Skip to content

Instantly share code, notes, and snippets.

@loganbvh
Created October 14, 2023 05:20
Show Gist options
  • Save loganbvh/cc5453195153f7b5831ea95174b4091f to your computer and use it in GitHub Desktop.
Save loganbvh/cc5453195153f7b5831ea95174b4091f to your computer and use it in GitHub Desktop.
superscreen-demo.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyPVHwkJ1r8APnwzQCovDaRA",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/loganbvh/cc5453195153f7b5831ea95174b4091f/superscreen-demo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "03JWnsIHnHkz"
},
"outputs": [],
"source": [
"%pip install --quiet superscreen"
]
},
{
"cell_type": "code",
"source": [
"%config InlineBackend.figure_formats = {\"retina\", \"png\"}\n",
"%matplotlib inline\n",
"\n",
"import superscreen as sc\n",
"from superscreen.geometry import box"
],
"metadata": {
"id": "enLEAMbfnJY0"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"source": [
"sc.version_table()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 275
},
"id": "yo89z9gSnc28",
"outputId": "cbfdc2e8-c0c9-4e69-d73d-a2cdee772caa"
},
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<table><tr><th>Software</th><th>Version</th></tr><tr><td>SuperScreen</td><td>0.10.4</td></tr><tr><td>Numpy</td><td>1.23.5</td></tr><tr><td>Numba</td><td>0.56.4</td></tr><tr><td>SciPy</td><td>1.11.3</td></tr><tr><td>matplotlib</td><td>3.7.1</td></tr><tr><td>IPython</td><td>7.34.0</td></tr><tr><td>Python</td><td>3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0]</td></tr><tr><td>OS</td><td>posix [linux]</td></tr><tr><td>Number of CPUs</td><td>Physical: 1, Logical: 2</td></tr><tr><td>BLAS Info</td><td>OPENBLAS</td></tr><tr><td colspan='2'>Sat Oct 14 05:17:56 2023 UTC</td></tr></table>"
]
},
"metadata": {},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"source": [
"length_units = \"um\"\n",
"# Material parameters\n",
"london_lambda = 5\n",
"d = 0.2\n",
"layers = [sc.Layer(\"base\", london_lambda=london_lambda, thickness=d, z0=0)]\n",
"\n",
"# Device geometry\n",
"total_width = 5000\n",
"total_length = 5000\n",
"\n",
"films = [sc.Polygon(\"film\", layer=\"base\", points=box(total_width, total_length))]"
],
"metadata": {
"id": "VX5XGcGxnSDo"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"device = sc.Device(\n",
" \"pure_square\",\n",
" layers=layers,\n",
" films=films,\n",
" length_units=length_units,\n",
")"
],
"metadata": {
"id": "LkQkT1RAnS3r"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"device.make_mesh(max_edge_length=100)\n",
"fig, ax = device.plot_mesh(show_sites=False)\n",
"_ = device.plot_polygons(ax=ax, color=\"k\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 508
},
"id": "3RjdeUO4nS64",
"outputId": "98296ca2-2bb7-4be1-a48b-42baf9db1689"
},
"execution_count": 6,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment