 92.72 0.18 0.00 0 0.96 6.14 18708 10930.26 \n", | |
"57 94.63 0.13 0.00 0 0.97 4.26 19008 16508.65 \n", | |
"58 94.68 0.02 0.04 0 0.88 4.39 19308 220.33 \n", | |
"59 90.85 0.45 0.00 0 3.52 5.17 19608 56365.64 \n", | |
" ... ... ... ... ... ... ... ... \n", | |
"\n", | |
" bwrtn/s rtps tps wtps read write \n", | |
"0 151.96 0.04 2.76 2.72 0.000220 0.074199 \n", | |
"1 164.33 0.03 1.94 1.91 0.000137 0.080239 \n", | |
"2 163.86 0.04 1.76 1.72 0.000156 0.080010 \n", | |
"3 164.00 0.03 1.97 1.94 0.000132 0.080078 \n", | |
"4 171.84 0.05 2.55 2.50 0.000415 0.083906 \n", | |
"5 173.63 0.06 2.27 2.21 0.000610 0.084780 \n", | |
"6 171.80 0.03 2.22 2.19 0.000210 0.083887 \n", | |
"7 171.98 0.03 2.52 2.48 0.000288 0.083975 \n", | |
"8 162.47 0.05 2.03 1.98 0.000430 0.079331 \n", | |
"9 138.08 0.03 1.59 1.56 0.000156 0.067422 \n", | |
"10 153.08 0.04 1.71 1.67 0.000195 0.074746 \n", | |
"11 26481.00 73.02 186.49 113.47 5.731484 12.930176 \n", | |
"12 110146.77 122.85 440.29 317.44 22.595781 53.782603 \n", | |
"13 718.51 18.84 41.52 22.68 2.933408 0.350835 \n", | |
"14 110394.31 94.71 455.83 361.12 17.869756 53.903472 \n", | |
"15 147772.19 98.22 542.32 444.10 18.298477 72.154390 \n", | |
"16 8911.84 177.82 234.00 56.17 31.928066 4.351484 \n", | |
"17 32336.87 36.47 171.67 135.20 6.491318 15.789487 \n", | |
"18 131682.44 102.74 486.50 383.77 20.017329 64.298066 \n", | |
"19 115628.90 127.57 476.67 349.10 23.859839 56.459424 \n", | |
"20 988.48 153.05 184.57 31.52 27.403979 0.482656 \n", | |
"21 279.31 9.63 13.31 3.68 0.240630 0.136382 \n", | |
"22 362.28 10.69 15.96 5.27 0.246494 0.176895 \n", | |
"23 68371.08 232.90 617.53 384.63 45.084155 33.384316 \n", | |
"24 145404.20 331.61 881.90 550.30 72.068975 70.998145 \n", | |
"25 142334.71 332.75 673.91 341.16 63.529277 69.499370 \n", | |
"26 127559.41 368.16 949.76 581.60 67.299878 62.284868 \n", | |
"27 146952.43 332.41 903.64 571.22 73.095469 71.754116 \n", | |
"28 81561.66 269.42 1433.92 1164.51 47.046670 39.825029 \n", | |
"29 131278.46 348.25 1108.06 759.81 76.222583 64.100811 \n", | |
"30 135936.61 296.78 2373.04 2076.25 62.061348 66.375298 \n", | |
"31 29175.39 129.03 423.77 294.74 9.775210 14.245796 \n", | |
"32 54250.68 53.43 623.05 569.63 8.117749 26.489590 \n", | |
"33 5702.34 2.69 62.23 59.54 0.108623 2.784346 \n", | |
"34 3128.16 7.16 45.62 38.45 0.113833 1.527422 \n", | |
"35 1076.28 0.50 15.78 15.28 0.037183 0.525527 \n", | |
"36 756.70 626.95 636.56 9.61 120.408755 0.369482 \n", | |
"37 423.80 696.47 704.48 8.01 136.281304 0.206934 \n", | |
"38 585.47 679.69 694.79 15.10 133.617842 0.285874 \n", | |
"39 310.16 658.65 663.17 4.53 128.271099 0.151445 \n", | |
"40 1198.59 635.53 655.31 19.78 126.211060 0.585249 \n", | |
"41 511.82 642.83 655.16 12.32 126.673574 0.249912 \n", | |
"42 1271.45 639.72 661.43 21.71 126.813359 0.620825 \n", | |
"43 589.02 137.50 146.76 9.26 23.810850 0.287607 \n", | |
"44 1181.64 39.71 55.44 15.73 6.776436 0.576973 \n", | |
"45 1525.06 16.23 36.67 20.44 3.189102 0.744658 \n", | |
"46 1287.18 45.08 62.57 17.49 9.477456 0.628506 \n", | |
"47 2104.38 15.90 38.67 22.77 3.656299 1.027529 \n", | |
"48 1187.50 33.07 49.88 16.81 5.703604 0.579834 \n", | |
"49 1717.74 37.84 58.31 20.46 8.842344 0.838740 \n", | |
"50 651.24 3.88 12.34 8.46 0.425493 0.317988 \n", | |
"51 222.77 0.05 3.67 3.62 0.000234 0.108774 \n", | |
"52 795.06 140.09 152.71 12.63 18.342817 0.388213 \n", | |
"53 720.77 8.81 18.20 9.40 0.371821 0.351938 \n", | |
"54 1061.17 11.93 24.83 12.89 0.815352 0.518149 \n", | |
"55 700.49 89.09 100.76 11.67 17.220439 0.342036 \n", | |
"56 850.76 27.21 38.95 11.74 5.337041 0.415410 \n", | |
"57 1017.81 47.57 60.74 13.17 8.060864 0.496978 \n", | |
"58 734.83 2.44 11.69 9.25 0.107583 0.358804 \n", | |
"59 3041.25 133.80 369.09 235.28 27.522285 1.484985 \n", | |
" ... ... ... ... ... ... \n", | |
"\n", | |
"[135 rows x 14 columns]" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment