Created
March 7, 2018 15:04
-
-
Save kanedo/00f96bd3f9ac52746d7d7014f561e8ce to your computer and use it in GitHub Desktop.
use mxnet.nd.gather_nd to create matrix for fertility bias (Cohn et al, 2016)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 470, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import mxnet as mx\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 471, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"k=1\n", | |
"n=4" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 472, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def create_indices(k, n):\n", | |
" index_center = mx.nd.zeros((2*k+1, n))\n", | |
" zeros = mx.nd.zeros((n, 2*k+1))\n", | |
" for i in range(0,2*k+1):\n", | |
" value = np.arange(i, i+n)\n", | |
" index_center[i][:] = value[:]\n", | |
" index_center= index_center.transpose()\n", | |
" return mx.nd.stack(zeros, index_center, zeros)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 473, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(2, 4, 1)" | |
] | |
}, | |
"execution_count": 473, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"attention = mx.ndarray.array([[[1], [2], [3], [4]],[[5], [6], [7], [8]]])\n", | |
"attention.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 474, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"\n", | |
"[[[0.]\n", | |
" [1.]\n", | |
" [2.]\n", | |
" [3.]\n", | |
" [4.]\n", | |
" [0.]]\n", | |
"\n", | |
" [[0.]\n", | |
" [5.]\n", | |
" [6.]\n", | |
" [7.]\n", | |
" [8.]\n", | |
" [0.]]]\n", | |
"<NDArray 2x6x1 @cpu(0)>" | |
] | |
}, | |
"execution_count": 474, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# mxnet's padding only works for 4- and 5-dimensional data\n", | |
"attention_padded = np.pad(attention.asnumpy(), [(0,0), (k,k), (0,0)], \"constant\")\n", | |
"attention_padded = mx.nd.array(attention_padded)\n", | |
"attention_padded " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 475, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"\n", | |
"[[0. 1. 2.]\n", | |
" [1. 2. 3.]\n", | |
" [2. 3. 4.]\n", | |
" [3. 4. 0.]]\n", | |
"<NDArray 4x3 @cpu(0)>" | |
] | |
}, | |
"execution_count": 475, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"mx.ndarray.gather_nd(attention_padded, create_indices(k,n))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment