Skip to content

Instantly share code, notes, and snippets.

@kif
Last active April 22, 2021 13:11
Show Gist options
  • Save kif/e29e8015cb53caa643621373c3e9cb9f to your computer and use it in GitHub Desktop.
Save kif/e29e8015cb53caa643621373c3e9cb9f to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "unlikely-arkansas",
"metadata": {},
"source": [
"# Calibration of the Goniometer of ESRF ID22\n",
"\n",
"Features the refinement of the incident wavelength.\n",
"13 images taken at 10° step from 0 to 120° in angle"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "extreme-account",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib nbagg"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "referenced-steel",
"metadata": {},
"outputs": [],
"source": [
"import numpy\n",
"from matplotlib.pyplot import subplots\n",
"from matplotlib.lines import Line2D\n",
"import pyFAI.goniometer\n",
"import hdf5plugin\n",
"import h5py\n",
"import time\n",
"import fabio\n",
"from pyFAI.gui import jupyter\n",
"from pyFAI.goniometer import GeometryTransformation, GoniometerRefinement, Goniometer, ExtendedTransformation\n",
"from pyFAI.calibrant import get_calibrant\n",
"from pyFAI.ext.bilinear import Bilinear\n",
"from scipy import ndimage\n",
"from scipy.interpolate import interp1d\n",
"from scipy.optimize import bisect\n",
"import scipy.signal\n",
"from numpy import pi\n",
"start_time = time.perf_counter()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bridal-subscriber",
"metadata": {},
"outputs": [],
"source": [
"with h5py.File(\"id222103_LaB6_DS_15500eV.h5\", \"r\") as h:\n",
" images = h['/LaB6_DS_15500eV_0001_3.1/measurement/eiger'][()]\n",
" tth = h['/LaB6_DS_15500eV_0001_3.1/measurement/tth_enc'][()]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "inside-amber",
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"/* global mpl */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function () {\n",
" if (typeof WebSocket !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof MozWebSocket !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert(\n",
" 'Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.'\n",
" );\n",
" }\n",
"};\n",
"\n",
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = this.ws.binaryType !== undefined;\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById('mpl-warnings');\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent =\n",
" 'This browser does not support binary websocket messages. ' +\n",
" 'Performance may be slow.';\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = document.createElement('div');\n",
" this.root.setAttribute('style', 'display: inline-block');\n",
" this._root_extra_style(this.root);\n",
"\n",
" parent_element.appendChild(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
" fig.send_message('send_image_mode', {});\n",
" if (fig.ratio !== 1) {\n",
" fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
" }\n",
" fig.send_message('refresh', {});\n",
" };\n",
"\n",
" this.imageObj.onload = function () {\n",
" if (fig.image_mode === 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function () {\n",
" fig.ws.close();\n",
" };\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"};\n",
"\n",
"mpl.figure.prototype._init_header = function () {\n",
" var titlebar = document.createElement('div');\n",
" titlebar.classList =\n",
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
" var titletext = document.createElement('div');\n",
" titletext.classList = 'ui-dialog-title';\n",
" titletext.setAttribute(\n",
" 'style',\n",
" 'width: 100%; text-align: center; padding: 3px;'\n",
" );\n",
" titlebar.appendChild(titletext);\n",
" this.root.appendChild(titlebar);\n",
" this.header = titletext;\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._init_canvas = function () {\n",
" var fig = this;\n",
"\n",
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
" canvas_div.setAttribute(\n",
" 'style',\n",
" 'border: 1px solid #ddd;' +\n",
" 'box-sizing: content-box;' +\n",
" 'clear: both;' +\n",
" 'min-height: 1px;' +\n",
" 'min-width: 1px;' +\n",
" 'outline: 0;' +\n",
" 'overflow: hidden;' +\n",
" 'position: relative;' +\n",
" 'resize: both;'\n",
" );\n",
"\n",
" function on_keyboard_event_closure(name) {\n",
" return function (event) {\n",
" return fig.key_event(event, name);\n",
" };\n",
" }\n",
"\n",
" canvas_div.addEventListener(\n",
" 'keydown',\n",
" on_keyboard_event_closure('key_press')\n",
" );\n",
" canvas_div.addEventListener(\n",
" 'keyup',\n",
" on_keyboard_event_closure('key_release')\n",
" );\n",
"\n",
" this._canvas_extra_style(canvas_div);\n",
" this.root.appendChild(canvas_div);\n",
"\n",
" var canvas = (this.canvas = document.createElement('canvas'));\n",
" canvas.classList.add('mpl-canvas');\n",
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
"\n",
" this.context = canvas.getContext('2d');\n",
"\n",
" var backingStore =\n",
" this.context.backingStorePixelRatio ||\n",
" this.context.webkitBackingStorePixelRatio ||\n",
" this.context.mozBackingStorePixelRatio ||\n",
" this.context.msBackingStorePixelRatio ||\n",
" this.context.oBackingStorePixelRatio ||\n",
" this.context.backingStorePixelRatio ||\n",
" 1;\n",
"\n",
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
" 'canvas'\n",
" ));\n",
" rubberband_canvas.setAttribute(\n",
" 'style',\n",
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
" );\n",
"\n",
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
" if (this.ResizeObserver === undefined) {\n",
" if (window.ResizeObserver !== undefined) {\n",
" this.ResizeObserver = window.ResizeObserver;\n",
" } else {\n",
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
" this.ResizeObserver = obs.ResizeObserver;\n",
" }\n",
" }\n",
"\n",
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
" var nentries = entries.length;\n",
" for (var i = 0; i < nentries; i++) {\n",
" var entry = entries[i];\n",
" var width, height;\n",
" if (entry.contentBoxSize) {\n",
" if (entry.contentBoxSize instanceof Array) {\n",
" // Chrome 84 implements new version of spec.\n",
" width = entry.contentBoxSize[0].inlineSize;\n",
" height = entry.contentBoxSize[0].blockSize;\n",
" } else {\n",
" // Firefox implements old version of spec.\n",
" width = entry.contentBoxSize.inlineSize;\n",
" height = entry.contentBoxSize.blockSize;\n",
" }\n",
" } else {\n",
" // Chrome <84 implements even older version of spec.\n",
" width = entry.contentRect.width;\n",
" height = entry.contentRect.height;\n",
" }\n",
"\n",
" // Keep the size of the canvas and rubber band canvas in sync with\n",
" // the canvas container.\n",
" if (entry.devicePixelContentBoxSize) {\n",
" // Chrome 84 implements new version of spec.\n",
" canvas.setAttribute(\n",
" 'width',\n",
" entry.devicePixelContentBoxSize[0].inlineSize\n",
" );\n",
" canvas.setAttribute(\n",
" 'height',\n",
" entry.devicePixelContentBoxSize[0].blockSize\n",
" );\n",
" } else {\n",
" canvas.setAttribute('width', width * fig.ratio);\n",
" canvas.setAttribute('height', height * fig.ratio);\n",
" }\n",
" canvas.setAttribute(\n",
" 'style',\n",
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
" );\n",
"\n",
" rubberband_canvas.setAttribute('width', width);\n",
" rubberband_canvas.setAttribute('height', height);\n",
"\n",
" // And update the size in Python. We ignore the initial 0/0 size\n",
" // that occurs as the element is placed into the DOM, which should\n",
" // otherwise not happen due to the minimum size styling.\n",
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
" fig.request_resize(width, height);\n",
" }\n",
" }\n",
" });\n",
" this.resizeObserverInstance.observe(canvas_div);\n",
"\n",
" function on_mouse_event_closure(name) {\n",
" return function (event) {\n",
" return fig.mouse_event(event, name);\n",
" };\n",
" }\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mousedown',\n",
" on_mouse_event_closure('button_press')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseup',\n",
" on_mouse_event_closure('button_release')\n",
" );\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband_canvas.addEventListener(\n",
" 'mousemove',\n",
" on_mouse_event_closure('motion_notify')\n",
" );\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseenter',\n",
" on_mouse_event_closure('figure_enter')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseleave',\n",
" on_mouse_event_closure('figure_leave')\n",
" );\n",
"\n",
" canvas_div.addEventListener('wheel', function (event) {\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" on_mouse_event_closure('scroll')(event);\n",
" });\n",
"\n",
" canvas_div.appendChild(canvas);\n",
" canvas_div.appendChild(rubberband_canvas);\n",
"\n",
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
" this.rubberband_context.strokeStyle = '#000000';\n",
"\n",
" this._resize_canvas = function (width, height, forward) {\n",
" if (forward) {\n",
" canvas_div.style.width = width + 'px';\n",
" canvas_div.style.height = height + 'px';\n",
" }\n",
" };\n",
"\n",
" // Disable right mouse context menu.\n",
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
" event.preventDefault();\n",
" return false;\n",
" });\n",
"\n",
" function set_focus() {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'mpl-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" continue;\n",
" }\n",
"\n",
" var button = (fig.buttons[name] = document.createElement('button'));\n",
" button.classList = 'mpl-widget';\n",
" button.setAttribute('role', 'button');\n",
" button.setAttribute('aria-disabled', 'false');\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
"\n",
" var icon_img = document.createElement('img');\n",
" icon_img.src = '_images/' + image + '.png';\n",
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
" icon_img.alt = tooltip;\n",
" button.appendChild(icon_img);\n",
"\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" var fmt_picker = document.createElement('select');\n",
" fmt_picker.classList = 'mpl-widget';\n",
" toolbar.appendChild(fmt_picker);\n",
" this.format_dropdown = fmt_picker;\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = document.createElement('option');\n",
" option.selected = fmt === mpl.default_extension;\n",
" option.innerHTML = fmt;\n",
" fmt_picker.appendChild(option);\n",
" }\n",
"\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"};\n",
"\n",
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
"};\n",
"\n",
"mpl.figure.prototype.send_message = function (type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"};\n",
"\n",
"mpl.figure.prototype.send_draw_message = function () {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
" fig.send_message('refresh', {});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
" var x0 = msg['x0'] / fig.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
" var x1 = msg['x1'] / fig.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0,\n",
" 0,\n",
" fig.canvas.width / fig.ratio,\n",
" fig.canvas.height / fig.ratio\n",
" );\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch (cursor) {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = 'image/png';\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.which === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.which;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which !== 17) {\n",
" value += 'ctrl+';\n",
" }\n",
" if (event.altKey && event.which !== 18) {\n",
" value += 'alt+';\n",
" }\n",
" if (event.shiftKey && event.which !== 16) {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data']);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager) {\n",
" manager = IPython.keyboard_manager;\n",
" }\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig, ax = subplots(3)\n",
"jupyter.display(images[0], ax=ax[0])\n",
"jupyter.display(images[1], ax=ax[1])\n",
"jupyter.display(images[2], ax=ax[2]) "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "corresponding-export",
"metadata": {},
"outputs": [],
"source": [
"#in the neighboring of the gaps, pixels look too intense: masking out.\n",
"\n",
"mask0= (images.min(axis=0) == 0)\n",
"mask = ndimage.binary_dilation(mask0, iterations=1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "welsh-wonder",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Detector Eiger2 CdTe 2M-W\t PixelSize= 7.500e-05, 7.500e-05 m\n",
"Wavelength= 7.998981e-11m\n",
"SampleDetDist= 7.939243e-01m\tPONI= 2.075750e-02, 1.421967e-01m\trot1=0.171007 rot2= 0.000000 rot3= 0.000000 rad\n",
"DirectBeamDist= 805.676mm\tCenter: x=67.880, y=276.767 pix\tTilt=9.798 deg tiltPlanRotation= 180.000 deg"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"geo1 = pyFAI.load(\"slice1.poni\")\n",
"geo2 = pyFAI.load(\"slice2.poni\")\n",
"geo3 = pyFAI.load(\"slice3.poni\")\n",
"wavelength = geo1.wavelength\n",
"geo1.mask = geo2.mask = geo3.mask = mask\n",
"eiger = geo1.detector\n",
"geo1"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "economic-particle",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LaB6 Calibrant with 92 reflections at wavelength 7.998980544077437e-11 15.5\n"
]
},
{
"data": {
"text/plain": [
"7.998980544077437e-11"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"LaB6 = get_calibrant(\"LaB6\")\n",
"LaB6.wavelength = wavelength\n",
"energy = pyFAI.units.hc/wavelength*1e-10\n",
"print(LaB6, energy)\n",
"pyFAI.units.hc/energy*1e-10"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "least-wrestling",
"metadata": {},
"outputs": [],
"source": [
"goniotrans = ExtendedTransformation(param_names = [\"dist\", \n",
" \"poni1\", \"poni2\",\n",
" \"rot1\", \"rot2\", \n",
" \"ex01\", \"ex02\",\n",
" \"ex11\", \"ex12\",\n",
" \"ex21\", \"ex22\",\n",
" \"scale1\", \"scale2\",\n",
" \"energy\"],\n",
" dist_expr=\"dist + ex01*sin(pos) + ex02*cos(pos)\",\n",
" poni1_expr=\"poni1 + ex11*sin(pos) + ex12*cos(pos)\",\n",
" poni2_expr=\"poni2 + ex21*sin(pos) + ex22*cos(pos)\",\n",
" rot1_expr=\"pos*scale1 + rot1\",\n",
" rot2_expr=\"pos*scale2 + rot2\",\n",
" rot3_expr=\"pi/2\",\n",
" wavelength_expr=\"hc/energy*1e-10\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "equipped-implementation",
"metadata": {},
"outputs": [],
"source": [
"param = {\"dist\": 0.8,\n",
" \"poni1\": 0.02,\n",
" \"poni2\": 0.14,\n",
" \"rot1\": 0.0,\n",
" \"rot2\": 0.0,\n",
" \"scale1\": 1.0,\n",
" \"scale2\": 0.0,\n",
" \"ex01\": 0.0,\n",
" \"ex11\": 0.0,\n",
" \"ex21\": 0.0,\n",
" \"ex02\": 0.0,\n",
" \"ex12\": 0.0,\n",
" \"ex22\": 0.0,\n",
" \"energy\": 15.5,\n",
" }\n",
"#Defines the bounds for some variables\n",
"bounds = {\"dist\": ( 0.7, 0.9),\n",
" \"poni1\": ( 0.0, 0.2),\n",
" \"poni2\": ( 0.0, 0.2),\n",
" \"rot1\": (-1.0, 1.0),\n",
" \"rot2\": (-1.0, 1.0),\n",
" \"scale1\": (-1.1, 1.1),\n",
" \"scale2\": (-1.1, 1.1),\n",
" \"ex01\": (-1.0, 1.0),\n",
" \"ex11\": (-1.0, 1.0),\n",
" \"ex21\": (-1.0, 1.0),\n",
" \"ex02\": (-1.0, 1.0),\n",
" \"ex12\": (-1.0, 1.0),\n",
" \"ex22\": (-1.0, 1.0), \n",
" \"energy\": (15.0,16.0)\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "convinced-temple",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Empty refinement object: GoniometerRefinement with 0 geometries labeled: .\n",
"Empty refinement object: GoniometerRefinement with 3 geometries labeled: 1, 2, 3.\n",
"0.17458276570653847 0.34911453884399146 0.5236183509211757\n"
]
}
],
"source": [
"gonioref = GoniometerRefinement(param, #initial guess\n",
" bounds=bounds,\n",
" pos_function=lambda index: tth[index]*pi/180,\n",
" trans_function=goniotrans,\n",
" detector=eiger, wavelength=wavelength)\n",
"print(\"Empty refinement object:\", gonioref)\n",
"sg1 = gonioref.new_geometry(\"1\", image=images[1], metadata=1, control_points=\"slice1.npt\", calibrant=LaB6)\n",
"sg2 = gonioref.new_geometry(\"2\", image=images[2], metadata=2, control_points=\"slice2.npt\", calibrant=LaB6)\n",
"sg3 = gonioref.new_geometry(\"3\", image=images[3], metadata=3, control_points=\"slice3.npt\", calibrant=LaB6)\n",
"print(\"Empty refinement object:\", gonioref)\n",
"print(sg1.get_position(), sg2.get_position(), sg3.get_position())"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "polar-novelty",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cost function before refinement: 3.775148547981588e-05\n",
"[ 0.8 0.02 0.14 0. 0. 0. 0. 0. 0. 0. 0. 1.\n",
" 0. 15.5 ]\n",
" fun: 5.278658875907129e-09\n",
" jac: array([ 5.10327330e-09, 3.84692412e-08, -1.13651742e-06, 4.42618161e-07,\n",
" 2.21404161e-08, 1.02196949e-07, -4.97671554e-08, -5.54592982e-08,\n",
" 5.81860657e-08, -3.03139766e-07, -6.93780080e-07, 1.86614338e-07,\n",
" -5.36995165e-08, 9.60210506e-09])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 181\n",
" nit: 12\n",
" njev: 12\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.97396830e-01, 2.03028892e-02, 1.41871213e-01, -1.46023035e-03,\n",
" 2.59393766e-04, -1.01967552e-03, -2.37445581e-03, 9.71730677e-05,\n",
" 2.83948595e-04, 5.39270072e-04, 1.79101090e-03, 9.99564789e-01,\n",
" 8.71064889e-05, 1.55001157e+01])\n",
"Cost function after refinement: 5.278658875907129e-09\n",
"GonioParam(dist=0.7973968296977896, poni1=0.02030288918938589, poni2=0.14187121264463703, rot1=-0.0014602303468810112, rot2=0.00025939376630337006, ex01=-0.0010196755239564531, ex02=-0.002374455810221054, ex11=9.717306768669535e-05, ex12=0.0002839485948219522, ex21=0.0005392700722196733, ex22=0.0017910109029303067, scale1=0.9995647889786868, scale2=8.710648885853944e-05, energy=15.500115711976022)\n",
"maxdelta on: dist (0) 0.8 --> 0.7973968296977896\n"
]
},
{
"data": {
"text/plain": [
"array([ 7.97396830e-01, 2.03028892e-02, 1.41871213e-01, -1.46023035e-03,\n",
" 2.59393766e-04, -1.01967552e-03, -2.37445581e-03, 9.71730677e-05,\n",
" 2.83948595e-04, 5.39270072e-04, 1.79101090e-03, 9.99564789e-01,\n",
" 8.71064889e-05, 1.55001157e+01])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gonioref.refine2()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "inclusive-benchmark",
"metadata": {},
"outputs": [],
"source": [
"def display_all():\n",
" \"Display all images with associated calibration\"\n",
" nimg = len(gonioref.single_geometries)\n",
" fig,ax = subplots(nimg, 1, figsize=(8,nimg))\n",
" keys = list(gonioref.single_geometries.keys())\n",
" keys.sort(key=lambda x:int(x))\n",
" for i, k in enumerate(keys):\n",
" sg = gonioref.single_geometries[k]\n",
" param = gonioref.trans_function(gonioref.param, sg.get_position())\n",
" sg.geometry_refinement.set_param(param)\n",
" jupyter.display(sg=sg, ax=ax[i])\n",
" l = ax[i].get_legend()\n",
" if l: l.remove()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "medium-madness",
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"/* global mpl */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function () {\n",
" if (typeof WebSocket !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof MozWebSocket !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert(\n",
" 'Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.'\n",
" );\n",
" }\n",
"};\n",
"\n",
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = this.ws.binaryType !== undefined;\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById('mpl-warnings');\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent =\n",
" 'This browser does not support binary websocket messages. ' +\n",
" 'Performance may be slow.';\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = document.createElement('div');\n",
" this.root.setAttribute('style', 'display: inline-block');\n",
" this._root_extra_style(this.root);\n",
"\n",
" parent_element.appendChild(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
" fig.send_message('send_image_mode', {});\n",
" if (fig.ratio !== 1) {\n",
" fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
" }\n",
" fig.send_message('refresh', {});\n",
" };\n",
"\n",
" this.imageObj.onload = function () {\n",
" if (fig.image_mode === 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function () {\n",
" fig.ws.close();\n",
" };\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"};\n",
"\n",
"mpl.figure.prototype._init_header = function () {\n",
" var titlebar = document.createElement('div');\n",
" titlebar.classList =\n",
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
" var titletext = document.createElement('div');\n",
" titletext.classList = 'ui-dialog-title';\n",
" titletext.setAttribute(\n",
" 'style',\n",
" 'width: 100%; text-align: center; padding: 3px;'\n",
" );\n",
" titlebar.appendChild(titletext);\n",
" this.root.appendChild(titlebar);\n",
" this.header = titletext;\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._init_canvas = function () {\n",
" var fig = this;\n",
"\n",
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
" canvas_div.setAttribute(\n",
" 'style',\n",
" 'border: 1px solid #ddd;' +\n",
" 'box-sizing: content-box;' +\n",
" 'clear: both;' +\n",
" 'min-height: 1px;' +\n",
" 'min-width: 1px;' +\n",
" 'outline: 0;' +\n",
" 'overflow: hidden;' +\n",
" 'position: relative;' +\n",
" 'resize: both;'\n",
" );\n",
"\n",
" function on_keyboard_event_closure(name) {\n",
" return function (event) {\n",
" return fig.key_event(event, name);\n",
" };\n",
" }\n",
"\n",
" canvas_div.addEventListener(\n",
" 'keydown',\n",
" on_keyboard_event_closure('key_press')\n",
" );\n",
" canvas_div.addEventListener(\n",
" 'keyup',\n",
" on_keyboard_event_closure('key_release')\n",
" );\n",
"\n",
" this._canvas_extra_style(canvas_div);\n",
" this.root.appendChild(canvas_div);\n",
"\n",
" var canvas = (this.canvas = document.createElement('canvas'));\n",
" canvas.classList.add('mpl-canvas');\n",
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
"\n",
" this.context = canvas.getContext('2d');\n",
"\n",
" var backingStore =\n",
" this.context.backingStorePixelRatio ||\n",
" this.context.webkitBackingStorePixelRatio ||\n",
" this.context.mozBackingStorePixelRatio ||\n",
" this.context.msBackingStorePixelRatio ||\n",
" this.context.oBackingStorePixelRatio ||\n",
" this.context.backingStorePixelRatio ||\n",
" 1;\n",
"\n",
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
" 'canvas'\n",
" ));\n",
" rubberband_canvas.setAttribute(\n",
" 'style',\n",
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
" );\n",
"\n",
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
" if (this.ResizeObserver === undefined) {\n",
" if (window.ResizeObserver !== undefined) {\n",
" this.ResizeObserver = window.ResizeObserver;\n",
" } else {\n",
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
" this.ResizeObserver = obs.ResizeObserver;\n",
" }\n",
" }\n",
"\n",
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
" var nentries = entries.length;\n",
" for (var i = 0; i < nentries; i++) {\n",
" var entry = entries[i];\n",
" var width, height;\n",
" if (entry.contentBoxSize) {\n",
" if (entry.contentBoxSize instanceof Array) {\n",
" // Chrome 84 implements new version of spec.\n",
" width = entry.contentBoxSize[0].inlineSize;\n",
" height = entry.contentBoxSize[0].blockSize;\n",
" } else {\n",
" // Firefox implements old version of spec.\n",
" width = entry.contentBoxSize.inlineSize;\n",
" height = entry.contentBoxSize.blockSize;\n",
" }\n",
" } else {\n",
" // Chrome <84 implements even older version of spec.\n",
" width = entry.contentRect.width;\n",
" height = entry.contentRect.height;\n",
" }\n",
"\n",
" // Keep the size of the canvas and rubber band canvas in sync with\n",
" // the canvas container.\n",
" if (entry.devicePixelContentBoxSize) {\n",
" // Chrome 84 implements new version of spec.\n",
" canvas.setAttribute(\n",
" 'width',\n",
" entry.devicePixelContentBoxSize[0].inlineSize\n",
" );\n",
" canvas.setAttribute(\n",
" 'height',\n",
" entry.devicePixelContentBoxSize[0].blockSize\n",
" );\n",
" } else {\n",
" canvas.setAttribute('width', width * fig.ratio);\n",
" canvas.setAttribute('height', height * fig.ratio);\n",
" }\n",
" canvas.setAttribute(\n",
" 'style',\n",
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
" );\n",
"\n",
" rubberband_canvas.setAttribute('width', width);\n",
" rubberband_canvas.setAttribute('height', height);\n",
"\n",
" // And update the size in Python. We ignore the initial 0/0 size\n",
" // that occurs as the element is placed into the DOM, which should\n",
" // otherwise not happen due to the minimum size styling.\n",
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
" fig.request_resize(width, height);\n",
" }\n",
" }\n",
" });\n",
" this.resizeObserverInstance.observe(canvas_div);\n",
"\n",
" function on_mouse_event_closure(name) {\n",
" return function (event) {\n",
" return fig.mouse_event(event, name);\n",
" };\n",
" }\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mousedown',\n",
" on_mouse_event_closure('button_press')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseup',\n",
" on_mouse_event_closure('button_release')\n",
" );\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband_canvas.addEventListener(\n",
" 'mousemove',\n",
" on_mouse_event_closure('motion_notify')\n",
" );\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseenter',\n",
" on_mouse_event_closure('figure_enter')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseleave',\n",
" on_mouse_event_closure('figure_leave')\n",
" );\n",
"\n",
" canvas_div.addEventListener('wheel', function (event) {\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" on_mouse_event_closure('scroll')(event);\n",
" });\n",
"\n",
" canvas_div.appendChild(canvas);\n",
" canvas_div.appendChild(rubberband_canvas);\n",
"\n",
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
" this.rubberband_context.strokeStyle = '#000000';\n",
"\n",
" this._resize_canvas = function (width, height, forward) {\n",
" if (forward) {\n",
" canvas_div.style.width = width + 'px';\n",
" canvas_div.style.height = height + 'px';\n",
" }\n",
" };\n",
"\n",
" // Disable right mouse context menu.\n",
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
" event.preventDefault();\n",
" return false;\n",
" });\n",
"\n",
" function set_focus() {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'mpl-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" continue;\n",
" }\n",
"\n",
" var button = (fig.buttons[name] = document.createElement('button'));\n",
" button.classList = 'mpl-widget';\n",
" button.setAttribute('role', 'button');\n",
" button.setAttribute('aria-disabled', 'false');\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
"\n",
" var icon_img = document.createElement('img');\n",
" icon_img.src = '_images/' + image + '.png';\n",
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
" icon_img.alt = tooltip;\n",
" button.appendChild(icon_img);\n",
"\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" var fmt_picker = document.createElement('select');\n",
" fmt_picker.classList = 'mpl-widget';\n",
" toolbar.appendChild(fmt_picker);\n",
" this.format_dropdown = fmt_picker;\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = document.createElement('option');\n",
" option.selected = fmt === mpl.default_extension;\n",
" option.innerHTML = fmt;\n",
" fmt_picker.appendChild(option);\n",
" }\n",
"\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"};\n",
"\n",
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
"};\n",
"\n",
"mpl.figure.prototype.send_message = function (type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"};\n",
"\n",
"mpl.figure.prototype.send_draw_message = function () {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
" fig.send_message('refresh', {});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
" var x0 = msg['x0'] / fig.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
" var x1 = msg['x1'] / fig.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0,\n",
" 0,\n",
" fig.canvas.width / fig.ratio,\n",
" fig.canvas.height / fig.ratio\n",
" );\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch (cursor) {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = 'image/png';\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.which === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.which;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which !== 17) {\n",
" value += 'ctrl+';\n",
" }\n",
" if (event.altKey && event.which !== 18) {\n",
" value += 'alt+';\n",
" }\n",
" if (event.shiftKey && event.which !== 16) {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data']);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager) {\n",
" manager = IPython.keyboard_manager;\n",
" }\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"800\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n"
]
}
],
"source": [
"display_all()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "vital-methodology",
"metadata": {},
"outputs": [],
"source": [
"def optimize_with_new_images(list_index, pts_per_deg=5):\n",
" sg = None\n",
" for idx in list_index:\n",
" base = str(idx)\n",
" image = images[idx]\n",
" sg = gonioref.new_geometry(base, image=image, metadata=idx,\n",
" calibrant=LaB6)\n",
" print(sg.extract_cp(pts_per_deg=pts_per_deg))\n",
" gonioref.refine2()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "alert-evidence",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ControlPoints instance containing 1 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998920829823548e-11\n",
"Containing 1 groups of points:\n",
"# j ring 0: 75 points\n",
"ControlPoints instance containing 12 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998920829823548e-11\n",
"Containing 12 groups of points:\n",
"# k ring 6: 30 points\n",
"# l ring 7: 30 points\n",
"# m ring 8: 30 points\n",
"# n ring 9: 25 points\n",
"# o ring 10: 25 points\n",
"# p ring 11: 25 points\n",
"# q ring 12: 19 points\n",
"# r ring 13: 25 points\n",
"# s ring 14: 25 points\n",
"# t ring 15: 25 points\n",
"# u ring 16: 25 points\n",
"# v ring 17: 25 points\n",
"ControlPoints instance containing 13 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998920829823548e-11\n",
"Containing 13 groups of points:\n",
"# w ring 11: 25 points\n",
"# x ring 12: 25 points\n",
"# y ring 13: 25 points\n",
"# z ring 14: 25 points\n",
"#aa ring 15: 25 points\n",
"#ab ring 16: 25 points\n",
"#ac ring 17: 25 points\n",
"#ad ring 18: 25 points\n",
"#ae ring 19: 25 points\n",
"#af ring 20: 25 points\n",
"#ag ring 21: 20 points\n",
"#ah ring 22: 20 points\n",
"#ai ring 23: 20 points\n",
"Cost function before refinement: 7.872219858610941e-09\n",
"[ 7.97396830e-01 2.03028892e-02 1.41871213e-01 -1.46023035e-03\n",
" 2.59393766e-04 -1.01967552e-03 -2.37445581e-03 9.71730677e-05\n",
" 2.83948595e-04 5.39270072e-04 1.79101090e-03 9.99564789e-01\n",
" 8.71064889e-05 1.55001157e+01]\n",
" fun: 4.026767099033416e-09\n",
" jac: array([ 2.53644918e-08, 2.79028496e-07, -4.42463118e-07, -1.19660896e-07,\n",
" 2.25677134e-07, -3.18128278e-07, 1.62706667e-07, 5.04503961e-08,\n",
" 2.74361337e-07, 2.26298326e-07, 3.36492478e-07, -1.50619778e-08,\n",
" 3.79560829e-08, 1.00071771e-08])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 407\n",
" nit: 27\n",
" njev: 27\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.97108907e-01, 2.02601685e-02, 1.42887433e-01, -1.45248065e-04,\n",
" 3.37675475e-04, -2.35523625e-03, -1.48861879e-03, 3.87013265e-04,\n",
" 1.27823342e-04, 9.41043284e-04, 1.75849192e-03, 9.99854283e-01,\n",
" 4.37677569e-04, 1.55002024e+01])\n",
"Cost function after refinement: 4.026767099033416e-09\n",
"GonioParam(dist=0.7971089071452742, poni1=0.020260168537198524, poni2=0.14288743310323307, rot1=-0.00014524806528371466, rot2=0.000337675475473811, ex01=-0.0023552362543095644, ex02=-0.001488618788431497, ex11=0.0003870132647155313, ex12=0.00012782334226120045, ex21=0.000941043283918638, ex22=0.001758491920827077, scale1=0.999854283364752, scale2=0.00043767756919271654, energy=15.500202354411662)\n",
"maxdelta on: ex01 (5) -0.0010196755239564531 --> -0.0023552362543095644\n"
]
}
],
"source": [
"optimize_with_new_images([0,4,5])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "subjective-alexander",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ControlPoints instance containing 15 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998876117763193e-11\n",
"Containing 15 groups of points:\n",
"#aj ring 17: 25 points\n",
"#ak ring 18: 25 points\n",
"#al ring 19: 25 points\n",
"#am ring 20: 25 points\n",
"#an ring 21: 20 points\n",
"#ao ring 22: 20 points\n",
"#ap ring 23: 20 points\n",
"#aq ring 24: 20 points\n",
"#ar ring 25: 15 points\n",
"#as ring 26: 20 points\n",
"#at ring 27: 20 points\n",
"#au ring 28: 20 points\n",
"#av ring 29: 20 points\n",
"#aw ring 30: 20 points\n",
"#ax ring 31: 20 points\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998876117763193e-11\n",
"Containing 17 groups of points:\n",
"#ay ring 23: 20 points\n",
"#az ring 24: 15 points\n",
"#ba ring 25: 20 points\n",
"#bb ring 26: 20 points\n",
"#bc ring 27: 20 points\n",
"#bd ring 28: 20 points\n",
"#be ring 29: 15 points\n",
"#bf ring 30: 20 points\n",
"#bg ring 31: 20 points\n",
"#bh ring 32: 20 points\n",
"#bi ring 33: 0 points\n",
"#bj ring 34: 20 points\n",
"#bk ring 35: 20 points\n",
"#bl ring 36: 20 points\n",
"#bm ring 37: 20 points\n",
"#bn ring 38: 15 points\n",
"#bo ring 39: 15 points\n",
"ControlPoints instance containing 16 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998876117763193e-11\n",
"Containing 16 groups of points:\n",
"#bp ring 30: 20 points\n",
"#bq ring 31: 20 points\n",
"#br ring 32: 20 points\n",
"#bs ring 33: 20 points\n",
"#bt ring 34: 20 points\n",
"#bu ring 35: 20 points\n",
"#bv ring 36: 20 points\n",
"#bw ring 37: 20 points\n",
"#bx ring 38: 20 points\n",
"#by ring 39: 20 points\n",
"#bz ring 41: 15 points\n",
"#ca ring 42: 15 points\n",
"#cb ring 43: 15 points\n",
"#cc ring 44: 15 points\n",
"#cd ring 45: 15 points\n",
"#ce ring 46: 15 points\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998876117763193e-11\n",
"Containing 17 groups of points:\n",
"#cf ring 38: 15 points\n",
"#cg ring 39: 15 points\n",
"#ch ring 40: 15 points\n",
"#ci ring 41: 15 points\n",
"#cj ring 42: 15 points\n",
"#ck ring 43: 15 points\n",
"#cl ring 44: 15 points\n",
"#cm ring 45: 15 points\n",
"#cn ring 46: 15 points\n",
"#co ring 47: 15 points\n",
"#cp ring 48: 15 points\n",
"#cq ring 49: 15 points\n",
"#cr ring 50: 15 points\n",
"#cs ring 51: 15 points\n",
"#ct ring 52: 15 points\n",
"#cu ring 53: 15 points\n",
"#cv ring 54: 15 points\n",
"Cost function before refinement: 5.550563441625292e-08\n",
"[ 7.97108907e-01 2.02601685e-02 1.42887433e-01 -1.45248065e-04\n",
" 3.37675475e-04 -2.35523625e-03 -1.48861879e-03 3.87013265e-04\n",
" 1.27823342e-04 9.41043284e-04 1.75849192e-03 9.99854283e-01\n",
" 4.37677569e-04 1.55002024e+01]\n",
" fun: 2.4992787363588178e-09\n",
" jac: array([-1.77948950e-08, 1.63057287e-08, -3.73746327e-08, 2.24654659e-08,\n",
" 2.18867931e-08, -7.45606818e-09, 5.08930957e-08, 1.99402074e-08,\n",
" 6.04644229e-09, -4.58574265e-08, 7.47954279e-08, -8.12105583e-08,\n",
" 2.57657934e-08, -1.95150365e-08])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 526\n",
" nit: 35\n",
" njev: 35\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94843107e-01, 2.02076309e-02, 1.45967536e-01, 2.37308073e-03,\n",
" 3.83618993e-04, -6.71044978e-04, 2.35916839e-04, 3.94179577e-04,\n",
" 4.61822221e-05, 4.45785955e-04, 8.40161379e-04, 9.99912126e-01,\n",
" 5.53425262e-04, 1.55006241e+01])\n",
"Cost function after refinement: 2.4992787363588178e-09\n",
"GonioParam(dist=0.7948431065609595, poni1=0.020207630934463858, poni2=0.14596753570116397, rot1=0.0023730807280716833, rot2=0.0003836189927402655, ex01=-0.000671044978137258, ex02=0.00023591683920310094, ex11=0.0003941795766804939, ex12=4.61822220744487e-05, ex21=0.0004457859550112717, ex22=0.0008401613787348661, scale1=0.9999121258056136, scale2=0.0005534252616439375, energy=15.500624110520976)\n",
"maxdelta on: poni2 (2) 0.14288743310323307 --> 0.14596753570116397\n"
]
}
],
"source": [
"optimize_with_new_images([6,7,8,9])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "entire-repeat",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998658476534927e-11\n",
"Containing 17 groups of points:\n",
"#cw ring 46: 15 points\n",
"#cx ring 47: 15 points\n",
"#cy ring 48: 15 points\n",
"#cz ring 49: 15 points\n",
"#da ring 50: 15 points\n",
"#db ring 51: 15 points\n",
"#dc ring 52: 15 points\n",
"#dd ring 53: 15 points\n",
"#de ring 54: 15 points\n",
"#df ring 55: 20 points\n",
"#dg ring 56: 20 points\n",
"#dh ring 57: 0 points\n",
"#di ring 58: 20 points\n",
"#dj ring 59: 20 points\n",
"#dk ring 60: 20 points\n",
"#dl ring 61: 20 points\n",
"#dm ring 62: 20 points\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998658476534927e-11\n",
"Containing 17 groups of points:\n",
"#dn ring 53: 15 points\n",
"#do ring 54: 15 points\n",
"#dp ring 55: 15 points\n",
"#dq ring 56: 15 points\n",
"#dr ring 57: 20 points\n",
"#ds ring 58: 20 points\n",
"#dt ring 59: 20 points\n",
"#du ring 60: 20 points\n",
"#dv ring 61: 20 points\n",
"#dw ring 62: 20 points\n",
"#dx ring 63: 20 points\n",
"#dy ring 64: 20 points\n",
"#dz ring 65: 20 points\n",
"#ea ring 66: 20 points\n",
"#eb ring 67: 20 points\n",
"#ec ring 68: 25 points\n",
"#ed ring 69: 25 points\n",
"ControlPoints instance containing 15 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998658476534927e-11\n",
"Containing 15 groups of points:\n",
"#ee ring 61: 20 points\n",
"#ef ring 62: 20 points\n",
"#eg ring 63: 20 points\n",
"#eh ring 64: 20 points\n",
"#ei ring 66: 20 points\n",
"#ej ring 67: 25 points\n",
"#ek ring 68: 25 points\n",
"#el ring 69: 25 points\n",
"#em ring 70: 25 points\n",
"#en ring 71: 25 points\n",
"#eo ring 72: 1 points\n",
"#ep ring 73: 25 points\n",
"#eq ring 74: 25 points\n",
"#er ring 75: 25 points\n",
"#es ring 76: 25 points\n",
"Cost function before refinement: 8.708810200866916e-09\n",
"[ 7.94843107e-01 2.02076309e-02 1.45967536e-01 2.37308073e-03\n",
" 3.83618993e-04 -6.71044978e-04 2.35916839e-04 3.94179577e-04\n",
" 4.61822221e-05 4.45785955e-04 8.40161379e-04 9.99912126e-01\n",
" 5.53425262e-04 1.55006241e+01]\n",
" fun: 2.706319441773673e-09\n",
" jac: array([ 1.85957136e-07, -1.81162731e-07, 1.09684618e-08, -1.68560735e-09,\n",
" -1.60602708e-07, -1.97690621e-07, -1.08327577e-07, -4.25902994e-08,\n",
" -1.65764814e-07, 3.75167964e-08, -1.74441970e-08, 2.64745966e-08,\n",
" -4.77493199e-08, -1.18900163e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 451\n",
" nit: 30\n",
" njev: 30\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94820482e-01, 2.01824656e-02, 1.46406901e-01, 2.09897043e-03,\n",
" 3.39077671e-04, -6.22829766e-04, 2.33107203e-04, 3.91144290e-04,\n",
" 1.67729672e-05, 9.49470834e-04, 2.19660070e-04, 1.00079982e+00,\n",
" 5.09740838e-04, 1.55010768e+01])\n",
"Cost function after refinement: 2.706319441773673e-09\n",
"GonioParam(dist=0.794820481878865, poni1=0.02018246563570308, poni2=0.14640690141129406, rot1=0.0020989704328371775, rot2=0.00033907767135782916, ex01=-0.0006228297664527629, ex02=0.00023310720306741052, ex11=0.0003911442896513936, ex12=1.677296720221402e-05, ex21=0.0009494708338890352, ex22=0.00021966007036946158, scale1=1.000799824632789, scale2=0.0005097408377695113, energy=15.501076780837918)\n",
"maxdelta on: scale1 (11) 0.9999121258056136 --> 1.000799824632789\n"
]
}
],
"source": [
"optimize_with_new_images([10, 11, 12])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "approximate-norwegian",
"metadata": {},
"outputs": [],
"source": [
"def renew(lst):\n",
" lst = list(lst)\n",
" numpy.random.shuffle(lst)\n",
" for i in lst:\n",
" \n",
" print(f\"Re-extract frame #{i}\")\n",
" gonioref.single_geometries.pop(str(i))\n",
" optimize_with_new_images([i])\n",
" print(\"*\"*50)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "coordinate-invention",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Re-extract frame #12\n",
"ControlPoints instance containing 15 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424895647684e-11\n",
"Containing 15 groups of points:\n",
"#et ring 61: 20 points\n",
"#eu ring 62: 20 points\n",
"#ev ring 63: 20 points\n",
"#ew ring 64: 20 points\n",
"#ex ring 66: 20 points\n",
"#ey ring 67: 25 points\n",
"#ez ring 68: 25 points\n",
"#fa ring 69: 25 points\n",
"#fb ring 70: 25 points\n",
"#fc ring 71: 25 points\n",
"#fd ring 72: 25 points\n",
"#fe ring 73: 25 points\n",
"#ff ring 74: 25 points\n",
"#fg ring 75: 25 points\n",
"#fh ring 76: 25 points\n",
"Cost function before refinement: 2.671749982801582e-09\n",
"[ 7.94820482e-01 2.01824656e-02 1.46406901e-01 2.09897043e-03\n",
" 3.39077671e-04 -6.22829766e-04 2.33107203e-04 3.91144290e-04\n",
" 1.67729672e-05 9.49470834e-04 2.19660070e-04 1.00079982e+00\n",
" 5.09740838e-04 1.55010768e+01]\n",
" fun: 2.6657878229458544e-09\n",
" jac: array([ 2.62406334e-07, -1.80333363e-07, 2.44774477e-07, -1.74844059e-07,\n",
" -1.66382143e-07, -1.57710997e-07, -1.17284190e-07, -4.00809981e-08,\n",
" -1.68603693e-07, -4.80343297e-07, 8.10635168e-08, 2.08671894e-08,\n",
" -5.79593937e-08, -1.86595140e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 61\n",
" nit: 4\n",
" njev: 4\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819968e-01, 2.01828123e-02, 1.46406672e-01, 2.09911355e-03,\n",
" 3.39398007e-04, -6.22552742e-04, 2.33383285e-04, 3.91221181e-04,\n",
" 1.70956266e-05, 9.49876652e-04, 2.21498091e-04, 1.00080139e+00,\n",
" 5.09853731e-04, 1.55010773e+01])\n",
"Cost function after refinement: 2.6657878229458544e-09\n",
"GonioParam(dist=0.7948199679661985, poni1=0.020182812326614112, poni2=0.1464066719991098, rot1=0.0020991135523488126, rot2=0.00033939800677105483, ex01=-0.0006225527421768684, ex02=0.00023338328475114813, ex11=0.00039122118083147054, ex12=1.7095626575125736e-05, ex21=0.0009498766516526422, ex22=0.0002214980914251059, scale1=1.0008013884306994, scale2=0.0005098537308719589, energy=15.50107733462685)\n",
"maxdelta on: ex22 (10) 0.00021966007036946158 --> 0.0002214980914251059\n",
"**************************************************\n",
"Re-extract frame #6\n",
"ControlPoints instance containing 15 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424609897275e-11\n",
"Containing 15 groups of points:\n",
"#fi ring 17: 25 points\n",
"#fj ring 18: 25 points\n",
"#fk ring 19: 25 points\n",
"#fl ring 20: 25 points\n",
"#fm ring 21: 20 points\n",
"#fn ring 22: 20 points\n",
"#fo ring 23: 20 points\n",
"#fp ring 24: 20 points\n",
"#fq ring 25: 20 points\n",
"#fr ring 26: 20 points\n",
"#fs ring 27: 20 points\n",
"#ft ring 28: 20 points\n",
"#fu ring 29: 20 points\n",
"#fv ring 30: 20 points\n",
"#fw ring 31: 20 points\n",
"Cost function before refinement: 2.6704038295393077e-09\n",
"[ 7.94819968e-01 2.01828123e-02 1.46406672e-01 2.09911355e-03\n",
" 3.39398007e-04 -6.22552742e-04 2.33383285e-04 3.91221181e-04\n",
" 1.70956266e-05 9.49876652e-04 2.21498091e-04 1.00080139e+00\n",
" 5.09853731e-04 1.55010773e+01]\n",
" fun: 2.670277907463485e-09\n",
" jac: array([ 2.98295062e-07, -1.78330436e-07, 8.31436341e-07, -6.46815309e-07,\n",
" -1.61246279e-07, -1.26106073e-07, -9.90018626e-08, -3.85044769e-08,\n",
" -1.67495442e-07, 2.86631614e-08, 3.74436887e-07, -4.73662114e-07,\n",
" -5.27393980e-08, -2.24283283e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819924e-01, 2.01828383e-02, 1.46406551e-01, 2.09920783e-03,\n",
" 3.39421510e-04, -6.22534361e-04, 2.33397715e-04, 3.91226793e-04,\n",
" 1.71200410e-05, 9.49872474e-04, 2.21443513e-04, 1.00080146e+00,\n",
" 5.09861418e-04, 1.55010774e+01])\n",
"Cost function after refinement: 2.670277907463485e-09\n",
"GonioParam(dist=0.7948199244861711, poni1=0.020182838320380873, poni2=0.14640655080744572, rot1=0.0020992078333174624, rot2=0.00033942151032017155, ex01=-0.0006225343607276999, ex02=0.00023339771544160425, ex11=0.0003912267933136292, ex12=1.712004101356913e-05, ex21=0.0009498724736584186, ex22=0.00022144351282757783, scale1=1.0008014574725455, scale2=0.0005098614182619457, energy=15.501077367318786)\n",
"maxdelta on: poni2 (2) 0.1464066719991098 --> 0.14640655080744572\n",
"**************************************************\n",
"Re-extract frame #9\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424593028514e-11\n",
"Containing 17 groups of points:\n",
"#fx ring 38: 15 points\n",
"#fy ring 39: 15 points\n",
"#fz ring 40: 15 points\n",
"#ga ring 41: 15 points\n",
"#gb ring 42: 15 points\n",
"#gc ring 43: 15 points\n",
"#gd ring 44: 15 points\n",
"#ge ring 45: 15 points\n",
"#gf ring 46: 15 points\n",
"#gg ring 47: 15 points\n",
"#gh ring 48: 15 points\n",
"#gi ring 49: 15 points\n",
"#gj ring 50: 15 points\n",
"#gk ring 51: 15 points\n",
"#gl ring 52: 12 points\n",
"#gm ring 53: 15 points\n",
"#gn ring 54: 15 points\n",
"Cost function before refinement: 2.5286300879481057e-09\n",
"[ 7.94819924e-01 2.01828383e-02 1.46406551e-01 2.09920783e-03\n",
" 3.39421510e-04 -6.22534361e-04 2.33397715e-04 3.91226793e-04\n",
" 1.71200410e-05 9.49872474e-04 2.21443513e-04 1.00080146e+00\n",
" 5.09861418e-04 1.55010774e+01]\n",
" fun: 2.5283098011965923e-09\n",
" jac: array([ 1.82319907e-07, -1.75640579e-07, -8.63255482e-07, 7.30213084e-07,\n",
" -1.52248691e-07, -2.35658751e-07, -1.05578922e-07, -3.68377609e-08,\n",
" -1.65994413e-07, -1.45079862e-06, 8.14911821e-08, 1.39542819e-06,\n",
" -4.02538598e-08, -5.39322788e-08])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819903e-01, 2.01828587e-02, 1.46406651e-01, 2.09912302e-03,\n",
" 3.39439194e-04, -6.22506989e-04, 2.33409978e-04, 3.91231072e-04,\n",
" 1.71393211e-05, 9.50040983e-04, 2.21434048e-04, 1.00080130e+00,\n",
" 5.09866094e-04, 1.55010774e+01])\n",
"Cost function after refinement: 2.5283098011965923e-09\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"maxdelta on: ex21 (9) 0.0009498724736584186 --> 0.0009500409827072972\n",
"**************************************************\n",
"Re-extract frame #10\n",
"ControlPoints instance containing 16 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424589796245e-11\n",
"Containing 16 groups of points:\n",
"#go ring 46: 15 points\n",
"#gp ring 47: 15 points\n",
"#gq ring 48: 15 points\n",
"#gr ring 49: 15 points\n",
"#gs ring 50: 15 points\n",
"#gt ring 51: 15 points\n",
"#gu ring 52: 15 points\n",
"#gv ring 53: 15 points\n",
"#gw ring 54: 15 points\n",
"#gx ring 55: 20 points\n",
"#gy ring 56: 20 points\n",
"#gz ring 58: 18 points\n",
"#ha ring 59: 20 points\n",
"#hb ring 60: 20 points\n",
"#hc ring 61: 20 points\n",
"#hd ring 62: 20 points\n",
"Cost function before refinement: 2.522657006087966e-09\n",
"[ 7.94819903e-01 2.01828587e-02 1.46406651e-01 2.09912302e-03\n",
" 3.39439194e-04 -6.22506989e-04 2.33409978e-04 3.91231072e-04\n",
" 1.71393211e-05 9.50040983e-04 2.21434048e-04 1.00080130e+00\n",
" 5.09866094e-04 1.55010774e+01]\n",
" fun: 2.522657006087966e-09\n",
" jac: array([ 2.27636677e-07, -1.79526909e-07, 5.60934499e-07, -4.17895643e-07,\n",
" -1.53990854e-07, -1.96478031e-07, -1.05982889e-07, -3.96738366e-08,\n",
" -1.67357479e-07, -2.76575764e-07, 3.57714121e-07, -1.30246675e-07,\n",
" -4.11098534e-08, -1.93575625e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819903e-01, 2.01828587e-02, 1.46406651e-01, 2.09912302e-03,\n",
" 3.39439194e-04, -6.22506989e-04, 2.33409978e-04, 3.91231072e-04,\n",
" 1.71393211e-05, 9.50040983e-04, 2.21434048e-04, 1.00080130e+00,\n",
" 5.09866094e-04, 1.55010774e+01])\n",
"Cost function after refinement: 2.522657006087966e-09\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"**************************************************\n",
"Re-extract frame #0\n",
"ControlPoints instance containing 1 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424589796245e-11\n",
"Containing 1 groups of points:\n",
"#he ring 0: 80 points\n",
"Cost function before refinement: 2.5348483012130513e-09\n",
"[ 7.94819903e-01 2.01828587e-02 1.46406651e-01 2.09912302e-03\n",
" 3.39439194e-04 -6.22506989e-04 2.33409978e-04 3.91231072e-04\n",
" 1.71393211e-05 9.50040983e-04 2.21434048e-04 1.00080130e+00\n",
" 5.09866094e-04 1.55010774e+01]\n",
" fun: 2.5348483012130513e-09\n",
" jac: array([ 2.19616175e-07, -1.80366871e-07, 5.20756118e-07, -3.84765647e-07,\n",
" -1.54677990e-07, -1.96210246e-07, -1.13549116e-07, -3.96197793e-08,\n",
" -1.68214012e-07, -2.76197888e-07, 3.17812456e-07, -1.30070375e-07,\n",
" -4.10538474e-08, -1.92903086e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819903e-01, 2.01828587e-02, 1.46406651e-01, 2.09912302e-03,\n",
" 3.39439194e-04, -6.22506989e-04, 2.33409978e-04, 3.91231072e-04,\n",
" 1.71393211e-05, 9.50040983e-04, 2.21434048e-04, 1.00080130e+00,\n",
" 5.09866094e-04, 1.55010774e+01])\n",
"Cost function after refinement: 2.5348483012130513e-09\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"**************************************************\n",
"Re-extract frame #7\n",
"ControlPoints instance containing 16 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424589796245e-11\n",
"Containing 16 groups of points:\n",
"#hf ring 23: 20 points\n",
"#hg ring 24: 20 points\n",
"#hh ring 25: 20 points\n",
"#hi ring 26: 20 points\n",
"#hj ring 27: 20 points\n",
"#hk ring 28: 20 points\n",
"#hl ring 29: 20 points\n",
"#hm ring 30: 20 points\n",
"#hn ring 31: 20 points\n",
"#ho ring 32: 20 points\n",
"#hp ring 34: 20 points\n",
"#hq ring 35: 20 points\n",
"#hr ring 36: 20 points\n",
"#hs ring 37: 15 points\n",
"#ht ring 38: 15 points\n",
"#hu ring 39: 15 points\n",
"Cost function before refinement: 2.525867489822442e-09\n",
"[ 7.94819903e-01 2.01828587e-02 1.46406651e-01 2.09912302e-03\n",
" 3.39439194e-04 -6.22506989e-04 2.33409978e-04 3.91231072e-04\n",
" 1.71393211e-05 9.50040983e-04 2.21434048e-04 1.00080130e+00\n",
" 5.09866094e-04 1.55010774e+01]\n",
" fun: 2.525867489822442e-09\n",
" jac: array([ 1.42323790e-07, -1.79260626e-07, 1.88627648e-07, -1.10164712e-07,\n",
" -1.54322602e-07, -2.68294318e-07, -1.39726886e-07, -3.87568388e-08,\n",
" -1.67690812e-07, -5.87259268e-07, 2.04025667e-07, 2.04965600e-07,\n",
" -4.08207946e-08, -1.61398846e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819903e-01, 2.01828587e-02, 1.46406651e-01, 2.09912302e-03,\n",
" 3.39439194e-04, -6.22506989e-04, 2.33409978e-04, 3.91231072e-04,\n",
" 1.71393211e-05, 9.50040983e-04, 2.21434048e-04, 1.00080130e+00,\n",
" 5.09866094e-04, 1.55010774e+01])\n",
"Cost function after refinement: 2.525867489822442e-09\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948199033098661, poni1=0.020182858720887556, poni2=0.14640665107384937, rot1=0.0020991230196772985, rot2=0.00033943919387853576, ex01=-0.0006225069891605293, ex02=0.0002334099783452268, ex11=0.00039123107198880513, ex12=1.7139321126038226e-05, ex21=0.0009500409827072972, ex22=0.0002214340476948044, scale1=1.0008012953947258, scale2=0.0005098660937141643, energy=15.501077373582975)\n",
"**************************************************\n",
"Re-extract frame #2\n",
"ControlPoints instance containing 7 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424589796245e-11\n",
"Containing 7 groups of points:\n",
"#hv ring 0: 70 points\n",
"#hw ring 1: 60 points\n",
"#hx ring 2: 50 points\n",
"#hy ring 3: 7 points\n",
"#hz ring 4: 40 points\n",
"#ia ring 5: 35 points\n",
"#ib ring 6: 30 points\n",
"Cost function before refinement: 2.0289716081658178e-09\n",
"[ 7.94819903e-01 2.01828587e-02 1.46406651e-01 2.09912302e-03\n",
" 3.39439194e-04 -6.22506989e-04 2.33409978e-04 3.91231072e-04\n",
" 1.71393211e-05 9.50040983e-04 2.21434048e-04 1.00080130e+00\n",
" 5.09866094e-04 1.55010774e+01]\n",
" fun: 2.0285338145698263e-09\n",
" jac: array([ 9.52151763e-08, -1.80376325e-07, -1.39827660e-06, 1.16836431e-06,\n",
" -1.55609419e-07, -2.88337305e-07, -1.87382272e-07, -3.88588862e-08,\n",
" -1.68729827e-07, -1.13809199e-06, -1.28680108e-06, 6.54376594e-07,\n",
" -4.11082444e-08, -1.31254202e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819891e-01, 2.01828814e-02, 1.46406827e-01, 2.09897641e-03,\n",
" 3.39458720e-04, -6.22470808e-04, 2.33433491e-04, 3.91235948e-04,\n",
" 1.71604935e-05, 9.50183792e-04, 2.21595517e-04, 1.00080121e+00,\n",
" 5.09871252e-04, 1.55010774e+01])\n",
"Cost function after refinement: 2.0285338145698263e-09\n",
"GonioParam(dist=0.7948198913621536, poni1=0.02018288135472124, poni2=0.14640682653124487, rot1=0.0020989764119467144, rot2=0.000339458719931755, ex01=-0.0006224708082557962, ex02=0.00023343349129348876, ex11=0.0003912359480476279, ex12=1.7160493543541974e-05, ex21=0.0009501837918304427, ex22=0.00022159551701039803, scale1=1.00080121328278, scale2=0.0005098712520250934, energy=15.501077390052906)\n",
"maxdelta on: poni2 (2) 0.14640665107384937 --> 0.14640682653124487\n",
"**************************************************\n",
"Re-extract frame #3\n",
"ControlPoints instance containing 9 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424581297901e-11\n",
"Containing 9 groups of points:\n",
"#ic ring 3: 40 points\n",
"#id ring 4: 40 points\n",
"#ie ring 5: 35 points\n",
"#if ring 6: 30 points\n",
"#ig ring 7: 30 points\n",
"#ih ring 8: 30 points\n",
"#ii ring 9: 25 points\n",
"#ij ring 10: 25 points\n",
"#ik ring 11: 25 points\n",
"Cost function before refinement: 1.994201345790515e-09\n",
"[ 7.94819891e-01 2.01828814e-02 1.46406827e-01 2.09897641e-03\n",
" 3.39458720e-04 -6.22470808e-04 2.33433491e-04 3.91235948e-04\n",
" 1.71604935e-05 9.50183792e-04 2.21595517e-04 1.00080121e+00\n",
" 5.09871252e-04 1.55010774e+01]\n",
" fun: 1.9935107318016827e-09\n",
" jac: array([ 1.07245337e-07, -1.83771703e-07, 2.21438422e-06, -1.71622834e-06,\n",
" -1.58572456e-07, -2.87020019e-07, -1.94399477e-07, -3.97455358e-08,\n",
" -1.70991485e-07, 1.08582775e-06, 9.85127205e-07, -1.67476275e-06,\n",
" -4.29763050e-08, -3.18360401e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819880e-01, 2.01829007e-02, 1.46406593e-01, 2.09915715e-03,\n",
" 3.39475419e-04, -6.22440582e-04, 2.33453964e-04, 3.91240134e-04,\n",
" 1.71785007e-05, 9.50069443e-04, 2.21491773e-04, 1.00080139e+00,\n",
" 5.09875778e-04, 1.55010774e+01])\n",
"Cost function after refinement: 1.9935107318016827e-09\n",
"GonioParam(dist=0.7948198800681063, poni1=0.020182900707789365, poni2=0.14640659333359882, rot1=0.002099157148607708, rot2=0.0003394754192576077, ex01=-0.0006224405820681487, ex02=0.0002334539635764792, ex11=0.0003912401336651575, ex12=1.717850072202974e-05, ex21=0.0009500694428961104, ex22=0.00022149177288883167, scale1=1.0008013896526833, scale2=0.00050987577787616, energy=15.501077423579561)\n",
"maxdelta on: poni2 (2) 0.14640682653124487 --> 0.14640659333359882\n",
"**************************************************\n",
"Re-extract frame #1\n",
"ControlPoints instance containing 3 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.99842456399843e-11\n",
"Containing 3 groups of points:\n",
"#il ring 0: 80 points\n",
"#im ring 1: 55 points\n",
"#in ring 2: 45 points\n",
"Cost function before refinement: 1.9916305875263023e-09\n",
"[ 7.94819880e-01 2.01829007e-02 1.46406593e-01 2.09915715e-03\n",
" 3.39475419e-04 -6.22440582e-04 2.33453964e-04 3.91240134e-04\n",
" 1.71785007e-05 9.50069443e-04 2.21491773e-04 1.00080139e+00\n",
" 5.09875778e-04 1.55010774e+01]\n",
" fun: 1.9916305875263023e-09\n",
" jac: array([ 5.56824503e-08, -1.88743452e-07, -2.05453283e-07, 2.28408156e-07,\n",
" -1.61812935e-07, -3.11046507e-07, -2.22815162e-07, -3.84833353e-08,\n",
" -1.77842868e-07, -5.82243219e-07, 3.58378192e-08, 3.81958456e-07,\n",
" -4.01560290e-08, -1.37393564e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819880e-01, 2.01829007e-02, 1.46406593e-01, 2.09915715e-03,\n",
" 3.39475419e-04, -6.22440582e-04, 2.33453964e-04, 3.91240134e-04,\n",
" 1.71785007e-05, 9.50069443e-04, 2.21491773e-04, 1.00080139e+00,\n",
" 5.09875778e-04, 1.55010774e+01])\n",
"Cost function after refinement: 1.9916305875263023e-09\n",
"GonioParam(dist=0.7948198800681063, poni1=0.020182900707789365, poni2=0.14640659333359882, rot1=0.002099157148607708, rot2=0.0003394754192576077, ex01=-0.0006224405820681487, ex02=0.0002334539635764792, ex11=0.0003912401336651575, ex12=1.717850072202974e-05, ex21=0.0009500694428961104, ex22=0.00022149177288883167, scale1=1.0008013896526833, scale2=0.00050987577787616, energy=15.501077423579561)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948198800681063, poni1=0.020182900707789365, poni2=0.14640659333359882, rot1=0.002099157148607708, rot2=0.0003394754192576077, ex01=-0.0006224405820681487, ex02=0.0002334539635764792, ex11=0.0003912401336651575, ex12=1.717850072202974e-05, ex21=0.0009500694428961104, ex22=0.00022149177288883167, scale1=1.0008013896526833, scale2=0.00050987577787616, energy=15.501077423579561)\n",
"**************************************************\n",
"Re-extract frame #8\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.99842456399843e-11\n",
"Containing 17 groups of points:\n",
"#io ring 30: 20 points\n",
"#ip ring 31: 20 points\n",
"#iq ring 32: 20 points\n",
"#ir ring 33: 20 points\n",
"#is ring 34: 20 points\n",
"#it ring 35: 20 points\n",
"#iu ring 36: 20 points\n",
"#iv ring 37: 20 points\n",
"#iw ring 38: 20 points\n",
"#ix ring 39: 20 points\n",
"#iy ring 40: 15 points\n",
"#iz ring 41: 15 points\n",
"#ja ring 42: 15 points\n",
"#jb ring 43: 15 points\n",
"#jc ring 44: 15 points\n",
"#jd ring 45: 15 points\n",
"#je ring 46: 15 points\n",
"Cost function before refinement: 1.984762272072607e-09\n",
"[ 7.94819880e-01 2.01829007e-02 1.46406593e-01 2.09915715e-03\n",
" 3.39475419e-04 -6.22440582e-04 2.33453964e-04 3.91240134e-04\n",
" 1.71785007e-05 9.50069443e-04 2.21491773e-04 1.00080139e+00\n",
" 5.09875778e-04 1.55010774e+01]\n",
" fun: 1.984762272072607e-09\n",
" jac: array([ 1.09516021e-08, -1.89095614e-07, -1.00117469e-07, 1.37806413e-07,\n",
" -1.64704755e-07, -3.53567378e-07, -2.29609919e-07, -3.94466778e-08,\n",
" -1.77297198e-07, -4.76919911e-07, 5.38153760e-08, 2.55224862e-07,\n",
" -4.49709261e-08, -1.42918198e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819880e-01, 2.01829007e-02, 1.46406593e-01, 2.09915715e-03,\n",
" 3.39475419e-04, -6.22440582e-04, 2.33453964e-04, 3.91240134e-04,\n",
" 1.71785007e-05, 9.50069443e-04, 2.21491773e-04, 1.00080139e+00,\n",
" 5.09875778e-04, 1.55010774e+01])\n",
"Cost function after refinement: 1.984762272072607e-09\n",
"GonioParam(dist=0.7948198800681063, poni1=0.020182900707789365, poni2=0.14640659333359882, rot1=0.002099157148607708, rot2=0.0003394754192576077, ex01=-0.0006224405820681487, ex02=0.0002334539635764792, ex11=0.0003912401336651575, ex12=1.717850072202974e-05, ex21=0.0009500694428961104, ex22=0.00022149177288883167, scale1=1.0008013896526833, scale2=0.00050987577787616, energy=15.501077423579561)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948198800681063, poni1=0.020182900707789365, poni2=0.14640659333359882, rot1=0.002099157148607708, rot2=0.0003394754192576077, ex01=-0.0006224405820681487, ex02=0.0002334539635764792, ex11=0.0003912401336651575, ex12=1.717850072202974e-05, ex21=0.0009500694428961104, ex22=0.00022149177288883167, scale1=1.0008013896526833, scale2=0.00050987577787616, energy=15.501077423579561)\n",
"**************************************************\n",
"Re-extract frame #5\n",
"ControlPoints instance containing 13 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.99842456399843e-11\n",
"Containing 13 groups of points:\n",
"#jf ring 11: 25 points\n",
"#jg ring 12: 25 points\n",
"#jh ring 13: 25 points\n",
"#ji ring 14: 25 points\n",
"#jj ring 15: 25 points\n",
"#jk ring 16: 25 points\n",
"#jl ring 17: 25 points\n",
"#jm ring 18: 25 points\n",
"#jn ring 19: 25 points\n",
"#jo ring 20: 25 points\n",
"#jp ring 21: 20 points\n",
"#jq ring 22: 20 points\n",
"#jr ring 23: 20 points\n",
"Cost function before refinement: 1.984863239256766e-09\n",
"[ 7.94819880e-01 2.01829007e-02 1.46406593e-01 2.09915715e-03\n",
" 3.39475419e-04 -6.22440582e-04 2.33453964e-04 3.91240134e-04\n",
" 1.71785007e-05 9.50069443e-04 2.21491773e-04 1.00080139e+00\n",
" 5.09875778e-04 1.55010774e+01]\n",
" fun: 1.984647554383448e-09\n",
" jac: array([ 4.46312265e-08, -1.89010625e-07, -9.12151353e-07, 7.93468661e-07,\n",
" -1.65070805e-07, -3.27766515e-07, -2.07962001e-07, -3.93815703e-08,\n",
" -1.77242564e-07, -1.09899272e-06, -4.68127602e-07, 8.27421665e-07,\n",
" -4.52903701e-08, -1.05302099e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819875e-01, 2.01829219e-02, 1.46406696e-01, 2.09906824e-03,\n",
" 3.39493916e-04, -6.22403855e-04, 2.33477266e-04, 3.91244547e-04,\n",
" 1.71983614e-05, 9.50192589e-04, 2.21544228e-04, 1.00080130e+00,\n",
" 5.09880853e-04, 1.55010774e+01])\n",
"Cost function after refinement: 1.984647554383448e-09\n",
"GonioParam(dist=0.794819875067016, poni1=0.020182921887113178, poni2=0.14640669554345512, rot1=0.0020990682375760256, rot2=0.0003394939160379866, ex01=-0.0006224038546453908, ex02=0.00023347726647047164, ex11=0.0003912445465124657, ex12=1.7198361392032484e-05, ex21=0.000950192589002446, ex22=0.00022154422827878477, scale1=1.0008012969370947, scale2=0.0005098808528258458, energy=15.501077435379042)\n",
"maxdelta on: ex21 (9) 0.0009500694428961104 --> 0.000950192589002446\n",
"**************************************************\n",
"Re-extract frame #11\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424557909998e-11\n",
"Containing 17 groups of points:\n",
"#js ring 53: 15 points\n",
"#jt ring 54: 13 points\n",
"#ju ring 55: 15 points\n",
"#jv ring 56: 15 points\n",
"#jw ring 57: 20 points\n",
"#jx ring 58: 20 points\n",
"#jy ring 59: 20 points\n",
"#jz ring 60: 20 points\n",
"#ka ring 61: 20 points\n",
"#kb ring 62: 20 points\n",
"#kc ring 63: 20 points\n",
"#kd ring 64: 20 points\n",
"#ke ring 65: 20 points\n",
"#kf ring 66: 20 points\n",
"#kg ring 67: 20 points\n",
"#kh ring 68: 25 points\n",
"#ki ring 69: 25 points\n",
"Cost function before refinement: 1.978969654683388e-09\n",
"[ 7.94819875e-01 2.01829219e-02 1.46406696e-01 2.09906824e-03\n",
" 3.39493916e-04 -6.22403855e-04 2.33477266e-04 3.91244547e-04\n",
" 1.71983614e-05 9.50192589e-04 2.21544228e-04 1.00080130e+00\n",
" 5.09880853e-04 1.55010774e+01]\n",
" fun: 1.9785686410547333e-09\n",
" jac: array([ 8.26543650e-08, -1.93008765e-07, 1.19421641e-06, -9.03533695e-07,\n",
" -1.66417769e-07, -2.98664509e-07, -2.05836346e-07, -4.22219419e-08,\n",
" -1.78348302e-07, 7.11051890e-07, -4.86300381e-07, -1.79879025e-06,\n",
" -4.53342754e-08, -3.53841215e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819865e-01, 2.01829452e-02, 1.46406551e-01, 2.09917755e-03,\n",
" 3.39514051e-04, -6.22367720e-04, 2.33502170e-04, 3.91249655e-04,\n",
" 1.72199395e-05, 9.50106560e-04, 2.21603065e-04, 1.00080151e+00,\n",
" 5.09886338e-04, 1.55010775e+01])\n",
"Cost function after refinement: 1.9785686410547333e-09\n",
"GonioParam(dist=0.7948198650667798, poni1=0.0201829452389741, poni2=0.14640655105687944, rot1=0.002099177554855674, rot2=0.0003395140506914149, ex01=-0.0006223677196436267, ex02=0.00023350217032250945, ex11=0.00039124965488624526, ex12=1.721993950399456e-05, ex21=0.0009501065598274794, ex22=0.0002216030650825976, scale1=1.000801514570214, scale2=0.0005098863377565018, energy=15.501077478189796)\n",
"maxdelta on: scale1 (11) 1.0008012969370947 --> 1.000801514570214\n",
"**************************************************\n",
"Re-extract frame #4\n",
"ControlPoints instance containing 12 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424535820013e-11\n",
"Containing 12 groups of points:\n",
"#kj ring 6: 30 points\n",
"#kk ring 7: 30 points\n",
"#kl ring 8: 30 points\n",
"#km ring 9: 25 points\n",
"#kn ring 10: 25 points\n",
"#ko ring 11: 25 points\n",
"#kp ring 12: 25 points\n",
"#kq ring 13: 25 points\n",
"#kr ring 14: 25 points\n",
"#ks ring 15: 25 points\n",
"#kt ring 16: 25 points\n",
"#ku ring 17: 25 points\n",
"Cost function before refinement: 1.984122302522027e-09\n",
"[ 7.94819865e-01 2.01829452e-02 1.46406551e-01 2.09917755e-03\n",
" 3.39514051e-04 -6.22367720e-04 2.33502170e-04 3.91249655e-04\n",
" 1.72199395e-05 9.50106560e-04 2.21603065e-04 1.00080151e+00\n",
" 5.09886338e-04 1.55010775e+01]\n",
" fun: 1.983744385149349e-09\n",
" jac: array([ 1.09147864e-07, -1.81261788e-07, -1.01333506e-06, 8.73180189e-07,\n",
" -1.54178507e-07, -2.83074401e-07, -1.71016622e-07, -3.48081219e-08,\n",
" -1.70066412e-07, -9.87300464e-07, -1.29101148e-06, 2.28059006e-07,\n",
" -3.61436556e-08, -1.82680190e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819848e-01, 2.01829739e-02, 1.46406711e-01, 2.09903936e-03,\n",
" 3.39538452e-04, -6.22322918e-04, 2.33529237e-04, 3.91255164e-04,\n",
" 1.72468554e-05, 9.50262817e-04, 2.21807390e-04, 1.00080148e+00,\n",
" 5.09892058e-04, 1.55010775e+01])\n",
"Cost function after refinement: 1.983744385149349e-09\n",
"GonioParam(dist=0.794819847792252, poni1=0.020182973926771403, poni2=0.1464067114345903, rot1=0.002099039359064439, rot2=0.00033953845209330486, ex01=-0.0006223229182482523, ex02=0.00023352923664584575, ex11=0.0003912551638705468, ex12=1.724685544037037e-05, ex21=0.00095026281711605, ex22=0.00022180738986642284, scale1=1.0008014784759518, scale2=0.0005098920581119873, energy=15.50107750710208)\n",
"maxdelta on: ex22 (10) 0.0002216030650825976 --> 0.00022180738986642284\n",
"**************************************************\n",
"CPU times: user 1min 4s, sys: 54.7 ms, total: 1min 4s\n",
"Wall time: 11.4 s\n"
]
}
],
"source": [
"%time renew(range(13))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "unauthorized-slovenia",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Re-extract frame #5\n",
"ControlPoints instance containing 13 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424520901518e-11\n",
"Containing 13 groups of points:\n",
"#kv ring 11: 25 points\n",
"#kw ring 12: 25 points\n",
"#kx ring 13: 25 points\n",
"#ky ring 14: 25 points\n",
"#kz ring 15: 25 points\n",
"#la ring 16: 25 points\n",
"#lb ring 17: 25 points\n",
"#lc ring 18: 25 points\n",
"#ld ring 19: 25 points\n",
"#le ring 20: 25 points\n",
"#lf ring 21: 20 points\n",
"#lg ring 22: 20 points\n",
"#lh ring 23: 20 points\n",
"Cost function before refinement: 1.992331051763856e-09\n",
"[ 7.94819848e-01 2.01829739e-02 1.46406711e-01 2.09903936e-03\n",
" 3.39538452e-04 -6.22322918e-04 2.33529237e-04 3.91255164e-04\n",
" 1.72468554e-05 9.50262817e-04 2.21807390e-04 1.00080148e+00\n",
" 5.09892058e-04 1.55010775e+01]\n",
" fun: 1.992076311888785e-09\n",
" jac: array([ 1.16277690e-07, -1.89127407e-07, 5.05439359e-07, -3.54844468e-07,\n",
" -1.61940122e-07, -2.84445183e-07, -1.69937840e-07, -3.99442344e-08,\n",
" -1.75274827e-07, 1.41175323e-07, -6.98938837e-07, -1.10997217e-06,\n",
" -4.24704024e-08, -2.95231984e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819824e-01, 2.01830130e-02, 1.46406607e-01, 2.09911258e-03,\n",
" 3.39571867e-04, -6.22264225e-04, 2.33564302e-04, 3.91263406e-04,\n",
" 1.72830223e-05, 9.50233686e-04, 2.21951612e-04, 1.00080171e+00,\n",
" 5.09900822e-04, 1.55010776e+01])\n",
"Cost function after refinement: 1.992076311888785e-09\n",
"GonioParam(dist=0.7948198237990555, poni1=0.020183012952065392, poni2=0.14640660714024212, rot1=0.00209911257906966, rot2=0.0003395718674559602, ex01=-0.0006222642247087417, ex02=0.0002335643022891949, ex11=0.0003912634061212142, ex12=1.72830223386136e-05, ex21=0.000950233686443795, ex22=0.00022195161165898, scale1=1.0008017075119824, scale2=0.0005099008216220978, energy=15.50107756802141)\n",
"maxdelta on: scale1 (11) 1.0008014784759518 --> 1.0008017075119824\n",
"**************************************************\n",
"Re-extract frame #10\n",
"ControlPoints instance containing 16 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424489467662e-11\n",
"Containing 16 groups of points:\n",
"#li ring 46: 15 points\n",
"#lj ring 47: 15 points\n",
"#lk ring 48: 15 points\n",
"#ll ring 49: 15 points\n",
"#lm ring 50: 15 points\n",
"#ln ring 51: 15 points\n",
"#lo ring 52: 15 points\n",
"#lp ring 53: 15 points\n",
"#lq ring 54: 15 points\n",
"#lr ring 55: 20 points\n",
"#ls ring 56: 20 points\n",
"#lt ring 58: 20 points\n",
"#lu ring 59: 20 points\n",
"#lv ring 60: 20 points\n",
"#lw ring 61: 20 points\n",
"#lx ring 62: 20 points\n",
"Cost function before refinement: 1.995729855184429e-09\n",
"[ 7.94819824e-01 2.01830130e-02 1.46406607e-01 2.09911258e-03\n",
" 3.39571867e-04 -6.22264225e-04 2.33564302e-04 3.91263406e-04\n",
" 1.72830223e-05 9.50233686e-04 2.21951612e-04 1.00080171e+00\n",
" 5.09900822e-04 1.55010776e+01]\n",
" fun: 1.995450220430426e-09\n",
" jac: array([ 8.61402316e-08, -1.86188824e-07, -3.16058854e-07, 3.04800829e-07,\n",
" -1.70377993e-07, -3.11708171e-07, -1.66900584e-07, -3.76711485e-08,\n",
" -1.74524503e-07, -5.46854434e-07, -8.14341988e-07, -1.86980120e-07,\n",
" -5.85516099e-08, -2.07383282e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819792e-01, 2.01830827e-02, 1.46406726e-01, 2.09899835e-03,\n",
" 3.39635718e-04, -6.22147410e-04, 2.33626849e-04, 3.91277524e-04,\n",
" 1.73484263e-05, 9.50438623e-04, 2.22256791e-04, 1.00080178e+00,\n",
" 5.09922764e-04, 1.55010776e+01])\n",
"Cost function after refinement: 1.995450220430426e-09\n",
"GonioParam(dist=0.7948197915175383, poni1=0.02018308272733293, poni2=0.146406725585005, rot1=0.002098998353312612, rot2=0.0003396357175290331, ex01=-0.000622147410387853, ex02=0.00023362684918461788, ex11=0.00039127752358759905, ex12=1.7348426338819653e-05, ex21=0.0009504386230969113, ex22=0.00022225679071752986, scale1=1.0008017775837925, scale2=0.0005099227641541743, energy=15.501077645739414)\n",
"maxdelta on: ex22 (10) 0.00022195161165898 --> 0.00022225679071752986\n",
"**************************************************\n",
"Re-extract frame #9\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424449365831e-11\n",
"Containing 17 groups of points:\n",
"#ly ring 38: 15 points\n",
"#lz ring 39: 15 points\n",
"#ma ring 40: 15 points\n",
"#mb ring 41: 15 points\n",
"#mc ring 42: 15 points\n",
"#md ring 43: 15 points\n",
"#me ring 44: 15 points\n",
"#mf ring 45: 15 points\n",
"#mg ring 46: 15 points\n",
"#mh ring 47: 15 points\n",
"#mi ring 48: 15 points\n",
"#mj ring 49: 15 points\n",
"#mk ring 50: 15 points\n",
"#ml ring 51: 15 points\n",
"#mm ring 52: 15 points\n",
"#mn ring 53: 15 points\n",
"#mo ring 54: 15 points\n",
"Cost function before refinement: 2.001590296727567e-09\n",
"[ 7.94819792e-01 2.01830827e-02 1.46406726e-01 2.09899835e-03\n",
" 3.39635718e-04 -6.22147410e-04 2.33626849e-04 3.91277524e-04\n",
" 1.73484263e-05 9.50438623e-04 2.22256791e-04 1.00080178e+00\n",
" 5.09922764e-04 1.55010776e+01]\n",
" fun: 2.001331714824601e-09\n",
" jac: array([ 1.14776324e-07, -1.89347178e-07, 1.11100860e-06, -8.47046181e-07,\n",
" -1.77979487e-07, -2.97402427e-07, -1.48208910e-07, -3.92112030e-08,\n",
" -1.77057536e-07, 5.04938157e-07, -1.79163693e-07, -1.37042139e-06,\n",
" -6.77793995e-08, -3.03773295e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819778e-01, 2.01831047e-02, 1.46406597e-01, 2.09909644e-03,\n",
" 3.39656327e-04, -6.22112972e-04, 2.33644012e-04, 3.91282064e-04,\n",
" 1.73689293e-05, 9.50380152e-04, 2.22277538e-04, 1.00080194e+00,\n",
" 5.09930613e-04, 1.55010777e+01])\n",
"Cost function after refinement: 2.001331714824601e-09\n",
"GonioParam(dist=0.7948197782266168, poni1=0.020183104653444556, poni2=0.14640659693191935, rot1=0.0020990964399560754, rot2=0.0003396563272795509, ex01=-0.0006221129716447511, ex02=0.0002336440115481796, ex11=0.0003912820641845317, ex12=1.736892932880696e-05, ex21=0.0009503801520358917, ex22=0.00022227753759730592, scale1=1.000801936276479, scale2=0.0005099306129042717, energy=15.501077680915895)\n",
"maxdelta on: scale1 (11) 1.0008017775837925 --> 1.000801936276479\n",
"**************************************************\n",
"Re-extract frame #11\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424431215065e-11\n",
"Containing 17 groups of points:\n",
"#mp ring 53: 15 points\n",
"#mq ring 54: 15 points\n",
"#mr ring 55: 15 points\n",
"#ms ring 56: 15 points\n",
"#mt ring 57: 20 points\n",
"#mu ring 58: 20 points\n",
"#mv ring 59: 20 points\n",
"#mw ring 60: 20 points\n",
"#mx ring 61: 20 points\n",
"#my ring 62: 20 points\n",
"#mz ring 63: 20 points\n",
"#na ring 64: 20 points\n",
"#nb ring 65: 20 points\n",
"#nc ring 66: 20 points\n",
"#nd ring 67: 20 points\n",
"#ne ring 68: 25 points\n",
"#nf ring 69: 25 points\n",
"Cost function before refinement: 2.021531328595229e-09\n",
"[ 7.94819778e-01 2.01831047e-02 1.46406597e-01 2.09909644e-03\n",
" 3.39656327e-04 -6.22112972e-04 2.33644012e-04 3.91282064e-04\n",
" 1.73689293e-05 9.50380152e-04 2.22277538e-04 1.00080194e+00\n",
" 5.09930613e-04 1.55010777e+01]\n",
" fun: 2.0213552093631653e-09\n",
" jac: array([ 1.52068561e-07, -1.78319947e-07, -7.19583460e-07, 6.25053812e-07,\n",
" -1.89204061e-07, -2.56878534e-07, -1.73401609e-07, -2.98089192e-08,\n",
" -1.78225167e-07, -1.06421899e-06, -2.19362362e-07, 8.60898983e-07,\n",
" -9.20176504e-08, -1.05564671e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819761e-01, 2.01831251e-02, 1.46406679e-01, 2.09902483e-03,\n",
" 3.39678004e-04, -6.22083542e-04, 2.33663877e-04, 3.91285479e-04,\n",
" 1.73893478e-05, 9.50502075e-04, 2.22302669e-04, 1.00080184e+00,\n",
" 5.09941155e-04, 1.55010777e+01])\n",
"Cost function after refinement: 2.0213552093631653e-09\n",
"GonioParam(dist=0.7948197608048234, poni1=0.020183125082738097, poni2=0.14640667937127594, rot1=0.0020990248304250557, rot2=0.0003396780035158121, ex01=-0.0006220835422564752, ex02=0.0002336638773703706, ex11=0.00039128547925485624, ex12=1.738934776384714e-05, ex21=0.0009505020746943708, ex22=0.00022230266893086666, scale1=1.0008018376472552, scale2=0.0005099411549418821, energy=15.501077693009952)\n",
"maxdelta on: ex21 (9) 0.0009503801520358917 --> 0.0009505020746943708\n",
"**************************************************\n",
"Re-extract frame #7\n",
"ControlPoints instance containing 16 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424424974634e-11\n",
"Containing 16 groups of points:\n",
"#ng ring 23: 20 points\n",
"#nh ring 24: 20 points\n",
"#ni ring 25: 20 points\n",
"#nj ring 26: 20 points\n",
"#nk ring 27: 20 points\n",
"#nl ring 28: 20 points\n",
"#nm ring 29: 20 points\n",
"#nn ring 30: 20 points\n",
"#no ring 31: 20 points\n",
"#np ring 32: 20 points\n",
"#nq ring 34: 20 points\n",
"#nr ring 35: 20 points\n",
"#ns ring 36: 20 points\n",
"#nt ring 37: 15 points\n",
"#nu ring 38: 15 points\n",
"#nv ring 39: 15 points\n",
"Cost function before refinement: 2.037492714682155e-09\n",
"[ 7.94819761e-01 2.01831251e-02 1.46406679e-01 2.09902483e-03\n",
" 3.39678004e-04 -6.22083542e-04 2.33663877e-04 3.91285479e-04\n",
" 1.73893478e-05 9.50502075e-04 2.22302669e-04 1.00080184e+00\n",
" 5.09941155e-04 1.55010777e+01]\n",
" fun: 2.037407442157624e-09\n",
" jac: array([ 1.97438362e-07, -1.80825675e-07, 6.19159617e-07, -4.54851387e-07,\n",
" -1.93360842e-07, -2.19084984e-07, -1.58409781e-07, -3.14960610e-08,\n",
" -1.79548750e-07, 5.71702925e-08, 1.36723724e-07, -4.98305837e-07,\n",
" -9.64473092e-08, -2.23844992e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819731e-01, 2.01831521e-02, 1.46406587e-01, 2.09909282e-03,\n",
" 3.39706908e-04, -6.22050792e-04, 2.33687557e-04, 3.91290187e-04,\n",
" 1.74161877e-05, 9.50493529e-04, 2.22282231e-04, 1.00080191e+00,\n",
" 5.09955572e-04, 1.55010777e+01])\n",
"Cost function after refinement: 2.037407442157624e-09\n",
"GonioParam(dist=0.7948197312906387, poni1=0.020183152113566093, poni2=0.14640658681585159, rot1=0.0020990928241409476, rot2=0.0003397069081702759, ex01=-0.0006220507922142037, ex02=0.0002336875573457436, ex11=0.0003912901874612864, ex12=1.7416187709954596e-05, ex21=0.0009504935285609813, ex22=0.00022228223070793013, scale1=1.000801912136784, scale2=0.0005099555724222475, energy=15.501077726471546)\n",
"maxdelta on: poni2 (2) 0.14640667937127594 --> 0.14640658681585159\n",
"**************************************************\n",
"Re-extract frame #1\n",
"ControlPoints instance containing 3 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424407708736e-11\n",
"Containing 3 groups of points:\n",
"#nw ring 0: 80 points\n",
"#nx ring 1: 55 points\n",
"#ny ring 2: 45 points\n",
"Cost function before refinement: 2.0288533035716235e-09\n",
"[ 7.94819731e-01 2.01831521e-02 1.46406587e-01 2.09909282e-03\n",
" 3.39706908e-04 -6.22050792e-04 2.33687557e-04 3.91290187e-04\n",
" 1.74161877e-05 9.50493529e-04 2.22282231e-04 1.00080191e+00\n",
" 5.09955572e-04 1.55010777e+01]\n",
" fun: 2.0288533035716235e-09\n",
" jac: array([ 1.83257715e-07, -1.49760937e-07, -5.27204478e-08, 8.66858976e-08,\n",
" -1.67833900e-07, -2.27550609e-07, -1.63983481e-07, -2.53726898e-08,\n",
" -1.49610588e-07, -4.98811342e-07, -1.09187832e-08, 2.07964252e-07,\n",
" -9.09932509e-08, -1.61033470e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819731e-01, 2.01831521e-02, 1.46406587e-01, 2.09909282e-03,\n",
" 3.39706908e-04, -6.22050792e-04, 2.33687557e-04, 3.91290187e-04,\n",
" 1.74161877e-05, 9.50493529e-04, 2.22282231e-04, 1.00080191e+00,\n",
" 5.09955572e-04, 1.55010777e+01])\n",
"Cost function after refinement: 2.0288533035716235e-09\n",
"GonioParam(dist=0.7948197312906387, poni1=0.020183152113566093, poni2=0.14640658681585159, rot1=0.0020990928241409476, rot2=0.0003397069081702759, ex01=-0.0006220507922142037, ex02=0.0002336875573457436, ex11=0.0003912901874612864, ex12=1.7416187709954596e-05, ex21=0.0009504935285609813, ex22=0.00022228223070793013, scale1=1.000801912136784, scale2=0.0005099555724222475, energy=15.501077726471546)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948197312906387, poni1=0.020183152113566093, poni2=0.14640658681585159, rot1=0.0020990928241409476, rot2=0.0003397069081702759, ex01=-0.0006220507922142037, ex02=0.0002336875573457436, ex11=0.0003912901874612864, ex12=1.7416187709954596e-05, ex21=0.0009504935285609813, ex22=0.00022228223070793013, scale1=1.000801912136784, scale2=0.0005099555724222475, energy=15.501077726471546)\n",
"**************************************************\n",
"Re-extract frame #8\n",
"ControlPoints instance containing 17 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424407708736e-11\n",
"Containing 17 groups of points:\n",
"#nz ring 30: 20 points\n",
"#oa ring 31: 20 points\n",
"#ob ring 32: 20 points\n",
"#oc ring 33: 20 points\n",
"#od ring 34: 20 points\n",
"#oe ring 35: 20 points\n",
"#of ring 36: 20 points\n",
"#og ring 37: 20 points\n",
"#oh ring 38: 20 points\n",
"#oi ring 39: 20 points\n",
"#oj ring 40: 15 points\n",
"#ok ring 41: 15 points\n",
"#ol ring 42: 15 points\n",
"#om ring 43: 15 points\n",
"#on ring 44: 15 points\n",
"#oo ring 45: 15 points\n",
"#op ring 46: 15 points\n",
"Cost function before refinement: 2.0544713808554787e-09\n",
"[ 7.94819731e-01 2.01831521e-02 1.46406587e-01 2.09909282e-03\n",
" 3.39706908e-04 -6.22050792e-04 2.33687557e-04 3.91290187e-04\n",
" 1.74161877e-05 9.50493529e-04 2.22282231e-04 1.00080191e+00\n",
" 5.09955572e-04 1.55010777e+01]\n",
" fun: 2.054372713776567e-09\n",
" jac: array([ 1.63235500e-07, -1.49212963e-07, -3.60931373e-07, 3.38239619e-07,\n",
" -1.67404696e-07, -2.47268656e-07, -1.67460191e-07, -2.48330415e-08,\n",
" -1.49515441e-07, -8.02340157e-07, -6.44373086e-08, 5.59200931e-07,\n",
" -9.03939558e-08, -1.31720441e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819709e-01, 2.01831728e-02, 1.46406637e-01, 2.09904590e-03,\n",
" 3.39730132e-04, -6.22016489e-04, 2.33710789e-04, 3.91293633e-04,\n",
" 1.74369298e-05, 9.50604836e-04, 2.22291170e-04, 1.00080183e+00,\n",
" 5.09968113e-04, 1.55010777e+01])\n",
"Cost function after refinement: 2.054372713776567e-09\n",
"GonioParam(dist=0.7948197086451868, poni1=0.020183172813689372, poni2=0.1464066368873986, rot1=0.002099045900591878, rot2=0.0003397301320092527, ex01=-0.0006220164889502249, ex02=0.0002337107888835396, ex11=0.00039129363251732603, ex12=1.7436929795597158e-05, ex21=0.000950604836183163, ex22=0.00022229117001321664, scale1=1.000801834559555, scale2=0.0005099681126599467, energy=15.501077744744954)\n",
"maxdelta on: ex21 (9) 0.0009504935285609813 --> 0.000950604836183163\n",
"**************************************************\n",
"Re-extract frame #3\n",
"ControlPoints instance containing 9 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424398279813e-11\n",
"Containing 9 groups of points:\n",
"#oq ring 3: 40 points\n",
"#or ring 4: 40 points\n",
"#os ring 5: 35 points\n",
"#ot ring 6: 30 points\n",
"#ou ring 7: 30 points\n",
"#ov ring 8: 30 points\n",
"#ow ring 9: 25 points\n",
"#ox ring 10: 25 points\n",
"#oy ring 11: 25 points\n",
"Cost function before refinement: 2.0506342667690335e-09\n",
"[ 7.94819709e-01 2.01831728e-02 1.46406637e-01 2.09904590e-03\n",
" 3.39730132e-04 -6.22016489e-04 2.33710789e-04 3.91293633e-04\n",
" 1.74369298e-05 9.50604836e-04 2.22291170e-04 1.00080183e+00\n",
" 5.09968113e-04 1.55010777e+01]\n",
" fun: 2.050530880156948e-09\n",
" jac: array([ 1.83006062e-07, -1.60717053e-07, 6.79348250e-07, -4.99564733e-07,\n",
" -1.77458790e-07, -2.34664537e-07, -1.58160263e-07, -3.08235713e-08,\n",
" -1.58943205e-07, -4.15686695e-08, 3.47541597e-07, -3.51421886e-07,\n",
" -9.62298967e-08, -2.10396482e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819677e-01, 2.01832004e-02, 1.46406520e-01, 2.09913160e-03,\n",
" 3.39760575e-04, -6.21976232e-04, 2.33737922e-04, 3.91298920e-04,\n",
" 1.74641968e-05, 9.50611967e-04, 2.22231549e-04, 1.00080189e+00,\n",
" 5.09984621e-04, 1.55010778e+01])\n",
"Cost function after refinement: 2.050530880156948e-09\n",
"GonioParam(dist=0.7948196772502014, poni1=0.020183200384959278, poni2=0.14640652034410984, rot1=0.0020991316017281696, rot2=0.00033976057535106994, ex01=-0.0006219762318702135, ex02=0.0002337379215319168, ex11=0.00039129892035073745, ex12=1.746419675891243e-05, ex21=0.0009506119673555036, ex22=0.00022223154869139766, scale1=1.0008018948465467, scale2=0.0005099846210540477, energy=15.501077780838811)\n",
"maxdelta on: poni2 (2) 0.1464066368873986 --> 0.14640652034410984\n",
"**************************************************\n",
"Re-extract frame #6\n",
"ControlPoints instance containing 15 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.99842437965569e-11\n",
"Containing 15 groups of points:\n",
"#oz ring 17: 25 points\n",
"#pa ring 18: 25 points\n",
"#pb ring 19: 25 points\n",
"#pc ring 20: 25 points\n",
"#pd ring 21: 20 points\n",
"#pe ring 22: 20 points\n",
"#pf ring 23: 20 points\n",
"#pg ring 24: 20 points\n",
"#ph ring 25: 20 points\n",
"#pi ring 26: 20 points\n",
"#pj ring 27: 20 points\n",
"#pk ring 28: 20 points\n",
"#pl ring 29: 20 points\n",
"#pm ring 30: 20 points\n",
"#pn ring 31: 20 points\n",
"Cost function before refinement: 2.061056132548845e-09\n",
"[ 7.94819677e-01 2.01832004e-02 1.46406520e-01 2.09913160e-03\n",
" 3.39760575e-04 -6.21976232e-04 2.33737922e-04 3.91298920e-04\n",
" 1.74641968e-05 9.50611967e-04 2.22231549e-04 1.00080189e+00\n",
" 5.09984621e-04 1.55010778e+01]\n",
" fun: 2.061056132548845e-09\n",
" jac: array([ 2.02294548e-07, -1.64476352e-07, -1.42986373e-07, 1.62421053e-07,\n",
" -1.86898189e-07, -2.13112399e-07, -1.47877855e-07, -3.49504221e-08,\n",
" -1.60333605e-07, -6.66622030e-07, 7.06346140e-08, 4.11553010e-07,\n",
" -1.06874218e-07, -1.46553271e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 15\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819677e-01, 2.01832004e-02, 1.46406520e-01, 2.09913160e-03,\n",
" 3.39760575e-04, -6.21976232e-04, 2.33737922e-04, 3.91298920e-04,\n",
" 1.74641968e-05, 9.50611967e-04, 2.22231549e-04, 1.00080189e+00,\n",
" 5.09984621e-04, 1.55010778e+01])\n",
"Cost function after refinement: 2.061056132548845e-09\n",
"GonioParam(dist=0.7948196772502014, poni1=0.020183200384959278, poni2=0.14640652034410984, rot1=0.0020991316017281696, rot2=0.00033976057535106994, ex01=-0.0006219762318702135, ex02=0.0002337379215319168, ex11=0.00039129892035073745, ex12=1.746419675891243e-05, ex21=0.0009506119673555036, ex22=0.00022223154869139766, scale1=1.0008018948465467, scale2=0.0005099846210540477, energy=15.501077780838811)\n",
"Restore wavelength and former parameters\n",
"GonioParam(dist=0.7948196772502014, poni1=0.020183200384959278, poni2=0.14640652034410984, rot1=0.0020991316017281696, rot2=0.00033976057535106994, ex01=-0.0006219762318702135, ex02=0.0002337379215319168, ex11=0.00039129892035073745, ex12=1.746419675891243e-05, ex21=0.0009506119673555036, ex22=0.00022223154869139766, scale1=1.0008018948465467, scale2=0.0005099846210540477, energy=15.501077780838811)\n",
"**************************************************\n",
"Re-extract frame #4\n",
"ControlPoints instance containing 12 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.99842437965569e-11\n",
"Containing 12 groups of points:\n",
"#po ring 6: 30 points\n",
"#pp ring 7: 30 points\n",
"#pq ring 8: 30 points\n",
"#pr ring 9: 25 points\n",
"#ps ring 10: 25 points\n",
"#pt ring 11: 25 points\n",
"#pu ring 12: 25 points\n",
"#pv ring 13: 25 points\n",
"#pw ring 14: 25 points\n",
"#px ring 15: 25 points\n",
"#py ring 16: 25 points\n",
"#pz ring 17: 25 points\n",
"Cost function before refinement: 2.0731561865826213e-09\n",
"[ 7.94819677e-01 2.01832004e-02 1.46406520e-01 2.09913160e-03\n",
" 3.39760575e-04 -6.21976232e-04 2.33737922e-04 3.91298920e-04\n",
" 1.74641968e-05 9.50611967e-04 2.22231549e-04 1.00080189e+00\n",
" 5.09984621e-04 1.55010778e+01]\n",
" fun: 2.072957057644144e-09\n",
" jac: array([ 2.30030043e-07, -1.75745618e-07, 6.88487942e-07, -5.15722163e-07,\n",
" -1.97905997e-07, -1.95283953e-07, -1.26631579e-07, -4.21943241e-08,\n",
" -1.68966214e-07, -1.32148293e-07, 7.07570506e-07, -6.18934410e-08,\n",
" -1.14559321e-07, -1.80462595e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819616e-01, 2.01832471e-02, 1.46406338e-01, 2.09926855e-03,\n",
" 3.39813129e-04, -6.21924375e-04, 2.33771548e-04, 3.91310125e-04,\n",
" 1.75090653e-05, 9.50647059e-04, 2.22043655e-04, 1.00080191e+00,\n",
" 5.10015042e-04, 1.55010778e+01])\n",
"Cost function after refinement: 2.072957057644144e-09\n",
"GonioParam(dist=0.7948196161662981, poni1=0.020183247053768946, poni2=0.14640633751785695, rot1=0.0020992685504600808, rot2=0.0003398131287941569, ex01=-0.000621924374704389, ex02=0.0002337715482314376, ex11=0.0003913101249480904, ex12=1.7509065314936607e-05, ex21=0.0009506470590045492, ex22=0.0002220436551112529, scale1=1.0008019112821953, scale2=0.0005100150419955145, energy=15.501077828760202)\n",
"maxdelta on: ex22 (10) 0.00022223154869139766 --> 0.0002220436551112529\n",
"**************************************************\n",
"Re-extract frame #2\n",
"ControlPoints instance containing 7 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.99842435492866e-11\n",
"Containing 7 groups of points:\n",
"#qa ring 0: 70 points\n",
"#qb ring 1: 60 points\n",
"#qc ring 2: 50 points\n",
"#qd ring 3: 10 points\n",
"#qe ring 4: 40 points\n",
"#qf ring 5: 35 points\n",
"#qg ring 6: 30 points\n",
"Cost function before refinement: 2.0699351195566363e-09\n",
"[ 7.94819616e-01 2.01832471e-02 1.46406338e-01 2.09926855e-03\n",
" 3.39813129e-04 -6.21924375e-04 2.33771548e-04 3.91310125e-04\n",
" 1.75090653e-05 9.50647059e-04 2.22043655e-04 1.00080191e+00\n",
" 5.10015042e-04 1.55010778e+01]\n",
" fun: 2.0697986717713375e-09\n",
" jac: array([ 2.21898558e-07, -1.47856949e-07, -3.48785870e-07, 3.17256333e-07,\n",
" -1.73894973e-07, -2.00758791e-07, -1.26224013e-07, -3.22023797e-08,\n",
" -1.43425898e-07, -8.71616644e-07, 2.47059433e-07, 7.89583298e-07,\n",
" -1.05255514e-07, -1.09421309e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819584e-01, 2.01832688e-02, 1.46406389e-01, 2.09922197e-03,\n",
" 3.39838661e-04, -6.21894898e-04, 2.33790081e-04, 3.91314853e-04,\n",
" 1.75301238e-05, 9.50775034e-04, 2.22007381e-04, 1.00080180e+00,\n",
" 5.10030496e-04, 1.55010778e+01])\n",
"Cost function after refinement: 2.0697986717713375e-09\n",
"GonioParam(dist=0.794819583586059, poni1=0.02018326876285449, poni2=0.1464063887283163, rot1=0.0020992219693226526, rot2=0.00033983866091061, ex01=-0.0006218948983098678, ex02=0.00023379008106277728, ex11=0.00039131485306008766, ex12=1.7530123811798643e-05, ex21=0.0009507750340535289, ex22=0.00022200738062838716, scale1=1.0008017953516863, scale2=0.00051003049612848, energy=15.501077844825979)\n",
"maxdelta on: ex21 (9) 0.0009506470590045492 --> 0.0009507750340535289\n",
"**************************************************\n",
"Re-extract frame #0\n",
"ControlPoints instance containing 1 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424346638855e-11\n",
"Containing 1 groups of points:\n",
"#qh ring 0: 80 points\n",
"Cost function before refinement: 2.072342705793995e-09\n",
"[ 7.94819584e-01 2.01832688e-02 1.46406389e-01 2.09922197e-03\n",
" 3.39838661e-04 -6.21894898e-04 2.33790081e-04 3.91314853e-04\n",
" 1.75301238e-05 9.50775034e-04 2.22007381e-04 1.00080180e+00\n",
" 5.10030496e-04 1.55010778e+01]\n",
" fun: 2.072202601072138e-09\n",
" jac: array([ 2.60160583e-07, -1.58610592e-07, 6.39619402e-07, -4.80415054e-07,\n",
" -1.82894262e-07, -1.90111704e-07, -9.96313950e-08, -3.33620672e-08,\n",
" -1.53283231e-07, -1.42609901e-07, 5.06698036e-07, -1.66299557e-07,\n",
" -1.06781275e-07, -1.96844974e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819522e-01, 2.01833063e-02, 1.46406237e-01, 2.09933571e-03,\n",
" 3.39881963e-04, -6.21849888e-04, 2.33813670e-04, 3.91322752e-04,\n",
" 1.75664149e-05, 9.50808798e-04, 2.21887416e-04, 1.00080183e+00,\n",
" 5.10055777e-04, 1.55010779e+01])\n",
"Cost function after refinement: 2.072202601072138e-09\n",
"GonioParam(dist=0.7948195219908408, poni1=0.020183306315253384, poni2=0.14640623729301372, rot1=0.0020993357116495157, rot2=0.0003398819626737394, ex01=-0.0006218498877561624, ex02=0.00023381366963811024, ex11=0.00039132275181164, ex12=1.7566414913056872e-05, ex21=0.0009508087981536737, ex22=0.00022188741558340586, scale1=1.000801834724513, scale2=0.0005100557774982815, energy=15.501077891430691)\n",
"maxdelta on: poni2 (2) 0.1464063887283163 --> 0.14640623729301372\n",
"**************************************************\n",
"Re-extract frame #12\n",
"ControlPoints instance containing 15 group of point:\n",
"LaB6 Calibrant with 92 reflections at wavelength 7.998424322591221e-11\n",
"Containing 15 groups of points:\n",
"#qi ring 61: 20 points\n",
"#qj ring 62: 20 points\n",
"#qk ring 63: 20 points\n",
"#ql ring 64: 20 points\n",
"#qm ring 66: 20 points\n",
"#qn ring 67: 25 points\n",
"#qo ring 68: 25 points\n",
"#qp ring 69: 25 points\n",
"#qq ring 70: 25 points\n",
"#qr ring 71: 25 points\n",
"#qs ring 72: 25 points\n",
"#qt ring 73: 25 points\n",
"#qu ring 74: 25 points\n",
"#qv ring 75: 25 points\n",
"#qw ring 76: 25 points\n",
"Cost function before refinement: 2.0756394825016054e-09\n",
"[ 7.94819522e-01 2.01833063e-02 1.46406237e-01 2.09933571e-03\n",
" 3.39881963e-04 -6.21849888e-04 2.33813670e-04 3.91322752e-04\n",
" 1.75664149e-05 9.50808798e-04 2.21887416e-04 1.00080183e+00\n",
" 5.10055777e-04 1.55010779e+01]\n",
" fun: 2.075483678340505e-09\n",
" jac: array([ 3.67885274e-07, -1.56813718e-07, 5.23696311e-07, -3.90956169e-07,\n",
" -1.79398635e-07, -8.94531283e-08, -1.74928107e-07, -3.31377555e-08,\n",
" -1.49998277e-07, -1.10250149e-07, -2.72116018e-07, -7.44973072e-07,\n",
" -1.03774733e-07, -3.06642918e-07])\n",
" message: 'Optimization terminated successfully'\n",
" nfev: 17\n",
" nit: 1\n",
" njev: 1\n",
" status: 0\n",
" success: True\n",
" x: array([ 7.94819443e-01, 2.01833399e-02, 1.46406125e-01, 2.09941953e-03,\n",
" 3.39920426e-04, -6.21830709e-04, 2.33851174e-04, 3.91329857e-04,\n",
" 1.75985745e-05, 9.50832436e-04, 2.21945757e-04, 1.00080199e+00,\n",
" 5.10078027e-04, 1.55010780e+01])\n",
"Cost function after refinement: 2.075483678340505e-09\n",
"GonioParam(dist=0.7948194431163379, poni1=0.020183339936072006, poni2=0.14640612501266675, rot1=0.002099419532546058, rot2=0.0003399204256923382, ex01=-0.0006218307090297266, ex02=0.00023385117417677227, ex11=0.00039132985653742643, ex12=1.759857450288529e-05, ex21=0.0009508324357556939, ex22=0.0002219457571837978, scale1=1.0008019944465374, scale2=0.0005100780267729206, energy=15.50107795717485)\n",
"maxdelta on: scale1 (11) 1.000801834724513 --> 1.0008019944465374\n",
"**************************************************\n",
"CPU times: user 1min, sys: 84.1 ms, total: 1min\n",
"Wall time: 11 s\n"
]
}
],
"source": [
"%time renew(range(13))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "hispanic-papua",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"/* global mpl */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function () {\n",
" if (typeof WebSocket !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof MozWebSocket !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert(\n",
" 'Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.'\n",
" );\n",
" }\n",
"};\n",
"\n",
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = this.ws.binaryType !== undefined;\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById('mpl-warnings');\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent =\n",
" 'This browser does not support binary websocket messages. ' +\n",
" 'Performance may be slow.';\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = document.createElement('div');\n",
" this.root.setAttribute('style', 'display: inline-block');\n",
" this._root_extra_style(this.root);\n",
"\n",
" parent_element.appendChild(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
" fig.send_message('send_image_mode', {});\n",
" if (fig.ratio !== 1) {\n",
" fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
" }\n",
" fig.send_message('refresh', {});\n",
" };\n",
"\n",
" this.imageObj.onload = function () {\n",
" if (fig.image_mode === 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function () {\n",
" fig.ws.close();\n",
" };\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"};\n",
"\n",
"mpl.figure.prototype._init_header = function () {\n",
" var titlebar = document.createElement('div');\n",
" titlebar.classList =\n",
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
" var titletext = document.createElement('div');\n",
" titletext.classList = 'ui-dialog-title';\n",
" titletext.setAttribute(\n",
" 'style',\n",
" 'width: 100%; text-align: center; padding: 3px;'\n",
" );\n",
" titlebar.appendChild(titletext);\n",
" this.root.appendChild(titlebar);\n",
" this.header = titletext;\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._init_canvas = function () {\n",
" var fig = this;\n",
"\n",
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
" canvas_div.setAttribute(\n",
" 'style',\n",
" 'border: 1px solid #ddd;' +\n",
" 'box-sizing: content-box;' +\n",
" 'clear: both;' +\n",
" 'min-height: 1px;' +\n",
" 'min-width: 1px;' +\n",
" 'outline: 0;' +\n",
" 'overflow: hidden;' +\n",
" 'position: relative;' +\n",
" 'resize: both;'\n",
" );\n",
"\n",
" function on_keyboard_event_closure(name) {\n",
" return function (event) {\n",
" return fig.key_event(event, name);\n",
" };\n",
" }\n",
"\n",
" canvas_div.addEventListener(\n",
" 'keydown',\n",
" on_keyboard_event_closure('key_press')\n",
" );\n",
" canvas_div.addEventListener(\n",
" 'keyup',\n",
" on_keyboard_event_closure('key_release')\n",
" );\n",
"\n",
" this._canvas_extra_style(canvas_div);\n",
" this.root.appendChild(canvas_div);\n",
"\n",
" var canvas = (this.canvas = document.createElement('canvas'));\n",
" canvas.classList.add('mpl-canvas');\n",
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
"\n",
" this.context = canvas.getContext('2d');\n",
"\n",
" var backingStore =\n",
" this.context.backingStorePixelRatio ||\n",
" this.context.webkitBackingStorePixelRatio ||\n",
" this.context.mozBackingStorePixelRatio ||\n",
" this.context.msBackingStorePixelRatio ||\n",
" this.context.oBackingStorePixelRatio ||\n",
" this.context.backingStorePixelRatio ||\n",
" 1;\n",
"\n",
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
" 'canvas'\n",
" ));\n",
" rubberband_canvas.setAttribute(\n",
" 'style',\n",
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
" );\n",
"\n",
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
" if (this.ResizeObserver === undefined) {\n",
" if (window.ResizeObserver !== undefined) {\n",
" this.ResizeObserver = window.ResizeObserver;\n",
" } else {\n",
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
" this.ResizeObserver = obs.ResizeObserver;\n",
" }\n",
" }\n",
"\n",
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
" var nentries = entries.length;\n",
" for (var i = 0; i < nentries; i++) {\n",
" var entry = entries[i];\n",
" var width, height;\n",
" if (entry.contentBoxSize) {\n",
" if (entry.contentBoxSize instanceof Array) {\n",
" // Chrome 84 implements new version of spec.\n",
" width = entry.contentBoxSize[0].inlineSize;\n",
" height = entry.contentBoxSize[0].blockSize;\n",
" } else {\n",
" // Firefox implements old version of spec.\n",
" width = entry.contentBoxSize.inlineSize;\n",
" height = entry.contentBoxSize.blockSize;\n",
" }\n",
" } else {\n",
" // Chrome <84 implements even older version of spec.\n",
" width = entry.contentRect.width;\n",
" height = entry.contentRect.height;\n",
" }\n",
"\n",
" // Keep the size of the canvas and rubber band canvas in sync with\n",
" // the canvas container.\n",
" if (entry.devicePixelContentBoxSize) {\n",
" // Chrome 84 implements new version of spec.\n",
" canvas.setAttribute(\n",
" 'width',\n",
" entry.devicePixelContentBoxSize[0].inlineSize\n",
" );\n",
" canvas.setAttribute(\n",
" 'height',\n",
" entry.devicePixelContentBoxSize[0].blockSize\n",
" );\n",
" } else {\n",
" canvas.setAttribute('width', width * fig.ratio);\n",
" canvas.setAttribute('height', height * fig.ratio);\n",
" }\n",
" canvas.setAttribute(\n",
" 'style',\n",
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
" );\n",
"\n",
" rubberband_canvas.setAttribute('width', width);\n",
" rubberband_canvas.setAttribute('height', height);\n",
"\n",
" // And update the size in Python. We ignore the initial 0/0 size\n",
" // that occurs as the element is placed into the DOM, which should\n",
" // otherwise not happen due to the minimum size styling.\n",
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
" fig.request_resize(width, height);\n",
" }\n",
" }\n",
" });\n",
" this.resizeObserverInstance.observe(canvas_div);\n",
"\n",
" function on_mouse_event_closure(name) {\n",
" return function (event) {\n",
" return fig.mouse_event(event, name);\n",
" };\n",
" }\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mousedown',\n",
" on_mouse_event_closure('button_press')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseup',\n",
" on_mouse_event_closure('button_release')\n",
" );\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband_canvas.addEventListener(\n",
" 'mousemove',\n",
" on_mouse_event_closure('motion_notify')\n",
" );\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseenter',\n",
" on_mouse_event_closure('figure_enter')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseleave',\n",
" on_mouse_event_closure('figure_leave')\n",
" );\n",
"\n",
" canvas_div.addEventListener('wheel', function (event) {\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" on_mouse_event_closure('scroll')(event);\n",
" });\n",
"\n",
" canvas_div.appendChild(canvas);\n",
" canvas_div.appendChild(rubberband_canvas);\n",
"\n",
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
" this.rubberband_context.strokeStyle = '#000000';\n",
"\n",
" this._resize_canvas = function (width, height, forward) {\n",
" if (forward) {\n",
" canvas_div.style.width = width + 'px';\n",
" canvas_div.style.height = height + 'px';\n",
" }\n",
" };\n",
"\n",
" // Disable right mouse context menu.\n",
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
" event.preventDefault();\n",
" return false;\n",
" });\n",
"\n",
" function set_focus() {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'mpl-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" continue;\n",
" }\n",
"\n",
" var button = (fig.buttons[name] = document.createElement('button'));\n",
" button.classList = 'mpl-widget';\n",
" button.setAttribute('role', 'button');\n",
" button.setAttribute('aria-disabled', 'false');\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
"\n",
" var icon_img = document.createElement('img');\n",
" icon_img.src = '_images/' + image + '.png';\n",
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
" icon_img.alt = tooltip;\n",
" button.appendChild(icon_img);\n",
"\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" var fmt_picker = document.createElement('select');\n",
" fmt_picker.classList = 'mpl-widget';\n",
" toolbar.appendChild(fmt_picker);\n",
" this.format_dropdown = fmt_picker;\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = document.createElement('option');\n",
" option.selected = fmt === mpl.default_extension;\n",
" option.innerHTML = fmt;\n",
" fmt_picker.appendChild(option);\n",
" }\n",
"\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"};\n",
"\n",
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
"};\n",
"\n",
"mpl.figure.prototype.send_message = function (type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"};\n",
"\n",
"mpl.figure.prototype.send_draw_message = function () {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
" fig.send_message('refresh', {});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
" var x0 = msg['x0'] / fig.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
" var x1 = msg['x1'] / fig.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0,\n",
" 0,\n",
" fig.canvas.width / fig.ratio,\n",
" fig.canvas.height / fig.ratio\n",
" );\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch (cursor) {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = 'image/png';\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.which === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.which;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which !== 17) {\n",
" value += 'ctrl+';\n",
" }\n",
" if (event.altKey && event.which !== 18) {\n",
" value += 'alt+';\n",
" }\n",
" if (event.shiftKey && event.which !== 16) {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data']);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager) {\n",
" manager = IPython.keyboard_manager;\n",
" }\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"800\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n",
"WARNING:matplotlib.legend:No handles with labels found to put in legend.\n"
]
}
],
"source": [
"display_all()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "threatened-fashion",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total fit time: 63.686s\n"
]
}
],
"source": [
"fit_time = time.perf_counter()\n",
"print(f\"total fit time: {fit_time-start_time:.3f}s\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "sudden-cosmetic",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MultiGeometry integrator with 13 geometries on (0, 131.88) radial range (2th_deg) and (-180, 180) azimuthal range (deg)\n"
]
},
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"/* global mpl */\n",
"window.mpl = {};\n",
"\n",
"mpl.get_websocket_type = function () {\n",
" if (typeof WebSocket !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof MozWebSocket !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert(\n",
" 'Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.'\n",
" );\n",
" }\n",
"};\n",
"\n",
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = this.ws.binaryType !== undefined;\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById('mpl-warnings');\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent =\n",
" 'This browser does not support binary websocket messages. ' +\n",
" 'Performance may be slow.';\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = document.createElement('div');\n",
" this.root.setAttribute('style', 'display: inline-block');\n",
" this._root_extra_style(this.root);\n",
"\n",
" parent_element.appendChild(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
" fig.send_message('send_image_mode', {});\n",
" if (fig.ratio !== 1) {\n",
" fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
" }\n",
" fig.send_message('refresh', {});\n",
" };\n",
"\n",
" this.imageObj.onload = function () {\n",
" if (fig.image_mode === 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function () {\n",
" fig.ws.close();\n",
" };\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"};\n",
"\n",
"mpl.figure.prototype._init_header = function () {\n",
" var titlebar = document.createElement('div');\n",
" titlebar.classList =\n",
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
" var titletext = document.createElement('div');\n",
" titletext.classList = 'ui-dialog-title';\n",
" titletext.setAttribute(\n",
" 'style',\n",
" 'width: 100%; text-align: center; padding: 3px;'\n",
" );\n",
" titlebar.appendChild(titletext);\n",
" this.root.appendChild(titlebar);\n",
" this.header = titletext;\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
"\n",
"mpl.figure.prototype._init_canvas = function () {\n",
" var fig = this;\n",
"\n",
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
" canvas_div.setAttribute(\n",
" 'style',\n",
" 'border: 1px solid #ddd;' +\n",
" 'box-sizing: content-box;' +\n",
" 'clear: both;' +\n",
" 'min-height: 1px;' +\n",
" 'min-width: 1px;' +\n",
" 'outline: 0;' +\n",
" 'overflow: hidden;' +\n",
" 'position: relative;' +\n",
" 'resize: both;'\n",
" );\n",
"\n",
" function on_keyboard_event_closure(name) {\n",
" return function (event) {\n",
" return fig.key_event(event, name);\n",
" };\n",
" }\n",
"\n",
" canvas_div.addEventListener(\n",
" 'keydown',\n",
" on_keyboard_event_closure('key_press')\n",
" );\n",
" canvas_div.addEventListener(\n",
" 'keyup',\n",
" on_keyboard_event_closure('key_release')\n",
" );\n",
"\n",
" this._canvas_extra_style(canvas_div);\n",
" this.root.appendChild(canvas_div);\n",
"\n",
" var canvas = (this.canvas = document.createElement('canvas'));\n",
" canvas.classList.add('mpl-canvas');\n",
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
"\n",
" this.context = canvas.getContext('2d');\n",
"\n",
" var backingStore =\n",
" this.context.backingStorePixelRatio ||\n",
" this.context.webkitBackingStorePixelRatio ||\n",
" this.context.mozBackingStorePixelRatio ||\n",
" this.context.msBackingStorePixelRatio ||\n",
" this.context.oBackingStorePixelRatio ||\n",
" this.context.backingStorePixelRatio ||\n",
" 1;\n",
"\n",
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
" 'canvas'\n",
" ));\n",
" rubberband_canvas.setAttribute(\n",
" 'style',\n",
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
" );\n",
"\n",
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
" if (this.ResizeObserver === undefined) {\n",
" if (window.ResizeObserver !== undefined) {\n",
" this.ResizeObserver = window.ResizeObserver;\n",
" } else {\n",
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
" this.ResizeObserver = obs.ResizeObserver;\n",
" }\n",
" }\n",
"\n",
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
" var nentries = entries.length;\n",
" for (var i = 0; i < nentries; i++) {\n",
" var entry = entries[i];\n",
" var width, height;\n",
" if (entry.contentBoxSize) {\n",
" if (entry.contentBoxSize instanceof Array) {\n",
" // Chrome 84 implements new version of spec.\n",
" width = entry.contentBoxSize[0].inlineSize;\n",
" height = entry.contentBoxSize[0].blockSize;\n",
" } else {\n",
" // Firefox implements old version of spec.\n",
" width = entry.contentBoxSize.inlineSize;\n",
" height = entry.contentBoxSize.blockSize;\n",
" }\n",
" } else {\n",
" // Chrome <84 implements even older version of spec.\n",
" width = entry.contentRect.width;\n",
" height = entry.contentRect.height;\n",
" }\n",
"\n",
" // Keep the size of the canvas and rubber band canvas in sync with\n",
" // the canvas container.\n",
" if (entry.devicePixelContentBoxSize) {\n",
" // Chrome 84 implements new version of spec.\n",
" canvas.setAttribute(\n",
" 'width',\n",
" entry.devicePixelContentBoxSize[0].inlineSize\n",
" );\n",
" canvas.setAttribute(\n",
" 'height',\n",
" entry.devicePixelContentBoxSize[0].blockSize\n",
" );\n",
" } else {\n",
" canvas.setAttribute('width', width * fig.ratio);\n",
" canvas.setAttribute('height', height * fig.ratio);\n",
" }\n",
" canvas.setAttribute(\n",
" 'style',\n",
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
" );\n",
"\n",
" rubberband_canvas.setAttribute('width', width);\n",
" rubberband_canvas.setAttribute('height', height);\n",
"\n",
" // And update the size in Python. We ignore the initial 0/0 size\n",
" // that occurs as the element is placed into the DOM, which should\n",
" // otherwise not happen due to the minimum size styling.\n",
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
" fig.request_resize(width, height);\n",
" }\n",
" }\n",
" });\n",
" this.resizeObserverInstance.observe(canvas_div);\n",
"\n",
" function on_mouse_event_closure(name) {\n",
" return function (event) {\n",
" return fig.mouse_event(event, name);\n",
" };\n",
" }\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mousedown',\n",
" on_mouse_event_closure('button_press')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseup',\n",
" on_mouse_event_closure('button_release')\n",
" );\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband_canvas.addEventListener(\n",
" 'mousemove',\n",
" on_mouse_event_closure('motion_notify')\n",
" );\n",
"\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseenter',\n",
" on_mouse_event_closure('figure_enter')\n",
" );\n",
" rubberband_canvas.addEventListener(\n",
" 'mouseleave',\n",
" on_mouse_event_closure('figure_leave')\n",
" );\n",
"\n",
" canvas_div.addEventListener('wheel', function (event) {\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" on_mouse_event_closure('scroll')(event);\n",
" });\n",
"\n",
" canvas_div.appendChild(canvas);\n",
" canvas_div.appendChild(rubberband_canvas);\n",
"\n",
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
" this.rubberband_context.strokeStyle = '#000000';\n",
"\n",
" this._resize_canvas = function (width, height, forward) {\n",
" if (forward) {\n",
" canvas_div.style.width = width + 'px';\n",
" canvas_div.style.height = height + 'px';\n",
" }\n",
" };\n",
"\n",
" // Disable right mouse context menu.\n",
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
" event.preventDefault();\n",
" return false;\n",
" });\n",
"\n",
" function set_focus() {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'mpl-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'mpl-button-group';\n",
" continue;\n",
" }\n",
"\n",
" var button = (fig.buttons[name] = document.createElement('button'));\n",
" button.classList = 'mpl-widget';\n",
" button.setAttribute('role', 'button');\n",
" button.setAttribute('aria-disabled', 'false');\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
"\n",
" var icon_img = document.createElement('img');\n",
" icon_img.src = '_images/' + image + '.png';\n",
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
" icon_img.alt = tooltip;\n",
" button.appendChild(icon_img);\n",
"\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" var fmt_picker = document.createElement('select');\n",
" fmt_picker.classList = 'mpl-widget';\n",
" toolbar.appendChild(fmt_picker);\n",
" this.format_dropdown = fmt_picker;\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = document.createElement('option');\n",
" option.selected = fmt === mpl.default_extension;\n",
" option.innerHTML = fmt;\n",
" fmt_picker.appendChild(option);\n",
" }\n",
"\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"};\n",
"\n",
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
"};\n",
"\n",
"mpl.figure.prototype.send_message = function (type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"};\n",
"\n",
"mpl.figure.prototype.send_draw_message = function () {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
" fig.send_message('refresh', {});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
" var x0 = msg['x0'] / fig.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
" var x1 = msg['x1'] / fig.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0,\n",
" 0,\n",
" fig.canvas.width / fig.ratio,\n",
" fig.canvas.height / fig.ratio\n",
" );\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch (cursor) {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = 'image/png';\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.which === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.which;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which !== 17) {\n",
" value += 'ctrl+';\n",
" }\n",
" if (event.altKey && event.which !== 18) {\n",
" value += 'alt+';\n",
" }\n",
" if (event.shiftKey && event.which !== 16) {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data']);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager) {\n",
" manager = IPython.keyboard_manager;\n",
" }\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment