Created
November 11, 2022 02:23
-
-
Save mariogeiger/2bae912a87256b3e382e40b53eba9731 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The algebra is\n", | |
"[[[ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 1. 0. 0. 0.]\n", | |
" [ 0. -1. -0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 1.]\n", | |
" [ 0. 0. 0. 0. -1. 0.]]\n", | |
"\n", | |
" [[ 0. 0. -1. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 1. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. -1.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 1. 0. 0.]]\n", | |
"\n", | |
" [[ 0. 1. 0. 0. 0. 0.]\n", | |
" [-1. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 1. 0.]\n", | |
" [ 0. 0. 0. -1. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]]\n", | |
"\n", | |
" [[ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 1.]\n", | |
" [ 0. 0. 0. 0. -1. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]]\n", | |
"\n", | |
" [[ 0. 0. 0. 0. 0. -1.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 1. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]]\n", | |
"\n", | |
" [[ 0. 0. 0. 0. 1. 0.]\n", | |
" [ 0. 0. 0. -1. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]\n", | |
" [ 0. 0. 0. 0. 0. 0.]]]\n", | |
"Found 1 solutions for vector x vector -> scalar\n", | |
"[[[0.577 0. 0. 0. ]\n", | |
" [0. 0.577 0. 0. ]\n", | |
" [0. 0. 0.577 0. ]\n", | |
" [0. 0. 0. 0. ]]]\n", | |
"Found 1 solutions for vector x vector -> vector\n", | |
"[[[0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]]\n", | |
"\n", | |
" [[0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]]\n", | |
"\n", | |
" [[0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]\n", | |
" [0. 0. 0. 0. ]]\n", | |
"\n", | |
" [[1.155 0. 0. 0. ]\n", | |
" [0. 1.155 0. 0. ]\n", | |
" [0. 0. 1.155 0. ]\n", | |
" [0. 0. 0. 0. ]]]\n" | |
] | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"from lie_nn import GenericRep\n", | |
"from lie_nn.irreps import SO3Rep\n", | |
"from lie_nn.util import round_to_sqrt_rational\n", | |
"np.set_printoptions(precision=3, suppress=True)\n", | |
"\n", | |
"# Generators of rotations\n", | |
"r = SO3Rep(1).continuous_generators()\n", | |
"r = np.pad(r, ((0, 0), (0, 1), (0, 1))) # pad with zeros to make it 4 dimensional\n", | |
"\n", | |
"# Generators of translations\n", | |
"t = np.array(\n", | |
" [\n", | |
" [\n", | |
" [0, 0, 0, 1],\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 0.0],\n", | |
" ],\n", | |
" [\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 1],\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 0.0],\n", | |
" ],\n", | |
" [\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 0],\n", | |
" [0, 0, 0, 1],\n", | |
" [0, 0, 0, 0.0],\n", | |
" ],\n", | |
" ]\n", | |
")\n", | |
"\n", | |
"# Generators of rotations and translations\n", | |
"X = np.concatenate([r, t], axis=0)\n", | |
"\n", | |
"\n", | |
"# Create generic representations (this will automatically compute the algebra and test it)\n", | |
"vector = GenericRep.from_generators(X, round_fn=round_to_sqrt_rational)\n", | |
"if vector is not None:\n", | |
" print(\"The algebra is\")\n", | |
" print(vector.algebra())\n", | |
"\n", | |
"scalar = GenericRep(\n", | |
" A=vector.algebra(),\n", | |
" X=np.zeros((6, 1, 1)),\n", | |
" H=np.zeros((0, 1, 1)),\n", | |
")\n", | |
"\n", | |
"# Compute Clebsch-Gordan coefficients to go from vector x vector -> scalar\n", | |
"cg = GenericRep.clebsch_gordan(vector, vector, scalar, round_fn=round_to_sqrt_rational)\n", | |
"print(f\"Found {cg.shape[0]} solutions for vector x vector -> scalar\")\n", | |
"for c in cg:\n", | |
" print(np.moveaxis(c, -1, 0))\n", | |
"\n", | |
"cg = GenericRep.clebsch_gordan(vector, vector, vector, round_fn=round_to_sqrt_rational)\n", | |
"print(f\"Found {cg.shape[0]} solutions for vector x vector -> vector\")\n", | |
"for c in cg:\n", | |
" print(np.moveaxis(c, -1, 0))\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"There is no cross-product $x \\wedge y$ in the Euclidean group !! Weird, isn't it ??" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3.10.8 ('base')", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.8" | |
}, | |
"orig_nbformat": 4, | |
"vscode": { | |
"interpreter": { | |
"hash": "f26faf9d33dc8b83cd077f62f5d9010e5bc51611e479f12b96223e2da63ba699" | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment