Skip to content

Instantly share code, notes, and snippets.

@miraculixx
Last active November 7, 2024 23:45
Show Gist options
  • Save miraculixx/5408d437b66a7dc99c4d300c61d91a46 to your computer and use it in GitHub Desktop.
Save miraculixx/5408d437b66a7dc99c4d300c61d91a46 to your computer and use it in GitHub Desktop.
ML drift statistics calculator and plots

DriftStats - A ML Drift Metric Calculator & Plotter

Calculating drift metrics for machine learning model is seemingly straight forward, yet surprisingly laborious and complex in practice. This library makes it simple and straight forward.

Why?

Most texts on calculting model drift focus on some specific metric to calculate, like Jensen-Shannon Distance or Chisquare. Many times there are some examples for single-variable datasets, explaining all the mathemetical details. That's great to learn abou the topic.

However, in practice, we have datasets with many features, of different types. Calculting one metric for one feature is one thing, calculating many metrics for many features and many datasets is quiet another.

Automation is needed. That's what this library provides.

How it works

In a nutshell, driftstats takes a baseline and a target dataframe and calculates multiple drift metrics for all columns, like PSI, KS, JSD, Chi2, etc. It normalizes each metric to a score between 0 and 1 and calculates a boolean drift indicator. As a result we get a dataframe of drift metrics. Predefined plot functions help us plot both the drift metrics and the baseline and target distributions of any one feature.

How to install

  1. Download all files
  2. pip install -r requirements.txt
  3. In Jupyter Lab open the driftstats NB for a tutorial

How to use

from driftstats import DriftStatistics

baseline = np.random.normal(0, 1, 1000)
target = np.random.normal(0.5, 1, 1000)
target2 = np.random.normal(0.5, 1.5, 1000)

calc = DriftStatistics()
drifts = calc.compare(baseline, target)
calc.plot_drift(drifts)
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 60,
"id": "9fee1d35-83a4-4c2a-bd60-709046297c31",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import plotly.express as px\n",
"from scipy.stats import chi2_contingency, entropy, ks_2samp, wasserstein_distance\n",
"\n",
"from driftstats import DriftStatistics"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "7bc4563b-c81d-4b9a-9798-eea39b12ba6a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>col</th>\n",
" <th>statistic</th>\n",
" <th>drift</th>\n",
" <th>metric</th>\n",
" <th>score</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>country</td>\n",
" <td>Chi-squared Test</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>continent</td>\n",
" <td>Chi-squared Test</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>year</td>\n",
" <td>PSI</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>year</td>\n",
" <td>KL Divergence</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>year</td>\n",
" <td>Jensen-Shannon Divergence</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>year</td>\n",
" <td>KS Test</td>\n",
" <td>True</td>\n",
" <td>1.000000e+00</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>year</td>\n",
" <td>Wasserstein Distance</td>\n",
" <td>True</td>\n",
" <td>3.000000e+01</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>lifeExp</td>\n",
" <td>PSI</td>\n",
" <td>False</td>\n",
" <td>2.357269e-01</td>\n",
" <td>4.714538e-01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>lifeExp</td>\n",
" <td>KL Divergence</td>\n",
" <td>True</td>\n",
" <td>1.359898e+01</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>lifeExp</td>\n",
" <td>Jensen-Shannon Divergence</td>\n",
" <td>True</td>\n",
" <td>5.001571e-01</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>lifeExp</td>\n",
" <td>KS Test</td>\n",
" <td>True</td>\n",
" <td>5.666667e-01</td>\n",
" <td>5.666667e-01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>lifeExp</td>\n",
" <td>Wasserstein Distance</td>\n",
" <td>True</td>\n",
" <td>9.905244e+00</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>pop</td>\n",
" <td>PSI</td>\n",
" <td>False</td>\n",
" <td>4.990787e-09</td>\n",
" <td>9.981573e-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>pop</td>\n",
" <td>KL Divergence</td>\n",
" <td>True</td>\n",
" <td>1.881853e+00</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>pop</td>\n",
" <td>Jensen-Shannon Divergence</td>\n",
" <td>True</td>\n",
" <td>3.025545e-01</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>pop</td>\n",
" <td>KS Test</td>\n",
" <td>False</td>\n",
" <td>3.000000e-01</td>\n",
" <td>3.000000e-01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>pop</td>\n",
" <td>Wasserstein Distance</td>\n",
" <td>True</td>\n",
" <td>1.893776e+08</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>gdpPercap</td>\n",
" <td>PSI</td>\n",
" <td>False</td>\n",
" <td>5.244760e-04</td>\n",
" <td>1.048952e-03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>gdpPercap</td>\n",
" <td>KL Divergence</td>\n",
" <td>True</td>\n",
" <td>5.374985e+00</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>gdpPercap</td>\n",
" <td>Jensen-Shannon Divergence</td>\n",
" <td>True</td>\n",
" <td>3.561819e-01</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>gdpPercap</td>\n",
" <td>KS Test</td>\n",
" <td>True</td>\n",
" <td>5.000000e-01</td>\n",
" <td>5.000000e-01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>gdpPercap</td>\n",
" <td>Wasserstein Distance</td>\n",
" <td>True</td>\n",
" <td>8.463420e+03</td>\n",
" <td>1.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>iso_alpha</td>\n",
" <td>Chi-squared Test</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>iso_num</td>\n",
" <td>PSI</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>iso_num</td>\n",
" <td>KL Divergence</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>iso_num</td>\n",
" <td>Jensen-Shannon Divergence</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>iso_num</td>\n",
" <td>KS Test</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>iso_num</td>\n",
" <td>Wasserstein Distance</td>\n",
" <td>False</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" col statistic drift metric score\n",
"0 country Chi-squared Test False 0.000000e+00 0.000000e+00\n",
"1 continent Chi-squared Test False 0.000000e+00 0.000000e+00\n",
"2 year PSI False 0.000000e+00 0.000000e+00\n",
"3 year KL Divergence False 0.000000e+00 0.000000e+00\n",
"4 year Jensen-Shannon Divergence False 0.000000e+00 0.000000e+00\n",
"5 year KS Test True 1.000000e+00 1.000000e+00\n",
"6 year Wasserstein Distance True 3.000000e+01 1.000000e+00\n",
"7 lifeExp PSI False 2.357269e-01 4.714538e-01\n",
"8 lifeExp KL Divergence True 1.359898e+01 1.000000e+00\n",
"9 lifeExp Jensen-Shannon Divergence True 5.001571e-01 1.000000e+00\n",
"10 lifeExp KS Test True 5.666667e-01 5.666667e-01\n",
"11 lifeExp Wasserstein Distance True 9.905244e+00 1.000000e+00\n",
"12 pop PSI False 4.990787e-09 9.981573e-09\n",
"13 pop KL Divergence True 1.881853e+00 1.000000e+00\n",
"14 pop Jensen-Shannon Divergence True 3.025545e-01 1.000000e+00\n",
"15 pop KS Test False 3.000000e-01 3.000000e-01\n",
"16 pop Wasserstein Distance True 1.893776e+08 1.000000e+00\n",
"17 gdpPercap PSI False 5.244760e-04 1.048952e-03\n",
"18 gdpPercap KL Divergence True 5.374985e+00 1.000000e+00\n",
"19 gdpPercap Jensen-Shannon Divergence True 3.561819e-01 1.000000e+00\n",
"20 gdpPercap KS Test True 5.000000e-01 5.000000e-01\n",
"21 gdpPercap Wasserstein Distance True 8.463420e+03 1.000000e+00\n",
"22 iso_alpha Chi-squared Test False 0.000000e+00 0.000000e+00\n",
"23 iso_num PSI False 0.000000e+00 0.000000e+00\n",
"24 iso_num KL Divergence False 0.000000e+00 0.000000e+00\n",
"25 iso_num Jensen-Shannon Divergence False 0.000000e+00 0.000000e+00\n",
"26 iso_num KS Test False 0.000000e+00 0.000000e+00\n",
"27 iso_num Wasserstein Distance False 0.000000e+00 0.000000e+00"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from plotly.data import gapminder\n",
"\n",
"df = gapminder()\n",
"\n",
"df = df.query(\"country in ['Switzerland', 'Germany', 'United States', 'China', 'India']\")\n",
"baseline = df.query(\"year <= 1980\")\n",
"target = df.query(\"year > 1980\")\n",
"\n",
"drift_detector = DriftStatistics()\n",
"drift_results = drift_detector.compare(baseline, target, best=False)\n",
"drift_results"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "5d6458db-9441-413d-9d84-c0b399e16569",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"hovertemplate": "statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "",
"marker": {
"color": "#636efa"
},
"name": "",
"notched": false,
"offsetgroup": "",
"orientation": "v",
"showlegend": false,
"type": "box",
"x": [
"Chi-squared Test",
"Chi-squared Test",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"Chi-squared Test",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"x0": " ",
"xaxis": "x",
"y": [
0,
0,
0,
0,
0,
1,
30,
0.2357268822114845,
13.598979670676874,
0.5001570911698885,
0.5666666666666667,
9.905244000000001,
4.990786528751271e-09,
1.8818525523798695,
0.3025545016073308,
0.3,
189377557.43333334,
0.0005244760018707403,
5.374984606904614,
0.35618190878501066,
0.5,
8463.419603076667,
0,
0,
0,
0,
0,
0
],
"y0": " ",
"yaxis": "y"
}
],
"layout": {
"autosize": true,
"boxmode": "group",
"legend": {
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
1
],
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
-9.222895423433945,
9.198392928369545
],
"title": {
"text": "metric"
},
"type": "log"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcEAAAFoCAYAAACfcTNMAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qm8VVPj//HvubdBphAhQ0KGJ0OGwkNEPJE5U8nchAjNCk1EpRGhRAmlzIokZCxJJFPKFEUTIZW6957/a22/e/+3Ovd22uucu/fa+3Ner+f1enD23mu9v+ue4Xv22SeRTCaT4oYAAggggAACCCCAAAIIIIAAAggggAACCCCAQAQFEpTgEUyVKSGAAAIIIIAAAggggAACCCCAAAIIIIAAAgh4ApTgLAQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByApQgkc2WiaGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAnOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIrAAleGSjZWIIIIAAAggggAACCCCAAAIIIIAAAggggAAClOCsAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHIClCCRzZaJoYAAggggAACCCCAAAIIIIAAAggggAACCCBACc4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIisACV4ZKNlYggggAACCCCAAAIIIIAAAggggAACCCCAAAKU4KwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcgKUIJHNlomhgACCCCAAAIIIIAAAggggAACCCCAAAIIIEAJzhpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiKwAJXhko2ViCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTgrAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByApQgkc2WiaGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAnOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIrAAleGSjZWIIIIAAAggggAACCCCAAAIIIIAAAggggAAClOCsAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHIClCCRzZaJoYAAggggAACCCCAAAIIIIAAAggggAACCCBACc4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIisACV4ZKNlYggggAACCCCAAAIIIIAAAggggAACCCCAAAKU4KwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcgKUIJHNlomhgACCCCAAAIIIIAAAggggAACCCCAAAIIIEAJzhpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiKwAJXhko2ViCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTgrAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByApQgkc2WiaGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAnOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIrAAleGSjZWIIIIAAAggggAACCCCAAAIIIIAAAggggAAClOCsAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHIClCCRzZaJoYAAggggAACCCCAAAIIIIAAAggggAACCCBACc4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIisACV4ZKNlYggggAACCCCAAAIIIIAAAggggAACCCCAAAKU4KwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcgKUIJHNlomhgACCCCAAAIIIIAAAggggAACCCCAAAIIIEAJzhpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiKwAJXhko2ViCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTgrAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByApQgkc2WiaGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAnOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIrAAleGSjZWIIIIAAAggggAACCCCAAAIIIIAAAggggAAClOCsAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHIClCCRzZaJoYAAggggAACCCCAAAIIIIAAAggggAACCCBACc4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIisACV4ZKNlYggggAACCCCAAAIIIIAAAggggAACCCCAAAKU4KwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcgKUIJHNlomhgACCCCAAAIIIIAAAggggAACCCCAAAIIIEAJzhpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiKwAJXhko2ViCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApTgrAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACByApQgkc2WiaGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAnOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIrAAleGSjZWIIIIAAAggggAACCCCAAAIIIIAAAggggAAClOCsAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHIClCCRzZaJoYAAggggAACCCCAAAIIIIAAAggggAACCCBACc4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIisACV4ZKNlYggggAACCCCAAAIIIIAAAggggAACCCCAAAKU4P+3BiZOna6eA0bpzs4t1LB+He/f5uXn6/AGzVW+fDklEglVrFBehxxUQ7fffIWq77krqwcBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg5AKU4JJGjZ+sj+fM07IVK3V1k0ablOBvTBio3XbZSWvWrlPf+5/S4iXLNbx/h5BHy/AQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEKMElfb1goQ7cby+1aN9fF59zcokluFku73/0ue4aMkavPNHXWz2LV6xhFSGAAAIIIIAAAggggAACCCCAAAIIIIAAAlkTqFalUtb2HYcdU4IXS7l5u36lluCr16xVzwGjtXOVyup4XRNvyyW/r43DOmGOCCCAgC8BcykpbggggAACGwkkJfHwyLJAAAEENhFIJs0DJDcEEEAAgVQCu+64FTAWApTgaZTg22y9lXdNcFOC77Pnbrrvrpu0z167eVvm5RdY8LMpAgggEF2BvPykyuXS8kQ3YWaGAAJ+BfLypXK5frdmOwQQQCC6Aub9dbncnOhOkJkhgAACFgI8PlrgmXNQknzUWiS4uTPB8/MLNP3jL3Rrn+F69pHeqrrzDlwOxW79sTUCCCCAAAIIIIAAAggggAACCCCAAAIIbEaAy6HYLRFK8GJ+myvBC+/auPntan35Od61w7kmuN0CZGsEEEAAAQQQQAABBBBAAAEEEEAAAQQQKF2AEtxuhVCCb0EJXlCQ1MxPv9INXQdrwvCeqrH37pTgduuPrRFAAAEEEEAAAQQQQAABBBBAAAEEEEBgMwKU4HZLhBJc0oUtu2vBD4uUl5ev3JwcJXIS6tutlRrUO0qHN2iu8uXLecrmv+1ZbRddf+W5ali/rvfvOBPcbgGyNQIIIIAAAggggAACCCCAAAIIIIAAAgiULkAJbrdCKMHt/CjBLf3YHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQowbO5BijBLXU5E9wSkM0RQAABBBBAAAEEEEAAAQQQQAABBLIu8NXXOXr3vYSWLEuoyk5SnaPzVeeoZNaPywEyI8CZ4HaOlOB2fpwJbunH5ggggAACCCCAAAIIIIAAAggggAAC2RVY+UdCQ+/PVV7+hse55sp87VOdIjy7+pnZOyW4nSMluJ0fJbilH5sjgAACCCCAAAIIIIAAAggggAACCGRXYO7nCU14LneTg9Q/qUCnnFSQ3YOz94wIUILbMVKC2/lRglv6sTkCCCCAAAIIIIAAAggggAACCCCAQHYFKMGz61sWe6cEt1OmBLfzowS39GNzBBBAAAEEEEAAAQQQQAABBBBAAIHsCnA5lOz6lsXeKcHtlCnB7fwowS392BwBBBBAAAEEEEAAAQQQQAABBBBAIPsC/DBm9o2zeQRKcDtdSnA7P0pwSz82RwABBBBAAAEEEEAAAQQQQAABBBBAAIHSBSjB7VYIJbidHyW4pR+bI4AAAggggAACCCCAAAIIIIAAAggggAAleDbXACW4pe7iFWss98DmCCCAAAIIIIAAAggggAACCCCAAAIIIIBAyQKcCW63OijB7fw4E9zSj80RQAABBBBAAAEEEEAAAQQQQACBMAqMHJUbxmExplIEzjunQFV2SkbSiBLcLlZKcDs/SnBLPzZHAAEEEEAAAQQQQAABBBBAAAEEwiaQlyf16lMubMNiPJsRuK5VvnbfjRKchbKpACW45argciiWgGyOAAIIIIAAAggggAACCCCAAAIIhEygeAle+7CCkI2O4WwsMG9+QmvWJEQJztooSYAS3HJtUIJbArI5AggggAACCCCAAAIIIIAAAgggEDKB9eul3neXU05COrFefshGx3A2Fpg1O1erVknXtshTtWrR9OFyKHa5UoLb+XE5FEs/NkcAAQQQQAABBBBAAAEEEEAAAQTCJkAJHrZESh8PJbhbeQUxWkpwS3XOBLcEZHMEEEAAAQQQQAABBBBAAAEEEEAgZAKU4CELZDPDoQR3K68gRksJbqlOCW4JyOYIIIAAAggggAACCCCAAAIIIIBAyAQowUMWCCW4uByK3ZqkBLfz43Ioln5sjgACCCCAAAIIIIAAAggggAACCIRNgBI8bImUPh7OBHcrryBGSwluqc6Z4JaAbI4AAggggAACCCCAAAIIIIAAAgiETIASPGSBbGY4lOBu5RXEaCnBLdUpwS0B2RwBBBBAAAEEEEAAAQQQQAABBBAImQAleMgCoQTnciiWS5IS3BKQEtwSkM0RQAABBBBAAAEEEEAAAQQQQACBkAlQgocsEEpwSnDLJUkJbglICW4JyOYIIIAAAggggAACCCCAAAIIIIBAyAQowUMWCCU4JbjlkqQEtwSkBLcEZHMEEEAAAQQQQAABBBBAAAEEEEAgZAKU4CELhBKcEtxySVKCWwJSglsCsjkCCCCAAAIIIIAAAggggAACCCAQMgFK8JAFQglOCW65JCnBLQEpwS0B2RwBBBBAAAEEEEAAAQQQQAABBBAImQAleMgCoQSnBLdckpTgloCU4JaAbI4AAggggAACCCCAAAIIIIAAAgiETIASPGSBUIJTglsuydiX4BOnTlfPAaN0Z+cWali/jseZl5+vwxs017kNj1efW1tuQNzj3lGaMHGa5rwxUuVyc0UJbrkC2RwBBBBAAAEEEEAAAQQQQAABBBAImQAleMgCoQSnBLdckrEuwUeNn6yP58zTshUrdXWTRhuU4Mc0uk477bi9Jj5+typWKF9Ujp99xa1asux3zXz1IUpwy8XH5ggggAACCCCAAAIIIIAAAggggEAYBSjBw5hKyWOaNTtXq1ZJ17bIU7Vqbo093dFWq1Ip3btyvxQCsS7Bv16wUAfut5datO+vi885eYMS/OjTW3v/fMrxR6hh/boe3Tsz5ujF197XlLc/0ievP0IJzp8UAggggAACCCCAAAIIIIAAAgggEEEBSnC3QqUEdyuvIEYb6xK8ELx5u36blOBHnNZCQ3rdqOdffVf33XWTd9cufYarwQlH6uY77udyKEGsVo6JAAIIIIAAAggggAACCCCAAAIIlIEAJXgZIGfwEJTgGcSM6K4owSWVVILPfm2ETr2kvV4a3UdbVaygM5p10qtP9tOR/2tZVIL/9te6iC4NpoUAAghYCiQlJSz3weYIIIAAAggggAACCCCAQAACpgTv1jOhnIR0Sn3z5oZbmAU+/Cihv1ZJba9Las89wjxS/2PbabsK/jdmS1GCl1KCz33zMd3R/1EdevC+qrzdtnp7+qe6q0sL1ap/VVEJvnZdPssIAQQQQCCFQH5BUrnmFSM3BBBAAIENBHh8ZEEggAACqQV4fGRlhEnAlOC3dC3wSvCGp4ZpZIwllcD7M6Q//5I63ZTQ3ntG833oVhVyCd9CgBJ8MyX4h598pZFPTdJ2226txo1O1PF1DtmgBF+8Yo0FP5sigAACCCCAAAIIIIAAAggggAACCIRNgMuhhC2R0sfD5VDcyiuI0VKCb6YELyhI6qwruiiRSOilUX2Um5tDCR7ESuWYCCCAAAIIIIAAAggggAACCCCAQBkJUIKXEXSGDkMJniHICO8m1iX4hS27a8EPi5SXl6/cnBwlchLq262VGtQ7SuaHMc3lUMyt3wNjtW59nm67+XLvn4tfDoUzwSP818HUEEAAAQQQQAABBBBAAAEEEEAglgKU4G7FTgnuVl5BjDbWJXgmwCnBM6HIPhBAAAEEEEAAAQQQQAABBBBAAIHwCFCChyeLdEZCCZ6OUrzvQwlumT8luCUgmyOAAAIIIIAAAggggAACCCCAAAIhE6AED1kgmxkOJbhbeQUxWkpwS3VKcEtANkcAAQQQQAABBBBAAAEEEEAAAQRCJkAJHrJAKMFVrUolt0IJ2WgpwS0DoQS3BGRzBBBAAAEEEEAAAQQQQAABBBBAIGQClOAhC4QSnBLccklSglsCUoJbArI5AggggAACCCCAAAIIIIAAAgggEDIBSvCQBUIJTgluuSQpwS0BKcEtAdkcAQQQQAABBBBAAAEEEEAAAQQQCJkAJXjIAqEEpwS3XJKU4JaAlOCWgGyOAAIIIIAAAggggAACCCCAAAIIhEyAEjxkgVCCU4JbLklKcEtASnBLQDZHAAEEEEAAAQQQQAABBBBAAAEEQiZACR6yQCjBKcEtlyQluCUgJbglIJsjgAACCCCAAAIIIIAAAggggAACIROgBA9ZIJTglOCWS5IS3BKQEtwSkM0RQAABBBBAAAEEEEAAAQQQQACBkAlQgocsEEpwSnDLJUkJbglICW4JyOYIIIAAAggggAACCCCAAAIIIIBAyAQowUMWCCU4JbjlkqQEtwSkBLcEZHMEEEAAAQQQQAABBBBAAAEEEEAgZAKU4CELhBKcEtxySVKCWwJSglsCsjkCCCCAAAIIIIAAAggggAACCCAQMgFK8JAFQglOCW65JCnBLQEpwS0B2RwBBBBAAAEEEEAAAQQQQAABBBAImQAleMgCoQSnBLdckpTgloCU4JaAbI4AAggggAACCCCAAAIIIIAAAgiETIASPGSBUIJTglsuSUpwS0BKcEtANkcAAQQQQAABBBBAAAEEEEAAAQRCJkAJHrJAKMEpwS2XJCW4JSAluCUgmyOAAAIIIIAAAggggAACCCCAAAIhE6AED1kglOCU4JZLkhLcEpAS3BKQzRFAAAEEEEAAAQQQQAABBBBAAIGQCVCChywQSnBKcMslSQluCUgJbgnI5ggggAACCCCAAAIIIIAAAggggEDIBCjBQxYIJTgluOWSpAS3BKQEtwRkcwQQQAABBBBAAAEEEEAAAQQQQCBkApTgIQuEEpwS3HJJUoJbAlKCWwKyOQIIIIAAAggggAACCCCAAAIIIBAyAUrwkAVCCU4JbrkkKcEtASnBLQHZHAEEEEAAAQQQQAABBBBAAAEEEAiZACV4yAKhBKcEt1ySlOCWgJTgloBsjgACCCCAAAIIIIAAAggggAACCIRMgBI8ZIFQglOCWy5JSnBLQEpwS0A2RwABBBBAAAEEEEAAAQQQQAABBEImQAkeskAowSnBLZckJbglICW4JSCbI4AAAggggAACCCCAAAIIIIAAAiEToAQPWSCU4JTglkuSEtwSkBLcEpDNEUAAAQQQQAABBBBAAAEEEEAAgZAJUIKHLBBKcEpwyyVJCW4JSAluCcjmCCCAAAIIIIAAAggggAACCCCAQMgEKMFDFgglOCW45ZKMbAk+cep09RwwSnd2bqGG9esUMb374WfqM/QJLVuxUofX2l99u7XWzjtV9v77iCcnavT415SXn69GDY5Vt7aXKTc3RwsXLVXXu0foq/k/ao/ddlavTteodq39vW0owS1XIJsjgAACCCCAAAIIIIAAAggggAACIROgBA9ZIJTglOCWSzKSJfio8ZP18Zx5XtF9dZNGRSX4n6tW6/SmHXVv9+tUp/bBGjx8gn5ZukIDe7TRjI+/1G39Rmr0kFtVebttdF2XQWrU4Bg1Pa+BLr/xLh1f51A1v/RMvT39U69Ef23svSpfLpcS3HIBsjkCCCCAAAIIIIAAAggggAACCCAQNgFK8LAlUvp4Zs3O1apV0rUt8lStmltjT3e01apUSveu3C+FQCRL8K8XLNSB++2lFu376+JzTi4qwSe/NVPPvfKOhvfv4FH8tWq1Tmp8k2ZMHKZ7Hhir3avupJbNzvL+21sffOKdFT6g+/U6/dKOmj5xmMrl5nr/7cKW3dW5TVPVqX0QJTh/VggggAACCCCAAAIIIIAAAggggEDEBCjB3QqUEtytvIIYbSRL8ELI5u36bVCCPzzmZa34/Q91bXtZkbUpwR8f2lW9Bo1Wk3NP0WknHu39t+8X/qKrb+nrnSXea+BovfDYnUXbdOj1oI458mBddFZ9SvAgVi3HRAABBBBAAAEEEEAAAQQQQAABBLIoQAmeRdws7JoSPAuoEdtlrErwwSOe8a733eHaS4piPK1JBw3tfaPuHDxGrS8/Wycee7j33xb/ulznXXObBve6QUNGPKunH+5etE23ex7RAfvtpSsvaqg/V6+P2JJgOggggEDmBBKJROZ2xp4QQACBiAgkk0nx+BiRMJkGAghkVCBZkJR4+ZhRU3bmX8CU4J3vkHIS0qmnJP3viC3LRGD6zIT++ku65QZprz3K5JBlfpDtty5f5seM0gFjVYIPf+Jl/bJkhbq3v6oow+POul7jHuqu3oMfV+MzTvSuA25u8779Sa07DdCgnm10W9+RmjTmnqJt2t4+VPWOOcw7E/wvSvAo/T0wFwQQyKCAeZnIe5gMgrIrBBCIjEBSCSXEm+nIBMpEEEAgYwIFknIytjd2hICdgCnBO1GC2yGW4daFJXi7CJfg21GCW62oWJXgU96epSefe9378UtzMz+cefqlnbxrgvcbNlY7bL+t2lx9vvffXnnjQz076W3vRzRPvbi93n/pfm1VsYL33868vIt6d7pGRx56AJdDsVp+bIwAAggggAACCCCAAAIIIIAAAgiET4DLoYQvk9JGxOVQ3MoriNHGqgT/e/Va70cu+97WWnUOP0j33P+UVq1eo77dWmv23G/UqfdD3vXBt9mmklp1uNe7nvgFZ56o5u376ajDDvR+NPO1aTM15JFn9eqTfb0fyly8Yk0QuXFMBBBAAAEEEEAAAQQQQAABBBBAAIEsCVCCZwk2S7ulBM8SbIR2G8kS/MKW3bXgh0XKy8tXbk6OEjkJ9e3WSg3r19WM2V+q54DRWrbidx1tivCurbRD5W29SEdPeE2PPDlR6/Pydd7pJ6hzm6be9RrNJVQ63/Wwvpj3g/aqVlV3dWmhWgfu421DCR6hvwamggACCCCAAAIIIIAAAggggAACCEiiBHdrGVCCu5VXEKONZAlelpCU4GWpzbEQQAABBBBAAAEEEEAAAQQQQACB7AtQgmffOJNHoATPpGY090UJbpkrJbglIJsjgAACCCCAAAIIIIAAAggggAACIROgBA9ZIJsZDiW4W3kFMVpKcEt1SnBLQDZHAAEEEEAAAQQQQAABBBBAAAEEQiZACR6yQCjBVa1KJbdCCdloKcEtA6EEtwRkcwQQQAABBBBAAAEEEEAAAQQQQCBkApTgIQuEEpwS3HJJUoJbAlKCWwKyOQIIIIAAAggggAACCCCAAAIIIBAyAUrwkAVCCU4JbrkkKcEtASnBLQHZHAEEEEAAAQQQQAABBBBAAAEEEAiZACV4yAKhBKcEt1ySlOCWgJTgloBsjgACCCCAAAIIIIAAAggggAACCIRMgBI8ZIFQglOCWy5JSnBLQEpwS0A2RwABBBBAAAEEEEAAAQQQQAABBEImQAkeskAowSnBLZckJbglICW4JSCbI4AAAggggAACCCCAAAIIIIAAAiEToAQPWSCU4JTglkuSEtwSkBLcEpDNEUAAAQQQQAABBBBAAAEEEEAAgZAJUIKHLBBKcEpwyyVJCW4JSAluCcjmCCCAAAIIIIAAAggggAACCCCAQMgEKMFDFgglOCW45ZKkBLcEpAS3BGRzBBBAAAEEEEAAAQQQQAABBBBAIGQClOAhC4QSnBLccklSglsCUoJbArI5AggggAACCCCAAAIIIIAAAgggEDIBSvCQBUIJTgluuSSzWoK/++Fnqrrzjjpwv728YU6f9YXy8vNV75jDLIcdns0pwcOTBSNBAAEEEEAAAQQQQAABBBBAAAEEMiGQlyf16lPO21Xl7ZOZ2CX7yKLAqlUJ5RdI17XK1+67RTOvalUqZVEw+rvOWgk+5pkpGjryWQ3qeYNOqHuoJ/natI90R/9H1bb5BWrW+NRI6FKCRyJGJoEAAggggAACCCCAAAIIIIAAAggUCRSeCQ6JWwLXtshTtWpujTnd0VKCpyuV+n5ZK8FPuegWDeh+vY44pOYGR5499xt16v2Qpo4faDfykGxNCR6SIBgGAggggAACCCCAAAIIIIAAAgggkCGB4meC1z6sIEN7ZTfZEpg3P6E1axKcCZ4t4AjsN2sleO3TWujtZ4eo8vbbbMC0bMVK/a9pR30yZUQE+CRK8EjEyCQQQAABBBBAAAEEEEAAAQQQQACBIgGuCe7WYpg1O1erVkmcCe5WbmU52qyV4FfedLcO2n9v3XhNY227zb/XrFnx+5/q/+A4LVn2mx4b1KUs55m1Y1GCZ42WHSOAAAIIIOCswGuvJ/Tzohxnx59q4NtuK11yYX6k5sRkEEAAAQQQQACBkgQowd1aG5TgbuUVxGizVoJ/t/AXtev+gL79cZF22H5bFSSTWvnHKh2w757edcL32Wu3IOab8WNSgmeclB0igAACCCDgvMDjT+RowXfRKsErV06q/U2U4M4vTiaAAAIIIIAAAmkJUIKnxRSaO1GChyaK0A4kayW4mXEymdTcr77TT78s8wDJQy+SAAAgAElEQVT2rlZVhxxUQ4lEIrQgWzowSvAtFeP+CCCAAAIIRF9gydKE1qzO/uudJ8cl9M+6hJpeUqBKFbPrWq5cUnvumczuQdg7AggggAACCCAQEgFK8JAEkeYwKMHThIrx3TJags///mftsdsu2rpSRZn/X9qtZo09I8FOCR6JGJkEAggggEDEBb79Lkc/LoxegfveB7kyP9p0/HH5Kl8+WiHusot0aK3oZRatlJgNAggggAAC0RUo/sOY1ffmhzHDnvQvvya0bl1C17bMV7Xdo/kaslqVfy83zc2fQEZL8Fr1r/Ku9V33iINk/n9pty+mjfI34pBtRQkeskAYDgIIIIAAAikEXpua0Psf5GLjkMCBNQvUrClvOB2KjKEigAACCCAQKYHiJXikJhbxyVCCRzxgi+lltAT/c9Vq7yzwcrm5Mv+/tNv2225tMezwbEoJHp4sGAkCCCCAAAIlCRSW4DvukNT220fzzJCopL9mTUJLlyVECR6VRJkHAggggAAC7gq8OS37l7cra52fFyW04NscVauW1AH7R++Eg7pHS9tuG83X+5wJbvfXktESvHAoefn5uqX7A7qzc3NV3m4buxGGfGtK8JAHxPAQQAABBBCQNGVqjt77IEc19kmKr7OGe0ksX5HQ51/k6ICaBbqMM8HDHRajQwABBBBAAAHnBD6cmaNJk3NUt06BzjojeiW4c4FswYApwbcAK8Vds1KCm+OcfcWtuv2WK71Lo0T5Rgke5XSZGwIIIIBAVAQowd1JkhLcnawYKQIIIIAAAgi4J0AJ7l5mhSOmBLfLLmsl+GPjXtUzk97WEYfU1F7VqqpC+XIbjPTqJmfYjTwkW1OChyQIhoEAAggggEApApTg7iwPSnB3smKkCCCAAAIIIOCeACW4e5lRgmcms6yV4Be0uEPly+VKidTXTxr34B2ZmUHAe6EEDzgADo8AAggggEAaApTgaSCF5C6U4CEJgmEggAACCCCAQCQFKMHdjZUzwe2yy1oJ/u2Pi7Vf9WqbjO6fdev1+dff66jDDrAbeRlvPXHqdPUcMEp3dm6hhvXrFB2dEryMg+BwCCCAAAII+BDghzF9oAW0CT+MGRA8h0UAAQQQQACBWAhQgrsbMyW4XXZZK8GPPr2VZk0evsnoflv5lxpd1lkzJg6zG3kZbj1q/GR9PGeelq1YqaubNKIEL0N7DoUAAggggEAmBArPBM/EvthH2Qjww5hl48xREEAAAQQQQCBeApTg7uZNCW6XXcZL8PEvT9OEl6fpq/k/6uCa1TcZ3fLfVqpihQqa/FQ/u5GX4dZfL1ioA/fbSy3a99fF55xMCV6G9hwKAQQQQACBTAhwJngmFMtmH5wJXjbOHAUBBBBAAAEE4ilACe5u7pTgdtllvARfs3adPvn8G13fZZDatb54k9FttVVF1TvmMO1edSe7kQewdfN2/SjBA3DnkAgggAACCNgKcE1wW8Gy255rgpedNUdCAAEE0hX44YecdO/qzP22r5zUTjsmnRkvA0UgUwKU4JmSLPv9UILbmWe8BC8czvRZX+i4o2vZjS5kW6cqwdf8kx+yUTIcBBBAIBwCBUkpJ/VvI4djgIwiVgIvvpLU1GlJ1dxP2q9GrKbu3GSXLpNmz5FqHSxde3X0ShcTSEEyqZwSfjzeucAYMAIIRF5gzVqp0x0FkZvnyfWkxmdH83kmcmExoYwKvPN+UhNeTKrefxO6+DzesGUUN8s7q1QxN8tHiPbus1aCG7Yff16iia9/oEW/LlefW1uqoCCpT7+YryMPdetHMQuXQKoS/PdV66K9QpgdAggg4FPAnFfDSyqfeGyWcYFJk6Vp7ya0375SjX046yvjwBnc4bLlCc35TDr4oKSuuTyDOw7TrniADFMajAUBBDYjsG6dNHJ09pnWrE3ol1+lrSpK1XbP/nP14Ycm9N9js3+c7MtxBAS2TOD96dILE836l84/m7+BLdML9t47blsh2AE4fvSsleDvzJijtrffp7q1D9L7H32uL6aN0uJfl+v85rfr1hub6bzTT3COjsuhOBcZA0YAAQQQQMAT4HIo7iwELofiTlaMFAEEghMYNDRXv6/kdIPgEtjyI19wXoEOPyx6Z9RvuQRbBC3A5VCCTsD/8bkcin87s2XWSvALWtyhG645Xyf/9wjVqn+VV4Kb28xPvlbPgaM0acw9diMPYGtK8ADQOSQCCCCAAAIZEKAEzwBiGe2CEryMoCNymA9m5Gjt2midxVZlpwRFWUTWZzanQQmeTd3s7JsSPDuu7HXLBSjBt9wsLFtQgtslkbUS/KiGrTTzlYeUm5uzQQmel5+vOmdcq0+mjLAbeRlufWHL7lrwwyLl5eUrNydHiZyE+nZrpYb162rxijVlOBIOhQACCCCAAAJ+BCjB/agFsw0leDDumTrqkqUJrVlddmenjpuQ0Oo1ZXe8TDmVtp9q1ZI6/dSyK/Yr75DUjjuU3fHKwjAOxxh0X65+/z1aaz/quTU+L1+1D+NvLeo5uzA/SnAXUko9Rkpwu+yyVoKfenE73XfXTTq4ZvUNSnBzmZTeg8fo9XH32o08JFtTgockCIaBAAKhEfj2u4TmfpGjv1clteeeUp2jC7R1pdAMj4HEVIAS3J3gKcHdySrVSMc8laP5C/ihOZdSrHd8vk5rQDHnUmZmrIVngu9RrUDlyrk2+niNd/nyhP5enRBngscr9zDPlhI8zOmUPjZKcLvsslaCj3lmih55apIuOedkPTDqBXVu01TffPezXnljhjpc10SXnt/AbuQh2ZoSPCRBMAwEEAiFwPwFCY15asNfrN5zj6RaNc8PxfgYRHwFKMHdyZ4S3J2sKMHdzqpw9JTgbuZYeCZ43TrmZAM+xAhzil9+laOlyxLiTPAwpxSvsVGCu5s3Jbhddlkrwc2w3p4+R2NfeEMLFy1RTk6O9t6jqpqe10D1jjnMbtQh2poSPERhMBQEEAhc4LkXc/XpnE2/mntL23y+ah14OvEeACW4O/lTgruTVcoSfGyu5s/nEg0upVjv+AKd1oAf63MpMzNWzgR3JzHOBHcnq7iMlBLc3aQpwe2yy2oJbjc0N7amBHcjJ0aJAAJlIzB8ZK5+XrRp+XH5pfmquT9nKZVNChwllQAluDvrghLcnaxKK8EPqVWgnavwuB/mNH9cmKPvf0iIEjzMKZU8Nn4Y073cuByKe5lFdcSU4O4mSwlul13WSvBFvy6XuSTKjz8v0bp16zcZ5ciBnexGHpKtKcFDEgTDQACBUAi8+XaOpr294bVgc3OlWzvkqULFUAyRQcRUgBLcneApwd3JihLc7awowd3Ob8bMHK1eHa0Pmlb+kdCnc3K0Q+Wkah8evW8n1PqPtGvVaGXm9l9RfEdPCe5u9pTgdtllrQS/qFUPbbdNJR1ea39VrFB+k1Fee8U5diMPydaU4CEJgmEggEAoBNaslZ4cm6uFP/17Nrh5+D/9f/k6+ihe8IcioBgPghLcnfApwd3JihLc7awowd3OL4qjN99MeOzxXO1TPalrruT3ZKKYMXMKhwAleDhy8DMKSnA/av9/m6yV4CdfeLPeGD9IOTnRviYgJbjdAmRrBBCIpsAffyb096qkqlaVypWL5hyZlVsClODu5EUJ7k5WlOBuZ0UJ7nZ+URw9JXgUU2VOYRSgBA9jKumNiRI8PaeS7pW1ErxFh/7q06Wlqu68g90IQ741JXjIA2J4CCCAAAIISKIEd2cZUIK7kxUluNtZUYK7nV8UR08JHsVUmVMYBSjBw5hKemOiBE/PqcxL8IWLluiGbkN17JEHa5cqmxbhLZudZTfykGxNCR6SIBgGAggggAACpQhQgruzPCjB3cmKEtztrCjB3c4viqOnBI9iqswpjAKU4GFMJb0xUYKn51TmJfi1nQdo9tz52rd6tZTXBB895Fa7kYdka0rwkATBMBBwVGDJ0oS++NLRwcd02FtvndCxdaP3Y01Rj5MS3J2EKcHdyYoS3O2sKMHdzi+Ko6cEj2KqzCmMApTgYUwlvTFRgqfnVOYl+H/PbqNXn+ynyttvYzfCkG9NCR7ygBgeAiEXmPNZjp59ISfko2R4xQV23CGpW9ryY02urQpKcHcSowR3JytKcLezogR3O78ojp4SPIqpMqcwClCChzGV9MZECZ6eU5mX4Je07qknHrhN5cvl2o0w5FtTgoc8IIaHQMgFCkvwbbZJaucqyZCPNt7DW58nLV6cI0pwN9cBJbg7uVGCu5MVJbjbWVGCu51fFEdPCR7FVJlTGAUowcOYSnpjogRPz6nMS/DXps3Ua9M+0rkNT/B+HDORSGwwhoP239tu5CHZmhI8JEEwDAQcFfj0s4SeeyFXu1ZN6uCDuMRGmGNcszqhD2flaKcdk7r5Rs4ED3NWqcZGCe5OYpTg7mRFCe52VpTgbucXxdFTgkcxVeYURgFK8DCmkt6YKMHTcyrzErxW/atKHdkX00bZjTwkW1OChyQIhoGAowKU4O4ERwnuTlaU4G5nRQnudn5jxuZq/vyEDqlVwDecQh4lJXjIA4rh8CjBYxg6Uw5EgBI8EPaMHJQS3I4xkUwms/L9+9Vr/lFubsnXua1YobzdyEOyNSV4SIJgGAg4KkAJ7k5wlODuZEUJ7nZWlOBu50cJ7k5+lODuZBWXkVKCxyVp5hm0ACV40An4Pz4luH87s2XWSnC7YbmzNSW4O1kxUgTCKEAJHsZUUo+JEtydrCjB3c6KEtzt/CjB3cmPEtydrOIyUkrwuCTNPIMWoAQPOgH/x6cE929HCW5n521NCZ4BRHaBQIwFKMHdCZ8S3J2sKMHdzooS3O38KMHdyY8S3J2s4jJSSvC4JM08gxagBA86Af/HpwT3b0cJbmdHCZ4BP3aBQNwFKMHdWQGU4O5kRQnudlaU4G7nRwnuTn6U4O5kFZeRUoLHJWnmGbQAJXjQCfg/PiW4fztKcDs7SvAM+LELBOIuQAnuzgqgBHcnK0pwt7OiBHc7P0pwd/KjBHcnq7iMlBI8Lkkzz6AFKMGDTsD/8SnB/dtRgtvZUYJnwI9dIBB3AUpwd1YAJbg7WVGCu50VJbjb+VGCu5MfJbg7WcVlpJTgcUmaeQYtQAkedAL+j08J7t+OEtzOjhI8A37sAoG4C1CCu7MCKMHdyYoS3O2sKMHdzo8S3J38KMHdySouI6UEj0vSzDNoAUrwoBPwf3xKcP92lOB2dpTgGfBjFwjEXYAS3J0VQAnuTlaU4G5nRQnudn6U4O7kRwnuTlZxGSkleFySZp5BC1CCB52A/+NTgvu3owS3s6MEz4Afu0Ag7gKU4O6sAEpwd7KiBHc7K0pwt/OjBHcnP0pwd7KKy0gpweOSNPMMWoASPOgE/B+fEty/HSW4nR0leAb82AUCcRegBHdnBVCCu5MVJbjbWVGCu50fJbg7+VGCu5NVXEZKCR6XpJln0AKU4EEn4P/4lOD+7SjB7ewowTPgxy4QiLsAJbg7K4AS3J2sKMHdzooS3O38KMHdyY8S3J2s4jJSSvC4JM08gxagBA86Af/HpwT3b0cJbmdHCZ4BP3aBQNwFKMHdWQGU4O5kRQnudlaU4G7nRwnuTn6U4O5kFZeRUoLHJWnmGbQAJXjQCfg/PiW4fztKcDs7SvAM+LELBOIuQAnuzgqgBHcnK0pwt7OiBHc7P0pwd/KjBHcnq7iMlBI8Lkkzz6AFKMGDTsD/8SnB/dtFqgR/98PP1GfoE1q2YqUOr7W/+nZrrZ13qryJTmn3G/HkRI0e/5ry8vPVqMGx6tb2MuXm5nj7mDh1unoOGKU7O7dQw/p1iva7eMUauwTYGgEEYi1ACe5O/JTg7mRFCe52VpTgbudHCe5OfpTg7mQVl5FSgsclaeYZtAAleNAJ+D8+Jbh/u8iU4H+uWq3Tm3bUvd2vU53aB2vw8An6ZekKDezRZgOd0u434+MvdVu/kRo95FZV3m4bXddlkBo1OEZNz2ugUeMn6+M587yC/eomjSjB7dYcWyOAQDEBSnB3lgMluDtZUYK7nRUluNv5UYK7kx8luDtZxWWklOBxSZp5Bi1ACR50Av6PTwnu3y4yJfjkt2bquVfe0fD+HTyNv1at1kmNb9KMicNUoUL5IqHS7nfPA2O1e9Wd1LLZWd793/rgE++s8FGDu+jrBQt14H57qUX7/rr4nJMpwe3WHFsjgAAluJNrgBLcydiKBj1lao7e+yBHNfZJqvreBW5PJuKjpwR3O2BKcHfyowR3J6u4jJQSPC5JM8+gBSjBg07A//Epwf3bRaYEf3jMy1rx+x/q2vayIg1Tgj8+tKuq77lr0b8r7X69Bo1Wk3NP0WknHu3d//uFv+jqW/pq2rODi7Zv3q4fJbjdemNrBBDYSIAzwd1ZEpTg7mSVaqSU4O7kRwnuTlapRkoJ7k5+lODuZBWXkVKCxyVp5hm0ACV40An4Pz4luH+7yJTgg0c8413Hu8O1lxRpnNakg4b2vlEH16xe9O9Ku9+dg8eo9eVn68RjD/fuv/jX5Trvmts085WHSi3B1+dxNpndEmRrBBwWSNiP/cNZSY16qkDVdk+o9qH2+wvTHpLJpHISGUAKyaT+/lua9n5Su1SRenfLDcmoGEa6As9NLNCUN5M6cP+E9t833a24XxACS5ZKsz5N6tD/JNSmxb+/zRK1W16+VC6iDyP3jyjQ518ldfQRCe26S9SSi9Z8FnwnzVuQVMMGCZ1/ZjT/1qKVWPRn882CpAYOK1DN/RJq14Y1mdHEkxndGztzXGDae0k9/XyBTjo+oSaN+VtzKc7y5cjLJq9E0rQUjt+GP/GyflmyQt3bX1U0k+POul7jHuq+wZngpd2v9+DH1fiME73rgJvbvG9/UutOAzZ7JvjSlWsd12P4CCDgWyADj56fzElowvM52rWqVOvgCH6oFp0OXKtXJzRjZkI77ZhUh5szEL7vhceGfgQmv57QO+8ltG+NpPapTn5+DMtqm+XLE/rs84QOOiCpK5qRVVm5Z+o4o59IaN78hA47NKmdq5BfplyzsZ8ff0zo2+8TOumEpBqeRlbZMGafWybw3fcJPTIqoRrVk2p5dQRfF28ZR2bvHaHX5JmFiefepn+Y0Muv5OjYukmdcyZ/ay6tgqo7bOXScEM31kiU4FPenqUnn3vd+1FLczM/YHn6pZ28a4KXL1+uCL20+/UbNlY7bL+t2lx9vnf/V974UM9OelsjB3Yq2p7LoYRu/TIgBJwX4HIo7kTI5VDcySrVSLkcijv5cTkUd7JKNVIuh+JOflwOxZ2s4jJSLocSl6SZZ9ACXA4l6AT8H5/Lofi3M1tGogT/e/VanX5pR/W9rbXqHH6Q7rn/Ka1avUZ9u7X2fiTz9XdmqXGjE1Xa/WbP/Uadej/kXUd8m20qqVWHe73rf19w5omU4HZrjK0RQKAUAUpwd5YHJbg7WVGCu50VJbjb+VGCu5MfJbg7WcVlpJTgcUmaeQYtQAkedAL+j08J7t8uMiW4mciM2V+q54DRWrbidx1tivCurbRD5W313cJfdO5VXTX3zcc8qZLuZ/7b6Amv6ZEnJ2p9Xr7OO/0EdW7TVIlEQhe27K4FPyxSXl6+cnNylMhJqG+3VmpYv64Wr1hjlwBbI4BArAUowd2JnxLcnawowd3OihLc7fwowd3JjxLcnaziMlJK8LgkzTyDFqAEDzoB/8enBPdvF6kS3I7B/9aU4P7t2BIBBCRKcHdWASW4O1lRgrudFSW42/lRgruTHyW4O1nFZaSU4HFJmnkGLUAJHnQC/o9PCe7fjhLczs7bmhI8A4jsAoEYC1CCuxM+Jbg7WVGCu50VJbjb+VGCu5MfJbg7WcVlpJTgcUmaeQYtQAkedAL+j08J7t+OEtzOjhI8A37sAoG4C1CCu7MCKMHdyYoS3O2sKMHdzo8S3J38KMHdySouI6UEj0vSzDNoAUrwoBPwf3xKcP92lOB2dpTgGfBjFwjEXYAS3J0VQAnuTlaU4G5nRQnudn6U4O7kRwnuTlZxGSkleFySZp5BC1CCB52A/+NTgvu3owS3s6MEz4Afu0Ag7gKU4O6sAEpwd7KiBHc7K0pwt/OjBHcnP0pwd7KKy0gpweOSNPMMWoASPOgE/B+fEty/HSW4nR0leAb82AUCcRegBHdnBVCCu5MVJbjbWVGCu50fJbg7+VGCu5NVXEZKCR6XpJln0AKU4EEn4P/4lOD+7SjB7ewowTPgxy4QiLsAJbg7K4AS3J2sKMHdzooS3O38KMHdyY8S3J2s4jJSSvC4JM08gxagBA86Af/HpwT3b0cJbmdHCZ4BP3aBQNwFKMHdWQGU4O5kRQnudlaU4G7nRwnuTn6U4O5kFZeRUoLHJWnmGbQAJXjQCfg/PiW4fztKcDs7SvAM+LELBOIuQAnuzgqgBHcnK0pwt7OiBHc7P0pwd/KjBHcnq7iMlBI8Lkkzz6AFKMGDTsD/8SnB/dtRgtvZUYJnwI9dIBB3AUpwd1YAJbg7WVGCu50VJbjb+VGCu5MfJbg7WcVlpJTgcUmaeQYtQAkedAL+j08J7t+OEtzOjhI8A37sAoG4C1CCu7MCKMHdyYoS3O2sKMHdzo8S3J38KMHdySouI6UEj0vSzDNoAUrwoBPwf3xKcP92lOB2dpTgGfBjFwjEXYAS3J0VQAnuTlaU4G5nRQnudn6U4O7kRwnuTlZxGSkleFySZp5BC1CCB52A/+NTgvu3owS3s6MEz4Afu0Ag7gKU4O6sAEpwd7KiBHc7K0pwt/OjBHcnP0pwd7KKy0gpweOSNPMMWoASPOgE/B+fEty/HSW4nR0leAb82AUCcRegBHdnBVCCu5MVJbjbWVGCu50fJbg7+VGCu5NVXEZKCR6XpJln0AKU4EEn4P/4lOD+7SjB7ewowTPgxy4QiLsAJbg7K4AS3J2sKMHdzooS3O38KMHdyY8S3J2s4jJSSvC4JM08gxagBA86Af/HpwT3b0cJbmdHCZ4BP3aBQNwFKMHdWQGU4O5kRQnudlaU4G7nRwnuTn6U4O5kFZeRUoLHJWnmGbQAJXjQCfg/PiW4fztKcDs7SvAM+LELBOIuQAnuzgqgBHcnK0pwt7OiBHc7P0pwd/KjBHcnq7iMlBI8Lkkzz6AFKMGDTsD/8SnB/dtRgtvZUYJnwI9dIBB3AUpwd1YAJbg7WVGCu50VJbjb+VGCu5MfJbg7WcVlpJTgcUmaeQYtQAkedAL+j08J7t+OEtzOjhI8A37sAoG4C1CCu7MCKMHdyYoS3O2sKMHdzo8S3J38KMHdySouI6UEj0vSzDNoAUrwoBPwf3xKcP92lOB2dpTgGfBjFwjEXYAS3J0VQAnuTlaU4G5nRQnudn6U4O7kRwnuTlZxGSkleFySZp5BC1CCB52A/+NTgvu3owS3s6MEz4Afu0Ag7gKU4O6sAEpwd7KiBHc7K0pwt/OjBHcnP0pwd7KKy0gpweOSNPMMWoASPOgE/B+fEty/HSW4nR0leAb82AUCcRegBHdnBVCCu5MVJbjbWVGCu50fJbg7+VGCu5NVXEZKCR6XpJln0AKU4EEn4P/4lOD+7SjB7ewowTPgxy4QiLsAJbg7K4AS3J2sKMHdzooS3O38KMHdyY8S3J2s4jJSSvC4JM08gxagBA86Af/HpwT3b0cJbmdHCZ4BP3aBQNwFKMHdWQGU4O5kRQnudlaU4G7nRwnuTn6U4O5kFZeRUoLHJWnmGbQAJXjQCfg/PiW4fztKcDs7SvAM+LELBOIuQAnuzgqgBHcnK0pwt7OiBHc7P0pwd/KjBHcnq7iMlBI8Lkkzz6AFKMGDTsD/8SnB/dtRgtvZUYJnwI9dIBB3AUpwd1YAJbg7WVGCu50VJbjb+VGCu5MfJbg7WcVlpJTgcUmaeQYtQAkedAL+j08J7t+OEtzOjhI8A37sAoG4C1CCu7MCKMHdyYoS3O2sKMHdzo8S3J38KMHdySouI6UEj0vSzDNoAUrwoBPwf3xKcP92lOAb2X01/0fd0v0BnVD3UN128+VpyS5esSat+3EnBBBAIJUAJbg764IS3J2sKMHdzooS3O38KMHdyY8S3J2s4jJSSvC4JM08gxagBA86Af/HpwT3b0cJXszuk8/n687BY7R/jT203TZbU4LbrSu2RgCBNAUowdOECsHdKMFDEILFEKZMzdF7H+Soxj5JVd+7wGJPbJptAUrwbAtnd/+U4Nn1zeTeKcEzqcm+MiFACZ4JRfaBwOYFKME3bxTWe1CC2yWTSCaTSbtdRGPrhYuWaOedKuvxCVO0/Lc/ikrwrxcs1A3dhmjq0wO8if65arWOO+t6fTFtlPfPnAkejfyZBQJBCVCCByW/5celBN9yszBtQQkepjRKHwsluDtZpRopJbg7+VGCu5NVXEZKCR6XpJln0AKU4EEn4P/4lOD+7cyWlOAb+T30+EuU4HZriq0RQGALBCjBtwAr4LtSggccgOXhKcEtActwc0rwMsTOwqEowbOAmqVdUoJnCZbd+hagBPdNx4YIbJEAJfgWcYXqzpTgdnFQgluW4Hb8bI0AAnEXmP5RgUY+ka89qiV05GGJSHHkFySVmxOdOf39t/TmuwXapYp09x3lI5VVHCbzzEv5mvxGgQ6qmVDN/aKzLqOY3ZKl0szZBTqsVkJtW5WL4hS1Lq9AFcrlRHJuQx7O09wvk6pzZI52qxrJKUZmUvO/Terr+UmdcWqOLjg7NzLzYiLuCsybn1T/+/N0wH4JdWobzcd/d9Nh5FESePOdAj31bL5OrpejZhfy+B+lbJlL6QKU4JYlOJdD4U8MAQRsBDgT3EavbLflTPCy9c700TgTPNOi2dsfZ4Jnz7Ys9syZ4GWhnJljcCZ4ZhzZS+YEOBM8c5bsCYHSBDgT3N31wZngdtlRgqdRgrdo31/vvXifd8+fFi/V6Zd24prgduuOrRFA4P8EKMHdWQqU4O5klWqklODu5MZqAsQAACAASURBVEcJ7k5WqUZKCe5OfpTg7mQVl5FSgsclaeYZtAAleNAJ+D8+Jbh/O7MlJXgaJfgFLe7QY4O6qO4RB+mBx57XsNEvUoLbrTu2RgABSnDn1gAluHORbTBgSnB38qMEdycrSnC3s6IEdzu/KI6eEjyKqTKnMApQgocxlfTGRAmenlNJ96IE/z+Ze+5/SuNefFMFBQVKJpPKzc3VRWedpAvOPEmtOt6rfatX048//6rrrjhXdw15QrOnjFBubo64HIrdAmRrBOIuwJng7qwASnB3sko1Ukpwd/KjBHcnK0pwt7OiBHc7vyiOnhI8iqkypzAKUIKHMZX0xkQJnp4TJbhPp68XLNSNtw3V6+PuTbkHSnCfsGyGAAKeACW4OwuBEtydrCjB3c6KEtzt/Lgcijv5UYK7k1VcRkoJHpekmWfQApTgQSfg//iU4P7tzJacCb4ZP1OC39BtiKY+PYAS3G6tsTUCCKQQoAR3Z1lQgruTFSW421lRgrudHyW4O/lRgruTVVxGSgkel6SZZ9AClOBBJ+D/+JTg/u0owdOwowRPA4m7IICAbwFKcN90Zb4hJXiZk2f0gFwOJaOcWd0ZJXhWebO+c0rwrBNn7ACU4BmjZEcZEqAEzxAku0FgMwKU4O4uEUpwu+w4E9zOj2uCW/qxOQJxF6AEd2cFUIK7k1WqkVKCu5MfJbg7WaUaKSW4O/lRgruTVVxGSgkel6SZZ9AClOBBJ+D/+JTg/u3MlpTgdn6U4JZ+bI5A3AUowd1ZAZTg7mRFCe52VpTgbudHCe5OfpTg7mQVl5FSgsclaeYZtAAleNAJ+D8+Jbh/O0pwOztva34YMwOI7AKBGAtQgrsTPiW4O1lRgrudFSW42/lRgruTHyW4O1nFZaSU4HFJmnkGLUAJHnQC/o9PCe7fjhLczo4SPAN+7AKBuAtQgruzAijB3cmKEtztrCjB3c6PEtyd/CjB3ckqLiOlBI9L0swzaAFK8KAT8H98SnD/dpTgdnaU4BnwYxcIxF2AEtydFUAJ7k5WlOBuZ0UJ7nZ+lODu5EcJ7k5WcRkpJXhckmaeQQtQggedgP/jU4L7t6MEt7OjBM+AH7tAIO4ClODurABKcHeyogR3OytKcLfzowR3Jz9KcHeyistIKcHjkjTzDFqAEjzoBPwfnxLcvx0luJ0dJXgG/NgFAnEXoAR3ZwVQgruTFSW421lRgrudHyW4O/lRgruTVVxGSgkel6SZZ9AClOBBJ+D/+JTg/u0owe3sKMEz4McuEIi7ACW4OyuAEtydrCjB3c6KEtzt/CjB3cmPEtydrOIyUkrwuCTNPIMWoAQPOgH/x6cE929HCW5nRwmeAT92gUDcBSjB3VkBlODuZEUJ7nZWlOBu50cJ7k5+lODuZBWXkVKCxyVp5hm0ACV40An4Pz4luH87SnA7O0rwDPixCwTiLkAJ7s4KoAR3JytKcLezogR3Oz9KcHfyowR3J6u4jJQSPC5JM8+gBSjBg07A//Epwf3bUYLb2VGCZ8CPXSAQdwFKcHdWACW4O1lRgrudFSW42/lRgruTHyW4O1nFZaSU4HFJmnkGLUAJHnQC/o9PCe7fjhLczo4SPAN+7AKBuAtQgruzAijB3cmKEtztrCjB3c6PEtyd/CjB3ckqLiOlBI9L0swzaAFK8KAT8H98SnD/dpTgdnaU4BnwYxcIxF2AEtydFUAJ7k5WlOBuZ0UJ7nZ+lODu5EcJ7k5WcRkpJXhckmaeQQtQggedgP/jU4L7t6MEt7OjBM+AH7tAIO4ClODurABKcHeyogR3OytKcLfzowR3Jz9KcHeyistIKcHjkjTzDFqAEjzoBPwfnxLcvx0luJ0dJXgG/NgFAnEXoAR3ZwVQgruTFSW421lRgrudHyW4O/lRgruTVVxGSgkel6SZZ9AClOBBJ+D/+JTg/u0owe3sKMEz4McuEIi7ACW4OyuAEtydrCjB3c6KEtzt/CjB3cmPEtydrOIyUkrwuCTNPIMWoAQPOgH/x6cE929HCW5nRwmeAT92gUDcBSjB3VkBlODuZEUJ7nZWlOBu50cJ7k5+lODuZBWXkVKCxyVp5hm0ACV40An4Pz4luH87SnA7O0rwDPixCwTiLkAJ7s4KoAR3JytKcLezogR3Oz9KcHfyowR3J6u4jJQSPC5JM8+gBSjBg07A//Epwf3bUYLb2VGCZ8CPXSAQdwFKcHdWACW4O1lRgrudFSW42/lRgruTHyW4O1nFZaSU4HFJmnkGLUAJHnQC/o9PCe7fjhLczo4SPAN+7AKBuAsUluBxd3Bp/jvtmNTNN+a7NGTGKmnK1By990GOauyTVPW9CzAJsQAleIjDSWNolOBpIIXkLpTgIQmCYRQJUIKzGBAoGwFK8LJxzsZRKMHtVBPJZDJpt4t4b714xZp4AzB7BBCwEqAEt+ILZGNK8EDYrQ9KCW5NWGY7oAQvM+qsHIgSPCusWdkpJXhWWNmphQAluAUemyKwBQKU4FuAFbK7UoLbBUIJbucnSnBLQDZHIOYCXA7FnQXA5VDcySrVSCnB3cmPEtydrFKNlBLcnfwowd3JKi4jpQSPS9LMM2gBSvCgE/B/fEpw/3ZmS0pwOz9KcEs/Nkcg7gKU4O6sAEpwd7KiBHc7K0pwt/OjBHcnP0pwd7KKy0gpweOSNPMMWoASPOgE/B+fEty/HSW4nZ23NWeCZwCRXSAQYwFKcHfCpwR3JytKcLezogR3Oz9KcHfyowR3J6u4jJQSPC5JM8+gBSjBg07A//Epwf3bUYJvZPfbyr/U5a6H9euy3/XSqLvSkqUET4uJOyGAQAkClODuLA1KcHeyogR3OytKcLfzowR3Jz9KcHeyistIKcHjkjTzDFqAEjzoBPwfnxLcvx0leDG7v1evVdPreumk42rr7RlzKMHt1hVbI4BAmgKU4GlCheBulOAhCMFiCFwT3AKvjDelBC9j8AwfjhI8w6BZ3B0leBZx2bUvAUpwX2xshMAWC1CCbzFZaDagBLeLgmuC/5/f6jVrtfy3P7z/9RgweoMS/Nizrle7Vhdpyjuz9PPiZWrcqJ5aXXa2tyVngtstQLZGIO4ClODurABKcHeySjVSSnB38qMEdyerVCOlBHcnP0pwd7KKy0gpweOSNPMMWoASPOgE/B+fEty/ndmSEnwjv9lzv9mkBP/vOW108dkn6+aWF2rJst/VsGkHTZ/4oCptVUFLV661S4CtEUAg1gKfzElownM52nVXqdbBBbG2CPvkV69OaMbMhHbaMamOtyTDPlzGt5HAq1MSeue9hPatkdQ+1ckvzAtk+fKEPvs8oYMOTOrKZtHMyswqEeYQLMY26omE5n2T0GGHJrVzlWjmZ8ETqk1//DGhb79P6KR6SZ1+GlmFKpyYDua77xMa8VhCNaon1fIaXhfHdBkw7TIQmP5hQi+/kqNj6yZ1zpn8rZUBecYOUXWHrTK2rzjuiBI8zRJ85IBOOrhmde/ex511vSaM6Kk9d99F6/N4wIjjHw5zRiBTAh/OSmrU2AJV2z2h2odmaq/h2E9BQVI5OdGpef7+W3r7/aR2qSL16pobDmRGkbbA8xMLNOWtpA7YP6H99017M+4YgMCSpdLHnyZ16H8Sur55TgAjyP4h8wuSyo3Q42NxsQceKdDnXyV11BEJ7bpL9i05gn+Bb7+T5i1IquEpCZ13ZjT/1vzrsGUQAt8sSGrQgwWquW9C7dqwJoPIgGPGQ2Dae0k9/XyBTjo+oSaN+VtzKfXy5cjLJi9K8DRL8HEP3qG999jVu7c5M7zwn7kcis3yY1sEEOByKO6sAS6H4k5WqUbK5VDcyY/LobiTVaqRcjkUd/LjcijuZBWXkXI5lLgkzTyDFuByKEEn4P/4XA7Fv53ZkhKcEtxuBbE1AghYCVCCW/GV6caU4GXKnfGDUYJnnDRrO6QEzxptmeyYErxMmDNyEErwjDCykwwKUIJnEJNdIVCKACW4u8uDEtwuO0pwyxLcjp+tEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLIpQAn+f7pT3/1YHXo9KCWTWp+Xr/Lly6nGXrvp+Ufv3ODyJ+buxS+Hks1w2DcCCCCAAAIIIIAAAggggAACCCCAAAIIIICAnQAluJ0fWyOAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEWIASPMThMDQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABOwFKcDs/tv4/gXdmzNGw0S9q3rc/qVLFCjq69oHqcO0l2nuPXfXkc1P12Zffqu9trTfxuq7LIDU65Rid/b//Omf5+ITXNP/7Rerd6ZoNxl77tBbKz8/3/l1BQVI5OQnv/x+0f3VNGN5ji+Y5fdYXqlF9d+22y05btB13RiDbAkMeeVaPPDVRubm53qG226aSTjnhSHVuc6m2rlTR+3cPj3lZz73yjlatXqNyubnef+9yw6WqWKG8npn4tl5980ONHNgp20Nl/whkRCAvP1+HN2iuNyYMLHpMfmnK+xo26kU9cX837VB5203+e6oDF//bSSQSqrZrFZ3Z4Fi1bHaWdyk2czv69FaaOOYeHvszkhw7KU1g+W9/6OQLb/ZerzRudOImr2nCovfnqtXqe/9T+mDW5/pn3XpV3m4bXXr+qbr8wv95Q3TpUoU8BoRlVTGOTApcdsNduuSck4ve083//me1aN9fg3q20ZGHHqDN/Q0XjmX4Ey/rvkefK3ofZZ4nE/++ldKQ3m11yvFHbNGwn3/1XZ1/Rr0t2oY7I7Dyj1U64bwb9dYzg7RLlR08kFlz5unKm+7W288N0c47Vfb+3YeffKXOdz6sac8ODhVaOuv+83nfq0PPBzX5qX5pj910Ey069C96vbrD9tuq3jGHqW3zxkVO6byGTWd8aQ+KOyKwhQKU4FsIxt03FZj2wafq2Pshr9xqcMKRMkXB6PGv6YXJ73pv4ie+Pr3EEty8IDKFmPlf0LfihXU6YympBC/cduGiJTrnqm769PVH0tldyvvc0HWIWl52lg7/z36+98GGCGRDwLyJN+VJ4YdA5v+37zlMhx68r/cB2MSp0/XYuFf1UN923oui3//4Szfdfp9q19pf7VpfTAmejVDYZ1YFNi7BZ8z+Urf2Ga7RQ271PvBNVZKnGlDxv51169br6wULdff9T3mlnvl7MbcVv/+pHStvV/Qhqt+Jbenzmt/jsJ37Ag889rx+XfZ7aEvw7vc+pvz8AnW76XJV2qqCTMHWvF0/3dWlpeodc6hzJXjh8yePAe7/7TCDfwWKl+BLl69UsxvuVOc2TXVqvaO8/765v+FUjqZc3L/GHt6HxH5uyWRSJzW+Se88P9TP5mwTc4GLWvXQlRc11FmnHedJDBv1gp56/g3d2raZd/KCuZkPbH5ZskJ9bm1Zplrm+TA3NyflMdNd9+Z161+rVnuvN9O9mRK858DRXnFuXmP+/MtS76SnD2d/qWdG9PJOCNnca9h0x5fumLgfAlsqQAm+pWLcfxOBxs1v1zn/O15XXXL6Bv/t2Unv6KTjDtdr0z7SJ5/PV0FBgT7+7Bvvk9P77myrarvtrNLOBDcF2viX3/IeYM0293Rrpb2qVdV7M+fqriFjlJOT4z0pjXvhTT017Ha98sYMLf51ubq3v8obx4gnJxb9s/k0t0uf4fp+4S8qSCa9J7TLLjjNu1+dM65Vq8vO0sixr+jNCYO0dPnv3gs18wZl60pbqWvbZjrikJremUe39X1En8ydr92qVtF/DqiuNWvXlfiGMVUJbp4kzJmD5qyGY4/8j/fi0Jz5l2quxu3+x57XrjvvqA7XXaLTTjya1YdAaAQ2LsHNwN54d7aGjX5Bzz7SS0NHPqvffv9LPTr8+/dobr+t/Es5iYT3AokzwUMTJQNJU6B4yf3nX6vVutO9uu+um3TIgTW8PfgpwQsP/ceff+uMZp00sEcbHXvUf7wzwcc+1F0Xt+qhN8YP1E47/PsGpc/QJ7VVxfLeB0klPZ+06TpYNWvsqRcmv+c9P+1bvZo69nrQ+/s76rADvOctUxqaM+N++OnXlM93Y56Z4n2zyxR0Cxcv9crHIb1u8J63zYfXPe59THO++Nb71od5M/jfow/R36vXqvfgx71/X75crpo1PlWXnHtKmrrcLWiB4iV4aVkee9b1atfqIk15Z5Z+XrxMjRvVU6vLztb69Xm6rd9Iffr5AuUXFOjIQ2qqV6drtFXFCnp7+hwNGj5B6/PytFe1XdS7U3Pvw9EbbxuqWgfso0+/WKBfl/6mvfaoqsE9b0j5xv7yG+9Sk/MaFBUPxssUDztU3s4rxc2Z4Dde01hjX3hTy1es9F6TmnGZ24uvva+Hx7ykvLx87b5rFd3TrbV2r7pTqccvaZ5mf69Nm6kHRr2ovLw87/Vpjw5Xa9+9d097PqmeP1M9BpgTSdreNtQrAAtfA05992M98tQkjXvwjhJdM/EYYD6c63r3CJ10XG19/Nk8LVvxh7rddJlOqHuoTIFhip+XX5+ugvwC72z8wvcAJT0uBb2+OX72BQpLcPOtP/P3as4KL/4csLm/4VQj3LgEL+k5q6THH3OS1pvvzdZ+++yhh/u19/7uuSGQroB53jKF7p2dm3ubXNG2j9cJrPxzlXp2uNr7d2bdNzn3FJ156rHq+8BYb72ZrqFu7YO850DzTdiSOo2S/n1J6/zLb37QbX1Heq/xliz/XSP6d0j5vLvxuv/nn3UpX+sVPxO8tNd9xb2Kl+DF//1VN9+jIw+tqbbNLyj6NmOVHbZPa3ymc+k1cLT+/Otv78TIbjdfrmOOONg7SYTnoXRXK/fbEgFK8C3R4r6bCJhPD80bhdfH3eu9OU51M5dDMW+uxtzfTfuZN+O9H9Qeu+2im1teWGIJbs4abdSss6aOH6httt5K5isza/9Zp4vPPlkNLm6nu7q00PF1DvE+je0z9AlNHT9AL0/5oMQSvN8DY7037uZJbNGvy3XWFbfqtaf6q+rOO+i/Z7fR+Y3qeWevmnL6ghZ3qMl5p+iis+pr7tff68ZuQ7z5PfvKO5pkzm4d3EVr1vyjS6/vrdqH1Ey7BDdPioNHPKMnH7jNK9dv7n6/9wBvnjRTzbXpeQ28M8lNicGZ4PzxhU0g1Zv4KW/P0qNjJ2ncQ90196vvdPUt96hZ49O8y6DUOnAf74Vg4Y0SPGyJMp7NCRSW3GOH3a52PYd5b4DM81DhzaYEN/to12OYauy9m1fkFX6VtHv/x3T6yXWLvsp96iXtNbT3jV5hmOr5xHy4a75x8dvKPzXi3o5eAWm+obHn7rvollYXacbHX+raLgPVu+M13lfWS3q+G//yND0w6nm9NKqPV/L1HDBKlbff1nveLvwQ+tYbm3l/5y073ut9Ndi8WTTP3fd0bSVT6F3Uuof3gfdB+++9OVr+ewgEipfg99z/VIlZmrLZvBYza2HJst/VsGkHTZ/4oMxl8cyJC4/c21HJpDTgoafVoN5R2nuPqt5rrjH3dfXeuI96erJmf/6NhvZuq5vvuN87ziMDOnkfkJ5/zW3qcuOl3ocqG9/Mt+/MyQqmEP5vnUO80rn4zYyr0SnHekWtKRDOu/o2zZj0oPdBTv0Lb9ZLo+7yTqToce8o79IK5oSJ0o5f0jxX/vGXzm9+u8Y/3N37Boj5W3lu0tve816680n1/FnSY4D5NuW3PyzW3V3/Pcvw1j4jdOD+e+msU48r0TUTjwE//PyrzEkuw+5u531o9sobH+rJ5173XsN6z/XjXtGowV30zz/rdd413TS4141a8dsfJT4uhWCJM4QsC5gy8IIzT9SkN2bosIP39cqw4rfN/Q2nGt7GJXhJz1lvvv9Jyscf85x68oW3WH0rN8ts7D7EAuYbf6Z0nvr0AK+HOPXi9t6lTa9p11evPtlPq9f8o/+efb3XV8z9+jsNeniCJozoKXP1nkuu7amWzc7WcUf/J+X7fPParqT3/yWt8+9/+lWXXt/L+yD5jFOO8U40TPW8u/G6L2l/8777qehyKF5fU8LrvuIRlVSCj3vxTU2aOsN7ri98DWtOikhnfBe27O59mHpuw+O9xw9zxv2kMfd43/jieSjEfyAOD40S3OHwwjB0cxaOeVM+e8qIEi9pYh5UzTUcH+hzszfkJ559XV/M+8F7QV/SmeDmiab+BTfrlpYXqmH9ut6Zo+b23cJf1PS6Xvpw0oPeP5uzs4/8X0vvGq2lleCmnDBnAJlCwNwaXdbZK9LNp7nmjc6D97TzimYzn7OvvFUzX3m46GvoF7fuoY7XNZF5cD/sP/t5Z5Gbm3nDb86s2/ia4IW5bHwmuHkS3Wev3dTi0jO9u5gzox57+t/LRaSaq7kPJXgYVjljSCWw8Zt4U4aYss2UE9dfea63yTff/SxzZsEHH33ufQjVsH4d78MmzgRnTbkoUFhymyJtzdp/vOeFwq/ImvnYluCmeDTffDLfPip8A/H+zM81bfqnXplszgAyRbn5CmpJzyemlDJFnPnQqfDr4+ar4MP7d9CB++3lsZ95eRdde/k5OvrwA0t8vjN/u+aNzv19btrkefu0Jh28Iv7gmtW9//bHX397l3L5X5MOuveO67znSXPr/+A4bVNpK11/1Xkuxh27MRcvwUvL0rxmGjmgU1H+x511vfem33yLzjwH9Gh/tfdthsLL3JmzsM039cxZmOa2es1a7+SJT6Y84t3/iENrFr2uanv7UJ383yNKvH7vWx98oudeeVczP/nK+xbCxeecrFbNzvbOHDfjMgX8fw7YxztO4bjMB0DmzHZzQoW5mTfY5sQKc1/zt1LS8Uua54ezv5I5G/vBe27x9lf4OnTGxGG6vd+jac2npBI81WOAOcO1yXW99M5zQ5VUUiee31bPPtLbMyjN1fYxwDxPN2tzp2a+8pA3T/PNkDa3DvLKnm73PKID9turKLdVf69Rpa0qemcapnqdax6XuEVfwJTg5n2UuZ1wzKFFZ8oWn3lpf8OphIqX4KW9RzOPAakef8yHbJTg0V972Zqhefw1z1fPP3qnFv2yTI8/M8V77Dff3DMnxZkPKO99cJz33803ZMxrQ3Oim7mZD1yr7VZFV1zUMOX7/JK6jtLWuXlcvqR1T82aPNzrKWbP/Waz6760/VWqVHGDEryk133FfUsqwc3JfuYbQsai8DWs+YZ+On+XxqJ8uXLec/myFSu9DxvmvDHSK8F5HsrW6o73finB452/9ezNJ6B1zmitV5/s650Rk+q28Q9jFv/nwhLcfF27Zcf+3ubHHllLA3tcr6/m/+hd0uSDWV94b+jNWXfmgdF8xcd8Ilt4O6phK0164p5SS3BTupsH5t9X/qVETkLffPuTHhnQ0fuhFvNGZ+ywO1R9z11lvhZkSvZdi/0QpXlCu+OWKzVh4jTva7iFP65izoL5fuGvaZfgZq5zvlxQ9ORoLg9TZcfK3ifKqeZq3rhRglsvUXaQJYGNfxjTlGCm5G5/7SUpPxAzH2ANfGi893V4U4ZwJniWgmG3WRMoLLnNGyDz2N2ifT+NHtpVB+y7p3dM2xK8XY8HvLOmzSUcCt9AbFWhghpe2tG7nqn5sTBzWZLCb1GV9Hxiir3j6x7ifZvJ3MyPeb42rn/Rj2yaHzQ693/Hez+6XNLznflqavEftC7+vG2ec18cdZd3dnnxmxnzdttuXfRjuebNoznTyZwxzi38AsVL8NKy3PgHKIv/szkrbewLb3ivaUz2XW5opnEvvOGdXWYuW1J4M6XpxMfv1p2Dx3iX17jwrJO8/2TWrvln8wHLxq8JiwuaD4vMZfZu7zfS+zFPc3JBSePac/eq3vHfnznX28Uff632fozW/Chz4fE2Pr7555L2Z+b43Y+/FJ2ZbfZp/iaef7S3Bj48IeV8CvdfOIeSzwTf9DHA/DC6OYuva9vLvOfP+0Y+552Nbb5GX5qr7WPAvtV3V6uO9+qtZ/79sTdTRhT+87WdB3rP9xv/2GBpr3PD/xfACG0FTAle+5D91fqys2WupWwuNWn+PlPdUv0Np7pf8RK8tPdoZj2mevxZ+88/lOC2wcZ8+9adBujUE4/S4l9XaPttt9bVTc7wPvCsU/tArwQ3J9l1vL6Jd2KcKcS/+3GxzNeNTAFsfrz52ivOKfF9fqr3/+ZSKyW9NjOPyy073LvBj3Bubt2X9nezx+47b1CCl/S6r/gSKKkEN8/9b7w32/uAufgPY25ufGbf5ptGY1+YqvV5+d7r3K8X/Ki5bz62wfMOz0Mx/0PM8PQpwTMMGsfdmTOlTzr2cLW5+vwNpn//o897b4LMryaX9KBaWIKffsox+uPPVd725hrZplArvJkHRPO1mG+++8m7Dqq5DEnhmeDm7J66ja71zgQ3Z8Qs/Hlp0TWIzVfFzT7NV17Nmd/Nm57pfU3P3E6/tJP63NqiqAQ311Y0Jf6vy37TuVd1K9p/8QmZM/Bq19rP+0TX3PoPG+ed3ZrumeDmCbNmjT2Ktk+1VorP1Zw5Twkex78oN+Zc0pv4wtGbs33MtZILf1Hd/Ps5X37rXd/UXDqBEtyNnBnl/xfYuOQ2L/jN17vHP9zDK39tSnBztlrDph312KAu3oe+xd9ANG/fT1dc2FADh49X326tvaK8tOeTjYu948+9QaMH3+r9uJi5mUtTmJKizhEHlfh8V9qH1+ZM8IHdr/d+BNfczG9t7LHbzt7z1eBeN3D5E0f+aMxJBeZbBoUflgx8eLzW/rPe+yaCeY1UUpalleCFUzevjdr3GOZ9GGOuCTrl7Y+86+dvfCuphD739BM2eE1YoXx5vfHux97l48xl6wpv5kQJc4ay+QZCSeMyl7UzHyCNua+bV2CYbw2a6+X7LcE/+nSeXn/nIz3U998z28019s3fqzlj2pwhnarUT6cEL+0xwFxn+89Vf3uXdjGvVc3Xxs080nX18xhQvPQ28yz+z2ae5uSV5k0beQbmtXOlihV1thdllQAAFFtJREFU70NPb/Z1riN/HgzTh0DxH8Y05Z65RvCjAzt7z2nm72Rzf8OpDlm8BC/tPVrxbYs//pjLK3AmuI8w2aRIYNT4yd7Jcz//skyd2jT13tuYx1/zO2emmzDfdjOP++bM73Xr13uXKjFnNJvXaea1kSnBC28bv89P9e9vv+WKEl+bbfy4nM66L+3vpvg1wUt73Vf8OCWV4Obv3/wIrvl9iOKvYVO9Lij+d2m+SXx6s056ZkRP77K5ZrynXdJ+syU4z0P8kdoIUILb6LGtJ2AudXJD1yFeQW2uT2Vuo8dP1qtvzdQLj97pvdnYXAlurk1a/GbKspFjJ6n/7dd5Z5War9NOfmumht7ZVidfcLN3KRPzo5vm+pCDR0zQ608P0Kw587wfyXzi/m7edbtMWW4ucWJKcPPmaET/jt4LMfPEZX68a0D3Nt51Djd+42SuS2U+5TVnfZtPde++7wnvLHRT2r3+zsd6dFBnrfp7tbf/ow8/KO0S3Fyv7sHRL3rXUDRfyzXXkTQ/HmbeSKSaqznb0Jz9c3PLi7xxckMgTAKbK8HND9Ga3wzo0f4qrwg3b0ruue9J76uCg3reQAkepjAZS1oCqUruDr0e1Nq163TfXW29HwM0Z12bD2XN2Zsl3Yr/7Zivz87/fpF3zW3ztVnznGduxd9AjH/pLb07c66+/WGRXnmir/ffS3o+MWdmblwsmrM2zSVKzGWKzHWbzX83z2nmebek57vnXy35ebv3oMe9S0D06niNd7ZO83b9NO25Id61gNeab061u1J5+QUypaq5brF53uUWPgHzg+HmN1buv+sm78zrK266W60vP9t77WN+3KukLEsqm9+Z8ZlXXBde/sYUAOYNrVln5vrc5uxl8407U0q/POV978zm0s7ELi5mzgwzXz83b5yvaXqm90OYppAw176+4MyTdOn5DUoswd/9cK7e/2iuht19i3fpnnbdH9Dfa9Z6Pyzp50zwChXKewWF+RafKaTNdbInv/WRdx3UdOezpY8B5hrn5ivl5gz6x4d21a677Oj9eHu6rn4eA8zv55R0Jrj5YdCHHn/J+2DBPO6ZH/Dte1tr7zVzqte5G58xHr6/BkaUCYHiJbjZ39MvvqkRT03SM8N7eh8Ub+5vONUYNr4meEnPWeYySakefwq/1fHhpIe8SyhxQ2BLBUzxbE7g8T7IGT/QK7hNUduifX/vG+rTnh3iPSeZx//atfb3SmDzg45mG3MyoPltjFTv8005XtL7/5LW+caPy+YSs+ms+5L2Z76l26Hng95l9vyW4EuXr/S+lWQu0WUu1WX+zgpfw0595+PNjm/Rr8u8D8zemjDI+ybhoBETvG86ffzacP20eCnPQ1u6YLl/WgKU4GkxcafNCZhPBYeNfsH7uo95g1Cv7mHeZRHMD0+mczmUjUtw8zU5cz3R19/+SDk5OV6J1qvj1d6ve5trTvW570mZX1666OyTNerpV/X8Y3eq8nbb6oZug2Xe2O1etYr226ea94NL5o26OWPPnDG07TZbe2eDm/u8MPn/tXfnUVfPeRzAPxUqIduIbCczzgzDkKFSmBpLQ9aaCZljaXBo0VieaIRE0alESgsdOZHKMiTLNCnLVLYphhnOYY6ZbI2Qylpizvfn1EnT89znech0f7/X/Yue3+/e3+f1uev7/u7n+2RMHHlZdDrr8uzD0KpxLunDRr+h47OFx9IZR6d3bp+tbp5Gv/QZODae//tr2eriLffbM3vxG9jn68WK1r6sPRM8/T2djZS+FEg/nUpzE6+++Mxs0bHKar0pheaTH45eZ3bKFhh0IbChCJQKwdObxWFjp2SzU9NjJ70pOrjlz+KCsztH4y0aCcE3lEY6jmoLrCsET/ON08++jz2iTfyuy1FZCJ7mNK55SWeMrrmA5tqjhNLrWxpPcs5px65ePHbNEDwFS2079cpGPqy50Ni6Xk/Sa+7aQVz6AFfRf3QWXKdZzWl285HtWmbzzCt7vavqdTsFiWnBzjSOYrNGDbMwM9WXfpmVxlukf09WbQ/cNy7u0SX7stdlwxR4eObTMWTU5CwUTl9YpF6m+29VvawsBE8hVzozK50xV6du3dj7J82yxcjTfNS0BkpaRyWdoJBOAkiLV6ZxdNUNjZPegrfejSGjJ8W8v319/9qq8ebR8aiDs8dFeq9W2XGl933d+gzLFmvdfrut4vyzfhM9+w7PRnmk+39lZ26XGvsycvx9kUb+pNEq/S46PVt0s7r11PQ5INWfFg1Nj7cUPK+6VNe1Ns8BVZ0Jnt6jDx93T0ydPjubg5vOTO960tdnhVf2vLRhPgIc1XcpsHYInq6791WjI413SK+D6Yurqh7D6zqWtUPwyl6z0ue9yp5/0giwtKbGmEEXrv4F03dZt+vKv0BaWyV9oZ++TF11Sb+Y2qHJ1tkv+NIlvfdJCxen9zzpl3KHHvTzuHTQLdmJe+lEvbUzjWa7NK30839l9/O1n5ere79Pr8/ryjZqeyZ4ekylX+6nLKZRo4ZxSMt94sJzOmeZRrqseg+bTmSszuNy4h8fjWdfeCWbBJBGy4y89b5IY2PTa2tlX8Z6Hcr/4259VigEX5+6rvt7EWjZ4dxsPmlVZ959LwfiRggQIECAwAYokD4srArnT+t1TTbG4JBW+2yAR+qQCBBYHwKeA9aHquskQIAAAQIEyk1ACF5uHXO8/yMgBHenIECAAAEC6xZI61ekXy2lcQXp7KKTzu0fD064dvUZO9wIEMi3gOeAfPdXdQQIECBAgED1BYTg1bey5QYqIATfQBvjsAgQIEDg/y6QZgdfPGBMtoBl+mlqWsQ6jb5wIUCgGAKeA4rRZ1USIECAAAECpQWE4KWNbEGAAAECBAgQIECAAAECBAgQIECAAAECZSogBC/TxjlsAgQIECBAgAABAgQIECBAgAABAgQIECgtIAQvbWQLAgQIECBAgAABAgQIECBAgAABAgQIEChTASF4mTbOYRMgQIAAAQIECBAgQIAAAQIECBAgQIBAaQEheGkjWxAgQIAAAQIECBAgQIAAAQIECBAgQIBAmQoIwcu0cQ6bAAECBAgQIECAAAECBAgQIECAAAECBEoLCMFLG9mCAAECBAgQIECAAAECBAgQIECAAAECBMpUQAhepo1z2AQIECBAgAABAgQIECBAgAABAgQIECBQWkAIXtrIFgQIECBAgAABAgQIECBAgAABAgQIECBQpgJC8DJtnMMmQIAAAQIECBAgQIAAAQIECBAgQIAAgdICQvDSRrYgQIAAAQIECBAgQIAAAQIECBAgQIAAgTIVEIKXaeMcNgECBAgQIECAAAECBAgQIECAAAECBAiUFhCClzayBQECBAgQIECAAAECBAgQIECAAAECBAiUqYAQvEwb57AJECBAgAABAgTKU+DRJ+fFZYPHxZypI2tUQG33q9GN2JgAAQIECBAgQIBADgWE4DlsqpIIECBAgAABAgTWr8A///VWLFy0ONocsFe1bujO+x6NX3f4RWy88UaxeMmyeH3Bwthv791L7lvb/UpesQ0IECBAgAABAgQIFEhACF6gZiuVAAECBAgQIEDguxG44ZZ7YvnyFVHR7aSSV/jpZ8ujVYdzY+60kbFpwwYlt1+1QW33q/YN2JAAAQIECBAgQIBAQQSE4AVptDIJECBAgAABAgRqJvD0/Jdj8E2T4vUF70TDBvXjiLYHRJ8eXWLMhAdizO1To26duvGDbbeMGZOHxouvvB6DRkyMV177dzSoXz8OPXi/uPS832Y32OrobvH58hXRsMEm0bt7l9hmyy1Wj0NZ8cXKGDj89pjxxHPx8SefxW67Ns2C9eY//VGV+6XrfXzuCzFk1KR4451F8cNdm0bv7idHy+Z71KxIWxMgQIAAAQIECBAogIAQvABNViIBAgQIECBAgEDNBQ4+vmf07NoxOnY4JN77YEmc13d4HNf+oDil42HR89IbYpcdm2SB9VdffRWHdb4wjjy0ZXQ//YR4f/GSOOuiwdH5mHZxxklHxiuvLYhOZ14ezz48OjsTfM3Z3mncyeT7Z8UtQytiy8abxf2PzI7h4+6JR++6Ll57/a1K93v3vQ+jfZeK6H/RGdG29b7xwJ/nxrCxU2L6pCGxVePNa16sPQgQIECAAAECBAjkWEAInuPmKo0AAQIECBAgQKB2Al+sXJmNMLn64jPjV+1aZFeycuWXUa9e3ey/1wzB0/9/8OGy2GzTBrHJJhtnfx9ww4Ts34Ze0a3KEPzmO6bF9Mefiwk3/iEa1N/kG7dTVXg+7s6H4k+PPRNTxvRbXeDU6bOj9f57xbZbN65d0fYiQIAAAQIECBAgkFMBIXhOG6ssAgQIECBAgACBbydwx70zYvBNd8buu+2cLYB5bPs2sdsuO6wzBJ85e37cOumheOfdD7K/L132cTaa5MYBvaoMwd9fvDTOrhgSby98Lw7cf6/4ZZvm0b5di9h4o3pV7tdvyPhY+tEncV2/bt+uSHsTIECAAAECBAgQKICAELwATVYiAQIECBAgQIBA7QTS2dyzZs+PmbPnxexnX4rr+nXPguo1zwRPM8OPP6Nv9O/dNY45vHXUrVsnBo28M958+92SIXg6qjROZf5Lr8Zjc56PaTPmRtMm28b4Gy6pchxKCsGXLPsohl3Zo3aF2YsAAQIECBAgQIBAgQSE4AVqtlIJECBAgAABAgSqJ5CC6XSW9pqjRa4dMTHefHtRjBjY6xsheBpDMmzsXTHr7utXX/mp5w2Mxps3KhmCf/LpZxFRJzZtWD/bd8nSj6PNcT3irrH9ok6dOpXOBL9l4oMxdfqcmDp+wOrbHD/5kWjXpnnsulOT6hVpKwIECBAgQIAAAQIFERCCF6TRyiRAgAABAgQIEKi+QFqU8sRzrowbB5wXLZrvEUuXfRIVV42K3ZvtFJf06BIX9R8VK1Z8Ef0rumZjS9JIk3vH9Y+dm24XN912f/zlmRdjo3p1Y9LoKyKdKX70qX1i8pgrotnOO8RTf/1HXDZ4XMyZOjIu6DcyO6i+vz81C82fePqFOP/yETHz7utjydKPKt3vP4sWZwtjVpx7YnQ49MCY/vizMXjUpHhk4uDYZqstql+oLQkQIECAAAECBAgUQEAIXoAmK5EAAQIECBAgQKDmAukM75tvnxZvLnwvGjVsEG1b7xt9ep4SjTZtEE889UJUXDU6W8xyxuShcc2IifHgjLnZGd2ndDw8Dmqxd3S9YFDsv8+P4/ore8bZvYfE/Bdfje5nHB+77rj96hA8jVu5atht8fS8l+Ozz5dHs112iB5dT4h2rZvHl19+Vel+qZpZc+bHdaOnxBvvLMpmlffufnK02m/PmhdqDwIECBAgQIAAAQI5FxCC57zByiNAgAABAgQIECBAgAABAgQIECBAgECRBYTgRe6+2gkQIECAAAECBAgQIECAAAECBAgQIJBzASF4zhusPAIECBAgQIAAAQIECBAgQIAAAQIECBRZQAhe5O6rnQABAgQIECBAgAABAgQIECBAgAABAjkXEILnvMHKI0CAAAECBAgQIECAAAECBAgQIECAQJEFhOBF7r7aCRAgQIAAAQIECBAgQIAAAQIECBAgkHMBIXjOG6w8AgQIECBAgAABAgQIECBAgAABAgQIFFlACF7k7qudAAECBAgQIECAAAECBAgQIECAAAECORcQgue8wcojQIAAAQIECBAgQIAAAQIECBAgQIBAkQWE4EXuvtoJECBAgAABAgQIECBAgAABAgQIECCQcwEheM4brDwCBAgQIECAAAECBAgQIECAAAECBAgUWUAIXuTuq50AAQIECBAgQIAAAQIECBAgQIAAAQI5FxCC57zByiNAgAABAgQIECBAgAABAgQIECBAgECRBYTgRe6+2gkQIECAAAECBAgQIECAAAECBAgQIJBzASF4zhusPAIECBAgQIAAAQIECBAgQIAAAQIECBRZQAhe5O6rnQABAgQIECBAgAABAgQIECBAgAABAjkXEILnvMHKI0CAAAECBAgQIECAAAECBAgQIECAQJEFhOBF7r7aCRAgQIAAAQIECBAgQIAAAQIECBAgkHMBIXjOG6w8AgQIECBAgAABAgQIECBAgAABAgQIFFlACF7k7qudAAECBAgQIECAAAECBAgQIECAAAECORcQgue8wcojQIAAAQIECBAgQIAAAQIECBAgQIBAkQWE4EXuvtoJECBAgAABAgQIECBAgAABAgQIECCQcwEheM4brDwCBAgQIECAAAECBAgQIECAAAECBAgUWUAIXuTuq50AAQIECBAgQIAAAQIECBAgQIAAAQI5FxCC57zByiNAgAABAgQIECBAgAABAgQIECBAgECRBYTgRe6+2gkQIECAAAECBAgQIECAAAECBAgQIJBzASF4zhusPAIECBAgQIAAAQIECBAgQIAAAQIECBRZQAhe5O6rnQABAgQIECBAgAABAgQIECBAgAABAjkXEILnvMHKI0CAAAECBAgQIECAAAECBAgQIECAQJEFhOBF7r7aCRAgQIAAAQIECBAgQIAAAQIECBAgkHMBIXjOG6w8AgQIECBAgAABAgQIECBAgAABAgQIFFlACF7k7qudAAECBAgQIECAAAECBAgQIECAAAECORcQgue8wcojQIAAAQIECBAgQIAAAQIECBAgQIBAkQWE4EXuvtoJECBAgAABAgQIECBAgAABAgQIECCQcwEheM4brDwCBAgQIECAAAECBAgQIECAAAECBAgUWUAIXuTuq50AAQIECBAgQIAAAQIECBAgQIAAAQI5FxCC57zByiNAgAABAgQIECBAgAABAgQIECBAgECRBYTgRe6+2gkQIECAAAECBAgQIECAAAECBAgQIJBzASF4zhusPAIECBAgQIAAAQIECBAgQIAAAQIECBRZQAhe5O6rnQABAgQIECBAgAABAgQIECBAgAABAjkX+C+Pdpo+DHMTfwAAAABJRU5ErkJggg==",
"text/html": [
"<div> <div id=\"e3516e6d-cc48-4cf9-97a4-7102895f162e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"e3516e6d-cc48-4cf9-97a4-7102895f162e\")) { Plotly.newPlot( \"e3516e6d-cc48-4cf9-97a4-7102895f162e\", [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"statistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\"},\"name\":\"\",\"notched\":false,\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[\"Chi-squared Test\",\"Chi-squared Test\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"Chi-squared Test\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"x0\":\" \",\"xaxis\":\"x\",\"y\":[0.0,0.0,0.0,0.0,0.0,1.0,30.0,0.2357268822114845,13.598979670676874,0.5001570911698885,0.5666666666666667,9.905244000000001,4.990786528751271e-09,1.8818525523798695,0.3025545016073308,0.3,189377557.43333334,0.0005244760018707403,5.374984606904614,0.35618190878501066,0.5,8463.419603076667,0.0,0.0,0.0,0.0,0.0,0.0],\"y0\":\" \",\"yaxis\":\"y\",\"type\":\"box\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"statistic\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"metric\"},\"type\":\"log\"},\"legend\":{\"tracegroupgap\":0},\"margin\":{\"t\":60},\"boxmode\":\"group\"}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('e3516e6d-cc48-4cf9-97a4-7102895f162e');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"px.box(drift_results, x='statistic', y='metric', log_y=True)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "e7715e40-cbd0-4281-a09c-e083b6d911b1",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"hovertemplate": "statistic=%{x}<br>score=%{y}<extra></extra>",
"legendgroup": "",
"marker": {
"color": "#636efa"
},
"name": "",
"notched": false,
"offsetgroup": "",
"orientation": "v",
"showlegend": false,
"type": "box",
"x": [
"Chi-squared Test",
"Chi-squared Test",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance",
"Chi-squared Test",
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"x0": " ",
"xaxis": "x",
"y": [
0,
0,
0,
0,
0,
1,
1,
0.471453764422969,
1,
1,
0.5666666666666667,
1,
9.981573057502541e-09,
1,
1,
0.3,
1,
0.0010489520037414806,
1,
1,
0.5,
1,
0,
0,
0,
0,
0,
0
],
"y0": " ",
"yaxis": "y"
}
],
"layout": {
"autosize": true,
"boxmode": "group",
"legend": {
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
1
],
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
-0.05555555555555556,
1.0555555555555556
],
"title": {
"text": "score"
},
"type": "linear"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcEAAAFoCAYAAACfcTNMAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qm8VtP++PHvc04j1zWUUFJEIaUbyVSmyJAhylAyNBkapJmkSSkSDUoqSpKphEKmGy7d2w25FRKVDKmkiUKd8/xfa/ud8z/Vc05n77X2Xns9z+e8Xv/X/3fzrLX2fq99znPO5+znOYlkMpkUPhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSEOBBBE8DXeVU0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwBIjgXAgIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgXAMIIIAAAggggAACCCCAAAIIIIAAAggggAACaStABE/breXEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIjgmtfAjxu2a87AcAQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHCBiuXKwqMhQATXwFNDieCagAxHAAEEEEAAAQQQQAABBBBAAAEEEEAAgSIFiOB6FwgRXM+PCK7px3AEEEAAAQQQQAABBBBAAAEEEEAAAQQQKFqACK53hRDB9fyI4Jp+DEcAAQQQQAABBBBAAAEEEEAAAQQQQAABIniY1wARXFOXt0PRBGQ4AggggAACCCCAAAIIIIAAAggggAACCBQpwJ3gehcIEVzPjzvBNf0YjgACCCCAAAIIIIAAAggggAACCCCAAAJFCxDB9a4QIngx/Wa/PV8GPDRZ7uvVVhqfXS9/FHeCFxOQhyGAAAIIIIAAAggggAACCCCAAAIIIIBAIAEieCC2/EFE8GL4TX7+Dfn4s2WyfsMmufnai4ngxTDjIQgggAACCCCAAAIIIIAAAggggAACCCBgRoAIrudIBC+G35dfr5Ya1SpL224PytWXnUMEL4YZD0EAAQQQQAABBBBAAAEEEEAAAQQQQAABMwJEcD1HIrgPvzZdHyCC+/DioQgggAACCCCAAAIIIIAAAggggAACCCCgL0AE1zMkgvvwSxXBt27f6WMGHooAAghkjkAymZREIpE5J8yZxlrg1deT8u57sT5EDm43geOPFWl3U3p+DUnnr4+PT07KF19yObskcN7ZIk0uTM/PNZf2Ic7Hum27SJ8ByTgfYqBja3iGSNNLufYD4WXIoB07RHr2Tb9rP923r2tHkcqHp+fn9n5lS6T79oV6fkRwH7wpI/i2HT5m4KEIIIBA5giobxfT81uPzNnDdDrTV18Xeff9dDqj9D8XL4LfmJ7nmZSEJCQ9f6h+fLLIF8vSc9/S9azOO0tF8HQ9O87LhIAXwQeamClec3gRvEm8jomjiZeAF8HvjdcxcTR7F/AieKW9P87FR+y3T0kXDzs2x0wE97EVvB2KDyweigACCCCAQIwE3nw7S/71UVaMjohD2ZtA9WNy5frrcvf2MP57zASmTs+W5cv5FWjMtqXIw2lwRq6cfx6fay7tWboe68pVCXnyqWypWiUprW/MSdfT5LwcElARfND93Hnr0JZ5h3pr251SsaJrR1284+XtUIrnVNijiOA+/IjgPrB4KAIIIIAAAjESyIvgR1ZNSpUjiD0x2po9DuXnDQlZsjRLiOBx3qXCjy0vgp9QM1fKl0vPu93d3Jk9j/rb1VmioiMRPF121P3zIIK7v4fpdgZ5ETwrIdKwAb+Yifv+LvwkW379lQge932yeXxE8GLoN2vXT75e9YPs3Jkj2VlZkshKyLA+7aXx2afIjxu2F2MGHoIAAggggAACNgWI4Db1/a1NBPfnFbdHE8HjtiOFHw8R3J29ypQjJYJnyk67c55EcHf2Sh0pEdyt/bJxtERwTXUiuCYgwxFAAAEEEIhAgAgeAbKhJYjghiAtTUMEtwQfYFkieAA0hoQqQAQPlZfJAwgQwQOgWRxCBLeI78jSRHDNjSKCawIyHAEEEEAAgQgEiOARIBtagghuCNLSNERwS/ABliWCB0BjSKgCRPBQeZk8gAARPACaxSFEcIv4jixNBNfcKCK4JiDDEUAAAQQQiECACB4BsqEliOCGIC1NQwS3BB9gWSJ4ADSGhCpABA+Vl8kDCBDBA6BZHEIEt4jvyNJEcM2NIoJrAjIcAQQQQACBCASI4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGNIqAJE8FB5mTyAABE8AJrFIURwi/iOLE0E19woIrgmIMMRQAABBBCIQIAIHgGyoSWI4IYgLU1DBLcEH2BZIngANIaEKkAED5WXyQMIEMEDoFkcQgS3iO/I0kRwzY0igmsCMhwBBBBAAIEIBIjgESAbWoIIbgjS0jREcEvwAZYlggdAY0ioAkTwUHmZPIAAETwAmsUhRHCL+I4sTQTX3CgiuCYgwxFAAAEEEIhAgAgeAbKhJYjghiAtTUMEtwQfYFkieAA0hoQqQAQPlZfJAwgQwQOgWRxCBLeI78jSRHDNjSKCawIyHAEEEEAAgQgEiOARIBtagghuCNLSNERwS/ABliWCB0BjSKgCRPBQeZk8gAARPACaxSFEcIv4jixNBNfcKCK4JiDDEUAAAQQQiECACB4BsqEliOCGIC1NQwS3BB9gWSJ4ADSGhCpABA+Vl8kDCBDBA6BZHEIEt4jvyNJEcM2NIoJrAjIcAQQQQACBCASI4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGNIqAJE8FB5mTyAABE8AJrFIURwi/iOLE0E19woIrgmIMMRQAABBBCIQIAIHgGyoSWI4IYgLU1DBLcEH2BZIngANIaEKkAED5WXyQMIEMEDoFkcQgS3iO/I0kRwzY0igmsCMhwBBBBAAIEIBIjgESAbWoIIbgjS0jREcEvwAZYlggdAY0ioAkTwUHmZPIAAETwAmsUhRHCL+I4sTQTX3CgiuCYgwxFAAAEEEIhAgAgeAbKhJYjghiAtTUMEtwQfYFkieAA0hoQqQAQPlZfJAwgQwQOgWRxCBLeI78jSRHDNjSKCawIyHAEEEEAAgQgEiOARIBtagghuCNLSNERwS/ABliWCB0BjSKgCRPBQeZk8gAARPACaxSFEcIv4jixNBNfcKCK4JiDDEUAAAQQQiECACB4BsqEliOCGIC1NQwS3BB9gWSJ4ADSGhCpABA+Vl8kDCBDBA6BZHEIEt4jvyNJEcM2NIoJrAjIcAQQQQACBCASI4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGNIqAJE8FB5mTyAABE8AJrFIURwi/iOLE0E19woIrgmIMMRQAABBBCIQIAIHgGyoSWI4IYgLU1DBLcEH2BZIngANIaEKkAED5WXyQMIEMEDoFkcQgS3iO/I0kRwzY0igmsCMhwBBBBAAIEIBIjgESAbWoIIbgjS0jREcEvwAZYlggdAY0ioAkTwUHmZPIAAETwAmsUhRHCL+I4sTQTX3CgiuCYgwxFAAAEEEIhAgAgeAbKhJYjghiAtTUMEtwQfYFkieAA0hoQqQAQPlZfJAwgQwQOgWRxCBLeI78jSRHDNjSKCawIyHAEEEEAAgQgEiOARIBtagghuCNLSNERwS/ABliWCB0BjSKgCRPBQeZk8gAARPACaxSFEcIv4jixNBNfcKCK4JiDDEUAAAQQQiECACB4BsqEliOCGIC1NQwS3BB9gWSJ4ADSGhCpABA+Vl8kDCBDBA6BZHEIEt4jvyNJEcM2NIoJrAjIcAQQQQACBCASI4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGNIqAJE8FB5mTyAABE8AJrFIURwi/iOLE0E19woIrgmIMMRQAABBBCIQIAIHgGyoSWI4IYgLU1DBLcEH2BZIngANIaEKkAED5WXyQMIEMEDoFkcQgS3iO/I0kRwzY0igmsCMhwBBBBAAIEIBIjgESAbWoIIbgjS0jREcEvwAZYlggdAY0ioAkTwUHmZPIAAETwAmsUhRHCL+I4sTQTX3CgiuCYgwxFAAAEEEIhAgAgeAbKhJYjghiAtTUMEtwQfYFkieAA0hoQqQAQPlZfJAwgQwQOgWRxCBLeI78jSRHDNjSKCawIyHAEEEEAAgQgEiOARIBtagghuCNLSNERwS/ABliWCB0BjSKgCRPBQeZk8gAARPACaxSFEcIv4jixNBNfcKCK4JiDDEUAAAQQQiECACB4BsqEliOCGIC1NQwS3BB9gWSJ4ADSGhCpABA+Vl8kDCBDBA6BZHEIEt4jvyNJEcM2NIoJrAjIcAQQQQACBCASI4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGNIqAJE8FB5mTyAABE8AJrFIURwi/iOLE0E19woIrgmIMMRQAABBBCIQIAIHgGyoSWI4IYgLU1DBLcEH2BZIngANIaEKkAED5WXyQMIEMEDoFkcQgS3iO/I0kRwzY0igmsCMhwBBBBAAIEIBIjgESAbWoIIbgjS0jREcEvwAZYlggdAY0ioAkTwUHmZPIAAETwAmsUhRHCL+I4sTQTX3CgiuCYgwxFAAAEEEIhAgAgeAbKhJYjghiAtTUMEtwQfYFkieAA0hoQqQAQPlZfJAwgQwQOgWRxCBLeI78jSGR3BV/+wTu6+f4J8sfxbqXRoeRnYs7XUqXn0Hlv35derZeCIKfLLpq1SpnQp6Xbr1dKgfm3vcURwR650DhMBBBBAIKMFiODubD8R3J29SnWkRHB39o8I7s5eZcqREsEzZafdOU8iuDt7pY6UCO7Wftk42oyO4K06DZYz6tWSNi0ukffmL5Iho56WudOHS8kS2bvsxWU39ZFbW10mF59XX1QQv6HzEJk34xHZp2wZIriNq5Y1EUAAAQQQ8ClABPcJZvHhRHCL+AaWJoIbQIxoCiJ4RNAsU2wBInixqXhgRAJE8IigDS1DBDcEmcbTZGwE37Bxi1zYoofMnz1WSmT/Fb2btesnvTpcJ/XqHJu/5clkUmqf11ref2mUHLj/ft6/n35ZB5k6uo9Uq1KRCJ7GnxycGgIIIIBA+ggQwd3ZSyK4O3uV6kiJ4O7sHxHcnb3KlCMlgmfKTrtznkRwd/ZKHSkR3K39snG0GRvBP1m83HuLk1lP3pfv3n3gOKlf9zhp3uTsXfaiTdcH5PyzTpZrLz9XPln8lfQe/LjMeXqYd8c4b4di47JlTQQQQAABBPwJEMH9edl8NBHcpr7+2kRwfcOoZiCCRyXNOsUVIIIXV4rHRSVABI9K2sw6RHAzjuk8S8ZG8I8WLpGRE2bIc+P75e9vn6ETpXq1ynJj88a77Pmyb76Tm+8cKolEQrZt/0OG971NzmtQ13tMTm4yna8Pzg0BBBAILLAzJ1dKZGcFHs9ABEwKzHw1V+a+mys1jknI0UeZnJm5TAusXSey8NOk1KqZkI5td32LOtNr2ZpvZ05SSmQnbC0f6rqjJ+TIks+TcnLdhBxycKhLMbmmwNcrRJYtT8qF52VJ0yY8X2tyMtyAwFfLk/LQ2BypXi0h3Tqm59d/A0xMEaGAiuAde+6UrITIRRek5/N2hJyhL/XBfJEtW5Jyd9dsqVI5PfcrW12MfAQWyNgI/umS5XLPsEkyZ+rQfLzOfUd5f/Cy4J3gf/y5Q5rccJf063qjnHlKLVmxeo3c3GWoTB19txxR6RBZu/H3wPgMRAABBNJaQP2OkOfotN5il07ujbcS8sGHWXJU1aRUqcIvsOO8dz//nJDFSxNSo3pSbmiRG+dDDXxsSUlKIk2/QE6ZliVfLU9IrROSUr4cn2uBL5IIBn67OiErViak4Zm50rgRexUBOUvsRWDlyoRMnJIlR1ZJStub0/PrPxeBWwIqgvcfnO1F8LMack3Gfff++3GW/PqryO3tc6RSxbgfbbDjO+TAMsEGMsoTyNgIvnHzVml0dTf58JUxUqZ0KQ/jkla9ZVDP1lK3VvX8y+OL5d/Krb1GyHszR+b/W9vuD8plF5wul11wBm+HwicSAggggAACDgjwdigObNL/HSJvh+LOXqU6Ut4OxZ394+1Q3NmrTDlS3g4lU3banfPk7VDc2St1pLwdilv7ZeNoMzaCK+w23R6Qk2rXkHYtm8jceQtk5MQZ8vq0Yd4fypz99nw5te7xUqpUSTmv+Z0y6aGeUvv4arJ+wyZp2rqvTBjeXY47pgoR3MZVy5oIIIAAAgj4FCCC+wSz+HAiuEV8A0sTwQ0gRjQFETwiaJYptgARvNhUPDAiASJ4RNCGliGCG4JM42kyOoKvWbtBeg0eL0uXrZLKFSvI4N5tpWaNqt52N2zaWR4Z2NG7K/y9+Z/JyIkveu8Hnp2dJa2aXeD9kUz1wR/GTOPPDk4NAQQQQCBtBIjg7mwlEdydvUp1pERwd/aPCO7OXmXKkRLBM2Wn3TlPIrg7e6WOlAju1n7ZONqMjuAmwIngJhSZAwEEEEAAgXAFiODh+pqcnQhuUjP6uYjg0ZsHXZEIHlSOcWEJEMHDkmXeoAJE8KBydsYRwe24u7QqEVxzt4jgmoAMRwABBBBAIAIBIngEyIaWIIIbgrQ0DRHcEnyAZYngAdAYEqoAETxUXiYPIEAED4BmcQgR3CK+I0sTwTU3igiuCchwBBBAAAEEIhAggkeAbGgJIrghSEvTEMEtwQdYlggeAI0hoQoQwUPlZfIAAkTwAGgWhxDBLeI7sjQRXHOjiOCagAxHAAEEEEAgAgEieATIhpYgghuCtDQNEdwSfIBlieAB0BgSqgARPFReJg8gQAQPgGZxCBHcIr4jSxPBNTeKCK4JyHAEEEAAAQQiECCCR4BsaAkiuCFIS9MQwS3BB1iWCB4AjSGhChDBQ+Vl8gACO3eKDBxSwhtZ5YjcADMwJEqBNT8l5M8/E3JruxypeFgyyqUjW6tiubKRrZWOCxHBNXeVCK4JyHAEEEAAAQQiECCCR4BsaAkiuCFIS9MQwS3BB1iWCB4AjSGhChDBQ+Vl8gACBSN4gOEMsSRABLcE78CyRHDNTSKCawIyHAEEEEAAgQgEiOARIBtagghuCNLSNERwS/ABliWCB0BjSKgCRPBQeZk8oMC78xIBRzLMlsApJ4v87W/cCW7LP87rEsE1d4cIrgnIcAQQQAABBCIQIIJHgGxoCSK4IUhL0xDBLcEHWJYIHgCNIaEKEMFD5WVyBBBIAwHeDkVvE4ngen5CBNcEZDgCCCCAAAIRCBDBI0A2tAQR3BCkpWmI4JbgAyxLBA+AxpBQBYjgofIyOQIIpIEAEVxvE4ngen5EcE0/hiOAAAIIIBCFABE8CmUzaxDBzTjamoUIbkve/7pEcP9mjAhXgAgeri+zI4CA+wJEcL09JILr+RHBNf0YjgACCCCAQBQCRPAolM2sQQQ342hrFiK4LXn/6xLB/ZsxIlwBIni4vsyOAALuCxDB9faQCK7nRwTX9GM4AggggAACUQgQwaNQNrMGEdyMo61ZiOC25P2vSwT3b8aIcAWI4OH6MjsCCLgvQATX20MiuJ4fEVzTj+EIIIAAAghEIUAEj0LZzBpEcDOOtmYhgtuS978uEdy/GSPCFSCCh+vL7Agg4L4AEVxvD4ngen5EcE0/hiOAAAIIIBCFABE8CmUzaxDBzTjamoUIbkve/7pEcP9mjAhXgAgeri+zI4CA+wJEcL09JILr+RHBNf0YjgACCCCAQBQCRPAolM2sQQQ342hrFiK4LXn/6xLB/ZsxIlwBIni4vsyOAALuCxDB9faQCK7nRwTX9GM4AggggAACUQgQwaNQNrMGEdyMo61ZiOC25P2vSwT3b8aIcAWI4OH6MjsCCLgvQATX20MiuJ4fEVzTj+EIIIAAAghEIUAEj0LZzBpEcDOOtmYhgtuS978uEdy/GSPCFSCCh+vL7Agg4L4AEVxvD4ngen5EcE0/hiOAAAIIIBCFABE8CmUzaxDBzTjamoUIbkve/7pEcP9mjAhXgAgeri+zI4CA+wJEcL09JILr+RHBNf0YjgACCCCAQBQCRPAolM2sQQQ342hrFiK4LXn/6xLB/ZsxIlwBIni4vsyOAALuCxDB9faQCK7nRwTX9GM4AggggAACUQgQwaNQNrMGEdyMo61ZiOC25P2vSwT3bxanES/OzJLNWxJxOiTtY/n9d5G16xJSunRSDj1Ee7rYTXB2w6RUOyo3dsfFASGAgDsCRHC9vSKC6/kRwTX9GI4AAggggEAUAkTwKJTNrEEEN+NoaxYiuC15/+sSwf2bxWnEw6OyZeOm9IrgcfIN41iuuiJXTqxNBA/DljkRyBQBIrjeThPB9fyI4Jp+DEcAAQQQQCAKASJ4FMpm1iCCm3G0NQsR3Ja8/3WJ4P7N4jQiL4Ifd2yulC4VpyPjWHYXWLU6IZs2JYQIzrWBAAK6AkRwPUEiuJ4fEVzTj+EIIIAAAghEIUAEj0LZzBpEcDOOtmYhgtuS978uEdy/WZxGPDw6WzZuTMgp9XJln7LJOB0ax7KbwOdfZMm69Qm58oocqVObveICQQCB4AJE8OB2aiQRXM+PCK7px3AEEEAAAQSiECCCR6FsZg0iuBlHW7MQwW3J+1+XCO7fLE4jiOBx2o2ij4UI7s5ecaQIxF2ACK63Q0RwPT8iuKYfwxFAAAEEEIhCgAgehbKZNYjgZhxtzUIEtyXvf10iuH+zOI0ggsdpN4jg7uwGR4qA2wJEcL39I4Lr+RHBNf0YjgACCCCAQBQCRPAolM2sQQQ342hrFiK4LXn/6xLB/ZvFaQQRPE67QQR3Zzc4UgTcFiCC6+1YU93iAAAgAElEQVQfEVzPjwiu6cdwBBBAAAEEohAggkehbGYNIrgZR1uzEMFtyftflwju3yxOI4jgcdoNIrg7u8GRIuC2ABFcb/+I4Hp+RHBNP4YjgAACCCAQhQARPAplM2sQwc042pqFCG5L3v+6RHD/ZnEaQQSP024Qwd3ZDY4UAbcFiOB6+0cE1/Mjgmv6MRwBBBBAAIEoBIjgUSibWYMIbsbR1ixEcFvy/tclgvs3i9MIInicdoMI7s5ucKQIuC1ABNfbPyK4nh8RXNOP4QgggAACCEQhQASPQtnMGkRwM462ZiGC25L3vy4R3L9ZnEYQweO0G0Rwd3aDI0XAbQEiuN7+ZXQEX/3DOrn7/gnyxfJvpdKh5WVgz9ZSp+bRe4ju2LFTBoyYIm++91/5275l5Y62zeTyxmd4j/txw3a9HWA0AggggAACCIQuQAQPndjYAkRwY5RWJiKCW2EPtCgRPBBbbAYRwWOzFXs9kM+/yJJ16xNy5RU5Uqd2cq+P5wEIIIBAYQJEcL1rI6MjeKtOg+WMerWkTYtL5L35i2TIqKdl7vThUrJE9i6qY554Sb5e9YPcf3d77//v9+AT8szYvlKmdCkiuN71x2gEEEAAAQQiESCCR8JsZBEiuBFGa5MQwa3R+16YCO6bLFYDiOCx2o4iD4YI7s5ecaQIxF2ACK63QxkbwTds3CIXtugh82ePlRLZf0XvZu36Sa8O10m9Osfuonpe864yaURPqVr50D20uRNc7wJkNAIIIIAAAlEIEMGjUDazBhHcjKOtWYjgtuT9r0sE928WpxFE8DjtRtHHQgR3Z684UgTiLkAE19uhjI3gnyxeLgNHTJFZT96XL9h94DipX/c4ad7k7Px/2/LrNmnYtLN0v/UamTbzLSldqpR0bnOlnHtmXe8xRHC9C5DRCCCAAAIIRCFABI9C2cwaRHAzjrZmIYLbkve/LhHcv1mcRhDB47QbRHB3doMjRcBtASK43v5lbAT/aOESGTlhhjw3vl++YJ+hE6V6tcpyY/PG+f/2w08/e3eMd2p9pbRt0UQWf7lC2vcYLq9OuV8qlD9Aftn6p94OMBoBBBBIVwH1loeJdD05zss1gdfmisz7ICHVjhQ5sirvxxnn/Vv/c0I+WyxyXI2k3NwqzkfKsaUSeOIpkS+/SsiJtUUOLsfnWpyvklXfJuTrFSLnNEzKRRfE+Ug5tlQCQ0ck5JdfRE4/NSn7lMUozgJLlibkp3Ui1zRLykl14nykHBsCCMRd4KD9SsX9EGN9fBkbwT9dslzuGTZJ5kwdmr9BnfuOkgb1a+9xJ/hpTW6X/8wZ5/1RTPXRpusDcvVl50jjs+vJ73/mxHqDOTgEEEDAlkBOblKys6jgtvxZd1eBWXOS8va8pFQ/WrwQzkd8BdatF/l4kcgJx4nc2jorvgeqcWTp/PVx3KRcWfqlSN06IoccrIHE0NAFvlkp8tXXIuefk5DLL+b5OnRwwwv0G5orGzaINDxDZN99DE9ucbrcpEi6ffu4aLHImp9Ebrg2IaecxOeaxcuLpRFwXqBMqV3/hqHzJxTxCWRsBN+4eas0urqbfPjKGO8PXKqPS1r1lkE9W0vdWtV32QYVwV+YMEAOP+yv7+Rb3zlMrr/qfO8tUXg7lIivWJZDAAEEEEAggABvhxIAzdIQ3g7FEryhZXk7FEOQEUzD26FEgBziErwdSoi4hqfmPcENgzIdAhkswNuh6G1+xkZwxdam2wNyUu0a0q5lE5k7b4GMnDhDXp82zPtDmbPfni+n1j1eyh+0vwwZ9bRs2/6H9O9+k3y+bJW07/mQzH7qfu+/EcH1LkBGI4AAAgggEIUAETwKZTNrEMHNONqahQhuS97/ukRw/2ZxGkEEj9NuFH0sRHB39oojRSDuAkRwvR2KXQTfmZMjn/xvufzw03ppelED7+x+2/a77LtPGb0zTTF6zdoN0mvweFm6bJVUrlhBBvduKzVrVPUeqf4Y5iMDO3p3hW/9dZvcPXSiLPj0CznogL9Lj9uu4Q9jGt8NJkQAAQQQQCA8ASJ4eLamZyaCmxaNdj4ieLTeOqsRwXX07I8lgtvfg+IeARG8uFI8DgEE9iZABN+bUNH/PVYRfOXqNXJb74fl5182yfbf/5Sl8yaL+sOUzdreK+Mf6Ca1j6+md7YhjOZO8BBQmRIBBBBAAAHDAkRww6AhTkcEDxE3gqmJ4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGMIAgikFCCC610YsYrgbbs/KLWPO0o63NRUap/X2ovg6mPazLfktXf+I9MevUfvbEMYTQQPAZUpEUAAAQQQMCxABDcMGuJ0RPAQcSOYmggeAbKhJYjghiAtTUMEtwQfYFkieAA0hiCAABE8hGsgVhFc/QHKeTNHSulSJaXm2TflR/AdO3PktCa3ycI3Hg+BQG9KIrieH6MRQAABBBCIQoAIHoWymTWI4GYcbc1CBLcl739dIrh/sziNIILHaTeKPhYiuDt7xZEiEHcB7gTX26FYRfDTL+0gL08eLAeXO2CXCL5i9Rpp1WmwfPjyGL2zDWE0ETwEVKZEAAEEEEDAsAAR3DBoiNMRwUPEjWBqIngEyIaWIIIbgrQ0DRHcEnyAZYngAdAYggACKQWI4HoXRqwi+ICHJsvK736SDjddITd1GSozJg6UZd98J4899YqcfnJN6XvnDXpnG8JoIngIqEyJAAIIIICAYQEiuGHQEKcjgoeIG8HURPAIkA0tQQQ3BGlpGiK4JfgAyxLBA6AxBAEEiOAhXAOxiuC///GnjH5ipjz/yj9l2/Y/vNPdp2wZufbyc6Vj66be26TE7YMIHrcd4XgQQAABBBDYU4AI7s5VQQR3Z69SHSkR3J39I4K7s1epjpQI7s7+EcHd2SuOFIG4C3AnuN4OxSaC5+Ym5asV30m1KhWlRIls+fmXzZJIJKT8QfvrnWHIo4ngIQMzPQIIIIAAAgYEiOAGECOagggeEXRIyxDBQ4INYVoieAioEU5JBI8QW3MpIrgmIMMRQCBfgAiudzHEJoInk0mp27i9vD5tmBx68EF6ZxXhaCJ4hNgshQACCCCAQEABInhAOAvDiOAW0A0uSQQ3iBnyVETwkIFDnp4IHjKwwemJ4AYxmQqBDBcggutdALGJ4Oo0Jk1/Tb5fs17at2wihx1STu/MIhpNBI8ImmUQQAABBBDQECCCa+BFPJQIHjG44eWI4IZBQ5yOCB4ibgRTE8EjQDa0BBHcECTTIICAEMH1LoJYRfALW/SUTVt+la2/bpMS2dlSsmT2Lme38I3H9c42hNFE8BBQmRIBBBBAAAHDAkRww6AhTkcEDxE3gqmJ4BEgG1qCCG4I0tI0RHBL8AGWJYIHQGMIAgikFCCC610YsYrg7374qZQsocJ3IuVZNahfS+9sQxhNBA8BlSkRQAABBBAwLEAENwwa4nRE8BBxI5iaCB4BsqEliOCGIC1NQwS3BB9gWSJ4ADSGIIAAETyEayBWETyE8wt9SiJ46MQsgAACCCCAgLYAEVybMLIJiOCRUYeyEBE8FNZQJiWCh8Ia2aRE8MiotRcigmsTMgECCPyfAHeC610KsYrgOTm5MnXGm/LaO//23htcfRxR6RC58uKGcvWlZ+udaUijieAhwTItAggggAACBgWI4AYxQ56KCB4ycMjTE8FDBjY4PRHcIKaFqYjgFtADLkkEDwjHMAQQ2EOACK53UcQqgj/21CsyfdY70vSiBlK5YgXvzFZ+t0Zeev0Duf3GK6TllY30zjaE0UTwEFCZEgEEEEAAAcMCRHDDoCFORwQPETeCqYngESAbWoIIbgjS0jREcEvwAZYlggdAYwgCCKQUIILrXRixiuCNr+shIwd1kmOPPmKXs/rf59/I3UMnyuyn7tc72xBGE8FDQGVKBBBAAAEEDAsQwQ2DhjgdETxE3AimJoJHgGxoCSK4IUhL0xDBLcEHWJYIHgCNIQggQAQP4RqIVQSvd9Et8uHLY6RUqZK7nOqff+6QU5vcLp+8OSEEAr0pieB6foxGAAEEEEAgCgEieBTKZtYggptxtDULEdyWvP91ieD+zeI0Ii+Cx+mYOJaiBa68Ikfq1E7ChAACCAQW4E7wwHTewFhF8GtuGSDNLj1LmjfZ9f2/X5z9njw94y2Z9eR9emcbwmgieAioTIkAAggggIBhASK4YdAQpyOCh4gbwdRE8AiQDS1BBDcEaWkaIrgleI1lieAaeAxFAAFPgAiudyHEKoIv+PRLad9zuBxZ+VA58ojDJJlMysrVP8nqH9bKyEGdpUH9WnpnG8JoIngIqEyJAAIIIICAYQEiuGHQEKcjgoeIG8HURPAIkA0tQQQ3BGlpGt4OxRJ8gGV5O5QAaAxBAIGUAkRwvQsjVhFcncra9Rvl1bc+ku9/XO+d2RGHV5DLLjhDyh+0v96ZhjSaCB4SLNMigIDTApu3JOS3X5NSoYJIiRJOnwoHnyYCRHB3NpII7s5epTpSIrg7+0cEd2evUh0pEdyd/SOCu7NXHCkCcRcgguvtUOwi+MbNWyUnJzc/en/7/Vr5275lpdyBf9c705BGE8FDgmVaBBBwUmD77yLTpmfL6u8S3vGrP/Fw4QU5cvJJvP+hkxuaRgdNBHdnM4ng7uwVEdztvSKCu71/RHB39o8I7s5ecaQIxF2ACK63Q7GK4PMXLpVO94yUe7ve6N39rT4mP/eGPDp5lowe3FlOrXu83tmGMJoIHgIqUyKAgLMC776XJfPey9rl+LOzRe7qvlNKlXb2tDjwNBAggruziURwd/aKCO72XhHB3d4/Irg7+0cEd2evOFIE4i5ABNfboVhF8Kat75FrLj9Xrr383F3O6vlX/inPvvyuzJw0SO9sQxhNBA8BlSkRQMBZgaemZcvX3/x1F3jBj3atc6Ty4dwN7uzGpsGBE8Hd2UQiuDt7RQR3e6+I4G7vHxHcnf0jgruzVxwpAnEXIILr7VCsInid89vKv2aN9t7+pOCHeouUc5rdKYvemqh3tiGMJoKHgMqUCCDgrMDMl7Nl0Wd7RvA7O+fIgQcQwZ3d2DQ4cCK4O5tIBHdnr4jgbu8VEdzt/SOCu7N/RHB39oojRSDuAkRwvR2KVQRvcsNdcusNl0mTRqftclbTZr4lz738T3llyhC9sw1hNBE8BFSmRAABZwWWf52Qqc9k73L8h1dKSvs2Oc6eEweeHgJEcHf2kQjuzl4Rwd3eKyK42/tHBHdn/4jg7uwVR4pA3AWI4Ho7FKsI/u6Hn0rX/o9KjaMqS6XDDpZkMle++XaNrP5hrYwc2EnOOu1EvbMNYTQRPARUpkQAAacFvlmRkMVLs+S3X5Ny+OEi9U7OlX12fYGP0+fHwbspQAR3Z9+I4O7sFRHc7b0igru9f0Rwd/aPCO7OXnGkCMRdgAiut0OxiuDqVNau3yivvvWRfP/jeu/MKleqIJeef7pUKH+A3pmGNJoIHhIs0yKAAAIIIGBQgAhuEDPkqYjgIQOHPP3U6dmyfHlCTqiZK+XL8TZYIXNrTU8E1+KzPpgIbn0Lin0ARPBiU/FABBDYiwARXO8SiV0E35mTIyWy/3opvfq/l6/4Xg45+CA56ID99M40pNFE8JBgmRYBBBBAAAGDAkRwg5ghT0UEDxk45OmJ4CEDG5yeCG4Q08JURHAL6AGXJIIHhGMYAgjsIUAE17soYhXB5y9cKr2HPC7vvvCw5CaTcnOXobJo6ddSIjtLHhnYSc4+vY7e2YYwmggeAipTIoAAAgggYFiACG4YNMTpiOAh4kYwNRE8AmRDSxDBDUFamoYIbgk+wLJE8ABoDEEAgZQCRHC9CyNWEfyqtvfK9VedL00vaiCvvvmRPDzhBXlp0n3yyZKvZMwTL8mMiQP1zjaE0UTwEFCZEgEEEEAAAcMCRHDDoCFORwQPETeCqYngESAbWoIIbgjS0jREcEvwAZYlggdAYwgCCBDBQ7gGYhXB/3FBO/nv6495b4ei/kBm5YoV5M72zb23Ral/8W3y8dzHQyDQm5IIrufHaAQQQAABBKIQIIJHoWxmDSK4GUdbsxDBbcn7X5cI7t8sTiOI4HHajaKPhQjuzl5xpAjEXYA7wfV2KFYR/MzLO8msJ++TffcpK+c06yJj779T6tY6RjZs3CKX3niXfPTKo3pnG8JoIngIqEyJAAIIIICAYQEiuGHQEKcjgoeIG8HURPAIkA0tQQQ3BGlpGiK4JfgAyxLBA6AxBAEEUgoQwfUujFhF8H7Dn5TPln4jJUpkSyKRkOfH95Ptv/8p9wyb6J3liP4d9M52t9Grf1gnd98/Qb5Y/q1UOrS8DOzZWurUPLrQNTZt/lUubtVL7mhzlVxz+bne44jgRreEyRBAAAEEEAhFgAgeCmsokxLBQ2GNbFIieGTU2gsRwbUJrU5ABLfK72txIrgvLh6MAAJFCBDB9S6PWEXwHTt2yguz35Pftm2XKy9uKOUO/Lv8tu136fvAJLmnyw1y0AH76Z3tbqNbdRosZ9SrJW1aXCLvzV8kQ0Y9LXOnD5eSJbJTrqOC+YJFX0q7FpcQwY3uBJMhgAACCCAQrgARPFxfk7MTwU1qRj8XETx686ArEsGDysVjHBE8HvtQnKMgghdHiccggEBxBIjgxVEq/DGxiuB6p+JvtHqLlQtb9JD5s8d670GuPpq16ye9Olwn9eocu8dkCz79UsZOmSVHV60kxxxZiQjuj5tHI4AAAgggYFWACG6V39fiRHBfXLF7MBE8dltS6AERwd3Zq1RHSgR3Z/+I4O7sFUeKQNwFiOB6O5SxEfyTxctl4Igp3nuQ5310HzhO6tc9Tpo3OXsXVXWH+tW39JeH+neQZ2a+TQTXu+YYjQACCCCAQOQCRPDIyQMvSAQPTBeLgUTwWGxDsQ6CCF4sptg+iAge263Z48CI4O7sFUeKQNwFiOB6O5SxEfyjhUtk5IQZ8tz4fvmCfYZOlOrVKsuNzRvvojp28ixJJpPS4eamct8jU3eJ4L//maO3A4xGAAEE0lQgJzcp2VmJND07Tss1gVlzkvL2vKRUP1qk2pGuHX1mHe+69SIfLxI54TiRW1tnpeXJ5yZF0vXL47hJubL0S5G6dUQOOTgtty9tTuqblSJffS1y/jkJufxinq9d29h+Q3NlwwaRhmeI7LuPa0df+PGqn7vV3wdLp49Fi0XW/CRyw7UJOeWk9Dq3dNonzgUBFwTKlEr99s0uHHscjjFjI/inS5bLPcMmyZypQ/P3oXPfUdKgfu1d7gRf9d1P0m3AWJk+tq+UKlVyjwi+YcsfcdhHjgEBBBCInUBSVOThG/3YbUyGHtBrc0XmfZDwAviRVdXVyUdcBdb/nJDPFoscVyMpN7eK61HqHVc6Rp48kSeeEvnyq4ScWFvk4HJ8ruldKeGOXvVtQr5eIXJOw6RcdEG4azG7eYGhIxLyyy8ip5+alH3Kmp/f1ozq66Ok2bePS5Zmydp1Itdclev9gpAPBBBAIKhAub+XDjqUcSKSsRF84+at0ujqbvLhK2OkTOlS3sVwSaveMqhna6lbq3r+xTH5+Tdk/FOvSMmSJbx/U3+oMzs7S1o0bSRd2jWTHzds50JCAAEEEEAAgZgL8HYoMd+gAofH26G4s1epjpS3Q3Fn/3g7FHf2KtWR8nYo7uwfb4fizl5xpAjEXYC3Q9HboYyN4IqtTbcH5KTaNaRdyyYyd94CGTlxhrw+bZj3hzJnvz1fTq17vJQ/aP9dhHd/OxQiuN4FyGgEEEAAAQSiECCCR6FsZg0iuBlHW7MQwW3J+1+XCO7fLE4jiOBx2o2ij4UI7s5ecaQIxF2ACK63Qxkdwdes3SC9Bo+XpctWSeWKFWRw77ZSs0ZVT7Rh087yyMCOu9wVrv6dCK53wTEaAQQQQAABGwJEcBvqwdYkggdzi8soInhcdmLvx0EE37tRnB9BBI/z7ux6bERwd/aKI0Ug7gJEcL0dyugIrkf312juBDehyBwIIIAAAgiEK0AED9fX5OxEcJOa0c9FBI/ePOiKRPCgcvEYRwSPxz4U5yiI4MVR4jEIIFAcASJ4cZQKfwwRXM+PCK7px3AEEEAAAQSiECCCR6FsZg0iuBlHW7MQwW3J+1+XCO7fLE4jiOBx2o2ij4UI7s5ecaQIxF2ACK63Q0RwPT8iuKYfwxFAAAEEEIhCgAgehbKZNYjgZhxtzUIEtyXvf10iuH+zOI0ggsdpN4jg7uwGR4qA2wJEcL39I4Lr+RHBNf0YjgACCCCAQBQCRPAolM2sQQQ342hrFiK4LXn/6xLB/ZvFaQQRPE67QQR3Zzc4UgTcFiCC6+0fEVzPjwiu6cdwBBBAAAEEohAggkehbGYNIrgZR1uzEMFtyftflwju3yxOI4jgcdoNIrg7u8GRIuC2ABFcb/+I4Hp+RHBNP4YjgAACCCAQhQARPAplM2sQwc042pqFCG5L3v+6RHD/ZnEaQQSP024Qwd3ZDY4UAbcFiOB6+0cE1/Mjgmv6MRwBBBBAAIEoBIjgUSibWYMIbsbR1ixEcFvy/tclgvs3i9MIInicdoMI7s5ucKQIuC1ABNfbPyK4nh8RXNOP4QgggAACCEQhQASPQtnMGkRwM462ZiGC25L3vy4R3L9ZnEYQweO0G0Rwd3aDI0XAbQEiuN7+EcH1/Ijgmn4MRwABBBBAIAoBIngUymbWIIKbcbQ1CxHclrz/dYng/s3iNIIIHqfdIIK7sxscKQJuCxDB9faPCK7nRwTX9GM4AggggAACUQgQwaNQNrMGEdyMo61ZiOC25P2vSwT3bxanEUTwOO0GEdyd3eBIEXBbgAiut39EcD0/IrimH8MRQAABBBCIQoAIHoWymTWI4GYcbc1CBLcl739dIrh/sziNIILHaTeI4O7sBkeKgNsCRHC9/SOC6/kRwTX9GI4AAggggEAUAkTwKJTNrEEEN+NoaxYiuC15/+sSwf2bxWkEETxOu0EEd2c3OFIE3BYgguvtHxFcz48IrunHcAQQQAABBKIQIIJHoWxmDSK4GUdbsxDBbcn7X5cI7t8sTiOI4HHaDSK4O7vBkSLgtgARXG//iOB6fkRwTT+GI4AAAgggEIUAETwKZTNrEMHNONqahQhuS97/ukRw/2ZxGkEEj9NuEMHd2Q2OFAG3BYjgevtHBNfzI4Jr+jEcAQQQQACBKASI4FEom1mDCG7G0dYsRHBb8v7XJYL7N4vTCCJ4nHaDCO7ObnCkCLgtQATX2z8iuJ4fEVzTj+EIIIAAAghEIUAEj0LZzBpEcDOOtmYhgtuS978uEdy/WZxGEMHjtBtEcHd2gyNFwG0BIrje/hHB9fyI4Jp+DEcAAQQQQCAKASJ4FMpm1iCCm3G0NQsR3Ja8/3WJ4P7N4jSCCB6n3SCCu7MbHCkCbgsQwfX2jwiu50cE1/RjOAIIIIAAAlEIEMGjUDazBhHcjKOtWYjgtuT9r0sE928WpxFE8DjtBhHcnd3gSBFwW4AIrrd/RHA9PyK4ph/DEUAAAQQQiEKACB6Fspk1iOBmHG3NQgS3Je9/XSK4f7M4jSCCx2k3iODu7AZHioDbAkRwvf0jguv5EcE1/RiOAAIIIIBAFAJE8CiUzaxBBDfjaGsWIrgtef/rEsH9m8VpBBE8TrtBBHdnNzhSBNwWIILr7R8RXM+PCK7px3AEEEAAAQSiECCCR6FsZg0iuBlHW7MQwW3J+1+XCO7fLE4jiOBx2g0iuDu7wZEi4LYAEVxv/4jgen5EcE0/hiOAAAIIIBCFABE8CmUzaxDBzTjamoUIbkve/7pEcP9mcRpBBI/TbhDB3dkNjhQBtwWI4Hr7RwTX8yOCa/oxHAEEEEAAgSgEiOBRKJtZgwhuxtHWLERwW/L+1yWC+zeL0wgieJx2gwjuzm5wpAi4LUAE19s/IrieHxFc04/hCCCAAAIIRCFABI9C2cwaRHAzjrZmIYLbkve/LhHcv1mcRhDB47QbRHB3doMjRcBtASK43v4RwfX8iOCafgxHAAEEEEAgCgEieBTKZtYggptxtDULEdyWvP91ieD+zeI0gggep90ggruzGxwpAm4LEMH19o8IrudHBNf0YzgCCCCAAAJRCBDBo1A2swYR3IyjrVmI4Lbk/a9LBPdvFqcRRPA47QYR3J3d4EgRcFuACK63f0RwPT8iuKYfwxFAAAEEEIhCgAgehbKZNYjgZhxtzUIEtyXvf10iuH+zOI0ggsdpN4jg7uwGR4qA2wJEcL39I4Lr+RHBNf0YjgACCCCAQBQCRPAolM2sQQQ342hrFiK4LXn/6xLB/ZvFaQQRPE67QQR3Zzc4UgTcFiCC6+0fEVzPjwiu6cdwBBBAAAEEohAggkehbGYNIrgZR1uzEMFtyftflwju3yxOI4jgcdoNIrg7u8GRIuC2ABFcb/+I4Hp+RHBNP4YjgAACCCAQhQARPAplM2sQwc042pqFCG5L3v+6RHD/ZnEa8fCobNm4KSGVKuZKiRJxOjKOZXeBn39OyG/bEnLVFblyYu1cgBBAAIHAAkTwwHTeQCK4nh8RXNOP4QgggAACCEQhQASPQtnMGkRwM462ZiGC25L3vy4R3L9ZnEbkRfA4HRPHUrQAEZwrBAEEdAWI4HqCGR3BV/+wTu6+f4J8sfxbqXRoeRnYs7XUqXn0HqLfrPpB+j80RZZ9s1rKH7S/dL/tWjn3jH94j/txw3a9HWA0AggggAACCIQuQAQPndjYAkRwY5RWJiKCW2EPtCgRPBBbbAb9e0GWbNuWjM3xmDiQTZsTsuizLDlg/6TUOTH97piuebzIIRXSa89M7DtzIIBA8QWI4MW3SvXIjI7grToNljPq1ZI2LS6R9+YvkiGjnpa504dLyRLZu1hdfnMfaXbJWdLyyvPlw/8uka79x8j7L42WsmVKEcH1rj9GI4AAAgggEIkAETwSZiOLEMGNMFqbhAhujd73wkRw32QMCFlg5aqEPEZS4pUAACAASURBVPlUtlStkpTWN+aEvBrTI4AAAu4JEMH19ixjI/iGjVvkwhY9ZP7ssVIi+6/o3axdP+nV4TqpV+fYfNWdOTny0usfSNOLGuQ/rv4lt8kLjw+QIypVIILrXX+MRgABBBBAIBIBIngkzEYWIYIbYbQ2CRHcGr3vhYngvskYELIAETxkYKZHAAHnBYjgeluYsRH8k8XLZeCIKTLryfvyBbsPHCf16x4nzZucXajq4i9WyB33jpa3nxshWVkJ+Wkjb4eidwkWNjoRzrQZPCuiGbz5lk5dvdiT684SPsvuIfDGWwn54MMsOapqUqpU4aXIcb5E1B8QW7w0ITWqJ+WGFun3cvi/7NVXx/S8DqdMy5Kvliek1glJKV8uPc8xzp8/fo7t29UJWbEyIQ3PzJXGjdgrP3Y8NhyBlSsTMnFKlhxZJSltb07Xr//h2DFr9AJ81QzLHNmiZA89sGxY8Bkxb8ZG8I8WLpGRE2bIc+P75W90n6ETpXq1ynJj88YpN//7NeulfY/h0rfLDXLayTW9x+Tk8AkazmcKrqZdETUtynx7E8jJTUqJ7Ky9PYz/jkAkAjNfzZW57+ZKjWMScvRRkSzJIgEF1q4TWfhpUmrVTEjHtru+RV3AKWM3bGeO+vqYnr8mHD0hR5Z8npST6ybkkINjR88BFRD4eoXIsuVJufC8LGnahOdrLg77Al8tT8pDY3PkmGoJ6daBa9L+jnAERQmk57N4HPYc2aJ2ITtNv3+M6srL2Aj+6ZLlcs+wSTJn6tB86859R0mD+rVT3gm+7Jvv5I6+o6V3xxZy9ul18sfwhzGjulRZBwEEEEAAgeACvB1KcLuoR/J2KFGLm12Pt0Mx6xnmbLwdSpi6zB1EgLdDCaLGGAQQyCQB3g5Fb7czNoJv3LxVGl3dTT58ZYyUKV3KU7ykVW8Z1LO11K1VfRfV735cJ+26D5chd7WTurWO2eW/EcH1LkBGI4AAAgggEIUAETwKZTNrEMHNONqahQhuS97/ukRw/2aMCFeACB6uL7MjgID7AkRwvT3M2Aiu2Np0e0BOql1D2rVsInPnLZCRE2fI69OGeX8Ac/bb8+XUusdL+YP2l5u6DJVrLjtHLjq3/h7aRHC9C5DRCCCAAAIIRCFABI9C2cwaRHAzjrZmIYLbkve/LhHcvxkjwhUggofry+wIIOC+ABFcbw8zOoKvWbtBeg0eL0uXrZLKFSvI4N5tpWaNqp5ow6ad5ZGBHaVC+QOl8XU9pGTJErtID7/3NmnU4CQhgutdgIxGAAEEEEAgCgEieBTKZtYggptxtDULEdyWvP91ieD+zRgRrgARPFxfZkcAAfcFiOB6e5jREVyP7q/RRHATisyBAAIIIIBAuAJE8HB9Tc5OBDepGf1cRPDozYOuSAQPKse4sASI4GHJMi8CCKSLABFcbyeJ4Hp+RHBNP4YjgAACCCAQhQARPAplM2sQwc042pqFCG5L3v+6RHD/ZowIV4AIHq4vsyOAgPsCRHC9PSSC6/kRwTX9GI4AAggggEAUAkTwKJTNrEEEN+NoaxYiuC15/+sSwf2bMSJcASJ4uL7MjgAC7gsQwfX2kAiu50cE1/RjOAIIIIAAAlEIEMGjUDazBhHcjKOtWYjgtuT9r0sE92/GiHAFiODh+jI7Agi4L0AE19tDIrieHxFc04/hCCCAAAIIRCFABI9C2cwaRHAzjrZmIYLbkve/LhHcvxkjwhUggofry+wIIOC+ABFcbw+J4Hp+RHBNP4YjgAACCCAQhQARPAplM2sQwc042pqFCG5L3v+6RHD/ZowIV4AIHq4vsyOAgPsCRHC9PSSC6/kRwTX9GI4AAggggEAUAkTwKJTNrEEEN+NoaxYiuC15/+sSwf2bMSJcASJ4uL7MjgAC7gsQwfX2kAiu50cE1/RjOAIIIIAAAlEIEMGjUDazBhHcjKOtWYjgtuT9r0sE92/GiHAFiODh+jI7Agi4L0AE19tDIrieHxFc04/hCCCAAAIIRCFABI9C2cwaRHAzjrZmIYLbkve/LhHcvxkjwhUggofry+wIIOC+ABFcbw+J4Hp+RHBNP4YjgAACCCAQhQARPAplM2sQwc042pqFCG5L3v+6RHD/ZowIV4AIHq4vsyOAgPsCRHC9PSSC6/kRwTX9GI5ApgusXZeQpZ9nuoJb57/PPgk59ZRctw6aoxUiuDsXARHcnb1KdaREcHf2jwjuzl5lypESwTNlpzlPBBAIKkAEDyr31zgiuJ4fEVzTj+EIZLrAZ//LkhmzsjKdwanzP/CApNzZOcepY+ZghQju0EVABHdos1IcKhHcnf0jgruzV5lypETwTNlpzhMBBIIKEMGDyhHB9eT+b/SPG7YbmYdJEEAgMwXyIvi++yalfLlkZiI4ctY7dor8+GOWEMEd2bDdDpM7wd3ZNyK4O3uV6kiJ4O7sHxHcnb3KlCMlgmfKTnOeCCAQVIAIHlSOCK4nRwQ34sckCGS6wKL/JWTmrGw5pEJSjjuWt9iI8/WwfVtC/rMwSw46MCldOnEneJz3KtWxEcHd2TEiuDt7RQR3e6+I4G7vXzoePRE8HXeVc0IAAZMCRHA9Td4ORc+Pt0PR9GM4ApkuQAR35woggruzV0Rwt/eKCO72/nEnuDv7RwR3Z68y5UiJ4Jmy05wnAggEFSCCB5X7axwRXM+PCK7px3AEMl2ACO7OFUAEd2eviOBu7xUR3O39I4K7s39EcHf2KlOOlAieKTvNeSKAQFABInhQOSK4ntz/jeY9wY0wMgkCGStABHdn64ng7uwVEdztvSKCu71/RHB39o8I7s5eZcqREsEzZac5TwQQCCpABA8qRwTXkyOCG/FjEgQyXYAI7s4VQAR3Z6+I4G7vFRHc7f0jgruzf0Rwd/YqU46UCJ4pO815IoBAUAEieFA5IrieHBHciB+TIJDpAkRwd64AIrg7e0UEd3uviOBu7x8R3J39I4K7s1eZcqRE8EzZac4TAQSCChDBg8oRwfXkiOBG/JgEgUwXIIK7cwUQwd3ZKyK423tFBHd7/4jg7uwfEdydvcqUIyWCZ8pOc54IIBBUgAgeVI4IridHBDfixyQIZLoAEdydK4AI7s5eEcHd3isiuNv7RwR3Z/+I4O7sVaYcKRE8U3aa80QAgaACRPCgckRwPTkiuBE/JkEg0wWI4O5cAURwd/aKCO72XhHB3d4/Irg7+0cEd2evMuVIieCZstOcJwIIBBUgggeVI4LryRHBjfgxCQKZLkAEd+cKIIK7s1dEcLf3igju9v4Rwd3ZPyK4O3uVKUdKBM+UneY8EUAgqAARPKgcEVxPjghuxI9JEMh0ASK4O1cAEdydvSKCu71XRHC3948I7s7+EcHd2atMOVIieKbsNOeJAAJBBYjgQeWI4HpyRHAjfkyCQKYLEMHduQKI4O7sFRHc7b0igru9f0Rwd/aPCO7OXmXKkRLBM2WnOU8EEAgqQAQPKkcE15MjghvxYxIEMl2ACO7OFUAEd2eviOBu7xUR3O39I4K7s39EcHf2KlOOlAieKTvNeSKAQFABInhQOSK4nhwR3IgfkyCQ6QJEcHeuACK4O3tFBHd7r4jgbu8fEdyd/SOCu7NXmXKkRPBM2WnOEwEEggoQwYPKEcH15IjgRvyYBIFMFyCCu3MFEMHd2SsiuNt7RQR3e/+I4O7sHxHcnb3KlCMlgmfKTnOeCCAQVIAIHlSOCK4nRwQ34sckCGS6ABHcnSuACO7OXhHB3d4rIrjb+0cEd2f/iODu7FWmHCkRPFN2mvNEAIGgAkTwoHJEcD05IrgRPyZBINMFiODuXAFEcHf2igju9l4Rwd3ePyK4O/tHBHdnrzLlSIngmbLTnCcCCAQVIIIHlSOCF1tu9Q/r5O77J8gXy7+VSoeWl4E9W0udmkd743/csL3Y8/BABBBAYHcBIrg71wQR3J29IoK7vVdEcLf3jwjuzv4Rwd3Zq0w5UiJ4puw054kAAkEFiOBB5YjgxZZr1WmwnFGvlrRpcYm8N3+RDBn1tMydPlxKlsgmghdbkQcigEAqASK4O9cFEdydvSKCu71XRHC3948I7s7+EcHd2atMOVIieKbsNOeJAAJBBYjgQeWI4MWS27Bxi1zYoofMnz1WSmRne2OatesnvTpcJ/XqHEsEL5YiD0IAgcIEiODuXBtEcHf2igju9l4Rwd3ePyK4O/tHBHdnrzLlSIngmbLTnKdNgS++zJIP/pWQtesTUu4gkXon50i9k5I2D4m1fQgQwX1gpXhoIplMcrUXYfjJ4uUycMQUmfXkffmP6j5wnNSve5w0b3I2EVzv+mM0AhkvkBfBMx7CIYCDDkxKl045Dh0xh6oE3nw7S/71UZYcWTUpVY7IBSXGAkTwGG9OMQ6NCF4MpJg8hAgek43gMPIFiOBcDAiEK7Bpc0JGjcmWnbv9KNP6xhypWoU0GK6+mdmJ4HqORPC9+H20cImMnDBDnhvfL/+RfYZOlOrVKsuNzRvr6cd89KrVSbnvoZ0xP0oOL0/gsYdKSokSeLgmMP+/uTLpaYKqS/t2cDmR++8t6dIhc6wi8uIrOfLGO8Rvly6G2jUT0rk9T2wu7Zk61pHjd8riz/lB2qV9u6hRllx16V+veOUDgVQC27aLdO69I+1wGp2VJddeybWfdhvLCRUqsOCTXHl8yp4/e156YZZcfhGfC1w66S9ABN/LHn+6ZLncM2ySzJk6NP+RnfuOkgb1a3t3gqfzBxHcrd0lgru1X3lHSwR3b9+I4O7tmTpiIrh7+0YEd2/PiOBu7hkR3M19i/KoieBRarMWAuEJEMHDs2VmNwSI4HvZp42bt0qjq7vJh6+MkTKlS3mPvqRVbxnUs7XUrVWdt0Nx4zrnKBFAAAEEEEAAAQQQQAABBBBAAIGMFeDtUNzfet4ORW8PieDF8GvT7QE5qXYNadeyicydt0BGTpwhr08b5v2hzB83bC/GDDwEAQQQQAABBBBAAAEEEEAAAQQQQAABewL8YUx79iZWJoLrKRLBi+G3Zu0G6TV4vCxdtkoqV6wgg3u3lZo1qnojieDFAOQhCCCAAAIIIIAAAggggAACCCCAAAIIIBBYgAgemM4bSATX8yOCa/oxHAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKFiCC610hRHA9PyK4ph/DEUAAAQQQQAABBBBAAAEEEEAAAQQQQIAIHuY1QATX1OXtUDQBGY4AAggggAACCCCAAAIIIIAAAggggAACRQpwJ7jeBUIE1/PjTnBNP4YjgAACCCCAAAIIIIAAAggggAACCCCAQNECRHC9K4QIrudHBNf0YzgCCCCAAAIIIIAAAggggAACCCCAAAIIEMHDvAaI4Jq6vB2KJiDDEUAAAQQQQAABBBBAAAEEEEAAAQQQQKBIAe4E17tAiOB6ftwJrunHcAQQQAABBBBAAAEEEEAAAQQQQAABBBAoWoAIrneFEMH1/BiNAAIIIIAAAggggAACCCCAAAIIIIAAAgggEGMBIniMN4dDQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEENATIILr+TEaAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIMYCRPAYbw6HhgACCCCAAAIIIIAAAggggAACCCCAAAIIIKAnQATX82P0/wm8/+/PZOyUl2XZN99J2dKl5OQ6NaT7rdfIEZUOkWkz35b/ff6NDLvnlj28buv9sFx8bn259ILTnbN86oW5snzlDzKoZ+tdjr3O+W0lJyfH+7fc3KRkZSW8//vYo6vIC4/393We8xculSOrHCaHHnyQr3E8GIGwBUZOnCETn5kt2dnZ3lL77VtWzj2zrvTq0EL2KVva+7fxU1+Vma+9L79u2y4lsrO9/967YwspXaqkvDj7PXn93f/IpBE9wz5U5kfAiMDOnBw58bw28s4LI/K/Jr/y5ocydvLL8vSYPnLA/n/b47+nWrjg504ikZCKh5STS847Vdq1bCIlS5bwhpx8YXuZPXUoX/uN7ByTFCXw8y+b5ZxmXbzvV668uOEe39PERW/Lr9tk2Jhn5KOFS+SPP3fI/vvtKy2aNpJWzS7wDvH0yzrIs+Pu9b7vjPsHXwPivkMcXxCB6zsOlmsuOyf/Z7rlK7+Xtt0elIcHdJC6tarL3j6H89Z8/OlXZfQTM/N/jlLPk4m/fpSSkYM6y7ln/MPX4b30+gfS9KIGvsbwYAQ2bf5Vzryik/zzxYfl4HIHeCALP1smN95xv7w3c6SUP2h/79/+8+kX0uu+8TJvxiOxQivOdb9k2UrpPmCcvPHMA8U+dtUm2nZ/MP/71QP+/jdpUL+2dG5zZb5Tcb6HLc7xFfugeCACPgWI4D7BePieAvM+WiQ9Bj3mxa3zzqwrKhRMeX6uzHrjA++H+NlvzS80gqtviFQQU//P9kfBYF2cYyksgueNXf3DWrnspj6y6K2JxZku5WM63j1S2l3fRE48vlrgORiIQBgC6od4FU/yfgmk/u9uA8ZKreOO8n4BNvvt+fLks6/LY8O6et8Ubdy8Ve7oO1rq1Dxaut5yNRE8jE1hzlAFdo/g//7kc7lryOMyZeRdXnhLFclTHVDBz50//9whX369Wu4f84wX9dTni/rYsHGLHLj/fvm/RA16Yn6f14Kuwzj3BR598iX5af3G2EbwfsOflJycXOlzRyspW6aUqMDWpusDMrh3O2lQv5ZzETzv+ZOvAe5/7nAGfwkUjODrft4kLTveJ706XCeNGpzk/fe9fQ6nclRx8egjK3m/JA7ykUwm5awr75D3XxoVZDhjMlygefv+cmPzxtLk/NM8ibGTZ8kzL70jd3Vu6d28oD7UL2zWrN0gQ+5qF6mWej7Mzs5KuWZxr3v1fevWX7d5328W90NF8AEjpnjhXH2P+f2add5NT//55HN5ccJA74aQvX0PW9zjK+4x8TgE/AoQwf2K8fg9BK5s01cuu+AMuemaC3f5bzPmvC9nnXaizJ33X/l0yXLJzc2Vj//3lfeb09H3dZaKh5aXou4EVwHt+Vf/6X2BVWOG9mkvlStWkH8tWCyDR06VrKws70np2VnvyjNj+8pr7/xbfvzpZ+nX7SbvOCZMm53/v9Vvc3sPeVxWrl4jucmk94R2/VXne4+rd9Gt0v76JjJp+mvy7gsPy7qfN3rfqKkfUPYpW0bu7txS/nHCMd6dR/cMmyifLl4uh1YoJ8dXryLbf/+z0B8YU0Vw9SSh7hxUdzWcWvd475tDdedfqnNVbmOefEkOKX+gdL/tGjm/4clcfQjERmD3CK4O7J0PPpGxU2bJjIkDZdSkGfLLxq3Sv/tfn4/q45dNWyUrkfC+QeJO8NhsJQdSTIGCkXvL1m1yS8/hMnrwHXJCjSO9GYJE8LylN2/5TS5q2VNG9O8gp550vHcn+PTH+snV7fvLO8+PkIMO+OsHlCGjpkmZ0iW9XyQV9nzS4e5H5JgjD5dZb/zLe346qkpF6TFwnPf5d1Lt6t7zloqG6s64Vd/9lPL5buqLb3qv7FKBbvWP67z4OHJgR+95W/3yuv/wJ+Wzpd94r/pQPwyefvIJ8tu232XQI095/16yRLa0vLKRXHP5ucXU5WG2BQpG8KL28tQmt0vX9s3lzfcXyvc/rpcrL24g7a+/VHbs2Cn3PDBJFi35WnJyc6XuCcfIwJ6tpUzpUvLe/M/k4cdfkB07d0rligfLoJ5tvF+OdrpnlNSsXlUWLf1aflr3i1SuVEEeGdAx5Q/2rToNlmuvOC8/PCgvFR4O2H8/L4qrO8E7tb5Sps96V37esMn7nlQdl/p4ee6HMn7qK7JzZ44cdkg5GdrnFjmswkFFrl/Year55s5bII9Ofll27tzpfX/av/vNctQRhxX7fFI9f6b6GqBuJOl8zygvAOZ9D/j2Bx/LxGfmeHe9F+Zq4muA+uXc3fdPkLNOqyMf/2+ZrN+wWfrccb2ceUotUQFDhZ9X35ovuTm53t34eT8DFPZ1yfb1zfrhC+RFcPWqP/X5qu4KL/gcsLfP4VRHuHsEL+w5q7CvP+omrXf/9YlUq1pJxj/Qzfu85wOB4gqo5y0VdO/r1cYbckPnIV4T2LTlVxnQ/Wbv39R1f+3l58oljU6VYY9O96431RpOqXOs9xyoXglbWNMo7N8Lu84//2qV3DNskvc93tqfN8qEB7unfN7d/br/448/U36vV/BO8KK+7yvoVTCCF/z3m7oMlbq1jpHOba7KfzVjuQP+XqzjU81l4IgpsmXrb96NkX26tJL6/zjOu0mE56HiXq08zo8AEdyPFo/dQ0D99lD9oPDWs8O9H45Tfai3Q1E/XE0d00eqqR/GB42TSoceLF3aNSs0gqu7Ri9u2Uvefn6E7LtPGVEvmfn9jz/l6kvPkfOu7iqDe7eVM+qd4P02dsiop+Xt5x+SV9/8qNAI/sCj070f3NWT2A8//SxNbrhL5j7zoFQof4CcfmkHaXpxA+/uVRWnr2p7r1x7xbnSvMnZsvjLldKpz0jv/Ga89r7MUXe3PtJbtm//Q1rcPkjqnHBMsSO4elJ8ZMKLMu3Re7y43qXfGO8LvHrSTHWu111xnncnuYoY3AnOJ1/cBFL9EP/mewvlielz5NnH+sniL1bIzXcOlZZXnu+9DUrNGlW9bwTzPojgcdtRjmdvAnmRe/rYvtJ1wFjvByD1PJT3oRPB1Rxd+4+VI4841At5eS8l7ffgk3LhOafkv5S70TXdZNSgTl4wTPV8on65q15x8cumLTJheA8vQKpXaBx+2MFyZ/vm8u+PP5dbe4+QQT1aey9ZL+z57vlX58mjk1+SVyYP8SLfgIcmy/5//5v3vJ33S+i7OrX0Ps/b9RjuvTRY/bConruH3t1eVNBrfkt/7xfexx59xN5o+e8xECgYwYeOeabQvVSxWX0vpq6Ftes3SuPrusv82eNEvS2eunFh4vAekkyKPPTYc3Jeg5PkiEoVvO+5po6+2/vBffJzb8gnS76SUYM6S5d7x3jrTHyop/cL0qat75HenVp4v1TZ/UO9+k7drKCC8On1TvCic8EPdVwXn3uqF2pVQLji5nvk33PGeb/IObtZF3ll8mDvRor+wyd7b62gbpgoav3CznPT5q3StE1feX58P+8VIOpzZeac97znveKeT6rnz8K+BqhXU36z6ke5/+6/7jK8a8gEqXF0ZWnS6LRCXU18DVj1/U+ibnIZe39X75dmr73zH5k28y3ve1jvuf7Z12TyI73ljz92yBWt+8gjAzvJhl82F/p1KQaXOIcQsoCKgVdd0lDmvPNvqX3cUV4MK/ixt8/hVIe3ewQv7Dnr3Q8/Tfn1Rz2nntPsTq1X5YbMxvQxFlCv+FPR+e3nHvI6RKOru3lvbdq66zB5fdoDsm37H3L6pbd7vWLxlyvk4fEvyAsTBoh6955rbh0g7VpeKqedfHzKn/PV93aF/fxf2HW+8rufpMXtA71fJF90bn3vRsNUz7u7X/eFzbdsxXf5b4fi9ZpCvu8ruEWFRfBnX35X5rz9b++5Pu97WHVTRHGOr1m7ft4vUy9vfIb39UPdcT9n6lDvFV88D8X4E8ThQyOCO7x5cTh0dReO+qH8kzcnFPqWJuqLqnoPx0eHdPEO+ekZb8nSZau8b+gLuxNcPdGcfVUXubNdM2l89inenaPqY8XqNXLdbQPlP3PGef9b3Z1d94J23nu0FhXBVZxQdwCpIKA+Lr6+lxfS1W9z1Q8644Z29UKzOp9Lb7xLFrw2Pv9l6Fff0l963HatqC/utY+v5t1Frj7UD/zqzrrd3xM8b192vxNcPYlWrXyotG1xifcQdQfPk8/99XYRqc5VPYYIHoernGNIJbD7D/EqhqjYpuLE7Tde7g35asX3ou4s+Oi/S7xfQjU+u573yybuBOeaclEgL3KrkLb99z+854W8l8iq89GN4Co8qlc+qVcf5f0A8eGCJTJv/iIvJqs7gFQoVy9BLez5REUpFeLUL53yXj6uXgr++IPdpUa1yh77Ja16y62tLpOTT6xR6POd+txVP+iMGXLHHs/b51/b3Qvxxx1Txftvm7f+5r2VywXXdpfh997mPU+qjwfHPSv7li0jt990hYvbnXHHXDCCF7WX6numSQ/1zN//05rc7v3Qr15Fp54D+ne72Xs1Q97b3Km7sNUr9dRdmOpj2/bfvZsnPn1zovf4f9Q6Jv/7qs59R8k5p/+j0Pfv/edHn8rM1z6QBZ9+4b0K4erLzpH2LS/17hxXx6UC/PHVq3rr5B2X+gWQurNd3VChPtQP2OrGCvVY9blS2PqFned/PvlC1N3Y44be6c2X933ov2ePlb4PPFGs8yksgqf6GqDucL32toHy/sxRkpSkNGzaWWZMHOQZFOWq+zVAPU+37HCfLHjtMe881StDOtz1sBd7+gydKNWrVc7ft19/2y5ly5T27jRM9X2u+rrER/oLqAiufo5SH2fWr5V/p2zBMy/qcziVUMEIXtTPaOprQKqvP+qXbETw9L/2wjpD9fVXPV+99MR98sOa9fLUi296X/vVK/fUTXHqF5TDxz3r/Xf1Chn1vaG60U19qF+4Vjy0nNzQvHHKn/MLax1FXefq6/I1twyQhW887nWKTxZ/tdfrvqj5ypYtvUsEL+z7voK+hUVwdbOfeoWQssj7Hla9Qr84n5fKomSJEt5z+foNm7xfNnz2ziQvgvM8FNbVndnzEsEze/+1z179BrTeRbfI69OGFfrHiHb/w5gF/3deBFcv127X40HveE6tW1NG9L9dvlj+rfeWJh8tXOr9QK/uulNfGNVLfNRvZPM+TmrcXuY8PbTICK6iu/rCvHHTVklkJeSrb76TiQ/18P5Qi/pBZ/rYe6XK4YeIelmQiuyHFPhDlOoJ7d47b5QXZs/zXoab98dV1F0wK1f/VOwIrs71s8+/zn9yVG8PU+7A/b3fKKc6V/WDGxFc+xJlgpAEdv/DmCqCqcjd3aA6dAAAGNBJREFU7dZrUv5CTP0Ca8Rjz3svh1cxhDvBQ9oYpg1NIC9yqx+A1Nfutt0ekCmj7pbqRx3urakbwbv2f9S7a1q9hUPeDxBlSpWSxi16eO9nqv5YmHpbkrxXURX2fKLC3hmnnOC9mkl9qD/mOffZB/P/yKb6g0aXX3CG90eXC3u+Uy9NLfgHrQs+b6vn3JcnD/buLi/4oY55v7/tk//HctUPj+pOJ3XHOB/xFygYwYvay93/AGXB/63uSps+6x3vexq19707tpRnZ73j3V2m3rYk70NF09lP3S/3PTLVe3uNZk3O8v6TunbV/1a/YNn9e8KCguqXRept9vo+MMn7Y57q5oLCjuvwwyp463+4YLE3xeat27w/Rqv+KHPeeruvr/53YfOpc1zx7Zr8O7PVnOpz4qUnBsmI8S+kPJ+8+fPOofA7wff8GqD+MLq6i+/uztd7z5+jJ8307sZWL6MvylX3a8BRVQ6T9j2Gyz9f/OuPvakYkfe/b+01wnu+3/2PDRb1fW78PwM4Ql0BFcHrnHC03HL9paLeS1m91aT6/Ez1kepzONXjCkbwon5GU9djqq8/v//xBxFcd2MzfPwtPR+SRg1Pkh9/2iB//9s+cvO1F3m/8KxXp4YXwdVNdj1uv9a7MU4F8RXf/ijq5UYqAKs/3nzrDZcV+nN+qp//1VutFPa9mfq63K778F3+COfervuiPm8qHVZ+lwhe2Pd9BS+BwiK4eu5/51+feL9gLviHMfd2fGpu9Uqj6bPelh07c7zvc7/8+ltZ/O6Tuzzv8DyU4Z+Ihk+fCG4YNBOnU3dKn3XqidLh5qa7nP6YJ17yfghSfzW5sC+qeRH8wnPry+Ytv3rj1Xtkq6CW96G+IKqXxXy14jvvfVDV25Dk3Qmu7u455eJbvTvB1R0xq79fl/8exOql4mpO9ZJXded3m+su8V6mpz4ubNFThtzVNj+Cq/dWVC9r/Wn9L3L5TX3y5y94QuoOvDo1q3m/0VUfD4591ru7tbh3gqsnzGOOrJQ/PtW1UvBc1Z3zRPBM/Ixy45wL+yE+7+jV3T7qvZLz/qK6+vfPPv/Ge39T9dYJRHA39pmj/P8Cu0du9Q2/enn38+P7e/FXJ4Kru9UaX9dDnny4t/dL34I/QLTp9oDc0KyxjHj8eRnW5xYvlBf1fLJ72Dvj8o4y5ZG7vD8upj7UW1OoSFHvH8cW+nxX1C+v1Z3gI/rd7v0RXPWh/tZGpUPLe89XjwzsyNufOPJJo24qUK8yyPtlyYjxz8vvf+zwXomgvkcqbC+LiuB5p66+N+rWf6z3yxj1nqBvvvdf7/3zd/8oLEJffuGZu3xPWKpkSXnng4+9t49Tb1uX96FulFB3KKtXIBR2XOpt7dQvkKaO7uMFDPWqQfV++UEj+H8XLZO33v+vPDbsrzvb1Xvsq89Xdce0ukM6VdQvTgQv6muAep/tLb/+5r21i/peVb1sXJ1HcV2DfA0oGL3VeRb83+o81c0rba672DNQ3zuXLV1ahj/23F6/z3Xk04PDDCBQ8A9jqrin3iP4iRG9vOc09Xmyt8/hVEsWjOBF/YxWcGzBrz/q7RW4EzzAZjIkX2Dy8294N899v2a99Oxwnfezjfr6q/7OmWoT6tVu6uu+uvP7zx07vLcqUXc0q+/T1PdGKoLnfez+c36qf+975w2Ffm+2+9fl4lz3RX3eFHxP8KK+7yu4TmERXH3+qz+Cq/4+RMHvYVN9X1Dw81K9kvjClj3lxQkDvLfNVcd7/jXd9hrBeR7ik1RHgAiuo8dYT0C91UnHu0d6gVq9P5X6mPL8G/L6PxfIrCfu837Y2FsEV+9NWvBDxbJJ0+fIg31v8+4qVS+nfeOfC2TUfZ3lnKu6eG9lov7opnp/yEcmvCBvPfeQLPxsmfdHMp8e08d73y4Vy9VbnKgIrn44mvBgD+8bMfXEpf5410P9Onjvc7j7D07qfanUb3nVXd/qt7r3j37auwtdRbu33v9Ynni4l/z62zZv/pNPPLbYEVy9X924KS9776GoXpar3kdS/fEw9YNEqnNVdxuqu3+6tGvuHScfCMRJYG8RXP0hWvU3A/p3u8kL4eqHkqGjp3kvFXx4QEcieJw2k2MplkCqyN194Dj5/fc/ZfTgzt4fA1R3Xatfyqq7Nwv7KPi5o14+u3zlD957bquXzarnPPVR8AeI51/5p3ywYLF8s+oHee3pYd5/L+z5RN2ZuXtYVHdt/r/27j3crvnMA/ibg0gEoZRKi6H1zLSlxKggqIy2RlPqMlVixiVFkURGONHULUKimYRI5E4ecYvEXVCahrhMkKakqjP1PDWPGfdJFIlbijDPuzzJk55mn33OKZ2ctT77L3LW2nu9n9/ee+393b/1/rJFSbYpyr7N+fc8p+V5t9b57rZ7ap+3LxxzTdECYlhj32K2zg8H/Vs8cOvYohfw8rxyatCx8cGKDyND1exbnOddt7VPIBcMzzVWxg8fWMy8PmbgxfGjfzmo+OyTi3vVGstaYfNDj/2mCK5Xtr/JACC/0ObzLPtz5+zlvOIuQ+k758wvZjY3NxN7dbGcGZaXn+cX575H9S4WwsxAIntfH977G9Hn0P1rhuAPL3gq5i98KiZefHrRumfQ+RPi7XeXFwtLtmUmeMeO6xUBRV7Fl4F09sm+d97Cog9qS+tp7XtA9jjPS8pzBv01434SW35202Lx9pa6tuU9INfPqTUTPBcGnXzN7OKHhXzfywV8R57zo+Iz85o+5zadMb72vRoc0SchsHoInvc3647744oZd8fNUy8ofiiu9xpe0zE07Qle65yVbZLW9P6z8qqOBXdPLloouRForUAGzzmBp/gh58ZLi4A7g9oTzhhVXKH+wC1ji3NSvv/v8tUvFSFwLuiY++RkwFwbY03f8zMcr/X9v9bzvOn7craYbcnzvtb95VW6Z14wqWiz19YQfPGrbxRXJWWLrmzVla+zlZ9h5z70eN3je/GVJcUPZvNuGlNcSTjmipuKK50e//nUeP6lxc5DrX3C2r5FAkLwFjHZqJ5A/io48erbi8t98gvCPrt/rWiLkAtPtqQdStMQPC+Ty36iv3hwYTQ0NBQh2rDG44vVvbPn1IjLr49ceen7B/WK6bPuiduuuii6brRh9D/7ssgvdlttsVl88W+6FQsu5Rf1nLGXM4Y27LJBMRs8t7n93odjxoRz4/ATzyu+DOWXmbzll42hl0wvFh7LGUfHHXFAsbp5tn4ZMmJq/Po/nilWF++x61eKk9+IIR8vVtT01rQneP49ZyPljwJ56VT2TbzorBOKRcdq1ToxQ/NZ98TAEw4vFhh0I7C2CNQLwfPD4pipNxa9U/O1kx+K9unxtRh00hHRdeMuQvC1ZSAdR4sF1hSCZ3/jvOz74G/3jB/2+U4RgmefxtVvOWN09QU0m7YSyvNbtic5+diDVy0eu3oInsHSfocPLFo+rL7Q2JrOJ3nObRrE5Re4xmGTi+A6ezVn7+YDe/Uo+pnXOt81d97OIDEX7Mx2FBt26VyEmVlfXpmV7S3y39Nqvz13ibP69yl+7HVbOwXuuX9BjJ40qwiF8weLHMt8/jY3lrVC8Ay5cmZWzpjr0NAQO/3ddsVi5NkfNddAyXVUcoJCTgLIxSuzHV1LQ+PUe+7FxTF68sx44jcfP7827bpRHPadfYrXRX5Wq3Vc+bnv1CFjisVaP7fFpnH6id+PAeeMK1p55PO/1sztem1fJky/PbLlT7ZWGXrmccWimy2tp7XvAVl/Lhqar7cMnlfeWuralveA5maC52f0cdNuidlz5hd9cHNmet8jP54VXut9ae18BTiqT1KgaQie9z34wsmR7R3yPJg/XDX3Gl7TsTQNwWuds/L7Xq33n2wBlmtqTBl5xqormD7Jut1X+QVybZX8QT9/TF15yyumttryM8UVfHnLzz65cHF+5skr5fbf++/j7JFXFhP3cqJe00xju2261fz+X+t53vR9uaXP+zw/rynbaOtM8HxN5ZX7mcV06dI59u2xc5xx8hFFppG3lZ9hcyJjS16XM267LxY++XTRCSBby0y46vbItrF5bq31Y6zzUPlfd59mhULwT1PXff9VBHr0PqXoT9rczLu/yoF4EAIECBAgsBYK5JeFleH8sQMvLtoY7LvHzmvhkTokAgQ+DQHvAZ+GqvskQIAAAQIE2puAELy9jZjj/TMBIbgnBQECBAgQWLNArl+RVy1lu4KcXXTkKcPi7mt/umrGDjcCBMot4D2g3OOrOgIECBAgQKDlAkLwllvZci0VEIKvpQPjsAgQIEDg/10gewefNXxKsYBlXpqai1hn6ws3AgSqIeA9oBrjrEoCBAgQIECgvoAQvL6RLQgQIECAAAECBAgQIECAAAECBAgQIECgnQoIwdvpwDlsAgQIECBAgAABAgQIECBAgAABAgQIEKgvIASvb2QLAgQIECBAgAABAgQIECBAgAABAgQIEGinAkLwdjpwDpsAAQIECBAgQIAAAQIECBAgQIAAAQIE6gsIwesb2YIAAQIECBAgQIAAAQIECBAgQIAAAQIE2qmAELydDpzDJkCAAAECBAgQIECAAAECBAgQIECAAIH6AkLw+ka2IECAAAECBAgQIECAAAECBAgQIECAAIF2KiAEb6cD57AJECBAgAABAgQIECBAgAABAgQIECBAoL6AELy+kS0IECBAgAABAgQIECBAgAABAgQIECBAoJ0KCMHb6cA5bAIECBAgQIAAAQIECBAgQIAAAQIECBCoLyAEr29kCwIECBAgQIAAAQIECBAgQIAAAQIECBBopwJC8HY6cA6bAAECBAgQIECAAAECBAgQIECAAAECBOoLCMHrG9mCAAECBAgQIECAAAECBAgQIECAAAECBNqpgBC8nQ6cwyZAgAABAgQIEGifAvc9/EScO2paPDJ7QqsKaOt+rXoQGxMgQIAAAQIECBAooYAQvISDqiQCBAgQIECAAIFPV+C//vvFeGXJ69Hz6zu26IFuuP2++Kfe34j11ls3Xl/6Zjz73Cux60471N23rfvVvWMbECBAgAABAgQIEKiQgBC8QoOtVAIECBAgQIAAgU9GYOyVt8R7770fjaceWfcO313+XuzR+5R49K4JsUHnTnW3X7lBW/dr8QPYkAABAgQIECBAgEBFBITgFRloZRIgQIAAAQIECLROYMGi38WoiTPj2edejs6d1o9v7/f1GNK/T0y59s6Yct3saOjQEJ/dfJOYO+uSeOrpZ2Pk+Bnx9DP/E53WXz/232fXOPu0fy4ecI/vnhp/fO/96NypYwzu1yc222TjVe1Q3v9gRYwYd13MfehX8fY7y2P7bbsVwXr3r36p2f3yfh989MkYPWlmPP/ykvjitt1icL+jokf3L7euSFsTIECAAAECBAgQqICAELwCg6xEAgQIECBAgACB1gvsc8iAGND3sDis977x6mtL47RzxsX3Dtg7jj7smzHg7LGxzee3LALrjz76KL55xBlx4P49ot9xh8YfXl8aJ545Ko44qFccf+SB8fQzz8XhJ5wXC++ZXMwEX723d7Y7mXXHvLjyksbYpOuGcce982PctFvivpsujWeefbHmfotffSMO6NMYw848Pvbba5e48xePxpipN8acmaNj064btb5YexAgQIAAAQIECBAosYAQvMSDqzQCBAgQIECAAIG2CXywYkXRwuSis06If+y1e3EnK1Z8GOus01D89+oheP7/a2+8GRtu0Ck6dlyv+PvwsdcW/3bJ+ac2G4Jfcf1dMefBX8W1l/8kOq3f8U8ep7nwfNoNP4ufP/DLuHHK0FUFzp4zP/babcfY/DNd21a0vQgQIECAAAECBAiUVEAIXtKBVRYBAgQIECBAgMBfJnD9rXNj1MQbYoftty4WwDz4gJ6x/TZbrTEEv3/+orhq5s/i5cWvFX9f9ubbRWuSy4cPbDYE/8Pry+KkxtHx0iuvxp677Rj/0LN7HNBr91hv3XWa3W/o6Omx7K134tKhp/5lRdqbAAECBAgQIECAQAUEhOAVGGQlEiBAgAABAgQItE0gZ3PPm78o7p//RMxf+Nu4dGi/IqhefSZ49gw/5PhzYtjgvnHQt/aKhoYOMXLCDfHCS4vrhuB5VNlOZdFvfx8PPPLruGvuo9Fty81j+tgfN9sOJUPwpW++FWMu6N+2wuxFgAABAgQIECBAoEICQvAKDbZSCRAgQIAAAQIEWiaQwXTO0l69tchPx8+IF15aEuNHDPyTEDzbkIyZelPMu/myVXd+zGkjoutGXeqG4O+8uzwiOsQGndcv9l267O3o+b3+cdPUodGhQ4eaPcGvnHF3zJ7zSMyePnzVY06fdW/06tk9tv3Cli0r0lYECBAgQIAAAQIEKiIgBK/IQCuTAAECBAgQIECg5QK5KOUPTr4gLh9+Wuze/cux7M13ovHCSbHDdl+IH/fvE2cOmxTvv/9BDGvsW7QtyZYmt04bFlt32yImXn1H/Psvn4p112mImZPPj5wp/t1jhsSsKefHdltvFY89/p9x7qhp8cjsCTFo6ITioM7512OK0PyhBU/G6eeNj/tvviyWLnur5n7/u+T1YmHMxlN+EL333zPmPLgwRk2aGffOGBWbbbpxywu1JQECBAgQIECAAIEKCAjBKzDISiRAgAABAgQIEGi9QM7wvuK6u+KFV16NLp07xX577RJDBhwdXTboFA899mQ0Xji5WMxy7qxL4uLxM+LuuY8WM7qPPuxbsffuO0XfQSNjt53/Ni67YECcNHh0LHrq99Hv+ENi289/blUInu1WLhxzdSx44nex/I/vxXbbbBX9+x4avfbqHh9++FHN/bKaeY8siksn3xjPv7yk6FU+uN9RsceuX2l9ofYgQIAAAQIECBAgUHIBIXjJB1h5BAgQIECAAAECBAgQIECAAAECBAgQqLKAELzKo692AgQIECBAgAABAgQIECBAgAABAgQIlFxACF7yAVYeAQIECBAgQIAAAQIECBAgQIAAAQIEqiwgBK/y6KudAAECBAgQIECAAAECBAgQIECAAAECJRcQgpd8gJVHgAABAgQIECBAgAABAgQIECBAgACBKgsIwas8+monQIAAAQIECBAgQIAAAQIECBAgQIBAyQWE4CUfYOURIECAAAECBAgQIECAAAECBAgQIECgygJC8CqPvtoJECBAgAABAgQIECBAgAABAgQIECBQcgEheMkHWHkECBAgQIAAAQIECBAgQIAAAQIECBCosoAQvMqjr3YCBAgQIECAAAECBAgQIECAAAECBAiUXEAIXvIBVh4BAgQIECBAgAABAgQIECBAgAABAgSqLCAEr/Loq50AAQIECBAgQIAAAQIECBAgQIAAAQIlFxCCl3yAlUeAAAECBAgQIECAAAECBAgQIECAAIEqCwjBqzz6aidAgAABAgQIECBAgAABAgQIECBAgEDJBYTgJR9g5REgQIAAAQIECBAgQIAAAQIECBAgQKDKAkLwKo++2gkQIECAAAECBAgQIECAAAECBAgQIFByASF4yQdYeQQIECBAgAABAgQIECBAgAABAgQIEKiygBC8yqOvdgIECBAgQIAAAQIECBAgQIAAAQIECJRcQAhe8gFWHgECBAgQIECAAAECBAgQIECAAAECBKosIASv8uirnQABAgQIECBAgAABAgQIECBAgAABAiUXEIKXfICVR4AAAQIECBAgQIAAAQIECBAgQIAAgSoLCMGrPPpqJ0CAAAECBAgQIECAAAECBAgQIECAQMkFhOAlH2DlESBAgAABAgQIECBAgAABAgQIECBAoMoCQvAqj77aCRAgQIAAAQIECBAgQIAAAQIECBAgUHIBIXjJB1h5BAgQIECAAAECBAgQIECAAAECBAgQqLKAELzKo692AgQIECBAgAABAgQIECBAgAABAgQIlFxACF7yAVYeAQIECBAgQIAAAQIECBAgQIAAAQIEqiwgBK/y6KudAAECBAgQIECAAAECBAgQIECAAAECJRcQgpd8gJVHgAABAgQIECBAgAABAgQIECBAgACBKgsIwas8+monQIAAAQIECBAgQIAAAQIECBAgQIBAyQWE4CUfYOURIECAAAECBAgQIECAAAECBAgQIECgygJC8CqPvtoJECBAgAABAgQIECBAgAABAgQIECBQcgEheMkHWHkECBAgQIAAAQIECBAgQIAAAQIECBCosoAQvMqjr3YCBAgQIECAAAECBAgQIECAAAECBAiUXEAIXvIBVh4BAgQIECBAgAABAgQIECBAgAABAgSqLCAEr/Loq50AAQIECBAgQIAAAQIECBAgQIAAAQIlFxCCl3yAlUeAAAECBAgQIECAAAECBAgQIECAAIEqCwjBqzz6aidAgAABAgQIECBAgAABAgQIECBAgEDJBYTgJR9g5REgQIAAAQIECBAgQIAAAQIECBAgQKDKAkLwKo++2gkQIECAAAECBAgQIECAAAECBAgQIFBygf8DKkc/a5eeBN0AAAAASUVORK5CYII=",
"text/html": [
"<div> <div id=\"4d6f381e-83c0-49b0-9b45-55cf39b1e805\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"4d6f381e-83c0-49b0-9b45-55cf39b1e805\")) { Plotly.newPlot( \"4d6f381e-83c0-49b0-9b45-55cf39b1e805\", [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"statistic=%{x}\\u003cbr\\u003escore=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\"},\"name\":\"\",\"notched\":false,\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[\"Chi-squared Test\",\"Chi-squared Test\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\",\"Chi-squared Test\",\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"x0\":\" \",\"xaxis\":\"x\",\"y\":[0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.471453764422969,1.0,1.0,0.5666666666666667,1.0,9.981573057502541e-09,1.0,1.0,0.3,1.0,0.0010489520037414806,1.0,1.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0],\"y0\":\" \",\"yaxis\":\"y\",\"type\":\"box\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"statistic\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"score\"}},\"legend\":{\"tracegroupgap\":0},\"margin\":{\"t\":60},\"boxmode\":\"group\"}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('4d6f381e-83c0-49b0-9b45-55cf39b1e805');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"px.box(drift_results, x='statistic', y='score')"
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "8b62b2d2-33f2-4716-9cbe-015f3b1b270f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"hovertemplate": "col=country<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "country",
"marker": {
"color": "#636efa",
"pattern": {
"shape": ""
}
},
"name": "country",
"offsetgroup": "country",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"Chi-squared Test"
],
"xaxis": "x",
"y": [
0
],
"yaxis": "y"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=continent<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "continent",
"marker": {
"color": "#EF553B",
"pattern": {
"shape": ""
}
},
"name": "continent",
"offsetgroup": "continent",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"Chi-squared Test"
],
"xaxis": "x2",
"y": [
0
],
"yaxis": "y2"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=year<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "year",
"marker": {
"color": "#00cc96",
"pattern": {
"shape": ""
}
},
"name": "year",
"offsetgroup": "year",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"xaxis": "x3",
"y": [
0,
0,
0,
1,
30
],
"yaxis": "y3"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=lifeExp<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "lifeExp",
"marker": {
"color": "#ab63fa",
"pattern": {
"shape": ""
}
},
"name": "lifeExp",
"offsetgroup": "lifeExp",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"xaxis": "x4",
"y": [
0.2357268822114845,
13.598979670676874,
0.5001570911698885,
0.5666666666666667,
9.905244000000001
],
"yaxis": "y4"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=pop<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "pop",
"marker": {
"color": "#FFA15A",
"pattern": {
"shape": ""
}
},
"name": "pop",
"offsetgroup": "pop",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"xaxis": "x5",
"y": [
4.990786528751271e-09,
1.8818525523798695,
0.3025545016073308,
0.3,
189377557.43333334
],
"yaxis": "y5"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=gdpPercap<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "gdpPercap",
"marker": {
"color": "#19d3f3",
"pattern": {
"shape": ""
}
},
"name": "gdpPercap",
"offsetgroup": "gdpPercap",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"xaxis": "x6",
"y": [
0.0005244760018707403,
5.374984606904614,
0.35618190878501066,
0.5,
8463.419603076667
],
"yaxis": "y6"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=iso_alpha<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "iso_alpha",
"marker": {
"color": "#FF6692",
"pattern": {
"shape": ""
}
},
"name": "iso_alpha",
"offsetgroup": "iso_alpha",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"Chi-squared Test"
],
"xaxis": "x7",
"y": [
0
],
"yaxis": "y7"
},
{
"alignmentgroup": "True",
"hovertemplate": "col=iso_num<br>statistic=%{x}<br>metric=%{y}<extra></extra>",
"legendgroup": "iso_num",
"marker": {
"color": "#B6E880",
"pattern": {
"shape": ""
}
},
"name": "iso_num",
"offsetgroup": "iso_num",
"orientation": "v",
"showlegend": true,
"textposition": "auto",
"type": "bar",
"x": [
"PSI",
"KL Divergence",
"Jensen-Shannon Divergence",
"KS Test",
"Wasserstein Distance"
],
"xaxis": "x8",
"y": [
0,
0,
0,
0,
0
],
"yaxis": "y8"
}
],
"layout": {
"annotations": [
{
"font": {},
"showarrow": false,
"text": "col=country",
"x": 0.05375,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=continent",
"x": 0.18125,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=year",
"x": 0.30874999999999997,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=lifeExp",
"x": 0.43625,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=pop",
"x": 0.56375,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=gdpPercap",
"x": 0.6912499999999999,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=iso_alpha",
"x": 0.8187500000000001,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "col=iso_num",
"x": 0.94625,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
}
],
"autosize": true,
"barmode": "relative",
"legend": {
"title": {
"text": "col"
},
"tracegroupgap": 0
},
"margin": {
"t": 60
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
0.1075
],
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis2": {
"anchor": "y2",
"autorange": true,
"domain": [
0.1275,
0.235
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis3": {
"anchor": "y3",
"autorange": true,
"domain": [
0.255,
0.3625
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis4": {
"anchor": "y4",
"autorange": true,
"domain": [
0.3825,
0.49
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis5": {
"anchor": "y5",
"autorange": true,
"domain": [
0.51,
0.6175
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis6": {
"anchor": "y6",
"autorange": true,
"domain": [
0.6375,
0.745
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis7": {
"anchor": "y7",
"autorange": true,
"domain": [
0.765,
0.8725
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"xaxis8": {
"anchor": "y8",
"autorange": true,
"domain": [
0.8925000000000001,
1
],
"matches": "x",
"range": [
-0.5,
5.5
],
"title": {
"text": "statistic"
},
"type": "category"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
-9.222895423433945,
9.198392928369545
],
"title": {
"text": "metric"
},
"type": "log"
},
"yaxis2": {
"anchor": "x2",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
},
"yaxis3": {
"anchor": "x3",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
},
"yaxis4": {
"anchor": "x4",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
},
"yaxis5": {
"anchor": "x5",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
},
"yaxis6": {
"anchor": "x6",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
},
"yaxis7": {
"anchor": "x7",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
},
"yaxis8": {
"anchor": "x8",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
-9.222895423433945,
9.198392928369545
],
"showticklabels": false,
"type": "log"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcEAAAFoCAYAAACfcTNMAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd4FFXbhp/sZlMIIZDQuwUsgAIqYEFAVETpKkpTCL2DVOkd6YTeCSKKINKVKoIgVZAPRKWpID0EEkLatv8/gwmhJNns7GSnPHNd//V/kjnnvOd+353dvffMGR+n0+kEDxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARLQIQEfSnAdZpVTIgESIAESIAESIAESIAESIAESIAESIAESIAESIAESkAhQgrMQSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEdEuAEly3qeXESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEKMFZAyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArolQAmu29RyYiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApTgrAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAHdEqAE121qOTESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAFKcNYACZAACZAACZAACZAACZAACZAACZAACZAACZAACZCAbglQgus2tZwYCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAAJThrgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIQLcEKMF1m1pOjARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgBKcNUACJEACJEACJEACJEACJEACJEACJEACJEACJEACJKBbApTguk0tJ0YCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAJzhogARIgARIgARIgARIgARIgARIgARIgARIgARIgARLQLQFKcN2mlhMjARIgARIgARIgARIgARIgARIgARIgARIgARIgARKgBGcNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ6JYAJbhuU8uJkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJUIKzBkiABEiABEiABEiABEiABEiABEiABEiABEiABEiABHRLgBJct6nlxEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABCjBWQMkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK6JUAJrtvUcmIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKU4KwBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiAB3RKgBNdtajkxEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABSnDWAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgG4JUILrNrWcGAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQACU4a4AESIAESIAESIAESIAESIAESIAESIAESIAESIAESEC3BCjBdZtaTowESIAESIAESIAESIAESIAESIAESIAESIAESIAESIASnDVAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSgWwKU4LpNLSdGAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRACc4aIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES0C0BSnDdppYTIwESIAESIAESIAESIAESIAESIAESIAESIAESIAESoARnDZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACeiWACW4blPLiZEACZAACZAACZAACZAACZAACZAACZAACZAACZAACVCCswZIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAR0S4ASXLep5cRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAQowVkDJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACuiVACa7b1HJiJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAClOCsARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAd0SoATXbWo5MRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAUpw1gAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBuCVCC6za1nBgJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAlOGuABEiABEiABEiABEiABEiABEiABEiABEiABEiABEhAtwQowXWbWk6MBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiAEpw1QAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoFsClOC6TS0nRgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAnOGsDnKzfj1F8XMLJvuCpo7D30Gx4pUQgF84WqIh4G4TkC3qg1m92OTT8cQJ03XsTxP/9C7+GzsenL8Z6b1H89pR3H452zQ68R8EbNem2yHNgrBFytscrvdMTayNGIio5JvY4lJVvxUdcxOH/pKtZFjkHe0JCHzkG8r7bpPQEmk88Dfz/2w2KvzJuDqp+Aq7Wp/pkwwuwi4Oma+eP0OfQYMiPTz23Nu4zGsd/Pwue/a5y4FjZ/9w20bPxWdk2d46iMgKu1+Pxb7bBh6WfZ9r3T1ZoWdf9KpXJ4r041lZFlOFkloNZazOo8eD4J6IUAJbheMiljHq5emGUMkaWmXQZEoG3zOnj26cfuaWe3O2A2m7LUF09WFwFv1Nrvp/7BlHkrMW9CbwhRfSsuHnlCgj0OJu04Hu+cHXqNgDdqNu1ked3zWuqzbWBXayxFggu5k3IdO3n2X7T+ZBx+XBWR4fujkODDJy/JVCRl26Q5kCYIuFqbmpgMg8wWAp6uGVeFoZDgH9SrgbpvviTNU7Rr12ciRvVrjVerPOvS3Pl+6xImzZzkai1evxErfS942I/ESkzW1ZqmBFeCvnf6VGsteocGRyUB7xOgBPd+DjwewZadhxCx4BvEJySiUoWnMLJPOPz8LNj84wHMjFwLm80mrRYb1rsVHi1eyOWV4Kf/uoDBExbh8tXrKFooP8YOaIuihfJBfAkfPikS0Tdvwd/Pgu5t30WNlyrg6IkzGDB2PjYu/UyaY9r/XvrNFvx55jySk604d/EqxAfPiBFd8N0P+zFj8WoUyJsHvTt+gAuXo3Dq7L8QglHMZcW6HdiyfGLqarfxM7+Cw+lE/y5NPc6RHWZOQC21Jj5Qilqr9mJ5/PK/P3HtegwGdm+OCmVLod7HAxAbdxvPPPUYerZ/P3UFZXo1WLhgXvx9/jKGTlwsrbjMERiAAd2aSX25Os7CyX0zh8czvEJAiZqdMGs5xIrcQT1aSHOKuXUbNd7tge0rJyMm9vZDa0mct3bzHsxdug42mx2FCoThs4HtUSh/KCJXbEq97okv7z3avucVVhzUPQJK1JiI5P6V4CvmDUPjdsOk9+TiRQti0eS++O3Pv6Uf/aw2G4oVzoeRfVsjX1huZCbBO306BZUrPo2P368lCfY6H32KueN7Yd8vJ/Dbyb+k+r5y9Yb0WWLCkA7ZtmLOvQywVXoElKrNF2q3R/sW9bDn4DFcjbqJxvVqSLUkjvQ+e0Z+vYm1pYFSVapm9hw8jlFTl8LXbJLqZeFX32HZzEEoUjAv5i/bgOVrfkBIriDUql4Jq7//SfoBL6OauV+CC7Rjpy+DyWRCv85N0v1cd+Lk3xg0biFKPVIUV6JuIHJqf6Q353Tfs1nL2VLJStViykrwsNy5MGj8Qvx6/DTsDgcqli2FEX3DEeDvl+51LKOJH/vjL4yYvASxt25L348H9miByhWekr5LpNzdkFFNi3MeL1kEPx86jn8uXEHFcqUxdXgX6Qfv9GoxWxLBQdK9Rsh1LUrVYpU6nfBJu/exZdch/HvxGhq9XRXtmtfN1NWIWk22WnHq7AUUzB+KD+u/hq/WbJeup51bNUC9N19mNZCAJglQgmsybekHLb58NGo9GF/PHSp9Se06KEKSd3VefxENWw/GirlDUbxIAaxY/yO+3bgTy+cMTZXgbZq+g8bthz3Q+WsvV8SYT9ugYfhgdAlviNerPid9WN1/+ATmjOuF+i0HoMPH9fFOzSoQorxp55HY/NUEnLtwNV0JvuzbbZgZuTr19m0h0UNy5ZRkT72WA6WtWcRK8GXfbsXsJevw1ezBKFY4PzoPmIoXnysj3eIojjc/7I0JQzo+sGpcZ2lV5XTUVGtCVou6nzX2E1StXA7fbd8v1Y74QrX5x4NYtXGntBI87XYoGdXgu22G4MMGr+H9OtUhPsR2HRiBrcsn4u9/L7s0jioTxqAkOaPE9bHFe2+gfd9J2LFqKnzNZunLycZte6WaS6+W4hOSUP29HlgXOVq6tg2bGAkfH2Bor5YPXPeYOu0QUKrGxI/OD9sOJe2XaXEdFPJ66fQBktARX64PHz+JaSO7ZSrBL12NRrPOI/HN/BGY98V6WHx90atDY+nzwewla7Hxi3EIzR2Mz2Z8Kf3APqKPOrZP005leD9SpWuzWaPX0a31u7h2/SZqN+uL9UvGSpPO6LMna8v7dZFRBErVjFid/foHn0g/0ontHmYuXo25X6yXFrncjk9Es86jsOHzsQjLkwv9R8+TRI2Q4Bldjx4mwUdHLEWAv790LUvvvfiv85fRtNMIKZbar1VO93NC47o10n3P5nVS+TpWqhbFe2uKeDz62xmsWL8DCyb2gdMJTJrzNWpWfU5anJDedSyjmb/XdihavPcm6td6GRu378OsyDXSwrC079sZ1Y6Q4OKHmfkTesPX14z6LQdiaK+PUab0I+nWovKZ4AharMWX6nWGuIYJz3Ll2g3UatIbezfMxsmz5zN0NeLz4PrPxyIoMABvfNgLL79QTnI0h47+KS3wSVnoyKogAa0RoATXWsYyiXfNpt3YtusXzBjTXTozITEZZpMP1m/di20//YLZn/WU/l2s6qr4Zlvs2zBLWmGR2Z7gFy9HSR8A9m+cLbW32uywWq2Iio7Fu20G48B3c+AjDA6AJp1Gom3TdxAWGpLhhVWsTEuJ84tVW6UVbOLDyL0SfBt27v1VkkniEHJz6aot+GrWYOlDRJcBU7H160mpY+ssnaqejppqrViR/NKXJlGH4hB3GXT+dAq2rZicoQR/WA12a90IdT/+FAe+m5t6a6T4cahPxw+ROySnS+OoOnEGDk6pmhVIhXwUd6SIL/TiR5PXXqmIKhWfTreWXij/pPRlPyhHgJQR8QVJXIvFly/xA03a656BU6a5qStZY5lJcPHjy3fb90kruMUhZLVY/XNkywIcOPK7tCe4xeJ7D1PxA7kQUuIQd8f8tP9/0h1YqxaMkFa/iS/oB478kfpeLVaGj5m+TPrxhoe2CChdm2IF7VOlSkhQWnQdjebvvom42wkZfvZkbam7hpSqmb/OXULTTiOxd8MsCYD4Aa9ao+7S3VM7f/4VP+0/lnrN2X3gmLRiPEWCp1czaSW40+mU7iBt12cSpgzvLN21mtHnug/aD8ehTfOkz3zpzVncBZPeezavk8rXsVK1KCJPkeDiu26v4bMwrFcrVHnuaWn1tjhWbdyV7nUsOGeOdCefmJQs/aAsVm6LHwdfb9wLR7cvfECCp1fTQoKXL/t46r723QZPk+60bli7arq1qHwmOIIWa1FI8IWT+qa+R79YpxNWzh8OsRVQenfti+8ih47+gSnDu6S+rzdr9AbeqlFJEul3rql3vnfzIAGtEaAE11rGMol30fLvpFtWhExOe4hbC8/+c+mef3+uVjusXjQSP/78a6YSXKyG7TlkuiQV0x6//nYavYfPuuffO/SbLK0WL/Vo0QwvrP87cQbjBrWXuhMX2pT/vl+CH/3tNMYP7iCdJ6T+qw274duFI7B20x4kJiejd4cPdJZFbUxHTbX2bJnHpL0fd3wzVYJ36q9/U/87o5XgD6vBFu+/iSYdR6BAmgezJiQmYUjPj/FoiUIujaONDBovSqVqVpCctWQtzl+4iiGffIzq73aXVrSdv3g13Vp649Xnpbth9hw4JiUi5lY8ChcIg9hKR1wP0173jJcp7c5YyRrLTIIvXv69VFO50zzzQEhIsaJSbCuW2Z7gQvC80qArwj+sja7hjaQkCLkjfnAe8+mdzxQpd8b8uOrOtZaHdggoXZvfLhwpbWUhDvE5sGbVirgZE5fhZ0/WlrrrR6maOXL8FD4dM/+eZxSUf701Nn01Aes275FutU97zekz4s4DzTO6Ht3/YExxN6y4lomtVsRdgBl9rmvbeyJSrmnpzdnhcKb7ns3rpPJ1rFQtisjTPhhTfGcQ2z2IH1GE7OvfpRm+WLUl3euYuLs6vUMs3PpqzTZp4ZjY9vOP0/9APIj6/pXg6V0H798TPOW/G739arq1qHwmOIIWa1FI8OWzh0i7AYgj5b9vxMRl6Gp++/Ov1Gvxx93HotUHtVH9pfLSD5dvNe0j/XjIgwS0SIASXItZyyBm8evkph37pW1K7oiV2xC33f988Di27jqY+u9CJos3ffELntgqQqwEz2g7lK7hDVG/1UDs3zhHWilhtdpw/tI16dZ/sRI85d/FmB92GI72H9VD3tDc6DdqDr77YpwUi9jTbHTEF9KtM2mlt/hbRhI8ragU5/YbNRePP1IEG7ftw+j+bVDmiZI6y6I2pqOmWhOrfDwlwcW+4eKWw5S7HtJmI61cF/+enmzXRgaNF6VSNSt+dDx34QrEra9iOxOxFcqssT1x+Vp0urUkVn6L2wyXTh+IXDlzYP2Wn6UVaCkS/P7rnvGypc0ZK1ljmUlwUUNbdh7E9NF37gRLe2S2J7g4V+xtL0T4rv1HsXz2UOTPm1uSTvsOn5DqWRxiH19x3prFo7SZIANHrXRtLprcL/XzmFjl2+rD2oi9FZ/hZ0/WlroLUqmaad3kbXzcYyz2rJ0hAUi7ElwszBE/Dqdcx8R/i22YUiR4ejXzsO1QUuhm9F58/+e69OZ8+NjJdN+zeZ1Uvo6VqsW026GIH05Sjti4ePQaNgsvVyqL4KAc6V7HUu7mu5+AWCn7VrO++Gb+cDxWorD0efCND3o9VIKnV9PpSfDAQP90a1H5THAErdWiyFh6ElwswMnI1VCCs971SoASXGeZFW+69VoOwJczB6FksULoPWIWni5dUnpauhB7K+cNk34FFPslb9pxUNo71JUnFotbC+u3GoRWH7wl3YaVctu0uO1a9NuuRV1p33Hxa3Z4z3H4/svxSEqy4p0W/bB95RRJ8og9bw8e/SNTCS727evR9n1pb+f7ZblI1869RzFyyhL4+vres4pEZ6lU/XTUVGtXo26kK8F/2H0Y87/cKL0mfjv5d+qDMTP6IUbITPEFXuxzLx74Onb6Fxjeu5W0TUB6sj3tOClbA6k+iQYLUKmaTcEots2JvhGL7m3ek6654kivllZ/v1t6iJyQi+LHyk+GzsTthERppcbDrnsGS5Vmp6tkjWUmwYVIatBqkPQshBJFC0irttdv2YMB3Zpnuie4eO/uOXQGVi8aha9Wb4e4yytiZFfp84G4y0F8kRc/Ng4ev0i6RTzlIbCaTZQBA1e6Nhu89Qo+7dpMugNG1KGQluLhchl99mRtqbsQlaqZ5GSrtP2JEN3PP/sEps7/BmJ1pbiDStw90KrHZ1i3ZAxCc+eStqcQ16cUCZ5ezWQkwTN6L77/c116cxYPSU/vPZvXSeXrWKlaFJGnrAQX24nGxMahU8sG0oTE+50Q2LVrVk73OpbezMWPKy17fIYdK6fAbDZjyvyVEHdr/bJ5nnSnQ8qDMTOqnfQkuNjSNL1aVD4THEFrtZiRBBfPTMjI1VCCs971SoASXIeZ3bTjACIWrLqzH+hzT2Nkn3CIvezELV4zI9dIq7jFbffDereUHsjmigQXmE6e/RdDxi/ExSvXUaJoQWlrFfGlWPy7eLDljZhb0h6ivTt+gJeeLyuRFSvGdvx8BEUK5kO1F5+V5Pv3y8ZnuBJcfMCN/Pp7dG/zLgCf1G1SUlJls9ulD8/ioYXiAQ88vEdALbWW0QptIYbE3Qniy7j4wtV7+J3bajOS4OID6rBJkbh8NVrab75l41r4oP5r96z8FtTTjpt2nJRtWbyXGY6cHgGlalaMt2TlZunL/E+rpyFnUKAUQnq1JH5c6fTpFMTE3kbB/HnQs+376DpomvQjY76w3A9c95hR7RBQqsYyk+CCkPiReMq8lRB7kYoVagO7N0fFcqUlCS72BBd3ct1/LJ7yKSbO/gptm9WVtrAQt243Ch+Enu3ex7+XruHX385AbAl1+u8L0meHSUM7IW9oiHYSwkhTCShZm+1b1JUeChwXl4A2zd5BkwY1pXEz+uzJ2lJ/cSpVM2KriMlzv4bYU1nUyqS5K7AucgwK5MuD6Yu+xTcbdkrvox/Uq4HPv9mCbV9Pkr6vpFczmUlwVz/XiYw8bM5x8YnpvmeLhwazlpWvZaVqMUWCix94B362ACfPnIePyYRyTz4iPTND/ACS3nUso1mLLX/E4q+Q4CD06fQhZi5eA4fDgcE9P7pHgqdXO+lJcPHMmfQ+P/J7sfJ1mN41whOuRalaTG8luFgYmZGroQTPnnriKNlPgBI8+5lzRA8QEA+hmzq8i7QtCg8SIAESUAMBscXJ9p9+weRhndUQDmMgAdkEhHQS8ntEn3DZfbED/RIQP9CkCExXZ8nacpWUPs8Td5iKQyw0EPsll3+jtfRA8sAAv3QnrNaaUWtc+qwcfc2KtaOvfHI2JEAC2iBACa6NPDHKNARWf/+TtH/uoin9yIUESIAEVEFAPIBQrEQTK3yee6a0KmJiECQgl4Crd4rJHYfttU0g5S6FtHvqZjYj1lZmhPT99/fbDcP7daujcd3q0vMwlqzYJG3HlNGh1ppRa1z6riB9zI61o488chYkQALaIkAJrq18GT5aIZnEfm0zx/ZIfcKx4aEQAAmQgFcJbP/pMAZPWIgP67+Gbq3FNk48SEAfBPgFXR95VHoWlOBKE9Zf/0eOn8LwSUsQdzseoXlySc9deapUCUpw/aVatzMSC7LEM4cedtR78yW0afpOpnPne2ymiHiCCwQ8UYsuDMNTSEA3BCjBdZNKToQESIAESIAESIAESIAESIAESIAESIAESIAESIAESOB+ApTgrAkSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAHdEqAEl5nai9cTZPbA5nokkCPAF7mDLIpOLT7JjptxyYqOwc61SSBviD/8fE2KBh8Vm4Rkq0PRMdi59giYTT4okCdA0cDtDieu3EhUdAx2rk0CwTksCA70VTT4Wwk23Iq3KjoGO9cmAXHtE9dAJQ9x7RPXQB4kkJaAn8WEvLn8FYWSbHMgKiZJ0THYuTYJ5M7phxz+ZkWDv3nbivhEm6JjsHNtEigcFqjNwBm11whQgstETwkuE6BOm1OC6zSxGpkWJbhGEqXDMCnBdZhUDU2JElxDydJhqJTgOkyqRqZECa6RROk0TEpwnSZWI9OiBNdIolQUpm4kuM1ux9T532Dx8u+xe+105AkJTsU8f9kGLFmxGeKct2tWwcBuzWE2m3DuwlUMGDsfv5/6B0UK5sWIvuEoX+Zx6bxna7ZG/VovY8ynbe9J17CJkVi54Ucc3b4QvmYzKMFVVM0qCoUSXEXJMGAolOAGTLpKpkwJrpJEGDQMSnCDJl4l06YEV0kiDBgGJbgBk66iKVOCqygZBgyFEtyASZc5Zd1I8K4DI/Dk48UxZ+k67Fo9LVWC7/vlBAaNX4glEZ8iJDgIHftPwds1K6NJg5po0XU0Xn6hHFo3fQc79/6KMdO+wOavJsLHB6j8dkfpaeUbPh8Lf78721oIOV73o09x5doNHPh+DiW4zOLTc3NKcD1nV/1zowRXf470GiEluF4zq415UYJrI096jZISXK+ZVf+8KMHVnyM9R0gJrufsqn9ulODqz5HaItSNBP/j9DlJgpd7rdU9EnzElM9RKH8o2jarI7Hf8fMRaVX4pKGd8FbTPti7YZYks8XxXtuh6Ne5CSqUK4Xn32qPWtVfwGsvV0Ct6pWkv+/adxRrN+/Blp0HcWTrAkpwtVWziuKhBFdRMgwYCiW4AZOukilTgqskEQYNgxLcoIlXybQpwVWSCAOGQQluwKSraMqU4CpKhgFDoQQ3YNJlTlk3EjyFw/0SvHWv8fiw/mt449XnpVP+OncJrXqOw+RhnTFi8hKsWTwqFWHvEbNRueJTaFi7Kiq80QYRI7pi9fc/Yfro7tI5/cfMQ81XKqLHkBncDkVm4em9OSW43jOs7vlRgqs7P3qOjhJcz9lV/9wowdWfI7VEaLLFI9efq2G+fVVWSElhTyLusdpSH5TgslCysQwClOAy4LGpbAKU4LIRsgMZBCjBZcAzaFPdS/BmnUehfYu6eLXKs1KKL16OQoPwQZg6ogsi5q/C13OHpqZ+4GcLUPqxYmjW6HVJgh/ePB+vf9AL65aMQYC/H2o364vvl41HxTfbpkpwh5NPaDfoayfDaYsnqAdYlH1KthjD1+xD/CTwAAG7A7AoXBusPxbewwjY7U5YfE2KwrE7nNK2ZTxI4H4CVpsT/hZl6y/J6oDFlwWo9epLvB0H3+1j4Rfzj6ypJJasDp8Xw6XrnvhKIH4IVPKw2hwwK/z+rmT87FsZAtlx7bPZnTApe3lVBg57VZyAqA0/hT/7JVrtio+hOCgOoAgBE78UKMJVz53qXoK36T0BjWq/Ku0DLo4/z5xH+76TMGV4ZwwatxAbl36Wmt9ug6ehauVnUleCH/thMYZMWIRyTz2KkOCc0r7ho/u3QZnqLVMl+OXoRD3XB+fmJoFAfzNCgu7sJa/UEZ9kR+xtq1Lds18NEwjN5af4B8Xrt5JgtfJHQA2XiSKhiy/I+XMHKNJ3SqdCgl+7maToGOxcmwQBqkkAAAAgAElEQVSCAn0RHOiraPC3Emy4nWBTdAx2ng0ErPEI3TdRtgSPL14NMeVawMfHB/ly+ysuwa/eTITDkQ18OISmCFgsPggL9lc0ZrH4ITo2WdEx2Lk2CeQKsiCHv7KLv2JuW5GQZNcmIEatKIGCocp+7/BU8Nt/OozBExbi53UzPdUl+3GTgO4l+OiIpcidKyc6t2ooIfpu+36s2rgTE4d2xOuNe2HPuhnSKm9xvNOiP0b2DcczTz8mrQQXEnz/kd+x8MuNCM6ZA43efhUvv1D2Hgl+8XqCm+jZTM8EuB2KnrOr/rlxOxT150ivEXI7FL1mVhvz4nYo2siTGqL0sSYgbL9nJPiNss0lCc7tUNSQWWPGwO1QjJl3tcya26GoJRPGjEMr26FQgqunPnUvwQ8fO4m+I+fg82kDEBQUiHa9J6JxvRp4951XIfYLf+6ZJ6SHZm7+8QAiFqzC98vGSdlJkeAOhxN1PuovfbhdFzkGZrOJElw99avaSCjBVZsaQwRGCW6INKtykpTgqkyLYYKiBDdMqmVPlBJcNkJ2oCIClOAqSoYBQ6EEN2DSVTRlSnAVJUMjoehCgt+MiUP193pIyK1WGyyWO7fCbvt6EvKGhmDJys1YsGwDrDY7Grz1Cvp1biJJ7UtXrqPf6Ln47c+/Uaxw/jtbnTxREja7PVWCi37Gz/wKyVYbBvVoIfWbdjsUrgTXSKVnc5iU4NkMnMPdQ4ASnAXhLQKU4N4iz3EFAUpw1oGrBCjBXSXF87RAgBJcC1nSb4yU4PrNrRZmlt0S/O/zlzF8ciSOHD+NvHlyodWHb0vPFBSH8IujIpbiyPFT8LNY8EqlcpJ7FLtKcCW4eqpJFxLcmzgpwb1JX71jU4KrNzdGiIwS3AhZVuccKcHVmRejREUJbpRMy58nJbh8huxBPQQowdWTCyNGQgluxKyrZ87ZKcGdTicatR6MF8o/iU4fN8DZcxfRrs9ETBneRRLeDcMHo+yTj6B/l6ZITEpGr+GzkCtnDkwf3Z0SXD0lA0pwmcmgBJcJUKfNKcF1mliNTIsSXCOJ0mGYlOA6TKqGpkQJrqFkeTlUSnAvJ4DDe5QAJbhHcbKzLBKgBM8iMJ7uUQLZKcGP/X4WTTuPxN71s5AzKFCax0/7jyF/3txISkpGk04jsWftDOQOySn9bc/B42jfdxL2b5yNfb+c4IMxPZp59zujBHefndSSElwmQJ02pwTXaWI1Mi1KcI0kSodhUoLrMKkamhIluIaS5eVQKcG9nAAO71EClOAexcnOskiAEjyLwHi6RwlkpwTfuH0fPpu+DD+tmf7AHMTfxkz7QpLgKce5C1dRu1lfrF40CucvXKUE92jm3e+MEtx9dpTgMtnpuTkluJ6zq/65UYKrP0d6jZASXK+Z1ca8KMG1kSc1REkJroYsMAZPEaAE9xRJ9uMOAUpwd6ixjacIZLcEv190p8xDSPCx05Zh99q7gvzchSuo3awf1iwehXP/UoJ7Kudy+6EEl0mQK8FlAtRpc0pwnSZWI9OiBNdIonQYJiW4DpOqoSlRgmsoWV4OlRLcywng8B4lQAnuUZzsLIsEKMGzCIyne5RAdkrw/504I215IlaCh+YOluax+ceD0r7fOXPmwIcdht+zHcqufUfRecBUaTuUvYe4HYpHEy+jM0pwGfBEU0pwmQB12pwSXKeJ1ci0KME1kigdhkkJrsOkamhKlOAaSpaXQ6UE93ICOLxHCVCCexQnO8siAUrwLALj6R4lkJ0SXDwYUzz88slSxdG7wwcQK7079p+CiUM6omrlZ/BumyHSgzH7dW6C2Lh49Bw6E4ULhGHS0E58MKZHsy6vM0pwefwowWXy02tzSnC9ZlYb86IE10ae9BglJbges6qdOVGCaydX3o6UEtzbGeD4niRACe5JmuwrqwQowbNKjOd7kkB2SnAR99lzlzB8UiSOnjiDsNy5EN6kNpo1ekOakpDiwycvwZFjp6SHY1Z/qQJ6d2iMHIEBlOCeTLrMvijBZQLkSnCZAHXanBJcp4nVyLQowTWSKB2GSQmuw6RqaEqU4BpKlpdDpQT3cgI4vEcJUIJ7FCc7yyIBSvAsAuPpHiWQ3RLco8GzM68QoASXiZ0SXCZAnTanBNdpYjUyLUpwjSRKh2FSguswqRqaEiW4hpLl5VApwb2cAA7vUQKU4B7Fyc6ySIASPIvAeLpHCVCCexSnITqjBJeZZkpwmQB12pwSXKeJ1ci0KME1kigdhkkJrsOkamhKlOAaSpaXQ6UE93ICOLxHCVCCexQnO8siAUrwLALj6R4lQAnuUZyG6IwSXGaaKcFlAtRpc0pwnSZWI9OiBNdIonQYJiW4DpOqoSlRgmsoWV4OlRLcywng8B4lQAnuUZzsLIsEKMGzCIyne5QAJbhHcRqiM0pwmWmmBJcJUKfNKcF1mliNTIsSXCOJ0mGYlOA6TKqGpkQJrqFkeTlUSnAvJ4DDe5QAJbhHcbKzLBKgBM8iMJ7uUQKU4B7FaYjOKMFlppkSXCZAnTanBNdpYjUyLUpwjSRKh2FSguswqRqaEiW4hpLl5VApwb2cAA7vUQKU4B7Fyc6ySIASPIvAeLpHCVCCexSnITozpASPvnkL/UfPxeVrN7AucnRqos9duIoBY+fj91P/oEjBvBjRNxzlyzyOP06fQ48hM7Dpy/EPFAUluCFeJ1meJCV4lpGxgQcJUIJ7ECa7yhIBSvAs4eLJHiZACe5hoDrujhJcx8k14NQowQ2YdBVNmRJcRckwYCiU4AZMuswpG06C345PRJOOI1DtxfLYue/oPRK8RdfRePmFcmjd9B3s3Psrxkz7Apu/mogzf1+gBJdZaEZrTglutIyra76U4OrKh5GioQQ3UrbVN1dKcPXlRK0RUYKrNTOMyx0ClODuUGMbTxGgBPcUSfbjDgFKcHeoGbuN4SR4fEIioqJjpP8bNmlJqgS/fiMWbzXtg70bZsHXbJaq4r22Q9GvcxME58yRKsGtNjva9BqPV6s8i9ZN3gZXghv7BZTe7CnBWRfeJEAJ7k36xh6bEtzY+ff27CnBvZ0B7YxPCa6dXDHSzAlQgmfOiGcoR4ASXDm27DlzAmqV4A4ncOYfG8T/d+nwAUoVN8Nk8nHpdJ7kPgHDSfAUVIePnbxHgh8+dgojJi/BmsWjUmn2HjEblSs+hXJPPpoqwYdPXgK73Y4RfcKl8yjB3S8+PbekBNdzdtU/N0pw9edIrxFSgus1s9qYFyW4NvKkhigpwdWQBcbgKQKU4J4iyX7cIUAJ7g41tvEUAbVK8GSbA3OX2HDmrGtSu0hhJzqF+yIo0OQpNOwnHQKU4P/tCf7zoeOImL8KX88dmopq4GcLUPqxYqhc4SlJgrf64C1s2XkIcyf0Sl0tzsoigYcRSLLa4W+5c0eBUoe4sPr58iKpFF8t92uzO+Frdu0N1915Wm0OWFh/7uLTbbvsqD27wwkh23mQwP0EsuN9MTvGYGaVJ5B4Ow6mbWPgF/OPrMESS1aH+aXW0vthdlyb7HYnzAq/v8sCwsYuERCfoUS9yD3MJhMsvj7IjutSdry/y+XB9t4hkB31l2R1wN/C773eyTBHdYeAeF1EzLXhz5OufWcpXsyJXp3VL8FXf/8TGtau6g4S1bShBP9Pgh85fgqDxi3ExqWfpSan2+BpqFr5GWklePMuo2AymVDj5QoYN7B96jlcCa6aWlZVIFwJrqp0GC4YrgQ3XMpVM2GuBFdNKgwZCFeCGzLtbk2aK8HdwsZGHiJwzOqDCTF22GX21zfEhGctAFeCywTJ5rIIcCW4LHxsLJOAmleC602CO51OVGvUHbtWT3sgaw6HUzNbuVCC/yfBb8TcwuuNe2HPuhkI8PeTkvpOi/4Y2TccOQIDEP7JOKyaPwLhn4xHrw6N8XrV56RzKMFlXrV02pwSXKeJ1ci0KME1kigdhkkJrsOkamhKlOAaSpaXQ6UE93ICDD784WSg03U7bDI5zAkz43k/SnCZGNlcJgFKcJkA2VwWAUrwO/jEjhURC76BeAZipQpPYWSfcPj5WbD5xwOYGbkWNpsNeUNDMKx3KzxavBDmL9uAi5ejMLRXS6l92v/uOmgaypQuiV9/O43LV6NRrEh+TB3eBT2GzsAPuw/jsZJFMHd8L4ya+jlKPVIUazbtxvt1qmHzzkOpz1wUfYpnLHb6uD5ee6WirBx7urHiEtxud8BsvnPritVqg8Xi6+k5uNXf/XuCi05a9xqP5555Am2b1ZGKJWLBKny/bBxO/3UhdU9wsXd4z6EzsHrRKITmDqYEd4u+/htRgus/x2qeISW4mrOj79gowfWdX7XPjhJc7RlST3yU4OrJhREjoQQ3Ytb1O2dKcP3mVgszowQHrkbdRKPWg6WtnQvmC0XXQRGoULYU6rz+Ihq2HowVc4eieJECWLH+R3y7cSeWzxmaoQQXW0GLRcILJvWFyccHDcMHoX/XpniqVAnUeK8nft26QCqN7oOnI/pmLOZP7AOz2Yxqjbph8ZT+eOKxYrh05ToahA/CT6unSTJeTYdiEvzfS9fQe/gsNH/vTQm+OOYuXY8dew5j0rDOKFIwr1c4bPvpF4gHXsLphNVml6T8I8UKSlJbJKrf6Ln47c+/Uaxwfozu3wZlniiJP06fS5XgIuhxM7+Szp06ogsluFeyqP5BKcHVnyM9R0gJrufsqntulODqzo/eo6ME13uGPTc/SnDPsWRPWSdACZ51ZmyhXgKU4OrNjREiowSHtBJ7265fMGNMdynlCYnJ0vOT1m/dC+E/Z3/WU/r3pGQrKr7ZFvs2zMLytT+kuxJcSPAK5Urh4/drSe3ENtE1XqqA6i+Vv0eCi/OELxWLiMUxfFIkcgUHoWe79/H5ys34/dQ5jB3QVnVlqJgEb9N7AvKF5pa2DhHL7sVx/UYspsxbiatRNzBvQm/VwXAnIG6H4g41/behBNd/jtU8Q0pwNWdH37FRgus7v2qfHSW42jOknvgowdWTCyNGQgluxKzrd86U4PrNrRZmRgkOLFr+HU6dvfCAcBZbnJz959I9//5crXZYvWgkNv94MEMJ/kqlcnivTjWpBITsFv9ds2rFByT4y5XK4v061aXzDh39E/3HzMPW5RPxcfexaNP0Hbxa5VnVlZFiElzA/eGbKQgJDrpn0tE3b+HND3vh0KZ5qoPhTkCU4O5Q038bSnD951jNM6QEV3N29B0bJbi+86v22VGCqz1D6omPElw9uTBiJJTgRsy6fudMCa7f3GphZpTgd1aCb9qxH3PG9ZJSFnPrNuITkvDzwePYuutg6r+LFeLPv9UOB76bg6/X/YBz/17FsN539gSfOv8bxMTGSXuEp0hvVyR4WlkuHpwpnrM4sEcLDB6/ED+uioDF16y6MlJMgounhs4Y0wPlnnzknknvPfQbPh07Hz+umqo6GO4ERAnuDjX9t6EE13+O1TxDSnA1Z0ffsVGC6zu/ap8dJbjaM6Se+CjB1ZMLI0ZCCW7ErOt3zpTg+s2tFmZGCQ5cuXYD9VoOwJczB6FksULoPWIWni5dEnXffAn1Ww7EynnDpD3Bl327FZt2HMTS6QOwYdteLF/zA76YMRCJSclo2mkknn36sQwleK3qL+Clep2xf+Mc5Aj0f0CWi3qZMHs5Nu84gBefL4uRfcNVWUKKSXCx/7eAXK/WyyhaKB8cDifO/nMR67bskfaMSdk3RpVUshAUJXgWYBnoVEpwAyVbhVOlBFdhUgwSEiW4QRKt0mlSgqs0MSoMixJchUkxUEiU4AZKtgGmSglugCSreIqU4HeSs2nHAUQsWIX4hERUee5pjOwTLj2QUmx7MjNyDaxWGwoXCJNWfovnH4pV4V0GTsXNmDgUyh+Gx0oWlh6GOaJPeLorwcXKcLHt9YmTf2PuuF5Y+NV30jYpKSvGRRy/n/oH77UdivkTe+Ol58uqsnIUk+BitgL4t9/twvmLV6XJFy+SH+++Uw1vvPq8KmG4ExQluDvU9N+GElz/OVbzDCnB1ZwdfcdGCa7v/Kp9dpTgas+QeuKjBFdPLowYCSW4EbOu3zlTgus3t1qYGSW4urJ0NeomGrcfhu0rJsNsNqkruP+iUVSCq3LGHg6KEtzDQHXSHSW4ThKp0WlQgms0cToImxJcB0nU8BQowTWcvGwOnRI8m4FzuHsIUIKzIPREgBJcT9nU3lzUKsFtdid27bch/rbTJagB/kC1ly2wmH1cOl+NJ4k9wQePX4QihfKi40f11RiiFJNHJbjYQL1Lq4Z4/JEi0hL6jI6pI7qoFkpWAqMEzwot45xLCW6cXKtxppTgasyKMWKiBDdGntU6S0pwtWZGfXFRgqsvJ0aKiBLcSNnW/1wpwfWfYzXPUK0SXDCzO1wT4Cl8xfcorR5R0TFoGD4IZZ54BBEju8Lfz6LaqXhUgo+dvgzNGr0ubbou/ndGx6ddm6kWSlYCowTPCi3jnEsJbpxcq3GmlOBqzIoxYqIEN0ae1TpLSnC1ZkZ9cVGCqy8nRoqIEtxI2db/XCnB9Z9jNc9QzRJczdyMHJtHJXgKSPEQzJNnz+OxEoVhsfjqmi8luK7T6/bkKMHdRseGHiBACe4BiEbqwscDqw6cd1Y6UIIbqXDUN1dKcPXlRK0RUYKrNTPGiIsS3Bh5NsosKcGNkml1zpMSXJ15UXNUikhwsRdMxVrt8P2ycSiYL1TN85cdGyW4bIS67IASXJdp1cykKME1kyqvB3rKGos9SRdh/U9iuxvQM35hqOSXH75mHxTIE+BuNy61E7cWXrmR6NK5PMlYBCjBjZVvObOlBJdDj23lEqAEl0uQ7dVEgBJcTdkwXiyU4MbLudwZKyLBRVALv/oO/166hnbN6qBQgTC5caq2PSW4alPj1cAowb2K3/CDU4IbvgRcBvC/pCg0u7IV0Y4kl9s87MTZ+aujbo4S8DWZKMEzIemJhfdii0EPrN+XlXM1NqYEV2NW1BkTJbg682KUqCjBjZJpY8yTEtwYeVbrLCnB1ZoZ9calmAR/q2lf3IyNw624ePiazbBYzPdQOLRpnnqpZCEySvAswDLQqZTgBkq2CqdKCa7CpKg0JErw7E/MlUMmWG/JG9c/BMhX0SGvEzW0Fr8IZO2ZQQ+NWvwg4IQTlOBqSKo2YqAE10ae9BolJbheM2vMeVGCGzPvapk1JbhaMqGdOBST4D/sOQKLrxDfD1+rVLVyOe1QyiBSSnBdpNHjk6AE9zhSdpgFApTgWYBl8FMpwbO/AI7PNSP2rLx13GFlnSjdwq7p1eDCfUcd8cHlfSZZSfDL5UTxWg4E5gUluCySxmpMCe6lfMu79N0J2gM/nHlp9qnDUoJ7OwMc35MEKME9SZN9ZZWAWiW4uGvz9tkzcNptLk3J6WNC8GOPw2TyxBulS0Ma9iTFJHi/0XMxbmD7B8DGxsVj4Nj5mD66u6agb9i2F8MnRWJUvzaoVf2F1NgpwTWVxmwLlhI821BzoIcQoARnWbhKgBLcVVKeO48S/K7HurzHhL/WyZPg/qFOPB3uQGA+rgT3XJXqvydK8OzNsbhT46TNBzeEFZBxWHyAx319EKJxR0AJLqMI2FR1BCjBVZcSQwWkVgmebHPg1tThMP1x2KV8OEo+geBeo+AXqOyzlVwKRucneVyC/33+MsT/9Rw2E1OGdX4A39//Xsb0hd/il83a2Q4lcsUm/HL0T1y7fhOtPnybElznLwpPTI8S3BMU2Ye7BCjB3SVnvHaU4Nmfc0pwSvDsrzqOeD8BSvDsr4nIOCdm3JK3jVMJMzAt1IwivtkfvydHpAT3JE325W0ClODezoCxx1ezBI8b2wemY/tdSpD9sTIIHhKhCgl+7sIVREXHoGK50li8/HucPXcJI/uGuzSPrJyUdpystJN7rscl+K59RzF36Xr8+ttp5AwKfCC+AH8/vF+nOrqEN5Qbe7a1/+P0OTzxWDG06TUBjevVoATPNvLaHYgSXLu500PklOB6yGL2zIESPHs4px2FEpwSPPurLs2IHngyq8PhhNbv1qUEz/4qpAS/y5wSPPvrjyMqR4ASXDm27DlzApTgmTPK6hlLVm5GcrIVbZvVQUJiMux2+0Pdblb7vf/8tOPI7Ssr7T0uwVMGb9XzMyye0j8rsaj+3NafjH9Agl+OTlR93Aww+wkE+psREmRRdOD4JDtib1sVHYOda5NAaC4/+PnK22Igs5lfv5UEq1Xebc2ZjcG/30fAE7d/35eyXxOj0OzKFkQ7kmThnp2/OuoHlYSvyYR8uf1l9ZVZY7vDiWs35cWb2RhK/v1/c0we2RP8yY/EnuCeKAolZ5t+32J7hIu7PbMdSpnWDuTIBwQF+iI4UNklorcSbLid4Nr+jt4hm/6o5pi/kevESvjY5b1+bj3REMl5y8ADPt17iKzxCN03EX4x/8iKIb54NcSUawEfHx/p2mdW+NcBce0T10AtHovjHJge64GV4GG+KKbsy1xxvL8kOdHxuh1yryRzwsyo5O8Di8UHYcHKvveKW/ujY5MVZ8MBtEcgV5AFOfzFs+CUO2LirUhItCs3AHvWLIGCoercPkRcM7NzJfiWnYcQseAbxCckolKFpzCyTzj8/CzY/OMBzIxcC5vNhryhIRjWuxUeLV4IS7/Zgj/PnJdk97mLV2G3OxAxoov0vz8ZOhO+vmY0rF0VuXPlTF0J3nXQNJQpXVJa8Hz5ajSKFcmPqcO7wGw2Yefeo5gybyWsNhuKFc6HkX1bI19YbpfH6dnu/WyrQcUkeMoMbHY7rly7gSIF82bbpJQa6GES3OHU5gdRpRix3zsEkq0OBPgp+2FAXFh9zdoVIKwV5QjYHYBF4doQNe7ry/pTLot3exa+Y/eNy4i2y/vR1eJjxnM586FgwN0Piz9FX0Kjc5tkS/AFhWvg4wKl4RS1p/APMEIAaVW+iev2rgl22RI8bzknqnQyK/5jl5L1LfJ4YpMNp1bLu46IPcErdTYhX3EzrDYn/C3K/gCYZHXAotFr3+0LfyJo10SYbAmyUhv7YncEPfaCZl+HYvKJt+Pgu32sbAmeWLI6fF4Ml6574iuB0hLcanPArPD7u6ziSKexeL1PuZSEqTflSSyxHcqiogF4Iqeyn7GVYJC2z+3Xk9H6slW2BF9U0II3w/wg6sLfoiwTm90Jk7KXV6Wxs3+FCIjaUHrxTaLVrvgYCuFhtwoTMKn0S0F2SvCrUTfRqPVgfD13KArmC0XXQRGoULYU6rz+Ihq2HowVc4eieJECWLH+R3y7cSeWzxmKZd9uw8zI1VgXOUaS4+L5hyG5cqJH2/cwaupSFMiXR1oJnnY7lB5DZuBGzC0smNQXgnvD8EHo37UpSj9aDHU++hRLpw9AqUeKIvLrTTh8/CSmjezm8jgKl8k93SsmwW/FxWPMtGXYuH2v9KvCbz9GIvrmLfQZORvjB3VAWJ5c2TlPj4z1MAnOB2N6BK3uOuF2KLpLqaYmxO1QNJUul4KdfPNXTLr5q0vnpndSKUsIvijwJor6BqWewu1QZCF1q7GS26HI08l3piP9tp+mI4cVSLppAmT+5u/jC/jncaSKU9EdH4zpVgm53chy8yzC9k+RLcGvP98Vifmf1bQE53YobpeR2w01uR2Kjw98PLDg6f7LJ7dDcbuM2FCFBLgdigqTYqCQuB0KsGbTbmzb9QtmjOkuZV5sYSJ+lF+/dS+2/fQLZn/WU/r3pGQrKr7ZFvs2zMK6LT9j76HfUtt8sWorfvvzb4wd0DZDCV6hXCl8/H4tqb9ug6ehxksVYDKZ8N32fZg7vpf072I1epU6nXBkywIsX/uDS+NkZ8kqJsEHjVsoPUiyU8sGaNpppCTB4xOSMGLKEiQmJmPqiC7ZOU+PjEUJ7hGMhuiEEtwQaVbtJCnBVZsatwOjBL+LTqwovHJD3qp4txPhgYZKSfCYUz64uFveSkCTnxNFqjmQs+hdZZN8CzjzjRkJ1+Qp9vyVnChazYYUc0oJ7oFiymIXWpXg8irvDqT7JSQleBaLxwOnKyXBxbZQYnsl+YeotLv9iP8lYv5V5s6DRc1A52Af5EhTyJTg8rPFHtRDgBJcPbkwYiSU4MCi5d/h1NkLksBOe8xftgFn/7l0z78/V6sdVi8aiZ/2H8P/TpzBuEHtpSZiZXjKf2e0EvyVSuXwXp1qUhuxMlz8t1gALVaV5w4JTh0+7nYCNnw+Fpt/POjSONlZu4pJ8GqNumPN4lHIExKMMtVbShJcHLFx8aj1YW/s3TArO+fpkbEowT2C0RCdUIIbIs2qnSQluGpT43ZglOB30WWHBLfeBmxx8u/79s3hhCX4XjmjhAQXI9w44YM/lsiT4L6BwFOt7QgulkaCxwInFpoRf1meiixSw4kStSjB3b4IeKChUhJcCMgcF/bDnHhTVpR2v2DEF31J2l875bDE/gP/qD9l9ev08YE171NIDi6a2g8luCykbjVWSoKfsjoxOdaBGHnbjaNtsAnVA8SNMHfrb0SMA+vi5Qn2MhZgVpgZQZTgbtUNG6mfACW4+nOk5wgpwe+sBN+0Yz/mjLuzEjvm1m1pAfLPB49j666Dqf8uVog//1Y7HPhujtTGUxLc38+CLTsPYvroOyvR0x5p5br49/Rke3bWqGISXPzCsHvtDAQG+N0jwW/GxOH1Dz7BoU3zsnOessZ6r+1QnP77Amw2O8wmE3xMPhg3sB1qVa8EbociC61uG1OC6za1mpgYJbgm0pSlICnB7+LKDgl+67wJZ771AWRKlUcbOZCrBCW4yB4leJZe8oqcrJQEF8GGHpqJgCtHZMWdHFYaUVX63tOH3/U/kHffRFn9wuSLqCq9kJynVGo/lODykLrTWikJ/qfVia7RDkTLvF6PyG1C7UBK8PRyK/a3jYqR91Bdd+qGbdRPgBJc/TnSc4SU4JCewViv5QB8OXMQShYrhN4jZuHp0iVR982XUL/lQMPhLusAACAASURBVKycN0zaE3zZt1uxacdBae/ujOT0ZzO+hJ/FF5+0b/zAnuAPWwle/aXyaNBqEJbNHIQSRQvg2B9/Yf2WPRjQrbnL42RnjSomwdv3nYTHShSGeMpn+TfaSCvBL125jjHTvoDN7kjdlyY7J6vEWJTgSlDVfp+U4NrPoZZnQAmu5ew9PHZK8OyV4LF/+0Cs2JYrwcu0tyPkUUpwSnB1XJMowSnBvVmJlOB36XM7FG9WIsf2NAFKcE8TZX9ZIUAJfofWph0HELFg1Z39uJ97GiP7hMPPzyJtRzIzcg2sVhsKFwjDsN4tUaxw/gzl9M+HjqP74Bmo8VJ5PFWqBM6eu4SRfcNTtz+5fzsU8d879x7FlHkrkZiUjKAcARjYvTkqlivt8jjjB3fIStplnauYBP/30jV8MmwmTp45D6vNjpxBgRD7wpR76lFMHtoJhQvmlRW4WhpTgqslE+qKgxJcXfkwWjSU4PrLOCU4JXjaqg4r60TpFvbUm/a5HYoDgfmcCM5hQXCgr6IXgFsJNtyKl7lJsKIRpt85JTgluJdKTxqWEpwS3Jv1x7GVI0AJrhxb9pw5AUrwzBnxjHsJKCbBU4YRS+HPXbgCk4+PtAS/zBMldZUDSnBdpdNjk6EE9xhKduQGAUpwN6CpvAklOCU4JfjDX6T+oU48HU4J7soljBKcEtyVOlHqHEpwSnClaov9epcAJbh3+Rt9dLVKcJvdididW+FzK8alFDkCcyJXzbdgMct7Bo9Lgxn8JEUluNj/+9/L15Cc/OCKGbE0Xg8HJbgesuj5OVCCe54pe3SdACW466y0ciYlOCU4JTgluNzrFSU4JbjcGpLTnhKcElxO/bCteglQgqs3N0aITK0SXLAXzzHKymE2UYBnhZe75yomwecv24Dpi76F3e6A6SHJPPbDYndjVlU7SnBVpUM1wVCCqyYVhgyEElx/aacEpwSnBKcEl3tlowSnBJdbQ3LaU4JTgsupH7ZVLwFKcPXmxgiRqVmCG4G/FueomASv2qArJg/rjArlSsHXbNYiG5dipgR3CZPhTqIEN1zKVTVhSnBVpcMjwVCCU4JTglOCy72YUIJTgsutITntKcEpweXUD9uqlwAluHpzY4TIKMGNkGXPzlExCV7v4wFYt2SMZ6NVYW+U4CpMigpCogRXQRIMHAIluP6STwlOCU4JTgku98pGCU4JLreG5LSnBKcEl1M/bKteApTg6s2NESKjBDdClj07R8Uk+LJvtyIm9jaaNXoDIbmCPBu1inqjBFdRMlQUCiW4ipJhwFAowfWXdEpwSnBKcEpwuVc2SnBKcLk1JKc9JTgluJz6YVv1EqAEV29ujBAZJbgRsuzZOSomwbfsPIQhExbhVlw8LL5mwOfeTd5/3brAszPxUm+U4F4Cr/JhKcFVniCdh0cJrr8EU4JTglOCU4LLvbJRglOCy60hOe0pwSnB5dQP26qXACW4enNjhMgowY2QZc/OUTEJXq1RdzR6+1VULFca/n6WB6KuVOFJz87ES71RgnsJvMqHpQRXeYJ0Hh4luP4STAlOCU4JTgku98pGCU4JLreG5LSnBKcEl1M/bKteApTg6s2NESJTqwR3OIHDMVGwOR0upcEEHzwfkhcm072Lh11qzJOyREAxCV6rSR9s/mpCloLR4smU4FrMmvIxU4Irz5gjpE+AElx/1UEJTglOCU4JLvfKRglOCS63huS0pwSnBJdTP2yrXgKU4OrNjREiU6sET7Y50PTsVuyKv+RSGsr758U3j9VCrocsIHapA57kMgHFJPiIKZ/j7dcq4/lnn3A5GC2eSAmuxawpHzMluPKMOQIluJFqgBKcEpwSnBJc7jWPEpwSXG4NyWlPCU4JLqd+2Fa9BCjB1ZsbI0SmZgle5/RGbL39r0tpeME/P7aVrkcJ7hIteScpJsEHfrYAW3cdQsliBZE/LM/9W4Jj+uju8iJXSWtKcJUkQmVhUIKrLCEGC4crwfWXcEpwSnBKcEpwuVc2SnBKcJdqyAN3YosunM57R6MEpwR3qf54kuYIUIJrLmW6CpgSXNl0OhxO3W3RopgEnzB7OcwmU7oZ+aR9Y8WyZbPbMXX+N1i8/HvsXjsdeUKCU8eav2wDlqzYDHHO2zWrYGC35jCbTUhMSsbQCYux4+cjCAzwR5fwhni/TvVMY6QEzxSRIU+gBDdk2lUzaUpw1aTCY4FQglOCU4JTgsu9oFCCU4JnVkOxTuCkFbDiPoOdWcP7/h5i8sHTZifSroKiBKcEz2IZ8XSNEKAE10iidBomJTjwfrthaNP0HdSq/oKUZeE0ZyxajVULRmDn3qOYMm8lrDYbihXOh5F9WyNfWG44nU6Mm/kVfth9GA6nE5XKP4kRfcPhazaj84CpKPVIUazZtBsj+4ajauVndFU9iklwb1LqOjACTz5eHHOWrsOu1dNSJfi+X05g0PiFWBLxKUKCg9Cx/xS8XbMymjSoiWkLV+H3U+cwaWhHXLl2Ax93H4uFk/tKyc/ooAT3ZqbVOzYluHpzY4TIKMH1l2VKcEpwSnBKcLlXNkpwSvDMauii3Ylu0Q78bcvszIz/3j7YB22CTPfcCUwJTgkur6rYWq0EKMHVmhljxEUJDkSu2ITDx05i2shuUtIHjVuIEkULoGHtqqjz0adYOn2A5DUjv96Ew8fvnCdE+ZS5K7Fy/nCIu7c+6DAcbZvVlfxo98HTEX0zFvMn9kGAv5/uCkmXEvyP0+ckCV7utVb3SHCxT3mh/KFo26xO6i8kYlV45NT+qPvRpxjVvw2effox6W/jZ36FnEGBeO2ViugyMALbvp4k/XtsXDxerNMJv/0YKf03JbjuXhMemRAluEcwshM3CVCCuwlOxc0owSnBKcEpweVeoijBKcEzqyFKcMBH0gF3jhExDqyLl7cqvowFmBVmRlCabWYOJwOdrtsh87cGzAkz43k/wM9iQt5c/pmlV9bfxUPeomKSZPXBxvokQAmuz7xqZVaU4MDVqJuo3awvflw1FTkCA/Bqo25YPnsIDh87he+278Pc8b2kdMYnJKJKnU44smWBtMVJQmKSdL44hk2MROGCYWjXvC56DJmBMk+UTPWmWqkFV+PUpQRPmfz9Erx1r/H4sP5reOPV56VT/jp3Ca16jpOK5dmarSVhHpIrSPrbinU7cOjonwhv8naGEvzqzURXWfM8AxHw9zMjJIdF0RknJNlxK8Gq6BjsXJsExIdRP9/0t6PyxKyi45Jhszk80RX7cIHAhOgjmHjjVxfOTP+UUpYQfFXoTRSz5Ew96UhCFJpe3oJoh7wvtrPzV0fDnCWlbdDEjzBKHnaHE9dj5cWbWXw3zgLH5pgBmSVetr0doXe9m7TBwNFZJsSelbfpblhZJ57+2A4fnzv9iH6jjvvg90h5r3vfQKBMGwdCStyVPkkxwLH5JsRflhdz0RpOPPJ2mpidTvz7kwl/rZMXs3+oE2XbOBCUHxA/QOcM8M0svbL+HpdoQ3yiXHUlKwS3G5uizyJ032SYbAlu9yEaRr/QFdaC5VNX+Yq9n0MOzEDAlSOy+k0OK40bL/dLoyAB89XfEbZvoqx+YfJF9Iu9YAsrndqP0xqPPD9PhF/MP7L6ji9eDbeebSG9FsNy+cNskvc6ySwYISHFbctKHRdsTnSOssteCd4h2Aftc5nv1giARbEOTI+Vd1EtYQZm5PVFsTQfsU8kOdDlugPR8rrGyDwm1AkSCvzudXVotN0jEnxuPl/kTHOpO5joRMco+RJ8bl4zKgf4wNdsQmiwsqv1hAS/GZesVOmxXw0TCA60INDfrOgMYuKtSEq2KzoGO9cmgfy570hctR3impmdD8Zs1fMz1HvzZRQumBeT56zA13OHSttDz4xcjdxptoeOu52ADZ+PhclkwsTZy3H2n4vS1mUXL0ehacPX0eGjepIEf7lSWZe2h1Ybd1fiMZQEb9Z5FNq3qItXqzwrsRGJbhA+CHvWzUT511vj0KZ5CAy48wFC7H+zbdcv0t7gGa0Et9mV+yDqSgJ5jjoJ2BxOBFjkfbHPbGbiwmr6T4Bkdi7/biwC4qpkMSv7RTzJas/wuQ/GIq7sbIX0HXLhIMZfPyxrICHB15R8G6WDQlL72X3jEt49v0m2BF9QqAZa5C8tPQjNX+Frn+ChoAOS2Jz7zYrDM3xkS/DynZ0o+cxdW2O1OfDTJLtsCZ63nBOVO5hh+e/HLvGaP3vAimML5b3uhQSv0AEo8uRdkRwTZcf+6Q7ZErx4TSeeedcsyRpxiDz+vtmG02vkxSwk+AudTMhbzCz1qXT9JVkdiotOWS/0DBrHX/wTOX+aKFuCx1bpjsBHX0gVnKKuTTunwP+yfAluf31Qal2LqcT/8z/k2j1eHhKTL25V7YPAomVS+0mKj4Plh7GyJXhiyepwVg6XYhYfyZSW4MlWh6IPqDodb0P4hSTZErxziAm9CgTA97/PIuK1GXE5CVNj5EksIcEXFglA6aC7wu1gTDLaXrbKluBj85rRJK9/6mdrq92JXhcTsSZOnl0XK8GXFQtEqP/d7wU7opPR+opV9krwRQUseD3UDza7AwF+ykpIwUPe1Vrey5it1UsgO957E5PtqZ8f1EuCkXmDQMr7jDfGzmjM7Jbg32zYiS07D6JksYIoXCAvWn7wFtZv+Vn6t+mjuz8Qqlj5nWy1SnuEi2ckDh6/CEUK5k2V4K9UKof36lRTG1aPxGMoCd6m9wQ0qv2qtM+NOP48cx7t+05KXQm+feVk5A29Iwe+WLUV/ztxJtOV4NwOxSN1qLtOuB2K7lKqqQlxOxRNpculYLkdyl1M4svWlRvK3oUV+7cPjs+VvxK8THs7Qh6998dy0a8nVoKXbmFPFRJihBsnfPDHEnkSREjwp1rbEVzsbszJscCJhWbZErxIDSdK1LKlPihPjHB5j2dWgj8d7kBgPieCc1gQHKjsSvBbCTbcitfmXVjcDoXboWT2hsPtULgdSno1wu1QMnv1GPfv3A7FuLlXw8y5HcqdLMTcuo3XG/dCjkB/aSuUQgXCEBUdgwatBmHZzEHSHuHH/vgL67fswYBuzaXV3uXLPC7JcrGddLdB0/BWjUr4pH1j6W+U4GqobjdiuH87lNERS5E7V050btVQ6u277fuxauNO6QGY9VsNxMBuLVCpwpPS34ZPikSBfKGo/lJ5tOk1AbvXTpf+/fzFq3iraV/uCe5GPozUhBLcSNlW31wpwdWXE7kRUYJTgqetIbEdCiX4HSJiJTgluGtXGEpwSvDMKoUSnBKcEjyzVwn/fj8BSnDWhDcJUILfpd9lQARuxNySpHfKsXPvUUyZtxKJSckIyhGAgd2bo2K50jhy/BQ+HTMfFl8zyj31KGq+8hwGjluAsQPaYu2mPZTg3ixqOWPfL8HFE1P7jpyDz6cNQFBQINr1nojG9Wrg3Xdexdyl63Hk+ElMHtYF/166BrGnzhfTByIp2Yp32wzB4in9JUE+c/FqzFqylhJcTmIM0JYS3ABJVvEUKcFVnBw3Q6MEpwSnBH/4i4cS3PWLCiU4JXhm1UIJTglOCZ7Zq4R/pwRnDaiJACX43WyILU6eeLwYmjSoqaYUqS4W3W2HcjMmDtXf6yGBtlptsFju3Ba77etJ0lYnS1ZuxoJlG2C12dHgrVfQr3MT6WE24txhkyKxddch6QmpPdu9j/q1XpZuDWjXZyIeLVEY//x7GR0/qo/REV/g8Jb50t453A5FdTWtioAowVWRBsMGQQmuv9RTglOCU4JTgsu9slGCU4JnVkOU4JTglOCZvUr4d0pw1oCaCKhVgotnBy65ehLRLj6MPJePH8ILPeX2c71O/3UB7fpOxLrIMcgZFKimFKkuFt1JcE8TFhK866Bp2Lr84U+mpwT3NHF99EcJro88anUWlOBazVz6cVOCU4JTglOCy72yUYJTgmdWQ5TglOCU4Jm9Svh3SnDWgJoIqFWCC0biOUZZOdx9uPbkuSuwZtNuDOvVEq+9UjErQxryXErwTNIuJHiXgRHSSvKHHZTghnzdZDppSvBMEfEEBQlQgisI10tdU4JTglOCU4LLvfxQglOCZ1ZDlOCU4JTgmb1K+HdKcNaAmgioWYKriRNjuUuAEpwSnK8HBQhQgisAlV26TIAS3GVUmjmREpwSnBKcElzuBYsSnBI8sxqiBKcEpwTP7FXCv1OCswbURIASXE3Z0EYslOAy88SV4DIB6rQ5JbhOE6uRaVGCayRRWQiTEpwSnBKcEjwLl4yHnkoJTgmeWQ1RglOCU4Jn9irh3ynBWQNqIkAJrqZsaCMWSnCZeaIElwlQp80pwXWaWI1MixJcI4nKQpiU4JTglOCU4Fm4ZFCCpyVg8kVUlV5IzkMJnlkNUYJTglOCZ/Yq4d8pwVkDaiJACa6mbGgjFkpwmXmiBJcJUKfNKcF1mliNTIsSXCOJykKYlOCU4JTglOBZuGRQglOCu1UulOCU4JTgbr10DN0od04/5PA3K8rg5m0r4hNtio7BzrVJgBJcm3nzZtSU4DLpU4LLBKjT5pTgOk2sRqZFCa6RRGUhTEpwSnBKcErwLFwyKMEpwd0qF0pwSnBKcLdeOoZuRAlu6PR7ffJqleAOJ3D1LxscDtcQOX2AQo+YYTL5uNaAZ7lNgBLcbXR3GlKCywSo0+aU4DpNrEamRQmukURlIUxKcEpwSnBK8CxcMijBKcHdKhdKcEpwSnC3XjqGbkQJbuj0e33yapXgyTYH9s614eZp16R2zmJOvNzRFwGBJq8z1XsAlOAyM0wJLhOgTptTgus0sRqZFiW4RhKVhTApwSnBKcEpwbNwyaAEpwR3q1wowSnBKcHdeukYuhEluKHT7/XJq1mC746wIfp31yR4cEknqvVyT4L/cfocegyZgU1fjsfi5d/j7LlLGNk3HGs378HoiKX4sP5r+KR943RzFbFgFeZ9sf6BVegvPPskFk3p5/UcezoASnCZRCnBZQLUaXNKcJ0mViPTogTXSKKyECYlOCU4JTgleBYuGZTglOBulQslOCU4JbhbLx1DN6IEN3T6vT55SnAgrQRPSEyG3W5HzqBAdB88HZUqPIlmjd7IME9CgkdFx0ji3AgHJbjMLFOCywSo0+aU4DpNrEamRQmukURlIUxKcEpwSnBK8CxcMijBKcHdKhdKcEpwSnC3XjqGbkQJbuj0e33ylOD3SvCUleDFCufD/GUbEZwzEI1qv4ou4Q0xd+l6rNuyBz4+PqhS8Wn069wEFosvMpLgcbcTUL/lQEwb1Q1lniiJw8dOod/ouVi7eDR6j5iFx0oUwYmTfyPqRgzKlC6J4X3CYfFV9kG5couOElwmQUpwmQB12pwSXKeJ1ci0KME1kqgshEkJTglOCU4JnoVLBiU4Jbhb5UIJTglOCe7WS8fQjSjBDZ1+r0+eEvzhElys6u46MAJvVnsBdd98CT/sPoyp87/BspmDkCMwAD2GzkDlCk+h+btvZCjBRYK3/fSLtM3K59MG4MOOI9CtdSNUrfyM1H/MrduInPopHE4HmnYaiY/eq4U6b7zo9brIKABKcJnpoQSXCVCnzSnBdZpYjUyLElwjicpCmJTglOCU4JTgWbhkUIJTgrtVLpTglOCU4G69dAzdiBLc0On3+uQpwV2T4IPGLUTJYgXRpuk7Us527j2KxV9/j8ip/SUJvuDLDTCb713BPfSTj9GwdlXp/K6DpknbrAiBPnFIxzv/NjACz5d/Eh+/X0v672kLVyH2VjwG9Wjh9bqgBE9DwGa3S7+AiF8ydq+djjwhwal/nb9sA5as2Axxzts1q2Bgt+YwmzN+OisluKrr22vBUYJ7DT0HBkAJrr8yoASnBKcEpwSXe2Wz3DyLsP1TYLIlyOrq+vNdkZj/WfikedZT6KGZCLhyRFa/yWGlEVWl7z19+F3/A3n3TZTVL0y+iKrSC8l5SqX242NNQNj+ifCL+UdW3/HFq+FG2ebSrcUF8gTAbHLtAVjuDnrlRiLsDqe7zTNtRwlOCZ5ekSTbHIiKScq0hniC8QhQghsv52qaMSW4axK8Y/8pOHritCSxxeFwOBCWJwQr5w3LdCW4OP/nQ8fRtvdELJzcV9pKRRxCgr/2SsVUUb5o+Xf449Q5jB/cQU0l8kAshlsJLhL15OPFMWfpOuxaPS1Vgu/75QQGjV+IJRGfIiQ4CKJI3q5ZGU0a1MwwgZTgqq5vrwVHCe419ByYElyXNUAJTglOCU4JLvfiRglOCZ5ZDVGCU4JTgmf2KuHf7ydACc6a8CYBSnDXJPjg8YtQ6pEi+Oi/Vdtpc5bZgzEdDieadh6J554pjV/+dxJfzhwMk8lHkuDPPfMEWn7wltSdWGwcn5CIAd2ae7MkMh3bcBJcPDlVSPByr7W6R4KPmPI5CuUPRdtmdSRoO34+Iq0KF7cHVKnTCZ+0ex9bdh3CvxevodHbVdGueV3pPErwTGvMkCdQghsy7aqZNFeCqyYVHguEEpwSnBKcElzuBYUSnBI8sxqiBKcEpwTP7FXCv1OCswbURIAS3DUJ/sOeI5i9ZK3kN4NyBGDF+h+lB1iK7U4yk+DLvt0mye/JwzpJi4VfqVQWzRq9IUnwqBuxWDyln3RHXOP2w9Dp4waoVf0FNZXIA7EYToKnELhfgrfuNR4f1n8Nb7z6vHTKX+cuoVXPcfhx1VS8VK8zGtetgR5t38OVazdQq0lv7N0wG4EBfrjG28JUXeDeCs7fYkauHL6KDp+QbEdcgk3RMdi5NgmEBFng55vxVk5yZ3YjLhk2u3K3ZMuNT2/tx18/gok35G01UMoSgq8K1UJxv5ypeI4kXEOTS1sQ7ZB3i/Oc/NXRMPgRmE0mhOXyUxS/2Aog+layomNEnwGOzTEBDnnDlO3gQNhd7wan04lfZ5kQe1belglhZZ14uqUDpv/2oxCvxGvHgN8j5b3ufQOBsm0cCCl5d96JMcCxeT6Ivywv5qI1nHj0HYf0IVkcgsX5XT74a528mP1DnSjXxoGgAj4I9DcjZ4Cy771xiTYkJNnlFYaXWpuun0GefZNlb4cS/UJX2ApVSN0OxeF0IuTADARclneNEtuh3Hz5zheplMN89QRC98rfDiX6pd6wh5VO7deZHI/cP0/wyHYot579SFoRFRrsp/h2KNdjkyF4K3X8a3Wic5QNf8v8eNkh2IT2IWak7A4jXu8LYx2YHivvolrCDMzIZ0Fxy10CvyU50CXKjmh5XWNkHhPq5jTBB/9do/7/dvEh0Xasuy2v4zIWYF4+C3Km2Wr1QIIDHaPskIkZ8/KaUTnQBF+zD/LkVPa9V2yHEnPbqlTpsV8NE8gZ6ItAv3v3Evb0dGLjbUiyavO919Ms2N+9BPKF+KsSibhm7o6wIfp31z4/B5d0olovXwQEZv1zsVjo22PIDGz6cry07fPZc5dw/4MxBaR5X6zHmk27YbPZpf3BR/Vrg/x5c0sSXPxNfJZJe4g9wrd8NVGS28vnDEHBfKE4d+Gq9ADMbxYMx+ipS1GyWCEc/PV3XLseg5crlcWQTz6G7317i6stQZTg/+0J3qzzKLRvURevVnlWytHFy1FoED4IB76bI0nwhZP64qlSJaS/vVinE1bOH46ihfLBapP3wUhtBcF4PEPA7gAC/LJ+AcvK6ElWIUCy0oLnGoaAjw8sZmWLIzHZrviXfcPkK5OJCuk79MIhjI8+LAuJkOBrSryNUkG5UvvZc/My3j2/SbYEn1+oBlrkKwXhZgIU/iIkeIjb8pQ8zp+w4fAMH9kSvHwnJ0o8c1fKWu0O7J7kkC3B85ZzolIHEyz/PbdE0PjroA3HFsp73QsJXqEDUPiJu19mY6LsODDDKVuCF6/pRLlGQtbceW8Uefxjix2n18iLWUjwFzr5IKyoGeJ3uQCLsu+9iVYHFL68KlbaCRdPIufuibIleGyVbgh45IVUCS7q2rxzKvw9IMFtrw9MrWsBIuGf/yHXngnymJh8EVu1DwKL3NnDUhxJ8XHw2/GZbAmeWLI6nJVawdfXJH15VHpP8KRk+wNfUuXBubf1mXgbwi8my5bgnUNM+CS/vyRnU17v064kY2qMPIklJPjCwv4oFXT3GnUoNhltL9tkS/Cxec34MMwv9cdF8UN/r0tJWBMn77uekODLigUgT5rvBTtuWNHmilW2BF9UwBc18/jB5nAqLiGt4gKr4A8wnqxj9pW9BMRHMn++92YvdI6WSsCi8MIvd1FnpwR3N0a57cRK8FrVK6HOGy/K7Spb21OC/yfB2/SegEa1X5X2ARfHn2fOo33fSakrwZfPHoLiRQpIfxNSPOW/uR1KttarZgbjdiiaSZUuA/0/9s4E3qby+/8f97rm6QqlQSmNqIgy5GvIkBJ9lZAKfRVRMitF5syhECkSISkpQogmKSmJKFRKKfMsXPf/f7afe+9xh7PP3nvtvZ+9P+f1+r6+cp5nrfV81nuv5+xln+fwOJTgpZXHoaTmVDVP1Y/DSb4O/poNP0yMt90EL902CQUvj2zYK7tOPAl+1YNJ//e8IqA87NuYDZtet/cklmqCX/u/JOS/JDXmEweBja/G226CX1QzGZfWO4WznVPlYefncY48CX7dw6eRu2gy8udJQP7csk+CHzp2CoeOuvA0ZNpfnbQMu2papU7mcSg8DiUaSjwOhcehZMYIfxgz2tUT3vd5Jnh4c++Hlfv1OBT1D6k/fX4Kp46Ye3AnPhdw1X8SxB9kczJnqglet3pF3FW3ipNmxW2xCf5/TfBBY95AoQL50KH1fw3RFy5bjbkLVhq/fpq26c0muDiTgXDAJngg0qjtItgE1zZ1mQbOJjib4GnhUMehsAl+RhH1JHjQmuB5f12G3H+utlXITuU9HwevaYLTOVO/+cEmOJvg0aBiE5xNcDbBo10lfP9cBdgEJxNeKuDXJrjSRD24E8tL+ttkscRiZiyb4GZU8tGYc88EX7v+J/QYiDMt+gAAIABJREFU8DKmje2FvHlz49FuI3Bfw5q4587/sAnuo7zpEgqb4LpkKphxsgkevLyyCc4mOJvgGV/XQWyCF9j0DvJtXWirkJ0scAn23NwJp3MWTLHDJjib4NGgYhOcTXA2waNdJXyfTXAy4CcF/NwE95NOjCVVgVA9Cb7/wGHUuLeTsfqTJ08hIeHMV2aXzh6JIoUL4vU5izF5xgc4eSoJd99+K3p2aG78OA+fBOclE6sCbILHqhjHO6kAm+BOqukPW2yCswnOJjib4LFUIzbB06gVlx27K3XFiUQ2waMxxCY4m+Bsgke7Svg+m+BkwE8KsAnup2zoEUuomuASKeGZ4BKq6m+TTXD9c6jzCtgE1zl7GcfOJjib4GyCswkeS2VjE5xN8Fh4OTuWTXA2wdkEt3LlhHsOj0MJd/69Xj2b4F5nQD//bILbzBmb4DYFDOh0NsEDmlhNlsUmuCaJiiFMNsHZBGcTnE3wGEoG2ARnEzwWXtgEB/oXikP93GyCswlu5coJ9xw2wcOdf69Xzya41xnQzz+b4PrljBFTASpABagAFaACVIAKUAEqQAWoABWgAlSAClABKkAFqIBJBdgENykUh1EBKkAFqAAVoAJUgApQASpABagAFaACVIAKUAEqQAWogH4KsAmuX84YMRWgAlSAClABKkAFqAAVoAJUgApQASpABagAFaACVIAKmFSATXCTQnEYFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAJUgAropwCb4PrljBFTASpABagAFaACVIAKUAEqQAWoABWgAlSAClABKkAFqIBJBdgENykUh1EBKkAFqAAVoAJUgApQASpABagAFaACVIAKUAEqQAWogH4KsAmuX84YMRWgAlSAClABKkAFqAAVoAJUgApQASpABagAFaACVIAKmFSATXCTQlkZdvjIMXz7w8/Yu/8QCuTPgxuuK4XChfJbMZUy51RSUtT52ePjo445d4CUXeVH6fDyG/NxY+lSqF3tpphjy2yCZMzn+jz+7wl88/1P+GLND1i1ZgPeeXWAY+uQMuQ0f5J6S9mWYk/lTCrmjHjQjT+n2ZPUWzKPUvxJxkz+Mq7IUppL2ZViT/JaDAJ7Zz/zOPnZT4oRyVxK8SepRRD44957JovkT+rOImu7TvMneb1L2ZZiT7JeB6H26bT3SrHH2udN3aNXPRVgE1wob+OnzsOkGR+gUIF8uKBYYezeewC79+xHq6b18WSbe5AtWzZLnkvXaBV13oYVU6OOOXeAlF3lp0Ov0Th58hS6tmuKq6+4JObYMpsgGXNycjI2b/0dn3/9g9H4Xrv+ZxQpXBCVyl+HW8pfiwa1Kzu2DglDEvxJ6i1lW4o9lTOpmJVtnfmTYE9Sb8k8SvEnGTP5y7giS2kuZVeKPclrUXf2VPwS9U+KEclcSvEnqYXu/EmwJ8mIZC7Jn8SdRdY2JfiTZETKthR7ktei7rVPt71Xij1dey5B4M/9ikuPdhVgE9yughnMn/Xeckx4/T0MfaYtKt10XcqI7zduRdf+E/DAPXXQskk9S5537tqbMu/2+3tg0ZvDIuyov/vuo8kx205r96etv2Pw2BkY9mxbFCuamGLrgqKFY7arJlS4/VF88u5Y5MmdK8P5A16Yht6dH4rZtlTM3QdMwKo1G5ErZwLKlb0St5S7zsjjxcWLxhyjFxOk+JNiT2kklUsp9iRj1pk/KfbO1Zu1L3UfcLpek7+Mq7ZU/WPtS9VbZ/bUKqTqnxR7kvuY1N4rdb0oLXTmT4o97r2R+wH5y3h/lOKPtc8d/nSufTruvZJ1hHuvF50X+tRRATbBBbLWsGUvdG7bBDWrlEtnXR2lMWD0NCycPtS25xvrtEnX8M7o72J1tGHzr2j/9AvIkSMB45/vhCtLXhyriYjxjVo/gwfvqYuGdasYNs99la3VGuuXT7Hlw8mYb76jndHwrlW1PG66/ircWOZK5M6Vw1Z8bk52gz8p9pROTubSDfacjlln/txgT+ktxZ+T7Kk43eDP6ZjJX/RqrQN/brDH2hfJihv1T4o9p3PpBn+sfan8ucEe997I6538ucsfa58cfzp/7lOquFH/pPhzuo5w743+GZ4jqIBSgE1wAQ7K1X0En817EXnzpH/y+eix46hyVwd8t/RV255vqvcovlwwAQnZz5wBrs6Yurl+O6xd8opl2+pf88e88jaeefJBFCqYD72HvYrnez1qHANi9fXdhi14evAkbN/xT6YmrBzhctaY0zEnJZ3Gxp9/w9ff/Yivvt2E9Zu24fISF+KWctcaR6Gos80TErJblUN8nhv8SbCnhHE6l9LsScSsM39usKc0l+DPafZUnNL8ScRM/qKXaB34k2aPtS89J27UPwn2JHIpzR9rXyR/brDHvTdVc/LnPn+sfXL86fy5T6niRv2T4E+ijnDvjf4ZniOoAJvgQgzc1qQLXh3VA5ddckE6D79s/wsPdxmKj98ebdv7fW374qEm9VLOp1684itMfON9Sz/aqJrzfYZPwYbNv2DMgI646vIzT3//sPkXPPHMGHR59D7cVbeKrZgPHDqCY8f/zdCGlaNW3IhZBas+HPy45Td8tHIN5i74xFjDN4sn2dJCcrIb/DnJntJCOpdOs+dGzGcZ0Yk/N9hTujjJnzR7Kl6n+XMjZvKXeZXWiT+n2WPty5wLN+qfk+y5kUun+WPty5g/N9jj3iv/WTVtdvnZL5L1sNc+N+q1jp/7VMxu1D8n+XNjH+PeK9lpoe0gKMAnwQWyOPqVt7Fpy28YO6BjxPEfquh16Tsel1xY1HjS2u7rm+9/MhrURYsUQnxcHH7/cxdG938cVSuWidn0nQ8+ZTTth/R6FPnz5YmYv33H33i0+8h054/H4kT9MKg6CmbPvoMonJgfVSqUMX5o0s5LOua/d+3D199twlff/Yivv9usfq4QN5e71vjfnbdVshO66Fw3+HOSPSWGZC4l2JOOWdnXkT832FPaOMmfJHsqVgn+pGMmf1mXaF34k2CPtS9zNtyof06yJ51LCf5Y+zLmzw32uPfKflY9m1l+9suY8bDXPul6revnPhW3G/XPSf6k9zHuvaJtFhoPiAJsggsk8uTJU+jWfwIKF8qP57q2SvEw+73lWPLJGrw4sGOmPxIZazjqX/rWbdiCU6eScP11V1huLL88bT7aPngXsmXLlmEIqqBabVqvXLUOvYa8YhwjsnrtRpQvexXWbdyKYc+2Q/XKN8S65JTxUjH3Gf6a0fRWUqhYby53jdH4tvK0uuXF2ZjoFn9OsaeWKpVLKfYkY9aZP7fYU/o7xZ8UeypGKf4kYyZ/5oqv3/mTYo+1L3M+3Kp/TrEnmUsp/lj7MubPLfa498rdK3Hvjb73hrn2SdZrndlTurhV/5ziT3If494bvY5wBBVQCrAJLsjB0WP/Ik/unCkeTp5KSjm/245bdaRKrlw5UbxYYcdsq/PEo72yx585ezzW192tn8UL/TqgZIniqN20K5bOHonNW39Hz4ETMW/KwFjNRYyX0KJ83UeMWGtUuREVrr9aux/GPCuQBH8Seqt4pfiTZE/FLaFHEPiTYE9Kbyn2VLyS/Emwp2Imf5lvSRKaS/EnyZ7UtRgE9pQ2EvVPgj1d914pLYLAnwR7Ute7VO3j3mvrtsrWZAn+pK53Kf6499pCyNZkXfiTYo+1zxY+nBwyBdgEF0j4jHeWRrXaonHtqGMyGvDFmh/wZO+XMKpve1S75Xqjedil7zgs/+xbXHJhMYwd+ASuLHnmPO9YXqVrpD6xntk8qz9eefv9PVKOUjnbBFc+1NeBFrwxJJYwI8ZKaXHixEmsXf8zlP0v1mzAll93oOw1JVOOQlFPtOfMkWA5bumJUvxJ6a30kOJPij0Vs5QeOvMnxZ6k3lLsqZil+JNiT8VM/jKu0FKaS/EnxZ7ktagze0oXqfonxZ6Oe6+kFjrzJ8We5PUuVfu490rfZaS3L8Wf5PUuxR/3XvIXTQEp9lj7oinP96lAqgJsggvQoJ5wTvs6dOQovl3/M6pULIOzT1MPfbatJc8tOgxE62b1UbvaTcb8N99dhnc//BTjn++EZZ+txbJP1+KVEd1itl22Vmt8NHtklvOsHgdyT5s+6Ne9NcpcXdJ4Enz+1EF46/0VxhnhE4d1jTnWsxOktDg3oH0HDuHLbzYaDfFVa37Anv2H8O2SVyzHLT1Rij9JvaX4k2JP5VBSj7SM6MSfFHuSekuxp2KW4s8t9tQayN+Zq1FKcyn+pNiT1IJ7b8afDqTYU950409SC535494bmT2p+kf+Mq5RUvxJ6q1b7ePem/nds278SbHH+w7pDgvtB0kBNsFdyubWX3dg3NT3jCe47byq3NUBn733EuLizpzd/VDHwbjvrppoUKcyTp9ORo17nsQn746N2YUqyOuXT4l5npkJ6sckFq/4Cr06PoBKDdpD/UBo9Uo3oHfnlihWpJAZExmOkdJi/4HDWLh8NRIL5sPtNW82zkk/cPAIChbIa8Tx6+87jR8R1enlBH9Sep+9EZfgT4o9FbOUHkHjzwn2JPVm7YusZOQv48oudb1L8cfa548d2on6J8WejnuvpBasfcGofWoVUvWP/Jmvq6x9zt7zSn4ODlrtU1r5mT+pz32sfebrE0dSATbBXWSgeuMnsfKdMbY8VmnYAZ+/95LRmP33xEnccudj+GjWCBQ970wzWb3/xfxxMfuQLMhpg9m1Zz8SC+VPeSI+5kDTTJDSonn7AUYDfMfO3aj7nwpo1bQ+br37CfTt2gqN6lW1E7Knc+3yJ6W35I24FHtnrzWJazGI/NllT1Jv1r7IskT+MmkEabz3OrnvSl6LQWRP6WW3/nHvTb0mJbUIIn922ZO83rn3cu+NdlMkeb27wR/33mgZln3fbv2T4s8N9pSyTvInpYWKM4h7ryzZtO6EAmyCO6HiOTbOPRstOTkZ6zdtw5ZfdmDu5P62PDZt2w89OjTHTddfhQXLvsTkGR/g3dfO/Liketr61ZkL8dbEvjH7kCzImZ0Vd/r0aTx4b92YYz07QUqL+i164sMZQ6F+Bbpt9xGY9fJz+P3Pf9C2x0gsnD7UcrxuTZTiT0pvySa4FHsqZik9dOZPij1JvVn7IisT+cu4Uktd71L8sfa5teOm+pGqf1Ls6bj3SmrB2heM2qdWIVX/yF/GjLD2Zb4PnH3H7j2v5OdgnWtfRte7U30Xqetd6nMfa5/7n/voUV8F2AQXyN25Z1PFxcXh/KKJuO+uGrjwgiK2PKozv3sPfxXXX3u58XW/gT3/h3o1bsZvf/yNe9r0xtiBHVGlQpmYfXz+9Q+oWjH2eWYcnavHkaPHsXb9T6hZtRwGPdXGjIkMx0hp0fLJ5w0dC+bPi2bt+hlNcPWq26wblswaYTletyZK8Selt9JFij8p9lTMUnrozJ8Ue5J6S7GnYpbiT4o9FTP5y7hSS2kuxZ8Ue5LXos7sZXS9O/XZT4o9HfdeSS105o97b2Tdlqp/5C/j/VGKP0m9ufem5lLn2qfj3ivFHu873Oq00E8QFGATXMMsbtqyHes2bME1V16KG667wlhBUtJpHD5yLOXcar8va/feAxg+fhas/kDo2fVJaLH+x20YPfltNKhdGZOmf4DHH/4vvv52E7Zt/xPTxvbyu7Si8UnoLRpwBsadYk+ZltCD/GVOhITeuvInpQX5Cy5/rH1uX+3O+ZO63p2LMLolp/iT0oK1L7i1T62M/EW/Rv04Qup6d3OtTrHH+w43s3bGF/lL1VxKC+697nNNjwCb4AIUVLj90UytLp45AvWad8OaRZMEPOtlstlj/TFrQh/fBa3OECt+/nnImzuXEVu2uGy4+IKiaPvgXcbf+/1F/qJnyK/sqch15o/sRWdPjSB/5nSKdRT5i64Y2YuukdUR5C+6cuQvukZWRpA9c6qRP3M6xTqK/EVXjOxF18jqCPIXXTnyF10jjgiXAmyCC+R75669mVotdl4i/tmzDxcULWzJc817O0Wd9/Hbo6OOcXNA+rP5krHtt7/w/Y/bMGdS7OeXS8c++pW30fbBhsidK4e0KxH7UvyRPZF0pTOqM39S7CmRyB/5i6YA+UtVSLd9V0Wuc+1T8Uvxx9oX7cp35n2d+ZNij3uvM2yZsUL+0qvE2meGHPtjdGaPe29k/vnZz/71QAvhUIBNcME8Hz32L95Z+AkeuKeOY17UWdrRXuXLXhVtSLr3x0yeG3XOk23uiTomowFSZ8VZCsbEpHc//BSz539sPKW+78Ah41zfv3fvw1Md7kflCqVNWPDHEKf5k2JPqSXFn27sKS2CwJ/T7CldpPiTYk/FTP68qYXkj+x5Q94Zr07zJ1X7uPdGUsK9N+OrRoo/7r3kL1qdlmKPtS947Om097L2BZO/aPWM7/tLATbBBfOhzgBr2KoXvpg/TtCLM6bVLxXffXu1TI3NW/Qp1i+fYsnZ6dPJ+GHTNlz/f+eXnzhxEkeOHUdiwfyW7JmdNGn6+3j0gbvMDk8Zp34le8ronsbT+oPGvIGk08loULsS+o+ahnlTBsZsz6sJ5A/wij2V8zDzR/bOXPVe8WeVPRVzEOof+fOOvbDXPrV+8ucdf6x9vO/g3uvVXQdrn5fsce/Vhz/2XCJrVBDuO7yruvRsVQE2wa0qZ2KeTjdCN9Zpg+8+mpzpqqK9n5UcQ8fNxI6duzB2QEfjByYe7jwUycnJaPtQQ7S673YTSlobojYZK437us26YcmsEYbTWk06Y+rop1HiomKo36IHPpwxzFowHswif4BX7Kl0h5k/snfmgveKP6vsqZiDUP/In3fshb326dYEj/bZLtr7mX20Ye3z4EOfZv8AE42taO8H6b6De6/710s0vqK977fax71XnyZ4NLaivc/a5369oMfgKcAmuGBOnf5KrGCoUAX32yWvIFu2bOncqCe3b2nQ3njfyqv2fV2wYPpQ5MyRgC59x+HmctfirjpVcO8jfUSbylYbQQ1bPYMJQzrjp22/44WJczD/9cHYvPV3dOs3Hu9Pe96KBJ7MIX+AV+zZ+TAaBP7I3plL3iv+rNY+FTP5c7dcS+29XrEX9tqn1s/6x9rnbhVJ9Ub2uPd6xR5rn7fsce/VZ++V+tzH+w4vqx9966YAm+ACGVPnSC9c9iVaND5zFvh3G7bgn937UbNqOSRkjxfwaN9k7aZdMf75zrjq8ovTGft+41Y8NXgSFk4fasnR2ScLT55KQrW7n8CiGcNQqGA+1GveHYtnDrdkU00697zdcw19sHQVNqyYGrP9jz5Zg2eHvmo8rT7yuQ6odktZ9B72Gm67tTxqVLkxZntuTyB/qYpLsUf+Mqaa7EXqIsWfVO1T0etc/8gfa5/b+21af+RPnj/WPu69Zq5x7r1mVHJuDGuffO3jfUfmvOrGH3sukbnU+b7DuSpKS24rwCa4gOLtn34Bpa+6DB1a/9doKAweOx2XX3ohip5XCEN6PSrg0b7JF197B19+s9FohBcskDfF4IGDR9DuqVGodnNZtG91tyVHLToMxH0Na2LrrzuwYfOveHVUD8xb9Bnemv8x3hzf25JNNemVGR9kOVf98MQPH1s7x/zI0X+RK2cC4uPjLMfn1UTyl6q8FHvkL2O6yV6kLlL8SdY+tQJd6x/5Y+3zat9VfsmfPH+sfdx7zVzj3HvNqOTcGNY++drH+47MedWNP/Zc0udS1/sO56ooLbmtAJvgAorf1qQLlr410jhapFWnIca519Ur32D84NiiN/15prR6SvvpwZPw2VfrUbViGRQrkoh/du/DqjUbjB+0fHFgRyQkZLeklmp+D58w25jbq+MDxvnaM+ctQ9WKZY0/S72sHgnw7oefYvb8jzFrQh+of11WTx79vXsfnupwPypXKC0VrmN2yV+qlF6xpyIII39kL/Iy9oo/q+yp6HWuf+SPtc+xjdSCIfLnPX+sfbzvUBRy77VQwGxMYe3zvvaF9b5DrVs3/thziSw2Ot932CibnOqxAmyCCyRAfQ1PHfNx6Mgx1GnaFZ+8OxYJ2bOjbvNuWDp7pIBH50z+sPkXfPH1D1A/LJYvb25UvOEaxxq/O3ftxZ69B1E4sQCKFyvsWNCZ2bV6M6T7rxSTv/RoSbGnPJG/VL3JXsZlTYo/p9lT0etc/8gfa59jHywsGCJ/7vHH2hepNdnj3muhZDk2hfy5V/t435Fea135Y8/lTC51vu9wrIjSkOsKsAkuILn68cc8uXPhz527cVHxohjQ42EMnzALf+/ahxF9HhPw6G+Tv/6+E90HvIzf/tiJY8f/RY6EBJQsUdzQ4rJLLrAcfDS7yz//FrWqlovZ/tmzBNXEWk06Y+rop40n1uu36CH6Q54xB5rJBPKXKkw0RuxoHs12GPkje5FERWPEKn/R7FplT8Wjc/0jf6x9Vq8pJ+aRP3n+WPsyJpXsce91ooZZtUH+5Guf8iBV/3T+3Kd0IX/y/Emxp/t9h9WayXneK8AmuEAOjh47jlnvLTcsN2t0G/Lkzom163/CdVddhlw5cwh4tG+ywu2Zn1W+eOYI1GveDWsWTbLkSB0J0/iOamhYtyrUj0EsmTkCc97/GAuXr8brY562ZFNNkrLbsNUzmDCkM37a9jtemDgH818fjM1bf0e3fuPx/rTnLcfr1kTyl6q0FCPkL2OayV6kLlL8SdlV0etc/8gfa59b+2xGfsifPH+sfdx7zVzjUpxI2eXeayarzo6Ruu+VZETKts6f+xQVuu29UuxJ3ptKsad77XO2KtGamwqwCS6k9qYt27FuwxYcPHwUBQvkQ4UbrsblJYoLebNvVn21NLNXsfMS8c+efbigqLUjTG6/v0fKWeiqCX72SJg7HuiJhdOHWg5eym4QfqWY/J3BSooRSdu680f2UkuaFH9SdlXk5M/ylmRpotTeK8mIlG3d2VMAsP7J7r1S7LH2WSpftiZJ1T7Jz2fkL/OUs/bJ1j5Jrrn32iplMU9m7YuULAj8xQwBJ3iuAJvgAilQv/o7fe5HRuO7QL68OHj4CNas24w299+JR1o0EPDovMk//tqFJSu/xpIVX2PWy8/ZcqDOepo5vjcKFcxnPAmumuDrN/2C/qNex5xJfS3blrKrAjp9OhnJycmIj4+zHJ9XE8lfqvKSjEja1pU/shd51UsxImX3bPTkz6vqDTi190oyImlbV/YUMax/8nuvJHs6f/Yje9x7vdu1WPvSai9ZoyRtc+/17gpy6nOfWoEUI1J2db/v8I4aerarAJvgdhXMYH71xk/irYl9cX7RxJR3d+3Zj2bt+mPZnFECHp0x+dsffxuN78Urvsaff+/GfyrdgJpVyqFejYq2HMx+bznWfL8Zw3s/hqqNHsdFFxTBP7v344V+HVCuzJWWbUvZPXL0OMZPnYdln63Fnn0HULhQAdS6tTweb/1f5M2Ty3K8bk0kf6lKSzGiPEjZ1pk/shd5lUsxImVXRU/+3KrUqX4k9l5JRqRs68yeyibrn/zeK8Uea5/7dU95lKh9kp/PyF/GnLD2ydc+Sa6597pf/1j7UjXXnT/36aFHJxRgE9wJFc+xoY75UOdIZ4+PT3lHPVXc+H+98e5rAwU82jepYlOvyhVKG41v1Zx28ilodV6X+rHQxSu+QmLBArix9BXIkSPBduASdp8e/AoSEuLRrFEtdOg1GqP7P4Hpc5cgPj4eQ3plfna67cU4ZID8RQopwchZDxK2deaP7KW/iCUYUV6k7JI/hwqxSTOSe68UI1L86cye0oT1z529V4prnfkje9x7TW45IsPInzu1j3tvxvjqxp/k5z4pRiTt6rz3ihRUGnVFATbBHZJZnYV29vXp6u+xftM2NK7/H5xXuCAOHDyM9xZ/hrLXXI6HmtRzyKOzZh58YpDxdHb1yjfgtmo34abrr4po4tvx9vMvf2Q4PSnpNK4pVcKyaXWkyutvLcKIPo9B2Xpt1kL8s3sfHm52B4qff55lu+rMvw9nDEW2bNlSjm9RXxNr8NBTts4wtxyQiYnkL2ORpNhT3sjfGc3JXuYXqBR/UuyplehW/8gfa5+JLVJsCPlzlz/WvlS9yR73XrHCZsIw+XO39vG+I1JvnfljzyUyl7rdd5gojxyigQJsgjuUJHUBR3udOnUKS9/y73Eof+/aZzypvejjr/DrHztRo/KNqF3tJuMoEDuvmvd2ipiuvvZy7Pi/uPzSC/HelEGWTTd5tC86/u8eVLulLCa/uQCffLkOVSqUwRdrfsC0sb0s263TrJvRBFdP8p89w3z/gcN4qONg4wl/P77IX8ZZkWJPeSN/ZzQne5lXBCn+pNhTK9Gt/pE/1j4v92Ty5y5/rH2pepM97r2sffYUkLjvlfrcx/uO9I3TaNn3c99Fgj2lhxR/3Huj0cb3dVOATXDdMuZSvH/9sxeLP1YN8dW2fxgzo5DV0/LfbdiCJx5ubHlFqlnz0awRxvy7Wz+LAT0eRtlrL0f9FupJ7mGW7Q54YRpy5khAjw7NjTM+G9SpjCUr16BN8zvQtFEty3Y50bwCkvw5wd7ZZiH5M59TXUZKsqc0cII/qdqn4mP985ZUSf6cYI+1z1s+pL37nT/WPmkCvLMvyR73Xu/yqotnSf649+pCgTdxSrLH2udNTunV/wqwCS6Qo2PHT2D552vx9669xjEdaV+PtGgg4NEZk7v3HsCqNRuwZ99BFE7MbzxVXaRwQWeMZ2BFPVlt54ntes27G09mK50feHwQVswdY5yTq87aWvJ/zXErwZ88lYTNW7ejzNUlMXjsDBTMn8c4IsbO0S1W4rA6h/xFV84ue8oD+UuvM9mLzp4aYZc/KfZUbDrXP/IXnT+77LH2Za4x+ZPnj7UvY43JXnT2uPea08jKKPIXXTXuvdE1sjpCR/7Yc0nNts73HVaZ5TzvFWATXCAH/+s6DP/+exJXXHYh4rJli/DwXNdWAh7tm1y5ah16DXkFN5YuhdVzwK3SAAAgAElEQVRrN6J82auwbuNWDHu2nXFOuJ3XuefiJicDv2z/E2Mmz7V1xva4Ke8aR7fsP3jYOAe8dbP66PzcS7im1KVo++BddkLWei75S02fFHvKA/lLf5mQvUhNpPgjexmXaPLH2ufl5k3+5Plj7WPtM3ONc+81o5JzY1j75Gsf7zsy51U3/thzca720BIVsKoAm+BWlcti3j1t+mDu5P4CluVMquNEXujXASVLFE85B3vz1t/Rc+BEzJsy0Jbjc8+nio+LQ7EiiWjf6m7cenNZW7bVjySpV9lrShr/f+jwUcTFxSFvnlyW7VZp2CHDuadOJeGrhS9btuvWRPKXqrQke8oL+YukmuxF6iHJnwR7Knqd6x/5Y+1za5/NyA/5c4c/1r709JE97r2sfbEpIHXfK/m5j/cdGedYt/onxZ5SR5I/7r2x1RiO9rcCbIIL5KdDr9EY+Vx75MqZQ8C6jEn1AzuL3jxzjvbZH4NUf77zwaew4I0hMk5tWlVfJfr+x204efJUhKVh42bipcFP4srLLzZ+3DLW1/Ydf6dMUU+t7ztwCB99sgYF8+fFow/4/wlz8hdrxq2NJ3/pdSN71liKdZYUeyoOnesf+YuVJGvjpfjTmT2lJPmzxlMss6TYY+2LJQvOjOV9R6SOOtc/1j5nroloVqTqn87s6bj3svYFp/ZFu2b5vn8VYBNcIDejX3nb+PGzardcn+6JZL+eCa7+FbVf99bGOdiqCT5/6iC89f4K44zwicO6OqLSgUNH0G/k6xjVt70j9mrf1wVFziuEAvnyRNj79oefUa7MlWhYt6rxo5ZOvJKTk1H5rg74Yv44xMVFHnHjhH0nbZC/9Go6zZ7yQP7S60z2Mr6SnebPTfbUinSpf+SPtc/JvTRWW+RPnj/WvoypJHvce2OtV06OJ3/ytY/3HZkTqxt/7LlErz663HdEXwlH+FUBNsEFMtNn+GtQR35k9PLrmeDffP8TFq/4Cr06PoBKDdobPzBZvdIN6N25JYoVKeSISupfsBu26mU0kp141WrSGcveGoVs55y7/r8uw/DqqB6WXZw+nYwfNm3D9dddYdg4ceIkjhw7jpw5ciBP7pyW7bo1kfylV9pp9pQH8pdeZ7KX8VXuNH9S7Knoda5/5I+1z619NiM/5E+eP9a+jAkne9x7WftiU0D6vtfpz32878g8v7rVP2n2lFJO88e9N7b6wtH+V4BNcKEcbfllBwrkz+tYA1kozAzN7tqzH4mF8ls6SiSrOJ0uyFKaDB03Ezt27sLYAR2xact2PNx5qPEkZNuHGqLVfbdLuXXULvmLlFMX9lTUuvNH9uQbQY4Wi3OMkT9JdbO2LbH3sva5m0/WP+697hKX6o3sce/1ij3ll/yx9pG/2BWQ+Nwn0QSPfWXmZ+h+32F+pRzpJwXYBBfIxjNDJmPFqu9w9Ni/eP7pR1Cjyo144PFB6NutlXHciB9fnfq8lGFY6scg1fnaTrxOnkrCT1t/R+mrL3PCnJgN9XXbBdOHImeOBHTpOw43l7sWd9Wpgnsf6YMPZ5w5N93PL/KXPju6sKci15k/spdxZSB/7lRM8sfa5w5pGXshf+TPK/7IHvder9hTfskfax/5M68Aey6RWul832s+6xzpNwXYBBfIiDpTe+EbQ/D7n/+g78ipmDL6KSxY+iWmz/0Icyb1FfBo3+TbH6xMMZKMZOw/cBiffLkON11/NTo9cq9tB+9++CmuuvySlAb4kaPHsX7TNpS4sBguvKCIbftOGqjbrBuWzBoB1biqdvcTWDRjGAoVzId6zbtj8czhTroSsUX+ImXViT0Vuc78kb30lzT5EylzGRolf6x97tGW3hP5I39e8Uf2uPd6xZ7yS/5Y+8ifeQXYc4nUSuf7XvNZ50i/KcAmuEBG1A8evDWxL+Lj49Dssf6YNaGP4UWXJupZSY7/ewLqF4xXzB1tS6UZ73yEN97+CCOfa280wVWDXT1VnSNHAvbuP4RBPdvgtmrlbflwcnKLDgNxX8Oa2PrrDmzY/Ktxvvi8RZ/hrfkf483xvZ10JWKL/KXKqht7KnKd+SN7kZc0+RMpcZkaJX+sfe4SF+mN/JE/r/gje9x7vWJP+SV/rH3kz54CYe256H7fay/rnO2lAmyCC6j/5Tcb8dnX69GsUS10fm4cxj/fCV99twkTp83H/NcHC3iUM/np6u9RtWJZxMVls+zkroeexvA+j+GaUiUMG+pXnLfv+Buj+nbA+h+3GU/Lz53c37J9pyeq5vfwCbMNs+qHQktcVAwz5y0zdFB/9vuL/KVmSDf2VOQ680f2IqsD+XO3WpI/1j53iYv0Rv7In1f8kT3uvV6xp/ySP9Y+8mdfgTD2XHS/77WfdVrwSgE2wQWUb/nk81izbnNK4zguWxwuKl4EfTq3RKWbrhPwaM3knn0H8dqshej+WDP8/MsfGDVxjtGUPnzkKAoWyIcKN1yNLm3vw0U2jyup1KA9vvxgfEqQd7d+Fl3b3Ydqt1xv/N2tjZ7AZ++9aG0RLs6a/OYCtLn/Thc9WnNF/lJ1Cwp7akU68Ef2Iq9Z8methlmdRf5Y+6yy48Q88kf+nODIig2yx73XCjdOzSF/rH1OsWTFjg78secSe2Z1uO+NfVWc4RcF2AQXyIQ6zkAdoZErZw4B686ZbNNtOAoXzI8hz7RF4//1Rt0aFVHnPzchX948OHDwMD5Yugprv//J9hEg6lzt5W+PRkL2eOP4k5r3dMIX749D3jy5cOLESdRq0sVXTfAJ097D0k++Mc4ET/tST6/fWrEsWjSujcoVSjuXCIctkb9UQXVjT0WuM39kL/JiJn8OF7co5sgfa5+7xEV6I3/kzyv+yB73Xq/YU37JH2sf+ctaAfZcMtdH5/teL7mnb3sKsAluT78MZ6unqjN6nTqVhGuvvFTAozWTtZp0xrK3RiFbtmyo36InPpwxNJ0hdSb4ojeHWXPwf7Mee+oFVK98g3E8zLgp72Ldxq2YNLwb/j1xEmNeeRvbtv+Fl4d2seXDyck339HOOL+8QP68EWZ7DHgZw3q3w/lFE3FB0cJOunTUFvlLlVM39lTkOvNH9iIvZfLnaGmLaoz8sfZFhURwAPkjf4J4ZWma7HHv9Yo95Zf8sfaRv6wVYM8lc310vu/1knv6tqcAm+D29Mtwds17O6X8fXIycPDQEaPRrM6Tfve1gQIerZms36IHJgzpgssuuQD9Rr2O2tVuQtWKZVKMrf72R8z78DM83+sRaw7+b9bmrb/j0e4jcOjwUePpePWUvPrHgB07d6Nrv/EY0ecxXFy8qC0fTk5WP2bXonGddCY/+mQN6vyngpOuRGyRv1RZdWNPRa4zf2Qv8pImfyIlLlOj5I+1z13iIr2RP/LnFX9kj3uvV+wpv+SPtY/8Za0Aey6Z66Pzfa+X3NO3PQXYBLenn6nZp08nY/GKr7Dii+8w9Nm2pua4MUgddzLghWlGQ1odTbJqzQZcclExFDsvEX/v2ovf/9qF224tbzSp7b7U0SK///mP8QR1ntw57ZoTnX/k6HGMnzoPyz5biz37DqBwoQKodWt5PN76v4ZOur3Czp9O7Cm2gsRf2NlT+SR/3lXMsPNH9rxjT3kmf/p87uPe6861wvuOzHXmZz95Bt3ij3uvfC6z8uDHvdct9njf4S179K6PAmyCu5irVp2G4NWRPRAfH+ei16xd7dqzHxs2/2o8pZ3R61RSEv5bv5qteGe8szTqfHXOtl9eTw9+BQkJ8cbxLR16jcbo/k9g+twliI+Px5Bej/olzJjjCCN/urGnkhpE/sLInsol+Yu5TIlMCCN/ZE8EJUtGyV/Gsvnpcx/3XktoW5rE+46MZeNnP0s4xTxJmj/uvTGnRGyC3/ZeafZ43yGGEg0HUAE2wYWSunvvAePJavVrwIUT86NKhTIoUrigkDfnzO7ctRd79qqYC6B4MWfOve45cGJEgIeOHMW3639GlYplkD0+3njPT0/Iq3PQ1fno6gib2k27YunskcYTXQ0eegoLp6c/N9059Z2zRP7OaKkbeypm3fkje6nXMflzrqaZtUT+WPvMsiIxjvyRPwmuzNgke9x7zXAiNYb8sfZJsWXGro78sedyJrO63/ea4ZNj/KcAm+ACOVm5ah16DXkFN5YuhdVrN6J82auMH4Mc9mw74wci/fj69fed6D7gZfz2x04cO/4vciQkoGSJ4sZRKOrMcKdfW3/dgXFT38Oovu2dNm3bXp1m3YwmuGrQn22C7z9wGA91HIz5rw+2bV/aAPnLWmE/s6ci15k/shf96iZ/0TWyOoL8sfZZZceJeeSP/DnBkRUbZC+6atx7o2tkdQT5Y+2zyo4T83Tjjz2XyKzrfN/rBL+04Y0CbIIL6H5362fxQr8ORhP5bBNV/UCaeipw3hT//DBm2qWrrww1vqMaGtatasS8ZOYIzHn/Yyxcvhqvj3laQCWgeuMnsfKdMSK27RhV56TnzJGAHh2aGzE2qFMZS1auQZvmd6Bpo1p2TLsyl/xFl9mv7KnIdeaP7EVnT40gf+Z0inUU+YuuGNmLrpHVEeQvunLkL7pGVkaQPXOqkT9zOsU6ivxFV4zsRdfI6gjd+GPPJTLTOt/3WmWW87xXgE1wgRyor3UsenOYYflsE1z9+c4Hn8KCN4YIeLRvMrOY73igp+0jQM49Hy05ORnrN23Dll92YO7k/vaDd9iC+kGTzVu3o8zVJTF47AwUzJ8Ht1W7CdeUKuGwJxlz5C9VV93YU5HrzB/Zi7ymyZ9MjcvMKvlj7XOXuEhv5I/8ecUf2ePe6xV7yi/5Y+0jf+YVYM8lUiud73vNZ50j/aYAm+ACGbmnTR/0697aaKKqJvj8qYPw1vsrjDPCJw7rKuDRvsn6LXpi5vjeKFQwX0rjfv2mX9B/1OuYM6mvLQfnnosbFxeH84sm4r67auDCC4rYss3J6RUgf6makD13rxCyF6k3+SN/0RSQ2nvJXjTlnX+f9Y97r/NUmbNI9rj3miNFZhT5Y+2TIcucVd34k/rcp9TiZz9zzHAUFWATXICBb77/CYtXfIVeHR9ApQbtcfTYcVSvdAN6d26JYkUKCXi0b3L2e8ux5vvNGN77MVRt9DguuqAI/tm93zjWpVyZK207UE99F8if17frT7vACrc/mul6F88cgXrNu2HNokm2NZEyQP4ildWJPRW5zvyRvfRXNfmTqnTp7ZI/1j73aCN/0bRm7YumkHPvs/Zx73WOptgtkT/uvbFT49wM3fhjzyUy9zrf9zpHMS25rQCb4MKK79qzH4mF8hs/suj3l2rW58mdy2jgJxYsgBtLX4EcORJsh/3MkMlYseo7HD32L55/+hHUqHIjHnh8EPp2a2U8Le+3l/q15sxexc5LxD979uGCooX9FnaG8YSdP93YU0kMCn9hZ0/lkvx5VybDzh/Z84495Zn86fW5j3uvN9cL7ztSdednP/cZlOCPe6/7eUzrUZe9V4I93nd4yx6966UAm+AC+Tp2/ATeWbgSa9f/jIOHjqJQwbyocP3VuLt+NeMHF/34+vmXPzIMKynptO2zsNWRMAvfGILf//wHfUdOxZTRT2HB0i8xfe5Hto9akdBSUguJeM+1Sf5SFdGNPRW5zvyRvcirkfy5UfFSfZA/1j53iYv0Rv7In1f8kT3uvV6xp/ySP9Y+8mdeAcn7PN53mM8DR4ZbATbBBfLf+bmXjKNE6lSvgIL58+Lg4aP4aOUaFD+/sHHciB9fNe/tFBHWkaPHcez4v7j80gvx3pRBtkJWZ3W9NbEv4uPj0Oyx/pg1oY9hr17z7lg8c7gt2xKTJbWQiPdcm+QvVRHd2FOR68wf2Yu8GsmfGxUv1Qf5Y+1zl7hIb+SP/HnFH9nj3usVe8ov+WPtI3/mFZC8z+N9h/k8cGS4FWATXCD/1Rs/iaVvjUJC9tQjUE4lJeH25t2Nv9fl9enq7/Hdhi144uHGtkL+8puN+Ozr9WjWqBY6PzcO45/vhK++24SJ0+Zj/uuDbdl2a7JTWrgRL/lLVTkI7KnV6MIf2Yu8wsmfGxUv1Qf5Y+1zl7hIb+SP/HnFH9nj3usVe8ov+WPtI3/2FHDqPo/3HfbywNnhUYBNcIFcN2vXDxOGdkFiwfwp1g8dPoq2PUbizfG9BTzKmXyo42BMG9vLloOWTz6PNes2Iy4um2EnLlscLipeBH06t0Slm66zZdvNyU5o4Ua85C9V5aCwp1akA39kL/IKJ39uVLxUH+SPtc9d4iK9kT/y5xV/ZI97r1fsKb/kj7WP/NlXwIn7PN532M8DLYRDATbBBfI8+pW3jR+XrFW1PM4rXMA4F3zZp9+gcoXSuLh4UcPjQ03qCXi2bvLc86mSk4Fftv+JMZPnYuH0odYN//8zjlt0GIhXR/VArpw5bNlxa7KkFm6sgfylqqwbeypynfkje5FXOPlzo+Kl+iB/rH3uEhfpjfyRP6/4I3vce71iT/klf6x95M+8ApL3ebzvMJ8Hjgy3AmyCC+T/6cGvIHuao1AycjGgx8MCnq2bPPd8qvi4OBQrkoj2re7GrTeXtW5Ywx/6k9TClpAmJ5O/VKEkf3zEZDpiHqYzf2QvMt3kL2b8bU0gf6x9tgCyOZn8kT+bCFmeTva491qGx4GJ5I+1zwGMLJvQjT/J+zzed1jGiBNDpgCb4CFLuBfLlfwBCC/WQ5/6KED29MlVECMlf0HMqh5rInt65CmoUZK/oGZWj3WRPz3yFMQoyV4Qs6rPmsifPrlipN4qwCa4t/r7xvvBw0fx0mvvYMUX32Hv/oMoXKgAalS5EY8/3BgF8uVxPE6nfgDC8cBo0BMF3OSP7HmSYt86dZM9JQL58y0KngTmJn9kz5MU+9op+fN1egIdnJvsce8NNEqWFucmf9x7LaUosJPcZI+1L7AYcWE2FWAT3KaAQZne+bmXkDtXTjRrVAuFE9U55kcwb9Hn2L13P0b17SCyTCd+AEIkMBp1XQG3+SN7rqfYtw7dZk8JQf58i4PrgbnNH9lzPcW+dkj+fJ2eQAfnNnvcewONU8yLc5s/7r0xpyiwE9xmj7UvsChxYTYUYBPchnhWp65d/zPKl73S6nSRedUbP4mP3x6NuLhsEfZva9IFy+aMsuVT8gcgbAUW0slh4o/s+QvyMLGnlCd/5C+aAlJ7L9mLprz774ep/pE/9/nKymOY2OPe6y/2VDRh4o+1j/xFU0Dqcx9rXzTl+T4VSFWATXAPaChbqzXWL5/igefMXd754FMY3rsdrrvqspRBa9ZtRr+RU/H+tOdtxSr5AxC2Astk8qmkpKhms8fHRx3j1wFh4k839hQzQeYvTOypXJI/f1XBMPFH9vzFnoqG/DnzY+tSmeXeK6VsxnZ53xGpC/kLBn/ce93Noxlvftt7WfvCU/vM8Mkx3ijAJrgHuvutGCsJPvtqPbr3n4A3x/dGyRLFceDQEdRr3h0jn2uPqhXLeKCSdy5L12gV1fmGFVOjjvHrAPLn18yciSvI/JE9f7NH/tzPD/feVM2DXPv82gQnf+Hgj3uv+7U9Vo9Brn/kL1Ya3B0fZPb8uPdy343kO+j8uXs105tZBdgEN6tUDOPe/mBllqP7jpyKHz7215PgKuB/T5yEOgwlR44EI3713zn/788xLD/d0BnvLM1w+unTp/HgvXXtmBaZe2OdNlj05rBMbd9+fw9899FkEd9OGCV/qSrqxp6KXGf+yF7kFUz+nKho5m2QP9Y+87Q4P5L8kT/nqTJnkexx7zVHiswo8sfaJ0OWOas68seeS2pudb7vNUcoR/lRATbBBbLyaPcRWVr9/Osf4LcniY8cPY7xU+dh2WdrsWffARQuVAC1bi2Px1v/F3nz5LKlUs+BEyPmK19r1/+EmlXLYdBTbWzZlpisinFWTe5o70vEFItN8peqlm7snW2C68of2Yu8UslfLJXL/ljyx9pnnyLrFsgf+bNOj72ZZI97rz2C7M0mf6x99giyN1s3/thzicx3tL5KtPft0cPZYVWATXAPMu/Hr4U9PfgVJCTEo1mjWujQazRG938C0+cuQXx8PIb0etRxlXbvPYDh42dh6LNtHbdt12DF+u2w8p3RyJM7ffN/1579aNiyF1Z9MN6uG8/mh50/P7OnoAgyf2FnT+WX/HlW+nx5JrObey/Z84495Tns9Y/8ecdf2Nnj3usde6x9/NznLX3+23vd/NzH2uc1ffTvVwXYBPcgM378MKqO+PhwxlBky5YNtZt2xdLZI3H6dDIaPPQUFk4fKqJSs8f6Y9aEPiK27Rj9X9dhqFW1HFo0rpPOzGuzFuKrbzfh5aFd7LjwdC75A/zKngIjyPyRvTOXPvnzpgSSP7LnDXlnvJI/8ucVf2SPe69X7LH2kT0v2fMjf+y5RBIR5Pter9mn/8wVYBNcgI5oX3MZNm4menRoLuDZusk6zboZTfDs8fEpTfD9Bw7joY6DMf/1wdYNA0h/Lm4ytv32F77/cRvmTOpry7bE5PU/bjMakQ/dWw931K6EYucVwj979mPR8tWYMnsRXhvVA2WvvVzCtSM2yV+qjLqxpyLXmT+yF3kJkz9HSpppI+SPtc80LAIDyR/5E8DKlEmyx73XFChCg8gfa58QWqbM6sYfey6RadX5vtcUoBzkSwXYBBdIi9tfc3FiCQNemGb8CKZqzldv/CQa1KmMJSvXoE3zO9C0US1bLs49FzcuLg7nF03EfXfVwIUXFLFlW2rypi3bMWbyXKz6ZgNOnjyFuLhsuOG6UujStgnKl71Kyq0jdslfqow6sqei15U/shd5CZM/R0qaaSPkj7XPNCwCA8kf+RPAypRJsse91xQoQoPIH2ufEFqmzOrGH3su6dOq632vKUA5yJcKsAkukBYvvuZidxknTyVh89btKHN1SQweOwMF8+fBbdVuwjWlStg1rfX85ORkHDx0FLlz5UCOHAlarIX8aZEmU0Hqxh/ZM5VWbQaRP/lUce/NWGPd2FOrYP2Tv17c8qAbf2TPLTLc8UP+5HXm3su9V56yjD2QvcyV1632ecUQ/dpXgE1w+xqmsyD5NReBcMVNHjx8FC++Ohcff/4tdu87iCKJBVCt0g3o9Mi9KJg/r7j/WB089tQLmU5RP+Spnu6cMKRzrGZdG0/+UqXWjT0Vuc78kb3Iy5z8uVb2DEfkj7XPXeIivZE/8ucVf2SPe69X7HHvJXteskf+yJ/X/NG/ngqwCS6QN8mvuQiEK26ya7/xyJc3N+69szoKFcwHddb4W++vgDrDa1Tf9uL+Y3Xw/pIvMp1St0ZFLFnxNe6qWyVWs66NJ3+pUuvGnopcZ/7IXuRlTv5cK3uGI/LH2ucucZHeyB/584o/sse91yv2uPeSPS/ZI3/kz2v+6F9PBdgEF8gbv+YSKWr9Fj2NH90895XZ3wukJCaTp08n44dN23D9dVcY806cOIkjx44jsWD+mOx4NZj8pSqvG3sqcp35I3t61z7y51XVdt4va5/zmkazyPrHvTcaI1Lvkz3uvVJsmbFL/lj7zHAiNYb8kT8ptmg3uAqwCS6QW52bWAJy4M4Hn8Kb43tHHH1y+MgxNG3XDwveGCLh0pbNoeNmYsfOXRg7oKPxA4UPdx4KdUZV24caotV9t9uy7cZk8peqsm7sqch15o/sRV7h5M+Nipfqg/yx9rlLXKQ38kf+vOKP7HHv9Yo95Zf8sfaRPy8VIH/+UJ9R6KQAm+AC2dK5iSUgB6bOXoTZ85ejdrUKSCyUDwcOHsHST7/BnbUro33LRhIubdmsfV8XLJg+FDlzJKBL33G4udy1uKtOFdz7SB98OGOYLdtuTCZ/qSrrxp6KXGf+yF7kFU7+3Kh4qT7IH2ufu8RFeiN/5M8r/sge916v2FN+yR9rH/nzUgHy5w/1GYVOCrAJLpAtnZtYAnIYJr9cuxErV63D3n0HjXPBq1Ysg/9UukHKnS27dZt1w5JZI6C+XlXt7iewaMYwI+Z6zbtj8czhtmy7MZn8RaqsE3sqcp35I3vpr3Dy50bVO+OD/LH2uUdbek/kj/x5xR/Z497rFXvce8mel+yRP/LnNX/0r6cCbIIL5E3nJpaAHPj5lz8yNJuUdBrXlCoh4dKWzRYdBuK+hjWx9dcd2LD5V7w6qgfmLfoMb83/2DjWxe8v8peaId3YU5HrzB/Zi6wO5M/dakn+WPvcJS7SG/kjf17xR/a493rFnvJL/lj7yJ+XCpA/f6jPKHRSgE1wgWzp3MQSkAM17+0UYfbI0eM4dvxfXH7phXhvyiAJl7Zsqub38AmzDRu9Oj6AEhcVw8x5y1C1Ylnjz35/kb/UDOnGnopcZ/7IXmR1IH/uVkvyx9rnLnGR3sgf+fOKP7LHvdcr9pRf8sfaR/68VID8+UN9RqGTAmyCC2RL5yaWgBwZmvx09ff4bsMWPPFwY7dc2vYz+c0FaHP/nbbtSBsgf1krrCN7akU68Ef2ol/d5C+6RlZHkD/WPqvsODGP/JE/JziyYoPsRVeNe290jayOIH+sfVbZcWIe+SN/TnBEG+FSgE1wF/OtQxPLRTnwUMfBmDa2l5suTfmaMO09LP3kG+NM8LSv7Tv+xq0Vy6JF49qoXKG0KVt+GkT+UrPhV/ZUhEHkj+xFVgLy525lJH+sfe4SF+mN/JE/r/gje9x7vWJP+SV/rH3kz0sFyJ8/1GcUflSATXCBrASxiWVHpnPPxU1OBn7Z/ifGTJ6LhdOH2jEtMvfmO9ph5HPtUSB/3gj7PQa8jGG92+H8oom4oGhhEd9OGCV/qSrqxp6KXGf+yF7kFUz+nKho5m2QP9Y+87Q4P5L8kT/nqTJnkexx7zVHiswo8sfaJ0OWOavkj/yZI4WjqECqAmyCC9CgcxNLQI50Z4LHx8WhWJFEtG91N269uayES1s2Z7zzEVo0rpPOxkefrEGd/1SwZduNyeQvVeVzz2T2O3sqcp35I3uRVzj5c/iCcZIAACAASURBVKPipfogf6x97hIX6Y38kT+v+CN73Hu9Yk/5JX+sfeTPSwXInz/UZxQ6KcAmuEC2dG5iCcihncnZ7y3H2NfeQWLB/Bjeux2uvPxijHr5LbR9sCEKFoh8OtyPiyN/fsyK+Zh05o/smc+zX0eSP79mJvhx6cye7v+AGXy6oq9QZ/6490bPr99HkD+/Zyi48enMHvde/bnUnT/9MxDOFbAJHs68c9VZKFCrSWe8OPBJ/Pjzb1j66TcY3f9xDBz9BnbvPYCXh3ahdlRAVAHyJyovjUdRgPwREa8UIHteKU+/SgHyRw68VID8eal+uH2TvXDn3+vVkz+vMxBO/2yChzPvXHUWCjRs9QzmTx1kjGjath9mT3zO+HO95t2xeOZwakcFRBUgf6Ly0ngUBcgfEfFKAbLnlfL0qxQgf+TASwXIn5fqh9s32Qt3/r1ePfnzOgPh9M8meDjzzlVnocDU2YtQpHBBNKhTGc0e649ZE/rgz5270bLTEHw0awS1owKiCpA/UXlpPIoC5I+IeKUA2fNKefpVCpA/cuClAuTPS/XD7ZvshTv/Xq+e/HmdgXD6ZxM8nHl3ddWnkpKi+sseHx91jFsDXnztHbzx9hLkz5sH+w4cwgXFCuOvf/ai0yP3omWTem6FQT8OKKAbe2rJ5M+BxPvEBPnzSSJCGAbZC2HSfbRk8uejZIQwFPIXwqT7ZMlkzyeJCGkY5C+kieeyY1aATfCYJeOEWBUoXaNV1CkbVkyNOsatATXv7YT+3f+HvHlyGi6zZcuGC88vgvOLJroVAv04pIBu7Kllkz+Hku8DM+TPB0kIaQhkL6SJ98myyZ9PEhHSMMhfSBPvg2WTPR8kIcQhkL8QJ59Lj0kBNsFjkouDrShwY502WPTmsEyn3n5/D3z30WQrpkXm/PX3HhQ//zwR2zTqrgK6safUIX/uMiLpjfxJqkvbWSlA9siHlwqQPy/Vp2/yRwa8UoDseaU8/SoFyB85oALmFGAT3JxOHGVDAVWQs2pyR3vfhmtLU6s07JDhvNOnk/HlB+Mt2eQkbxSIxla0972Imvx5obqMz2h8RXtfJqqsrZI/L1R33mc0tqK973xE0S2Svega6TIiGl/R3vdineTPC9VlfEbjK9r7MlFx7/VCV7d9RmMr2vtux6v8sfZ5obqMz2h8RXtfJirWPi90pc+sFWATnISIK1CxfjusfGc08uTOlc7Xrj370bBlL6zyUXN5+46/I+I8cvQ4Fq/4GsWLFUbTRrXE9aID5xTQjT21cvLnXP69tkT+vM5AeP2TvfDm3g8rJ39+yEJ4YyB/4c291ysne15nINz+yV+488/Vm1eATXDzWnGkRQX+13UYalUthxaN66Sz8Nqshfjq2014eWgXi9bdm/ZItxF4ZUQ39xzSk20FgsKeEoL82cbBdQPkz3XJ6fD/FCB7RMFLBcifl+rTN/kjA14pQPa8Up5+lQLkjxxQAXMKsAluTieOsqHA+h+3GUX5oXvr4Y7alVDsvEL4Z89+LFq+GlNmL8Jro3qg7LWX2/AgP3X33gN48IlB+HBG5meby0dBD7EqEAT21JrJX6yZ98d48uePPIQxCrIXxqz7Z83kzz+5CGMk5C+MWffHmsmeP/IQ1ijIX1gzz3XHqgCb4LEqxvGWFNi0ZTvGTJ6LVd9swMmTpxAXlw03XFcKXdo2QfmyV1myKTUp3dloycDR4/+ifctGePSBu6Tc0q6QAjqxpyQgf0IgeGSW/HkkPN2C7BECLxUgf16qT9/kjwx4pQDZ80p5+lUKkD9yQAWiK8AmeHSNOMJBBZKTk3Hw0FHkzpUDOXIkOGjZOVPnnskcFxeH8xILGjHzpa8COrCn1CV/+jKWVeTkL5h51WFVZE+HLAU3RvIX3NzqsDLyp0OWghkj2QtmXnVZFfnTJVOM0wsF2AT3QvWQ+Zwy68NMV9zs7tswa94ytG5W31eqqB/s/GLNBuzddxCFEwug8k2lUaxIIV/FyGCiK6Aje2pV5C96bnUYQf50yFIwYyR7wcyrLqsif7pkKphxkr9g5lWHVZE9HbIU3BjJX3Bzy5U5qwCb4M7qSWsZKNB72GuZ6tKzQ3MMHTcTA3o87BvtFq/4Gn2Gv4YbS5dC4UIFcPDwEazbsBV9urRE3eoVfBMnA4mugG7sqRWRv+h51WUE+dMlU8GLk+wFL6c6rYj86ZSt4MVK/oKXU11WRPZ0yVQw4yR/wcwrV+W8AmyCO68pLZpQ4OSpJHz5zQZUu+V6E6PdHVK/RU+8OLAjSpW8KMXxjp278Wj3EVjwxhB3g6E3xxXwM3tqseTP8ZT7yiD581U6QhUM2QtVun23WPLnu5SEKiDyF6p0+2qxZM9X6QhdMOQvdCnngk0owCa4CZE4xBkFTpw4ic/X/IAlK9bg4y++RbEiiZg/dZAzxh20Ur3xk1g+5wXEx8elWE1KOo3aTbvg47dHO+iJptxSQBf2lB7kzy0q3PND/tzTmp4iFSB7JMJLBcifl+rTN/kjA14pQPa8Up5+lQLkjxxQgawVYBOchIgrsPTTb7Bkxdf47Kv1uLrUJahZpRxq3VoeFxcvKu7bioOegyYam0ffbq1RMH9eHDt+Ao8/MxpFChfE0GfaWjHJOR4poBt7Siby5xEsAm7Jn4CoNGlKAbJnSiYOElKA/AkJS7OmFCB/pmTiIAEFyJ6AqDRpWgHyZ1oqDgy5AmyChxwAN5ZfukYro+ndrV1TXHrx+W64tOVDNcBfn7MYDepUQfFihY2GuPrvlk3qIUeOBFu2OdldBXRjT6lD/txlRNIb+ZNUl7azUoDskQ8vFSB/XqpP3+SPDHilANnzSnn6VQqQP3JABcwpwCa4OZ04yoYCX36zER9+vBoff/4tLrvkAtxW7Sbc5uMnwdVSd+89gFVrNmDPvoMonJgfVSqUMZ4E50svBXRkj/zpxVhW0ZK/4ORSt5WQPd0yFqx4yV+w8qnbasifbhkLTrxkLzi51HEl5E/HrDFmLxRgE9wL1UPq81RSElav/REfLl+N5Z+tRfHzz8Pcyf19p8bKVevQa8gruLF0KaxeuxHly16FdRu3Ytiz7VC98g2+i5cBRVdAF/bUSshf9HzqNoL86Zax4MRL9oKTSx1XQv50zFpwYiZ/wcmlbishe7plLFjxkr9g5ZOrcV4BNsGd15QWTSjg518qvrv1s3ihXweULFEctZt2xdLZI7F56+/oOXAi5k0ZaGJ1HOJnBfzMntKN/PmZHvuxkT/7GtKCNQXInjXdOMsZBcifMzrSijUFyJ813TjLvgJkz76GtGBdAfJnXTvODK4CbIIHN7e+WdmRo8cxfuo8LPtsLfbsO4DChQoYZ4Q/3vq/yJsnl2/iPBvI7ff3wKI3hxn/ebYJrv5854NPYcEbQ3wXLwPKXAHd2FMrIX/BIZr8BSeXuq2E7OmWsWDFS/6ClU/dVkP+dMtYcOIle8HJpY4rIX86Zo0xe6EAm+BeqB4yn08PfgUJCfFo1qgWOvQajdH9n8D0uUsQHx+PIb0e9Z0a97Tpg37dW6PM1SWNJvj8qYPw1vsrjDPCJw7r6rt4GVDmCujGnloJ+QsO0eQvOLnUbSVkT7eMBSte8hesfOq2GvKnW8aCEy/ZC04udVwJ+dMxa4zZCwXYBPdC9ZD5VE+2fjhjKLJly5byZPXp08lo8NBTWDh9qO/U+Ob7n7B4xVfo1fEBVGrQHkePHUf1Sjegd+eWKFakkO/iZUCZK6Abe2ol5C84RJO/4ORSt5WQPd0yFqx4yV+w8qnbasifbhkLTrxkLzi51HEl5E/HrDFmLxRgE9wL1UPms06zbkYTPHt8fEoTfP+Bw3io42DMf32wr9XYtWc/EgvlN2LnSz8FdGZPqU3+9GMubcTkT+/86Rw92dM5e/rHTv70z6HOKyB/OmdP79jJnt750z168qd7Bhm/WwqwCe6W0iH2M+CFaciZIwE9OjRH9cZPokGdyliycg3aNL8DTRvVCrEyXLq0AmRPWmHaz0oB8kc+vFKA7HmlPP0qBcgfOfBSAfLnpfrh9k32wp1/r1dP/rzOAP3rogCb4LpkSuM41a8Sb9663Thje/DYGSiYPw9uq3YTrilVQuNVMXQdFCB7OmQpuDGSv+Dm1u8rI3t+z1Cw4yN/wc6v31dH/vyeoeDGR/aCm1sdVkb+dMgSY/SDAmyC+yELAY/h51/+yHCFp04l4dorLw346rk8LxUge16qT9/kjwx4pQDZ80p5+lUKkD9y4KUC5M9L9cPtm+yFO/9er578eZ0B+tdFATbBdcmUxnHWvLdTSvTJycDBQ0eMH8kscVExvPvaQI1XxtD9rgDZ83uGgh0f+Qt2fv28OrLn5+wEPzbyF/wc+3mF5M/P2Ql2bGQv2Pn1++rIn98zxPj8ogCb4H7JRIjiOH06GYtXfIUVX3yHoc+2DdHKuVSvFSB7Xmcg3P7JX7jz7+XqyZ6X6tM3+SMDXipA/rxUP9y+yV648+/16smf1xmgf78qwCa4XzMTgrhadRqCV0f2QHx8XAhWyyX6SQGy56dshC8W8he+nPtlxWTPL5kIZxzkL5x598uqyZ9fMhG+OMhe+HLupxWTPz9lg7H4QQE2wf2QhYDGsO/AISQWzG+s7ofNv2D9j9tw+MgxFCyQDzddfxWuuPTCgK6cy/JaAbLndQbC7Z/8hTv/Xq6e7HmpPn2TPzLgpQLkz0v1w+2b7IU7/16vnvx5nQH6100BNsF1y5gm8c5d8AmGvPQmVi+YgJEvz8Z7iz9HhRuuRr68uXHg0BF8/d0mtLn/TuN/fFEBJxUge06qSVuxKkD+YlWM451SgOw5pSTtWFGA/FlRjXOcUoD8OaUk7cSqANmLVTGOd1IB8uekmrQVFgXYBA9Lpl1eZ91m3TD++c4oVfIi1LinE959bUDKU+EqlF179qP5Y/2x9K1RLkdGd0FXgOwFPcP+Xh/583d+ghwd2Qtydv2/NvLn/xwFOULyF+Ts+nttZM/f+Ql6dOQv6Bnm+iQUYBNcQlXaxG1NumDZnDMN7ubtB+CNF3she3x8ijInTyXh/vYDMGdSX6pFBRxVgOw5KieNxagA+YtRMA53TAGy55iUNGRBAfJnQTROcUwB8ueYlDQUowJkL0bBONxRBcifo3LSWEgUYBM8JIl2e5lPPDPGOPu7Ub2q2PLrDnz8+be4t0ENFCtSCH/v2mscj1Kzajk0aVDD7dDoL+AKkL2AJ9jnyyN/Pk9QgMMjewFOrgZLI38aJCnAIZK/ACfX50sjez5PUMDDI38BTzCXJ6IAm+AistLo/gOHMf71efj2hy04dPhohoKcOnWKx6EQFccVIHuOS0qDMShA/mIQi0MdVYDsOSonjcWoAPmLUTAOd1QB8ueonDQWgwJkLwaxONRxBcif45LSYAgUYBM8BEnmEqkAFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAJhVYBN8LBm3uV1r/jiOyz7bC327DuAwoUKoNat5VGrajmXo6C7MCpA9sKYdf+smfz5Jxdhi4TshS3j/lov+fNXPsIWDfkLW8b9s16y559chDES8hfGrHPNsSrAJnisinF8zApMmv4+Fq/4GnfVrQL159ZN62Peos+M88IffeCumO1xAhUwqwDZM6sUx0koQP4kVKVNMwqQPTMqcYyUAuRPSlnaNaMA+TOjEsdIKED2JFSlTbMKkD+zSnFc2BVgEzzsBLiw/jse6Ik5k/ohb55cqN20K5bOHomDh4+i+WP9seCNIS5EQBdhVYDshTXz/lg3+fNHHsIYBdkLY9b9s2by559chDES8hfGrPtjzWTPH3kIaxTkL6yZ57pjVYBN8FgV4/iYFajbrBuWzBphzDvbBE9KOo1GrZ/BB9Oej9keJ1ABswqQPbNKcZyEAuRPQlXaNKMA2TOjEsdIKUD+pJSlXTMKkD8zKnGMhAJkT0JV2jSrAPkzqxTHhV0BNsHDToAL63+0+wjUrV4R9zaojlpNOuO5Lq3w9oKVOL9IIp7t9KALEdBFWBUge2HNvD/WTf78kYcwRkH2wph1/6yZ/PknF2GMhPyFMev+WDPZ80cewhoF+Qtr5rnuWBVgEzxWxTg+ZgX+2b0fn3+9Hv+tXw33PvKccSzKbbeWR/O7b0NCQvaY7XECFTCrANkzqxTHSShA/iRUpU0zCpA9MypxjJQC5E9KWdo1owD5M6MSx0goQPYkVKVNswqQP7NKcVzYFWATPOwEcP1UgApQASpABagAFaACVIAKUAEqQAWoABWgAlSAClCBACvAJniAk+uXpXXq81KGoSSdPo0XB3b0S5iMI4AKkL0AJlWjJZE/jZIVsFDJXsASqtlyyJ9mCQtYuOQvYAnVaDlkT6NkBTBU8hfApHJJIgqwCS4iK42mVeDtD1ZGCHLk2HEs/2wtbil/Hdq3bESxqICYAmRPTFoaNqEA+TMhEoeIKED2RGSlUZMKkD+TQnGYiALkT0RWGjWhANkzIRKHiClA/sSkpeGAKcAmeMASqstyTp5KQsdnx2LCkM66hMw4A6IA2QtIIjVdBvnTNHEBCJvsBSCJGi+B/GmcvACETv4CkERNl0D2NE1cQMImfwFJJJfhqAJsgjsqJ42ZVeD06WQ0/l9vzJsy0OwUjqMCjihA9hyRkUYsKkD+LArHabYVIHu2JaQBGwqQPxvicaptBcifbQlpwKICZM+icJzmiALkzxEZaSRgCrAJHrCE+nE5555PlZycjF//2IkSF53PM8H9mLAAxUT2ApRMDZdC/jRMWkBCJnsBSaSmyyB/miYuIGGTv4AkUsNlkD0NkxagkMlfgJLJpYgqwCa4qLw0rhQ493yq+Pg4FCuSiErlr4P6M19UQEoBsielLO2aUYD8mVGJYyQUIHsSqtKmWQXIn1mlOE5CAfInoSptmlGA7JlRiWOkFCB/UsrSbtAUYBM8aBn16Xp27dmPL9ZswN59B1E4sQAq31QaxYoU8mm0DCtICpC9IGVTv7WQP/1yFpSIyV5QMqnnOsifnnkLStTkLyiZ1G8dZE+/nAUpYvIXpGxyLVIKsAkupSztpiiweMXX6DP8NdxYuhQKFyqAg4ePYN2GrejTpSXqVq9ApaiAmAJkT0xaGjahAPkzIRKHiChA9kRkpVGTCpA/k0JxmIgC5E9EVho1oQDZMyESh4gpQP7EpKXhgCnAJnjAEurH5dRv0dM4+7tUyYtSwtuxczce7T4CC94Y4seQGVNAFCB7AUmkpssgf5omLgBhk70AJFHjJZA/jZMXgNDJXwCSqOkSyJ6miQtI2OQvIInkMsQVYBNcXGI6qN74SSyf80LE+d9JSadRu2kXfPz2aApEBcQUIHti0tKwCQXInwmROEREAbInIiuNmlSA/JkUisNEFCB/IrLSqAkFyJ4JkThETAHyJyYtDQdMATbBA5ZQPy6n56CJOHHiJPp2a42C+fPi2PETePyZ0ShSuCCGPtPWjyEzpoAoQPYCkkhNl0H+NE1cAMImewFIosZLIH8aJy8AoZO/ACRR0yWQPU0TF5CwyV9AEslliCvAJri4xHSgGuCvz1mMBnWqoHixwkZDXP13yyb1kCNHAgWiAmIKkD0xaWnYhALkz4RIHCKiANkTkZVGTSpA/kwKxWEiCpA/EVlp1IQCZM+ESBwipgD5E5OWhgOmAJvgAUuoX5eze+8BrFqzAXv2HUThxPyoUqGM8SQ4X1RAWgGyJ60w7WelAPkjH14pQPa8Up5+lQLkjxx4qQD581L9cPsme+HOv9erJ39eZ4D+dVCATXAdsqR5jCtXrUOvIa/gxtKlsHrtRpQvexXWbdyKYc+2Q/XKN2i+OobvZwXInp+zE/zYyF/wc+zXFZI9v2YmHHGRv3Dk2a+rJH9+zUzw4yJ7wc+xn1dI/vycHcbmJwXYBPdTNgIay92tn8UL/TqgZIniqN20K5bOHonNW39Hz4ETMW/KwICumsvygwJkzw9ZCG8M5C+8ufd65WTP6wyE2z/5C3f+vV49+fM6A+H1T/bCm3s/rJz8+SELjEEHBdgE1yFLmsd4+/09sOjNYcYqzjbB1Z/vfPApLHhjiOarY/h+VoDs+Tk7wY+N/AU/x35dIdnza2bCERf5C0ee/bpK8ufXzAQ/LrIX/Bz7eYXkz8/ZYWx+UoBNcD9lI6Cx3NOmD/p1b40yV5c0muDzpw7CW++vMM4Inzisa0BXzWX5QQGy54cshDcG8hfe3Hu9crLndQbC7Z/8hTv/Xq+e/HmdgfD6J3vhzb0fVk7+/JAFxqCDAmyC65AlzWP85vufsHjFV+jV8QFUatAeR48dR/VKN6B355YoVqSQ5qtj+H5WgOz5OTvBj438BT/Hfl0h2fNrZsIRF/kLR579ukry59fMBD8ushf8HPt5heTPz9lhbH5SgE1wP2UjBLHs2rMfiYXyI3t8fAhWyyX6SQGy56dshC8W8he+nPtlxWTPL5kIZxzkL5x598uqyZ9fMhG+OMhe+HLupxWTPz9lg7H4TQE2wf2WEcZDBagAFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAKOKcAmuGNS0hAVoAJUgApQASpABagAFaACVIAKUAEqQAWoABWgAlSACvhNATbB/ZYRxkMFqAAVoAJUgApQASpABagAFaACVIAKUAEqQAWoABWgAo4pwCa4Y1LSEBWgAlSAClABKkAFqAAVoAJUgApQASpABagAFaACVIAK+E0BNsH9lhHGQwWoABWgAlSAClABKkAFqAAVoAJUgApQASpABagAFaACjinAJrhjUtIQFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAJUgAr4TQE2wf2WEcZDBagAFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAKOKcAmuGNS0hAVoAJUgApQASpABagAFaACVIAKUAEqQAWoABWgAlSACvhNATbB/ZYRxkMFqAAVoAJUgApQASpABagAFaACVIAKUAEqQAWoABWgAo4pwCa4Y1LSEBWgAlSAClABKkAFqAAVoAJUgApQASpABagAFaACVIAK+E0BNsH9lhHGQwWoABWgAlSAClABKkAFqAAVoAJUgApQASpABagAFaACjinAJrhjUtIQFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAJUgAr4TQE2wf2WEcZDBagAFaACVIAKUAEqQAWoABWgAlSAClABKkAFqAAVoAKOKcAmuGNS0tDzL87A37v2YXT/x2MSw+q8mJxwcOAVaPy/3rjnzupo0bh2TGu1Oi8mJxwcaAWWfboWvYe/ii/mj4tpnVbnxeSEgwOvgNU91Oq8wAvKBZpW4ODho6jcoD3mTRmIK0teLD7PtAMODIUCVvdQq/NCISoXaVoBq/cPVueZDowDA68A997Ap5gLFFaATXBhgXUz/8mX61DiovNx2SUXRA392PETeP+jL3DfXTWMsdt3/I0TJ06hVMmLspxrdV7UgDhAawXO5SLaYrb+ugM7d+1D1YpljKE/bP4FRQsXwvlFE7OcanVetHj4vt4KnMtFtNWkrZX7DhzCL9t3onzZK6NNg9V5UQ1zgNYKzJy3DPfeWR0JCdmjrsPqHmp1XtSAOEBrBezsvaeSkrD2+59R5pqSyJM7p+m9N5Z5WovL4KMqEMt9hzKWtlbGsvdanRd1ARygtQJ29l6z9x3n1liz87QWlsFHVcDOfUcse2jaGhvLvKgL4AAqoLECbIJrnDyJ0B94fBDa3H8nalS5Mar5VWs2YNSkOZgzqW/UsWkHWJ0XkxMO1k6BWLkYM3kuTpw4ie7tm8W0VqvzYnLCwdopECsXsdTKtGJYnaedoAzYtALqBrnSnY9h1QfjkCd3rqjzYq2VZw1anRc1IA7QWoFYuYi1Vp4Vx+o8rcVl8FEViGVPjLVWnnVudV7U4DlAawVi5SLWWsm9V2s8xIOPdU+MpVbyvkM8fXSguQJsgmueQCvhv/nuMkyd/SH+2bMfxc4rhJb33W4cIdG68xB89e0m5MiRgLrVK2DoM20xf8nnmDT9A+zYuRvnJRZAq/tuxwP31IH6IPDYU6NwKuk0cuVMwOyJffHW/I9TjkP56+896DdqKr79YQuSk5NRrsyV6NutNX7d/leW89R6XpnxAWa8sxSHjxzFTddfjee6tMSFFxSxslTO8ZkCsXBR8pLieGHSHOPbBgcOHUHJSy5Ajw7NUan8dXjptXcxcfp8xGWLQ9EihbB09kik/Xrh6m9/xPDxs/DL9r+QO1dO1K1REU8/fj8mvvF+lvOOHjuOgaPfwNJPv0H2+HjUU/OeaGFcE3zpr0AsXKzf9AuGvvQmNm35Dbly5sRt1crjmY4PGCycWyvr/qdixHEoZmvsufN+/X1nSt0sklgArZvdEfPxPvpnKZgrOHkqCYPHTsfST9bgyNHjuPzSC41/wCtXuhQqNWiPf0+cRO5cOdCjw/3Gt6u49waTA69WFcveW7hQfvQb+TpWr91ofMYrV6YUnuvaChddUCTd3vvOqwMijkMxW2PPnce91ysy3PFrdk9U9x2Z7b0q0nNr5XmFCqTsvbHU2LTzlN2Vq9ZhxIRZ+P2vXbji0guNz5q3lLvWHXHoRVSBWLhQ38bK7L4jo/ve7v0npBzDGEuNTTuP972i6ffcuNk9Ud3Hqm+2ZLb3nnvf8cyTD0bsvWZr7LnzeN/hOSIMwCMF2AT3SHiv3G75ZQeatO2LN8c9i6suvwQbf/oVj3YfgdfH9sJVl1+MW+58zGh+qyfBVWG888GnMHZAR1S7pSzWbdyKNl2HY/q4Z1H2mpKYNmcx3v9oVcqT4GnPF+3Sdxxy5cyBZzs9ZDTBh42fiQMHjxjnhWc176NP1qD/qNcxbnAnXHrxBRj84nT89sffmDWhj1eS0a+DCsTCxdsfrMSYyW9j6pinjZvvN99diskzFmDlO2OMIwOeeGaMrB8huAAADjlJREFUcXTP2SfB0zbBq939BJ54uDEa3/kf7N57AB2fHYtG9W41GopZzVNNqo0//Ybhvdsh6fRpY2y1W65Hl7b3OagCTXmlgFkuVM2qfV9X1L/tFnRo9V/s2XcAj3QbjvvuqonWzeob4aetlWnPF42lxqadp3wqhiveeA3at7wb27b/adTmF/o9bjDIl94KqK9cz37vY0we2R2FCubDe4s+x9hX52LZnFFQzNzTpg++/vBl40lw7r1659qP0cey9/YcOBH/7NmHEX3aI0dCdjw79FWcOHkKE4Z0NpaWdg8991xSszX23Hnce/1IjTMxxbInRtt7N23ZHlEr0+6hsdTYtPP+2b0f9e7vjv7dWhv3Puq+5oVJb2HJrBFILJjfGRFoxTMFYuEi2n3Hufevae87YqmxaefxvtczNFxxbHZPVMFE23vT3nek3UOzIZvp3k7aeaUuu4j3Ha5QQCd+VIBNcD9mRTAm1chu1WkIFkx7PuXp6qSk04iPj0vX2FF/v3f/QRQ9r1BKRI1aP4P7774NTRvVyrKZrZo3l1xYDL07P2TMTesjqyZ4u54jccVlF6H7Y2eOuFANzC+/2Yj6tW5JiVFQHpoWViAWLtSTkerpsLM3IfsPHEbVRo/j/WnP4/ISxTNtZjdtVNM4WmBgzza4vebN6fjLrAl+/39vQ4Xb22JU3w6oXvkGY5664dqz72DKuePC8tC8oALqHLxYuNi7/xDy5cmV8i2AQWPegPq7kc+1T1cr095Qx1Jj085b/+M23N9hAFa9Px758uY2fHy6ej2KFSmEq6+4RFAZmnZDAfUNpyUr1+CNF3sZ/0Ccdl88t7HDvdeNjITLRyx77+EjxwxxztYhxe3A0dPwybtjjb/PrAleskRx0zX23Btx7r3B5TGWPVGpkNXem1UTPJYam3bvfXXmQixe8RXemph6tKP6Jk6VCmVQpHDB4CYmJCuLhYto9x1ZNcFjqbFpm+C87w0uiLHed0TbezNrgh899q/p3k7avff48RO87wguflxZFAXYBA8ZIurmuteQV7B4xdeocMPVxhOGjepWNZ5MU6+0BVY9kaE+HC5c9iUOHjoCZMuG3Xv2G0/FPtSkXpZN8G9/+BmPPzPGeKrt1pvLGsdKqGMs1CurJvgdD/Q0bDdrVCtkmQnHcmPhwvjmwOS38fV3m3D8+L+GQH/9sxdzJ/fHNaVKZPlEtzpOZ/j4mbjy8kuMBnbDelWNxvm5N/Dqv89+GFVHANW4pxPmvz7Y+DosX8FTIBYuln/+LabMWmgwp16qBqqvR7846Ml0tTLtDXUsNTbtvAXLvsSQF2fg03kvBk94rsj4xzR1k/znzt2oXKEMalUth3o1b0ZC9njjH9vSPgnOvZfAOK1ALHvvz7/8gbGT5+KnbX8gKSnJOKpHPQm+esGELJvgV5a82DjKzszem/ZGvFCBfNx7nU64j+zFsieqsLPae7NqgsdSY9PuvX1HTIXicVTfM//AzVewFIiFi2j3HVk1wWOpsWmb4LzvDRZv567G7J6o5kXbezNrgl9e4kLTvZ20e6/a43nfEWz+uLrMFWATPKR0qLOSP/7iW3y4/Cvs/GcPZr/8nPFkeNoC+87CTzBq4hxMGNrFOP5EvdSN+v9r7+6Do6rOOI7/EjQqVNpRW6GUUm11yjitUktHYiFSQYpASwDBiNUSJ5XwEjGYNBkxKQkEYkCCBMKLxAg2EqRY4gtUU7CWAEIJgq/UUhxMeSltLRhEK7XtczSZJbK7985scXf53n/J3b33cw7n2fPcc5/z4wHXhk2C29++/8G/1LD1FT2/+SWtXb9FaUP7afLYkWGT4LcOv0G2KpcjPgW89ou8ksWuFM6DxRPd2wj2hNz6p5ckuMnZaqINDTu0vqFRDdtecSu8LfEUbCV4SxJ8zcPT9Y1LusQnPnflqV/Y+Dh0zBQV5aZrSP9kJSYmqHT+Y2ra/9ewSfAWYi9jbNskuJUEaFhTQSvFqYAlt22i/Pyml/RU/WZ9+eKLVD0371PlUIi9cdoBPuPb8hJ7rY/2HzVZva+5Uj8fn+beWrCkZH7JYk9JcK+x91RJcGLvZ9xB/s9f7yUmhou9oZLgdvlex9i2SfAj7za70mMc8SngtV+Em3eESoL7mfe2TYIz743PftdyV17mo15ib7AkuD2AtsPLGNs2Cc68I777HndHEpw+8ImAbRBy7Njx1pXfNuiOyCh0K2Vvv2nASUlwqwP54YcnVDrlTne2JSH7jpjkai2HWwluZUxsI82EhAR37vqNjbIfF1ufWRgyCX5n7mxXRmXKpJ+48+wJvtVoS795oKsDzRHbAn76xYC0HGWMHqwRg1PcTW9pfE13ZN8fNgluD1Cs3wS+xjqzokZN+w+rouSuoEnwlnIoJfkZ7s0FO2yDpj/ueVvDB/WJbXiu3k2OvfYLexXaNkfasKq8Ve62rBJ9/vwOYZPgfsbYwIn4rtf2KG1csVsJbhvT2WFv7HT8XHv1+u4VtGCMC1hpJylB7c87x92JrTiz8k6PL/6Fi5OBK8GJvTHe2FF4+V5jr7350m9kttb+stTtuWHHvKrVevRXz4VNglt9Ua9j7KnKoRB7o7DjROCS/MTEcLE3VBLczxgbGHsfqnladc9uUl319Na7ra5dp77X9lC3r3z8f4AjdgX89Itw845QSXCvY6xJBibBmffGbt8Kd+V+5h1eYm+wJPjXunb2nNsJjL3Hj3/AvCNcI/LvcSvASvC4bdpT35htEGKv5sybluU2nnyr6aDGTJqpwuzb9YPvf0cpw+5SetqNSh3YW8sf/43WbdiqxyoLdOLEv1Uwq0p73trvfhjeM3aUVtZtUOWyNVq9tNiVPXlg0UodOvyOZhVm6vqbsl2i/JbUflZFRZWPrNHGrS+7BGaw82zTTEv6FJRVaW7RRF3+9a7uM/+0t0krFhaeYS0Vf7drtdH89AsrHdD54gtVkpehvfv2q6yyVrY7+7zpWepzzZW6p6jSPaQpyklXx/PbuyTS8EEprmTFqLFT3d99r0d3HX33PeUUV8qelOdNuCXoebZp5rTy5dq+a7dbNd6uXTvZRje9rr7CvcHAEdsCtjmX135hE23rf6uXFrmHcgs+Gb/OapfYOhYFjpXbdryh+8qWalPdfPkZYwPPsx/Lqen36ZuXfdWNr/v+ckiZeXM0qyCTjTFju+u5q7exxA7bLNoeprzw4k7dXVCh9avKdeRoswbflq/aRYW6pGtnVdeuJfbGQZtHyy34ib2JiYmuNMm9Wbe6h7+/3djoyuK9unuvG9+sTnhg7FWClDxkvH798DTZ5lxex9jA8yw2E3ujpbdE/jr8xMQ33tznNqEOFnttpWPgWGl7BrXEXj9jbOB5Nm+xjTFzMkdp0PW99OzvtqmscoXW1ZS5xTwcsS3gp1+My58Tct7Rdv6allnk5h22F5Gf+U3LeTbvYN4b2/0r1NX7mXckJZ2l5B9NCBl7A+cd9r29Bo9zsfcPO3d7zu0EnmcPrpl3xG//485CC5AEP8N6iNXmm/vQKj353Ca9c6TZlZkYOeQ6t+LWjoqqJ1S14hlXR7k49w5NnrpAu17fo05fvEC549N08PA/VFpRownpwzQgpafbiOGfR5u1YMbd7oej/Zi0ZLatoL1/fo2rdWqTqm91v1T5E0e7WssHDv096Hl2DYuWP6maJ+rdyvOrv325Cif/VF06XXSGtVR83q6ffpGUdLbunbFEB/5Xrqf7Zd3cRpeLltep/vfbVTkzW83HLLm90L2uXV87202+7ceo/ai01URLHn1KTQf/pg7nnavrkq9y/a9D+3P1wpadQc879t77Ki5fJlslZLV6b0jpqfys0Ton6ez4bJAz7K789IsZFTV6un6zW7k7elh/t7dBenap20vhweKsk8bKoT/s3ToR9zPGBp5nTfHnfQc0dXa1bCOxC7/QUelpA913c8S+gL0OWzznEb3Y+LorFWabCE5IT1Xf5B766KP/6Ge5s7Tj5Tc1fsxQDRvYh9gb+00eVXfgJ/baA7jyJatcLXArIZYz7uaPf7MdaXaxdvP2V1tjqC2C6JOa5Sbilsz2Osa2PY/YG1XdJaIX4ycm2p4bRXOWBY295VMnnjRWduvSqTX2+hljA8+zm7XykA8sXKm3Dxx2+8fYfKdlH6OIYvBhp13AT7/oeVX3kPOOzl+64KT5q22Y3jLv8DPGBp7HvPe0d4nT+oVeY6LFViuTFyr2Wn6kJUczPT+jNQluNcG95nYCz7OYzbzjtHYHviyKBEiCR1FjcCkIIIAAAggggAACCCCAAAIIIIAAAggggAACkRUgCR5ZTz4NAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIoESIJHUWNwKQgggAACCCCAAAIIIIAAAggggAACCCCAAAKRFSAJHllPPg0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgigRIgkdRY3ApCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApEVIAkeWU8+DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCKBEiCR1FjcCkIIIAAAggggAACCCCAAAIIIIAAAggggAACkRUgCR5ZTz4NAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIoESIJHUWNwKQgggAACCCCAAAIIIIAAAggggAACCCCAAAKRFSAJHllPPg0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgigRIgkdRY3ApCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApEVIAkeWU8+DQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCKBEiCR1FjcCkIIIAAAggggAACCCCAAAIIIIAAAggggAACkRX4L3y9ETRkXFjiAAAAAElFTkSuQmCC",
"text/html": [
"<div> <div id=\"38d9e1b0-9556-496b-952a-3a4b8d712afa\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"38d9e1b0-9556-496b-952a-3a4b8d712afa\")) { Plotly.newPlot( \"38d9e1b0-9556-496b-952a-3a4b8d712afa\", [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=country\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"country\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"country\",\"offsetgroup\":\"country\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"Chi-squared Test\"],\"xaxis\":\"x\",\"y\":[0.0],\"yaxis\":\"y\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=continent\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"continent\",\"marker\":{\"color\":\"#EF553B\",\"pattern\":{\"shape\":\"\"}},\"name\":\"continent\",\"offsetgroup\":\"continent\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"Chi-squared Test\"],\"xaxis\":\"x2\",\"y\":[0.0],\"yaxis\":\"y2\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=year\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"year\",\"marker\":{\"color\":\"#00cc96\",\"pattern\":{\"shape\":\"\"}},\"name\":\"year\",\"offsetgroup\":\"year\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"xaxis\":\"x3\",\"y\":[0.0,0.0,0.0,1.0,30.0],\"yaxis\":\"y3\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=lifeExp\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"lifeExp\",\"marker\":{\"color\":\"#ab63fa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"lifeExp\",\"offsetgroup\":\"lifeExp\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"xaxis\":\"x4\",\"y\":[0.2357268822114845,13.598979670676874,0.5001570911698885,0.5666666666666667,9.905244000000001],\"yaxis\":\"y4\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=pop\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"pop\",\"marker\":{\"color\":\"#FFA15A\",\"pattern\":{\"shape\":\"\"}},\"name\":\"pop\",\"offsetgroup\":\"pop\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"xaxis\":\"x5\",\"y\":[4.990786528751271e-09,1.8818525523798695,0.3025545016073308,0.3,189377557.43333334],\"yaxis\":\"y5\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=gdpPercap\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"gdpPercap\",\"marker\":{\"color\":\"#19d3f3\",\"pattern\":{\"shape\":\"\"}},\"name\":\"gdpPercap\",\"offsetgroup\":\"gdpPercap\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"xaxis\":\"x6\",\"y\":[0.0005244760018707403,5.374984606904614,0.35618190878501066,0.5,8463.419603076667],\"yaxis\":\"y6\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=iso_alpha\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"iso_alpha\",\"marker\":{\"color\":\"#FF6692\",\"pattern\":{\"shape\":\"\"}},\"name\":\"iso_alpha\",\"offsetgroup\":\"iso_alpha\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"Chi-squared Test\"],\"xaxis\":\"x7\",\"y\":[0.0],\"yaxis\":\"y7\",\"type\":\"bar\"},{\"alignmentgroup\":\"True\",\"hovertemplate\":\"col=iso_num\\u003cbr\\u003estatistic=%{x}\\u003cbr\\u003emetric=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"iso_num\",\"marker\":{\"color\":\"#B6E880\",\"pattern\":{\"shape\":\"\"}},\"name\":\"iso_num\",\"offsetgroup\":\"iso_num\",\"orientation\":\"v\",\"showlegend\":true,\"textposition\":\"auto\",\"x\":[\"PSI\",\"KL Divergence\",\"Jensen-Shannon Divergence\",\"KS Test\",\"Wasserstein Distance\"],\"xaxis\":\"x8\",\"y\":[0.0,0.0,0.0,0.0,0.0],\"yaxis\":\"y8\",\"type\":\"bar\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,0.1075],\"title\":{\"text\":\"statistic\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"metric\"},\"type\":\"log\"},\"xaxis2\":{\"anchor\":\"y2\",\"domain\":[0.1275,0.235],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis2\":{\"anchor\":\"x2\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"xaxis3\":{\"anchor\":\"y3\",\"domain\":[0.255,0.3625],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis3\":{\"anchor\":\"x3\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"xaxis4\":{\"anchor\":\"y4\",\"domain\":[0.3825,0.49],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis4\":{\"anchor\":\"x4\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"xaxis5\":{\"anchor\":\"y5\",\"domain\":[0.51,0.6175],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis5\":{\"anchor\":\"x5\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"xaxis6\":{\"anchor\":\"y6\",\"domain\":[0.6375,0.745],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis6\":{\"anchor\":\"x6\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"xaxis7\":{\"anchor\":\"y7\",\"domain\":[0.765,0.8725],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis7\":{\"anchor\":\"x7\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"xaxis8\":{\"anchor\":\"y8\",\"domain\":[0.8925000000000001,1.0],\"matches\":\"x\",\"title\":{\"text\":\"statistic\"}},\"yaxis8\":{\"anchor\":\"x8\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false,\"type\":\"log\"},\"annotations\":[{\"font\":{},\"showarrow\":false,\"text\":\"col=country\",\"x\":0.05375,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=continent\",\"x\":0.18125,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=year\",\"x\":0.30874999999999997,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=lifeExp\",\"x\":0.43625,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=pop\",\"x\":0.56375,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=gdpPercap\",\"x\":0.6912499999999999,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=iso_alpha\",\"x\":0.8187500000000001,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"col=iso_num\",\"x\":0.94625,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"}],\"legend\":{\"title\":{\"text\":\"col\"},\"tracegroupgap\":0},\"margin\":{\"t\":60},\"barmode\":\"relative\"}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('38d9e1b0-9556-496b-952a-3a4b8d712afa');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"drift_detector.plot_drift(drift_results, x='statistic', facet_col='col', log_y=True)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "f9d06083-6408-454f-86f3-0f4cc6239033",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=China<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": true,
"type": "histogram",
"x": [
400.448611,
575.9870009,
487.6740183,
612.7056934,
676.9000921,
741.2374699
],
"xaxis": "x",
"yaxis": "y"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=Germany<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
7144.114393000002,
10187.82665,
12902.46291,
14745.62561,
18016.18027,
20512.92123
],
"xaxis": "x2",
"yaxis": "y2"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=India<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
546.5657493,
590.061996,
658.3471509,
700.7706107000001,
724.032527,
813.3373230000002
],
"xaxis": "x3",
"yaxis": "y3"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=Switzerland<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
14734.23275,
17909.48973,
20431.0927,
22966.14432,
27195.11304,
26982.29052
],
"xaxis": "x4",
"yaxis": "y4"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=United States<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
13990.482080000002,
14847.12712,
16173.14586,
19530.36557,
21806.03594,
24072.63213
],
"xaxis": "x5",
"yaxis": "y5"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=China<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": true,
"type": "histogram",
"x": [
962.4213805,
1378.904018,
1655.784158,
2289.234136,
3119.280896,
4959.114854
],
"xaxis": "x",
"yaxis": "y"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=Germany<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
22031.53274,
24639.18566,
26505.30317,
27788.88416,
30035.80198,
32170.37442
],
"xaxis": "x2",
"yaxis": "y2"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=India<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
855.7235377000002,
976.5126756,
1164.406809,
1458.817442,
1746.769454,
2452.210407
],
"xaxis": "x3",
"yaxis": "y3"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=Switzerland<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
28397.71512,
30281.70459,
31871.5303,
32135.323010000004,
34480.95771,
37506.41907
],
"xaxis": "x4",
"yaxis": "y4"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=United States<br>gdpPercap=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
25009.55914,
29884.350410000006,
32003.93224,
35767.43303,
39097.09955,
42951.65309
],
"xaxis": "x5",
"yaxis": "y5"
}
],
"layout": {
"annotations": [
{
"font": {},
"showarrow": false,
"text": "country=China",
"x": 0.09200000000000001,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=Germany",
"x": 0.29600000000000004,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=India",
"x": 0.5,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=Switzerland",
"x": 0.7040000000000002,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=United States",
"x": 0.908,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
}
],
"autosize": true,
"barmode": "overlay",
"legend": {
"title": {
"text": "source"
},
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Combined Histogram of gdpPercap"
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
0.18400000000000002
],
"range": [
0,
50000
],
"title": {
"text": "gdpPercap"
},
"type": "linear"
},
"xaxis2": {
"anchor": "y2",
"autorange": true,
"domain": [
0.20400000000000001,
0.388
],
"matches": "x",
"range": [
0,
50000
],
"title": {
"text": "gdpPercap"
},
"type": "linear"
},
"xaxis3": {
"anchor": "y3",
"autorange": true,
"domain": [
0.40800000000000003,
0.5920000000000001
],
"matches": "x",
"range": [
0,
50000
],
"title": {
"text": "gdpPercap"
},
"type": "linear"
},
"xaxis4": {
"anchor": "y4",
"autorange": true,
"domain": [
0.6120000000000001,
0.7960000000000002
],
"matches": "x",
"range": [
0,
50000
],
"title": {
"text": "gdpPercap"
},
"type": "linear"
},
"xaxis5": {
"anchor": "y5",
"autorange": true,
"domain": [
0.8160000000000001,
1
],
"matches": "x",
"range": [
0,
50000
],
"title": {
"text": "gdpPercap"
},
"type": "linear"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
0,
6.315789473684211
],
"title": {
"text": "count"
}
},
"yaxis2": {
"anchor": "x2",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
},
"yaxis3": {
"anchor": "x3",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
},
"yaxis4": {
"anchor": "x4",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
},
"yaxis5": {
"anchor": "x5",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcEAAAFoCAYAAACfcTNMAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3XecU8X3//GzNKki0kEQROwIogiiCAgI0nvvvffee++9F5EuvUoVERBQEEE/WEGkgwjSy8LvN8M36y6wO9lNcjcTXvnHhzD33rnPMwn3vjOZG3T//v37wgsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQAUCCIED8CqckoIIIAAAggggAACCCCAAAIIIIAAAggggAACWoAQnIGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnDGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELAChOABW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQPJJj4N69+7Lyi69lxYav5Zff/5Ibt25L8qTPSI6sL0vNCoXllRfTR3KPUWu+euMu6TxwqqyfN0TSp00Z7k6KVO0o2bNkloFdGkTtQJHc6tMlX8iQCQtk95qJ8nTC+I/dWvUpbapkMmNkx8f+fc5iTSTfe9lkSPdG+u97DJ0pu7/7UTYvGhHJ3tBcCSxb95WMmb5U/r16XWaO7ChvvZHZqzAtuo2Rk2cuyLIZ/dzer2v8ht4gRowgSZUiqWR/I7M0q1NG0qdN4fb+aIgAAggggAACCCCAAAIIIIAAAggggEB4AoTgkRgbd+4GS8vuY+Wrbw7Kx3nfkXy535KE8ePJsRNnZMnqL+XMub9lcLdGUiT/u5HYa9SauhuCr93yjSR7NrHkfOvVqB0oklv5IgTf9/0ROXv+Hyle6D23e1OmbndpVb+85Mudze1tArXhB6VaSKYMaaRLi2qSLk0KSRA/rldP1ZMQvGvLapI5Yzrdnzt378qxv07LrEUb5MrV67J0el95LnVyr/aVnSGAAAIIIIAAAggggAACCCCAAAIIPHkChOCRqPnoaZ/LtHlrZEDn+lK6yAdhtrx+46bUbzdMfv/zlGxcMFwSP50gEnuOfFN3Q/DI79mzLXwRgke2R9dv3JKcxRrLuP6tHAnB1ZcjsWPFjGw3HWv/er7a0qRmKWlet4xPjulJCD53XFfJnuWlMP369egJKV2nu9StXFTaNa4Y5T77e12ifGJsiAACCCCAAAIIIIAAAggggAACCCAQKQFCcDe5bty8LXlKN5d3sr4ik4e0fexWp85ckLvB90KWcVBLp8xatF6Wrt0u6u/ixn1KL03SukEFeemF5/Q+eg+fLQd/+k3aNa4kQyculOMnz0rqFEmlS4uq8mySp6X/6Ll62RU1m7tVg/JSrEAuvZ0rBJ81qrPMXLhOvj14RGLEiCH5c78lPdrUlIQJ4ul2oZdDOf/3JclXrrUM69FEvv/xV9mwba+o8P7lTOn1NqGXcvlm/08yYdYK+emXYxIUJPLmq5mkdYPy8uZrmULO/fdjJ6XPyDly6MhRSRg/rhQvlFv3c+SUxT5dDuXIb8dl9LQlcvjIMbl246akSp5ESnz8vjSuUVK+Pfiz1GkzOKSP8eLGkW83TNX/v23XAZkyd7X2DAoKkswZ00qDaiWkQJ7sIe037/hOxkz7XP46dU7SpEqml+X45ruf5OCPv8mqOQN1u48rt5f877+lvRet3KrtynySR9du1NQl8t0Pv+ilR1IkfUaKFsglzWqXltixY3lU78cNONP42v3tj1K//bAwm6rx8u5brzyyOzXzWo21L3d/L2q/H+Z6UxpUKy7l6veUkb2bSuF8D37dsGXHfhk1bYmcOHVOL11Sr2pR+eqbH+Tk6fN6ORTlpsZc/071RM3g37bzgNy8fUeyvpZJO2V6Pk2Y8fu4EFw1yPFJI8mTM6s+tnqpLzbGzlgqG7fvk78v/ivJkybW403Vx/UFRHh1UeemxuSWr/fL1Ws3JGP61NKoRkn9aw7X67Olm2TJmi/1ecSOFUtefjG9tGlYQfdbvdw9Lzc/TmiGAAIIIIAAAggggAACCCCAAAIIIOCgACG4m9h7DxzR4aoK91Tg6c5LBaKzF22Q9k0qSd73ssmly1dk0Pj5cuz4aVn96SAdGKvgcc3m3ZL7nTekR5saEiMohjTuPFKHcZkzPie92tWWlMmT6LBcBYBbPx8liRMlCAnBX0ifWmqU/1iyvZFZvj/8qwwcN08K580Rsp526BD8n8tXRC2NocJdFRir5UVUKNiww3AdCn8+rY8+LRVe1m07RAp9+I40qVVK/9n4mcvl672HdBsVIt6+fUeK1ugsT8WJLf061pOkSZ6WVRt3yudrtsuFi5eNIXiqFM/KxEGtH8uYv3ybcNcEvxscLPnLtdZhfPM6ZSRB/Hg6oO476lNpXLOkXpf9u4M/S712Q7XBBzmyyDOJE8qOPYekcacRUqF4PqlWrqAESZDMXbpR93fK0HbywbtZ5Off/5LyDXrKh7mySou6ZeXOnbsyYMxcuXzluqgw3bXmdbEanSVO7FiSMX0aqVa2oDz/XEp59pmnpUjVDpL46YTSrVV17aHC+i4Dp0qN8oWlVf1y+lyjWu/HQZnGl+rL1WvXdc3rVP5E6lUpKgkTxH/srPW2vSfoZX56ta0tWV9/Ubbu3C9L12yXP46flrH9WuovCn47elLK1u+hZ9e3qldO1ExrNS4OHflDn6/yOX3uohSs2FaPbTWLu0i+d+XU2b+lVc9xcuPGLVn72RB9fNeXOI8Lwf/+51/5sExLPa47N6+qT13V88efj0nPNrUk6+uZ5OCPv0ufkbP1GFXvSfV6XF1UP2q1GqTXLO/aopoe+6s37dLvy8lD2kmenFlk+fod0n3IDOnYrIrkz51Nbt66I5PmrNBffqj+PvtMIrfPy53PBdoggAACCCCAAAIIIIAAAggggAACCDgrQAjupveaTbul04ApMnt0Z8mR7dGZtA/vRs0c/6BUc/nko5whIZ1qc+yvMzqsU7Oq1UxbFYouWLFFNi4crh8WqV5zlnwhQycskHH9W8pHHzyYpbznwP+kbpsh8tn4bvrBhq4QsWmtUno2rOulZmYvX/eVfLN2ksR9Kk6YmeCuEFzN6nXNsFXbqSVe1FIv32+armcsq8Dxjz9PyRfzh0mcOLH1rtX5FKzUVj7+8B0dzG/ffVCadhkVpo+qXY0WA2X/oV+MIbiaWRvRq3jB9x77YMwTp89L4SodHlmSRgXYaq1rtYb04Z+PSqVGfWTCwNYhy6GoIFStK64eJKoCf/UKDr6nZ3Wr9bKnDmsvwyYu1MH4l0vH6OBTvU6f/VsKV+0gL2ZIGxKCl6zdTc5d+Ee2LxujvwRQLzV7+sTpcxI/XlwdALteLXuMlVNn/g75giGq9Y7q+FLbqeVQHh4nofenZq2/X7KZVC1TUK8b7nqpL17U7GhXCD5s0kKZ+/lGfd5JEj/wUV+i5C/fWq81rkLwM+cvSoEKbXU4Pbpv85B9bd15QNSyKTNGdJRcb78WMn7V++mtLA8e1Hn3brB+f6g6qBn9i6f2lpczpZP9h36VGi0GSPfWNaRK6QIh+5yxYJ2eeb9l8Uj9RdHj6qJm5ddsOVDGD2ylfyXhevUcNlPeeOUFqVgin1z+95qoX0m8mDFtyN+r8VS2Xo+Q7dw9rwgHNX+JAAIIIIAAAggggAACCCCAAAIIIBAtAoTgbrKv37pH2vedJDNHdXLrIZNqiZDKjfs8dv3w90s1l5xvvaaDaBWKrtiwI2TJDtUd18xUFdimT5tS91DNKlZLU0wc1Ebyvpc1JEScM6aLvJP15ZCzWLr2K1EB3/KZ/fWSK4+bCa5m6Kr1ll0vtaSHmkmtwk0V4L5duKEU+CC7DO3ROIxO865j9JIfalmQ6fPXPgggl4yUVMmfDWnnWjd995qJ8nTC+I/VVX16OlH8kFm+Dzdq1HGEfPR+9seG4Cq4rtasnxz964wORN9753XJ/kbmkOVG1L4eF4Krc1IPLFXruYd+tek1XgeuO1aM0zPiVci+7rMhYdpUbtJXz3x3zQRXYWvSJIlELS0S+vW/X//ULuq/167flPv378uVazf0LOnNi0boplGt98NG7o4vtZ0pBD/40+9StWk/XW/XcjtqO9fseVcIrury54mzsmH+0DDdUdvevHU7TAj+8BhzfXmhHoRZrWyhkPH7uAGift3QrVUNHZarl1ruZ8Tkxbouata966WcyzfoFbJcy+PqMmvhehk+eZF8tXysrsPjXmpGu1rLXi2Fc+78P/oBncH37smly1dDfvnhCsFN5+XmxwnNEEAAAQQQQAABBBBAAAEEEEAAAQQcFCAEdxPbNRu1Z5uaUqnUR8atXOsxPzwDVW34SbVOet1wtQyHCkXXbf1Gdq2aELJPVwgeOmB2heCu2c2umeAqkHats6x24Arr50/sodczflwI3rVldb2Mh+sVOgRXS4dkLVBPYsQIkpgxwz7sMTg4WBIliC+7Vk/QM8fVDPJ966dI/HhPhexLzc719Zrgan1oNSN501ff6sBZHb/kx+/rNZzVWugPh+BqCRV1TrUqFNZLXoR+9Ro+S1Zt3CUHNk6Tas36y73792XBxB5h2qjw/9TZC2FCcBXUhp7prGaZl67TTdKlTaFnU6dOmVRixYyp66v6EzoEj0q9Hx5w7o4vtZ0pBN/17WFp0H54yLIwrmO5QmZXCK58VEC8eErvMN1Ry8ycu3ApTAj+8PtELZGTt2yrkF9AuMZv3w515eUX0+n9xQgK0uuMu2bhuw4yZvpSmfrZ6jBfdLj+Ti1Z4wrWVQj+cF1c2+5bP1nP0n/cS4XkKgRXv84o8MHb+hcFavkUFe67lj9yheCm8zJ+MNAAAQQQQAABBBBAAAEEEEAAAQQQQMBxAUJwN8nVbNEPS7eQTBnS6iVJHvdS6yGrpUjUutTHTpzRS3I8bg3x3CWaSe4cb8jwnk08DsHnTegu2V5/MaQ7rkB71ewBuq+RDcHVTHDXQwmb1/1vmRXXAVRQmSFdKh1KqoDx4Rm2KlBUs29NM8HV0i8zRnZ8rGPOYk3CXRP84Q3UbF21VvqwSYukYJ63ZVDXBo+dCf5OkYbycd4cMrBLgzC7aNVjnHz/4296FrxaBuafS1dCwm5Xw9AzndWfPS5sVUvaqMD7iwXD9JIsrpd6MKVa4sPbIbgr6DeNL9UPUwju+oLHFXa7+r5z32E9O9715+pczp67qNezD/1S41yF46GXQ2lZr5w0qlEipJn6BYH68se1pElEa4I/XGO1frdaiuXTsV0lyf8tUxO6TdJnnpbETyd4bF1cs8gfrkvo7dWa6XlyvqnHjut14PCvUr35gEdCcNN5uflxQjMEEEAAAQQQQAABBBBAAAEEEEAAAQcFCMEjgT1x9gqZMHuFfuBf6OVE1C7U8heNO42UP46fktVzBunZpGpN8IJ53gkTrqmHC5aq003PSFYzkz2dCd6+cSX90EPXSy2FotYv/2bNRL2ed1RCcDUr+O9/LsvS6X1D1s9W+z9+8pykSp5E73fLjv2i1rueNLiNfpCk66WWp1AziH0Vgp86c0EO/PhbmGU71LHVgw3VAzJVQOsKiEPPwlcBt+q/WudczXJXLzVDXK1fneWVF/Taz/1GfaqXolEz3dV66uqlZni71g0PvRzKwzOOXV8K7Fk7Sc9GVy+17nnxGl0kedLEsnnxSP1nUa33w8P01u07bo0vtZ0pBHc9iPLhdcOVx8KVW0NC8EHj5snCFVvl65XjJNH/LXWj1plXDyp94fk0YUJw9aBR9UsH18v1CwUVZL/95ksRPhjz4XNVX1KoWehq5r1aa9z1un7jpl7PW826V6/HfTmhlrpR68GrGeflin0Ysq368kPN2m/XqKK8Vai+VClTUDqF+pVAj6EzZdm6rx4JwU3nFYmPE5oigAACCCCAAAIIIIAAAggggAACCDgkQAgeCWgVmrbtPUEHwHlyZhH1gMnEiRLo9akXr9oml69c00FdruwP1jIeP3O5TJ23Wjo2raIf0Kgepjho3Hz9EL6VswfobaMaiq7auFO6DJymH+bXtFZpeeOVjHLg0K96PfDihd7ToZ96RSUEV8FhnTaDpVzRvFKlTAGJF/cp+XrvIT0bt2PTynotbvWgzCJVO+glJtQSEWoZFRUgb9v1vaig2lch+KH//SFVmvaTmuU/llJFPtBLofx27KT0GjZLB6Q92tTU4bM6b7X2dNmiefRyMeoBiWoms/r/WhWL6Icwzlq0XtZu3i1zxnSV7Fky67XBVWCqHsrZqGZJuXnzlgweP18uXroicWLHinA5lL0HjmizhtVLSNUyBUR92aGWjMn4fGrZsG2vrJjZX9KmTi5Dxs+P0vI3jxum7owvtZ0pBFdtVN+P/Hpc+neqL6+99LyoB1mqEFgtw+OaCf7jz8ekYqPeek36JrVK63XSJ8xaLsdPndPrv4eeCZ4i2TP6QZvqPXL2/EXpNni6/vJk5awBEjNmjEiF4Kp/qna/Hzspaimf117KoN9L6vz/PHlW1nw6SH9p8bgQXK3LrmZ0q19mqG0zPJdK+89Z/IVMHtJWVKitan7y9HkZP7C1/gJjyeov9VruS1Zvk0olP5KW9cuJCtzVFyam84rExwlNEUAAAQQQQAABBBBAAAEEEEAAAQQcEiAEjyS0CtVWb9qlA99f/zgp127c1LOj1XIKKlxVy3y4XqqtWsph8eovdTCsZoerh/2ptavTpUmhm0U1BFcBpZqtunBSTxk7Y5nsP/SLxIoVUwfB6qGC8eI+mMkclRBcbffNdz/pWe8//XJM70ctgVK59EdSoXi+kPNTf6f6r/6bIEE8KVbgPXnlxXS6X+pBkw+v7ezaUPXJk+VQtu06IDPmr9Pht5oRrfxV2KpmMqugVb1U6KpmH6tlMpbP6K9D+u27D8qkOSvk5z9O6PWnVZjarE7pkC8t1Hbqy4yp89bIhb8vScb0qXWtlqzZrr+4UNbq9biwVf25WiN93rLN8u+Va3rfnZpX1SF9ow7D5cat2/LpmC6yYMVWr4Xg7owv1S93QnA14733iNmyZ/9P8lSc2FIo7ztSusgHUqPFQJk8pJ3+0ke91mzerYPvU2f+lpTJk0j9asVFfTGhZuGr9elda2erdbrVFwFffLlPn/tb/3/Jnt7ta4c86DUyy6Go46p14MfNXCYbv9wn5y9ekmeeTqjrpuoT0Uxwta36cmrE5EWy9esD+v2qZvGrL44K5Mmuz0ktV6PWhj985KgOwdV5t6hXVoZNXCifr9muv1RqUquUDsFN5xXJjxOaI4AAAggggAACCCCAAAIIIIAAAgg4IEAI7gAyh7BHQC0N8nSiBBI71n8PBS1Rs4sOtYd0b2TPiUSyp+rLBDXbOUniRCFbqhns7fpMlPXzhoSE16bdukLwPu3rSPnieU3Nrfn7QD0vawpARxFAAAEEEEAAAQQQQAABBBBAAAEPBAjBPcBj08AS+OWPE1K2Xg89E1g93FTNFlcz/mcv3iBzxnSRd7K+HFgnHOps1DI/akmXvh3rSuaMafXsaDXLXz3kM7wHmD4OI1DD4kA9r4Ad0JwYAggggAACCCCAAAIIIIAAAgggEEqAEJzhgEAoAbVkypS5q+TXoyf1AzTVAx8bVi8u+XO/FdBO6sGuI6Yslm0798s/l65I8mQPlvhpWbesXkrG3VeghsWBel7u1pV2CCCAAAIIIIAAAggggAACCCCAgM0ChOA2V4++I4AAAggggAACCCCAAAIIIIAAAggggAACCEQoQAjOAEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWAFC8IAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjOGAhogeXrd0iZT/J49Ry/+uagTJyzUn7+/S+J91QceSfby9K+cSVJnzal/Hr0hDTsMFy2fT76kWPOWrhe/jh+Wvp1rOvV/rAzBJ5kAV+8x3fsOSSTP10p//v1T4kZM6a89MJz0rhmKcmTM8uTTM25IxAwAt7+3OjUf4pkTJ9aGtcsGSmjnMWayMrZA+TCxcvSvs8k2TB/aKS2pzECT6qAt9/D/169LkPGz5dd3x6WW7fvSOJECaRqmYJSo/zHbhEf/vloyHv4bnCwbNi6V4oXes+tbU2NPl3yhfx69KTX7h+8vT9T//l7BLwh4O33fMna3aRtwwqSL3e2kO6dPHNBilTtIIe2zoqwy6Hv6Xd/+6NkfD61pEr+bKRO0/Xv/+O2mzJ3tSxb95VcvX5DYsWMKR99kF06N68qT8WJLcdPntXXDNmzvBTh8dxtF6lO0xiBABEgBA+QQnIajwrcv39f8pZtJV8tHxvmL+/duy8xYgRFiezLXd9Lh36T9T9EBT7ILupCd87iL2TFhh2yZu5gOXfhn3BD8Bs3b0twcLB8QJDtAAAgAElEQVQkTBAvSsdmIwQQCCvgi/f4tl0HpPOAqfo9ri6M1cXnlq/3y4Axn8mMER3kzdcyuVUGTz5n3DoAjRBAIEoCvvjc8DQET/ZsYrly9bokSZwoSufERgg8SQK+eA/3Gj5LgoPvSbdWNSRe3Dh6Uku9tkNlQOcGbn0Bru4HXO9h9QX6qKlLZOqw9h6XRfVp3rJNhOAeS7IDmwV88Z73JAQPfU/fvOsYaVC9uGR18/7AVYfwQvA1m3eLCtknD2kryZM+I/9cviKteoyTbK+/KG0bVZQ5S76Q27fvSINqxSMsqbvtbB4X9B2BqAoQgkdVju08Eti4/VsZM/1zuX7jprz71qvSr0NdiRMntnzx5V6ZMHul3L17V9RNYe/2deSF9Kll2rw1curMBenVrrY+buj/z1W8qf4md+NX38qJU+elbNE80rB6CWnRfaxs/Xq/ZMqQVqYMbScla3WVhtWLy4wF66TUx+9L8L170r11Db2/y1euSf5yrWXLkpER3oSWrddDSn78vtSuVCTM+S9d+5XkfS+r/oeqaZfRUq7oh7J03Vc69O7boa588G4W/Q+aayZ4eH1WO135xU6ZMneV3L0bLKlTJpXB3RpJ6hSR+3bZo+KwMQJeELD1PV6mbncpXzyvVCtbKIzC6bN/S4pkSSRmzBj6z9UsjVUbd0pQUJDkyv6adGpWRWLHjiU5Pmkc8jmzdcko+ahCG2lZr5xs2fGd/HnyrHRpXk2+3P29vsGOHSum/myKHy+uHDpyVPqOnCP/XrmmZ3p0a11Dcr71qhz57bh0HTRN8r6XTb774Wc5//dl6daqumR59QX9mbVx4XD9WaleQycskHv37+sAnxcCNgrY+rkROgSf+/lG/UsxdZN6/NQ5HayN6dtc0qRKJl/vPSQDxsyVGDFi6Fmi+kv0Wf3DzARXN/tDJizQ1y/q/fxutlekb8e6+gs5Xgj4u4Ct7+EaLQZI5dIFpFiBXCHE6t/9Z/7/F1O9h8+SHNle0dcGagammmAzbXh7yf3OG/LTL8ek66Dp0r9zPT0TfOn0vvp+49+r1+TNVzNJ3SpFRQXsrpfapwrH38/xhmzffVCH5Xfu3pV0aZJLv471dOg1e/EG+fWPE/rXaB/myirPPpMoJASP7LWCuv9QM9u7D5kuBw79KqlSJJXXXnpeVIjHL1P9/d1kR/9sfc+bQvDwrr9D39M//1xKGT9ruaRMlkTaN6kkhT58J9z7g/D+/X94JvjYGUvl4j9XpHf7B5mHel28dEViBAXJkd+PS9teEyRWrJj6l+6tG5R/7PXCtwd/DtOuTcMK4fZr577DMnTiAn3NEjtWLH0e6nOHFwKBLEAIHsjV9dNzO3fhkqgwedGUXvqnQy26j5G33sgsxQu+J2Xq9ZDFU3rppUUWr/5Slq3dLgsn94owBM9dsplULJFf/0Nw9vw/UrhKe9m9ZpLcvHVL8pdvI99vmq4lcpdoJmWK5tFLl6gLy0YdR8i2paP1jaUKntdu3q1ngFRs1PsRuY/ezy5dW1YTFV5vWjhc38w+7qWCrQoNe0vfDnV0WK7OYeWGr2XehO5hQvDw+qz+AcpXvrWsmj1A0qVJIb2Hz5agIAkJ//20pHQLgTACtr/HVXidMnmScKuqwqnR0z7X72sVYLfuNV4H1tXLFQrzOaMCcvVer1elmNSrUlR/HgwaN09WzuqvP+PqtBksFYrnl6IFckr5Br30z65LFX5f1m75RibOXiFr5w7WYbn6vJw4qK2ejbZuyx49K0wdu1nX0fLe26/r46rXx5Xby7CeTSI9G4Xhi4A/CNj6uTGoawMJHYLPW7ZZJsxeLqtmD9RfUPUZMVsSP51QWtQtKwUqtpX+nerpL8YXrtwq/UfPlc2LR4QJwdWvUUZNWSJLpvUR9Zu1So37SINqJfTnBC8E/FnA5vewWiJETZJRsytz53hDT8BxvdSyBPsP/arfu198uU9mLVwneXK+Kc3qlJHPlm6SE6fP6y+1XEsaqTZL125/ZCb452u26/ZLpvbWk2+K1+wic8d1lcwZn5PZizbI/sO/yNh+LfW/8ZPmrJIFk3roe4HQy5dE5VpBfdaoe5xZozvLjRu3pGrTfpLtjcyE4P78ZrKkbza/500heETX36Entqn9qC+U1Ezw8O4PqpQuEO6//w+H4If+94e+P1CTcdQyKK+/nCHMl+DqukHdo6jPqoiuF0K3i+i+RfW/d7taenkVFfzPX75ZT+DjhUAgCxCCB3J1/fTcVmz4WjZ/9Z2MH9hK91DNRogZI0hWb9otm3d8J5MGt9F/rmYuZP+4gXyzZqK+WQxvJrgKmWaM6CivZn5eb/de8ab65jFB/LhhQ/CSzWTS4LYhAZG6+FQzJtXNaItuY/Q/NBGtH65mbxSs1E72b5ymZ2qGF4JXbdpf9q2frP9azQZr1mWUbF488pEQ/HF9fi51crl2/abuu3qpMEytgTZ9eAc/rSbdQuBRAVvf4+ozplDl9nJwy4yQC071c2h1Iaxe6qZ3QOf60n3IDMmQLpXUr1pM/7mazTVr0XqZPbqzDr1Df86o//90TFd5MWNa+ea7n/Qs0NWfDtLb9Rw2U/9SpVaFwnLz1m09A0PNND//9yUpWLGd7oc6drVm/WXvukc/U1QgPnfpRlkwsYe+cG3edbRsWjRCz07nhYBtArZ+bijnh0NwtUao6xpHhV4//nxM/1y6SpO+smftpDDXOOoXaKHXBFczwW/cvKW/YFMv9WV4mlRJ9S/ceCHgzwI2v4eVqwqUlq3bIXsP/E/ix3tKKpbMLw2rlZDT5/6WJp1G6n+7B46dp0Mp9UswdR3ftvcEPeklWdLEEYbg6vqifMNeIfcravLNui3f6F+DqZf6ZayaaHNg43R9z7N99/chIXroEDwq1wrt+kzUS7mpaw31UrPP1cxSZoL787vJjr7Z/J53JwQP7/o7vBA8vPuDnm1rhfvv/+PWBP/ljxOiflW2a99hUc8rKJwvh57E90zihPrLc1cIHtH1Quh2Ed231Gs3VDI8l0pqVSwi6dOmsGPg0UsEPBQgBPcQkM0jLzBz4Tr59Y+TomZPhX6pJU7++PN0mD9/u3BDWT6zn555EVEIvnBSTz2zUr1U6KT+P1HC+I+E4Asm9hT10yX1Ug+3/OvkOVH/MOUr10ovK6AehBPe6/qNW5Ljk0ayft6QkGM93PbhB2OG/v/Q/2C6+vhwn59LnULPINu595De9eUr1yVNyqQyY2THyEOzBQLRJGD7ezz0rz0uXb6q1/5Xsyh27PlBxg1oJU06j5KDP/0WElLdu3dPkiZJrGd3qfd26M8Z9f9LpvaRtKmSyd4DR2TYpIW6nXqpGaJ6RnjlT/QM7wUrNsudu8F6+YQjv/2pH8wT0WeK+gLxwzItZdmMvrJyw065efu2vkjmhYCNArZ+bijrh0PwH376XYZ0b6TLoGaGq/+vXPoj/UyRzYtGhJRHXeOs/WxwmBBchVPDJy2UP/48JeqnYOraRz2gL7IP3bRxDNBnuwVsfg+HllfP9Dhw+FfpMXSGlC36of7CW/3SSk2wadB+mMwa1VmqNO0ny2f0078+XTFrgBw7cSbcEFwFVfXbDZO3s74sTWuV0odS9wTqel8tt+J6Xb12Q9Z8Okjf8xz88TcZ2qOx/qvQIXhUrhXqtx+ml3lxTfRRdTp6/AwhuN1vN7/ovc3v+dJ1ukvLemX1JDjX688TZ6VUnW76V+Tu3tOHngke3v2B+jV5eP/+mx6oqZZSHTl5sV42SX1pFjrcjuh6IXS7iO5b/v7nX5n86Uo9ETFRgvjSuUVVvdQTLwQCWYAQPJCr66fnpr413rBtj0we8mD2g/pJoAqY1bedm77aF/LnKuB5p0hDPQNy0aqtcvzEuZD1sdRSBJf/vaqXCQkvUH5cCB46LFdPTVY/K1T7UD8TnDiojah//MJbDkWF9urv8ubKqn8CGfo1fuZyKZL/Xbkv98M8GDOyIbha62/qZ6tl7rhu8nTC+LJ64y5RXoTgfjqY6dZjBWx+j6sb23zvZZNGNcLOulS/ytiwdY8OwXsMnSmZM6aVmv83qyo0wuM+j0wheNECuaRItY7y+bQ+kun5NHLm/EUpVKmdMQR3hW9qlvnazd/oWepqhhovBGwUsPlzw50QvGGNEnoZAtdMcDXzUz1D4OGZ4Grm9+07d/T6wOqXIerzRn2JRghu46h+svps63tYTYZRz+0oVjBXmF9Sqck56hedw3s2kW6Dp+tfjs5cuF5/ka1mVxfO967MXrRe5k/sIYd/PhpuCD5/+RZRS6osnNwz5Fdm6vp+4/Z9+pri4ZfrizPXF2muELx5nTJRulZo23uiZHs9U8g1y7CJC/XsUmaCP1nvT1+cra3veXVPr5ZFVUsKhn7O15Yd+2X45EV6wltUQvDw7g9+//NUuP/+PxyCq1+kvPFyRv18ANfr4E+/S8vuY2X7sjFhQvCIrhdCh+AR3beEHhdqsk/HfpNl56oJEiMGvyr1xXuGffqHACG4f9ThieqFWre7ZO2uMn9Cd8mQLrW07ztRXnspg5T4OLeUqt1NX1yq2ZFqTbwN2/bp9fLUk5IXrtgqn43vppcNUDeSau2tiELwJIkT6YB8z9rJ+meND4dTCl2F2hf/+Vda1S+vj2967fr2sKinQKunM3/y0YP1Oecs3iDrt+2VFTP7y6mzFzwKwXfsOSQ79x3Sgbz6ckA9/OLajZt6ZjsvBGwRsPk9vufA//SyIm0aqvf4uxIv7lOy+7sfZfC4+VKiUG5pXreMbN15QCbNWamXP1FLF6m1vtVDLtUsq6iE4B/kzCK1Ww+WbUtGScyYMWXUtCV6lth3X0yVv06dC/czRY0HtRRLv1FzJFasWLJh/lBbhgj9ROARAZs/N9wJwft3rq8fZjuoa0O9vr96j4+culgvYRR6OZTWPcdLttdf1DfmapkjdeOrvmRX1x28EPBnAVvfw+rXV59U66ifyVG3SjGJFzeOXue7VY9xUq5YXqlapoB+dpBapuT1lzJI99Y19Nre67fukZzZX9UPvw4dgqtfjk2bv1bf5/x16rxUbtxH5oztotf+dr3Ue17NRFXP91C/UFWTYFZv3CldW1YP+fXIwyF4zQofR+laQYXom776TmaO6iRXr13X91DvZH2FENyf30yW9M3W97zi/eLLvTJo3HwZ2buZZHklow691WztCsXz6X9/3Q3By9XvKa0bVND/rod3f1C8UO5w//1/OATvPHCqXLl6XXq3q62DcPWF1eBx8/QyaaP6NJfB4+dLnNix9DVBRNcLoduF168i+XPq9cdH922un9OmPvfU+exePZEQ3JL3IN2MmgAheNTc2MpDgQ3b9sqY6UsfrIH39mvSr0NdiRMntv4J4ITZK+TOnbt6GRD1ZGT1UBg1K7x5t9GiliZInSKpZMqQRv65fEU/uCG8meAqSFc/AVRPbp8ypJ006jRCh8muJUh0gL3kC/2Aux3Lx0rCBPHcOiu11ufEOSv0wzVVn/O8+6a0a1xJUiR7xu1/MMPrc8IE8aVpl1Fy+d9rkipFEmnToIK06D425AnQbnWQRgj4gYDN7/F93x/R73G1jq9a6uTlTOmlatmC+ufErpf6xYaaAXP3brBeH7x/p/r6MyAqIbhaDqXLwGmy7+ARvSRTh6aVZcKsFfrY6jOwYYfhsu3z0frQD1+Uq6Va8pZtpS/a1cOBeSFgs4CtnxvuhOAq0FLh2KDx80Utj1C+WF4dqqkQTF3PuB6qp5ZhUJ8H6ou1LK++IAU+eFu6DZmul4rLn/stm8tL358AAVvfw8dPnpPhkxfK/h9+1UugqYk0ZYvm0UuhqOdsnD53UQpWbKuXKFHXAiq0VuG2CpbVg7FDh+Aq4FZ/F3zvnl5OZcb8tZLkmf+WPWnbsKKeeKO+xFbrc6vJPeoL9W6tquuH04U3E1zN3I7KtYL6tW2XgVPl+x9/k9QpnpWc2V/Tzx4Z2CXsspRPwPDkFH0gYOt7XlGoSSzqC+nTZy9I8mRJpFLJ/PpB9uo9724IrpZXVb8IaVW/nH6YZXj3B+H9+69+6RX6pTKPUVMX6+VJ1HtXTeRTzyRSnxuJn04gakJeqx7jJX/ubFKlTIFwrxfU88tc7dTnVnj9Us8em/rZGgkODpa4cZ/SS8QUzPO2D0YKu0TAfwQIwf2nFvQkGgTUEgfqJ5DqW2BeCCAQeAJPwntcPeR3dJ/m+uGbvBBAwHOBJ+Fzw3Ml9oCA/wrwHvbf2tAzBHwhwHveF6rsE4HAFCAED8y6clZuCKgH0FRvPkB6tKkpb7/5khtb0AQBBGwSeBLe42oGh1pbVM1G44UAAp4LPAmfG54rsQcE/FeA97D/1oaeIeALAd7zvlBlnwgErgAheODWljOLQEA9+KLHsBlSudRHei0/XgggEFgCT8J7XH2Jpx4QPGFQ6zDLPAVWJTkbBJwTeBI+N5zT5EgIOC/Ae9h5c46IQHQK8J6PTn2OjYCdAoTgdtaNXiOAAAIIIIAAAggggAACCCCAAAIIIIAAAgi4IUAI7gYSTRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTsFCAE97Bup/6+4eEe2BwBBHwlECdWDEmW+Clf7T5kv6cv3pD7931+GA6AAAJREIgVM0hSPBM3CltGbpOz/9yU4Ht8EEROjdYIOCMQM0aQpEzi+8+Bc5duyt1gPgecqSpHQSByAkFBIqmfjRe5jaLQ+sLlW3L77r0obMkmCCDghECapL7/HHDiPDhG1AQIwaPmFrIVIbiHgGyOgA8FCMF9iMuuEbBEgBDckkLRTQR8KEAI7kNcdo2AJQKE4JYUim4i4GMBQnAfA/v57gnBPSwQIbiHgGyOgA8FCMF9iMuuEbBEgBDckkLRTQR8KEAI7kNcdo2AJQKE4JYUim4i4GMBQnAfA/v57gnBPSwQIbiHgGyOgA8FCMF9iMuuEbBEgBDckkLRTQR8KEAI7kNcdo2AJQKE4JYUim4i4GMBQnAfA/v57gnB3SjQnTt3pc/IObJx+z5JmCCetKpfXkoVfl9vSQjuBiBNEIgmAULwaILnsAj4kQAhuB8Vg64gEE0ChODRBM9hEfAjAUJwPyoGXUEgGgUIwaMR3w8OTQjuRhHGz1wuvx07KYO6NtT/7TVspsyf2EPiPhWHENwNP5ogEF0ChODRJc9xEfAfAUJw/6kFPUEgugQIwaNLnuMi4D8ChOD+Uwt6gkB0ChCCR6d+9B+bENyNGhSo0FZmjOwoGdKleqQ1M8HdAKQJAtEkQAgeTfAcFgE/EiAE96Ni0BUEokmAEDya4DksAn4kQAjuR8WgKwhEowAheDTi+8GhCcENRfj36nX5sExLad+4ksxbtkmeihNHWtYrKx99kF1vSQjuB6OYLiAQjgAhOEMDAQQIwRkDCCBACM4YQAABQnDGAAIIKAFC8Cd7HBCCG+p/8swFKVK1g7SoW1bqVy0uh478IQ07DJfVcwZJimTPyJUbd5/sEcTZI+DHAkEikjBeLJ/3kM8BnxNzAAQ8EkjkwOfA1Rt35b5HvWRjBBDwpYATnwNcD/iyguwbAc8FnPgc4HrA8zqxBwR8KeDE54Av+8++PRMgBDf4qZng7xVvKnvWTtIPxVSvem2HSsWS+aVwvhzyXb+pnlUgGrd+qV2daDw6h0bA9wJBQUHOheD3ib98X1GOgEAUBIKCxImLXa4HolAbNkHAIQGnrgd0+MX1gENV5TAIRFLAoesBPgciWReaI+CwQKL4sR0+ou8Pp6491OVHjBhqGiCviAQIwd0YHyoEXzKtjzyXOrluXbfNEKlerpBeEmVv7ylu7ME/mzzXoqZ/doxeIeAlAZZD8RIku0HAYgGnlkPZ22eK2DoVnOsBiwc4XXdLgOVQ3GKiEQIBLcByKAFdXk4OAbcFnF4OZc+B/8mwiQvl6PHTEi/uU/JxvhzSpXlViR07lty8dVtGTF4kW78+INdv3JTXXs4g3VrVkBfSp5YLFy9L3rKtZP28IZI+bUp9fvOWbZala7fLshn9ZOvOAzJs4gIpXzyfjJ+1XBZM7CGvvJheps1bo9tdvXZd3n7zZenVtpakSZUsZPtZi9bLpctX5PnnUkmr+uXkw1xZ3bYLhIaE4G5UceDYz+T6jVvSu31t+ennY9Kw4whZ8+kgSfZsYkJwN/xogkB0CRCCR5c8x0XAfwQIwc21IAQ3G9HCbgFCcLvrR+8R8IYAIbg3FNkHAvYLOB2C5yndQi+vXLbYhzrYbtl9rJQq/IFUK1tQ+o+eKwd/+l3G9G0uzyROJBNmLZc1m3fLFwuGydVrNyIMwXfs+UE69JssRfK9K41qlpRkSZ6WL3d/L31HzpEJA1vrkHvguM/kzxNnZeGknvLVNwelx9CZMnFQG3n5xXSitm/be6KsnNU/JGS3v7rmMyAENxvJlavXpevg6bL3wP/k2Weelg5NKoU8GJOZ4G4A0gSBaBIgBI8meA6LgB8JEIKbi0EIbjaihd0ChOB214/eI+ANAUJwbyiyDwTsF3AyBL8bHCy5ijWR/p3qS5H872q84OB7EjNmDL182tuFG8rQHo2lYJ639d+p2eC5SzSTMf1ayusvZzCE4IekcacRsmnh8JCZ3ur/M2VIKx2aVNb7U6H7N9/9JJ98lFOadR0tWV7JKM3qlAkpYqOOI+TNV18I82f2VzjiMyAE97DChOAeArI5Aj4UIAT3IS67RsASAUJwc6EIwc1GtLBbgBDc7vrRewS8IUAI7g1F9oGA/QJOhuBKSy1NopYtyfxCOnk/xxtSsvD7ermT839fknzlWsvKWQPkxYxpQ2A/qtBG6lUpKoXzvWsMwZt3HS0Ht8wI2bZo9U5Ss0JhqVzqo0cKpf5OzQp/+FWq8PsysEsD+wvr5hkQgrsJFV4zQnAPAdkcAR8KEIL7EJddI2CJACG4uVCE4GYjWtgtQAhud/3oPQLeECAE94Yi+0DAfgGnQ3AldvHSFdm284Bs3blfdu47LCN7N9OzslUIvmr2AD172/XKX7611K9aXArny/GYEHyTLF37lV4TfMeeQ9Km1zj5dsPUMCF49XIfS9UyBR4pVPGaXaRiiXw6JH+SX4TgHlafENxDQDZHwIcChOA+xGXXCFgiQAhuLhQhuNmIFnYLEILbXT96j4A3BAjBvaHIPhCwX8DJEFwtefL3P//q5wm6XoPHz5cTp87LuAEtJccnjWRwt0Yhy6GopZg/KNVCxg9sLdlezyS5ijcNE5IPm7RQdn/7Y7ghuFreJF2aFNK9dQ19OHXsz9dsl7qVP5FWPcfp5Z37d6oX0pfTZ/+WlMmflRgxguwvrJtnQAjuJlR4zQjBPQRkcwR8KEAI7kNcdo2AJQKE4OZCEYKbjWhhtwAhuN31o/cIeEOAENwbiuwDAfsFnAzBfzt6Uio17qMD73ffelX+vXJdOvSbJJkzPiedm1cVFYjvP/SLjO3fUhIliC8jpiyWr3Z/L+vnDZXYsWPJh2VaSr2qxaRWhcJy4vR5qd9umMSP91S4IfgXX+6TnsNmypi+LeSlTOlk5JTF8tvRE7Jwci/9YMw2vSbI6L4tJPc7r8v3P/4mTbuMkkmD20j2LC/ZX1g3z4AQ3E0oQnAPodgcgWgQIASPBnQOiYCfCRCCmwtCCG42ooXdAoTgdteP3iPgDQFCcG8osg8E7BdwMgRXWqs27pRpn62RE2cuSIJ4cSVf7mzSpUU1SRA/rly/cUsGjv1MNu/4TmIEBUnW11+Uri2r6dnc6qX+fMiEBRIzRgzJkC6l5Mn5pixa9aWeHf645VDUNlPmrpb5yzfL1Ws35O03X5Je7WpL2lTJ9P4+W7pJZi/eoB+YmSZlUmlYvYSULvKB/UWNxBkQgkcC63FNmQnuISCbI+BDAUJwH+KyawQsESAENxeKENxsRAu7BQjB7a4fvUfAGwKE4N5QZB8I2C/gdAhuv1hgnQEhuIf1JAT3EJDNEfChACG4D3HZNQKWCBCCmwtFCG42ooXdAoTgdteP3iPgDQFCcG8osg8E7BcgBLe/hp6cASG4J3oiQgjuISCbI+BDAUJwH+KyawQsESAENxeKENxsRAu7BQjB7a4fvUfAGwKE4N5QZB8I2C9ACG5/DT05A0JwT/QIwT3UY3MEfCtACO5bX/aOgA0ChODmKhGCm41oYbcAIbjd9aP3CHhDgBDcG4rsAwH7BQjB7a+hJ2dACO6JHiG4h3psjoBvBQjBfevL3hGwQYAQ3FwlQnCzES3sFiAEt7t+9B4BbwgQgntDkX0gYL8AIbj9NfTkDAjBPdEjBPdQj80R8K0AIbhvfdk7AjYIEIKbq0QIbjaihd0ChOB214/eI+ANAUJwbyiyDwTsFyAEt7+GnpwBIbgneoTgHuqxOQK+FSAE960ve0fABgFCcHOVCMHNRrSwW4AQ3O760XsEvCFACO4NRfaBgP0ChOD219CTMyAE90SPENxDPTZHwLcChOC+9WXvCNggQAhurhIhuNmIFnYLEILbXT96j4A3BAjBvaHIPhCwX4AQ3P4aenIGhOCe6BGCe6jH5gj4VoAQ3Le+7B0BGwQIwc1VIgQ3G9HCbgFCcLvrR+8R8IYAIbg3FNkHAvYL+HMIfuLUfbl2zX3jtGmCJGEC99vTUoQQ3MNRsLf3FA/3EH2bc9MbffYc2RkBQnBnnDkKAv4sQAhurg7XA2YjWtgtQAhud/3oPQLeECAE94Yi+0DAfgF/DsHHTr0rP/x4323kFg1jSdbXg9xuT0NCcI/HACG4x4TsAAGfCRCC+4yWHSNgjQAhuLlUhOBmI1rYLUAIbnf96D0C3hAgBPeGIvtAwH4BQvAHNcxZrImsnD1AUiV/1qdFdR3nwsXL0r7PJNkwf6hPj2faOTPBTUKGvycE9xCQzRHwoQAhuA9x2TUClggQgpsLRQhuNqKF3QKE4HbXj94j4A0BQnBvKLIPBAkcdc8AACAASURBVOwXIASPnhA82bOJ5crV65IkcaJoHUSE4B7yE4J7CMjmCPhQgBDch7jsGgFLBAjBzYUiBDcb0cJuAUJwu+tH7xHwhgAhuDcU2QcC9gsQgv8XgjeuUVIWr/5Srt+4KXUqfyK1KxbRf7nyi50yZe4quXs3WFKnTCqDuzWS1CmelZNnLkjnAVPlwsVLEhx8TyqUyCcNqhXX20yZu1pWbdwpQUFBkiv7a9KpWRWJHTtWyIzz0DPB536+UX7+/S+5ffuOHD91Tu9rTN/mkiZVMjn21xnpNXyWqPbx48WVri2ryVtvZPbawCME95CSENxDQDZHwIcChOA+xGXXCFgiQAhuLhQhuNmIFnYLEILbXT96j4A3BAjBvaHIPhCwX4AQ/L8QvHC+HNKnfR05fvKclK7bXdbNHayD53zlW8uq2QMkXZoU0nv4bFGfn73a1Zb+o+eKmtHduGZJPau7x9CZ0q9jXdn3/REZPe1zmTehu96+da/xkvOtV6V6uUKPDcHnLdssE2Yvl1WzB+r99RkxWxI/nVBaNygv5er3lMqlP5IKxfPJoSNHpUW3MbJp4XAdqHvjRQjuoSIhuIeAbI6ADwUIwX2Iy64RsESAENxcKEJwsxEt7BYgBLe7fvQeAW8IEIJ7Q5F9IGC/ACH4fyH4tGHt5c3XMuk/qNq0n9SqWERUMH7t+k1JED+u/vO1W76R5et3yPThHfRs713fHpb2jSvJ6y9nlBgxHjyUs/uQGZIhXSqpX7WY/v/tuw/KrEXrZfbozuGG4Lu//VHGD2yl23+2dJP8+PMxaVmvrJSo1UX2rpsSsu+KjXpLhyaVJUe2V7wy+AjBPWQkBPcQkM0R8KEAIbgPcdk1ApYIEIKbC0UIbjaihd0ChOB214/eI+ANAUJwbyiyDwTsFyAEf1BD9cDKpdP7ynOpk+v/b9xppBTIk13KFc2rZ2nv3HtI//nlK9clTcqkMmNkR7kbHCyzFq6XtZu/kYuX/pV6VYtJrQqFpUnnUXLwp9/0LHD1unfvniRNkliWTO0dbgj+w0+/y5DujXR7NTNc/X+NCh9LlSZ9JWWoh3XeuHlLerappcN5b7wIwT1UJAT3EJDNEfChACG4D3HZNQKWCBCCmwtFCG42ooXdAoTgdteP3iPgDQFCcG8osg8E7BcgBH9QQxWCzxrVSV57KYP+/2rN+kvtSkXk9p27MvWz1TJ3XDd5OmF8Wb1xl6zY8LUOwUO//jxxVmq3HiQTBraWBSu2SuaMaaVmhcKPDBB1nJWzB+g1vtv3mSQb5g8NCb0fDsHbNKogpWp3kz1rJ/lsoBGCe0hLCO4hIJsj4EMBQnAf4rJrBCwRIAQ3F4oQ3GxEC7sFCMHtrh+9R8AbAoTg3lBkHwjYL0AI/l8IXuaTPNK5eVU5cfq8Dp9VQL1x+7eyc98hmTiojVy+ck3a9pog127clIWTekr7vpOkVOEPJE/OLHLr9h0pX7+nDOrWUM5duCST5qzUy5+oZVTUwzZjx4opav+RCcFVKF6+QS/9kM5iBXLJxUtXZNC4z/S65a5Z5p6OQEJwDwUJwT0EZHMEfChACO5DXHaNgCUChODmQhGCm41oYbcAIbjd9aP3CHhDgBDcG4rsAwH7BQjBH9QwxyeNpGW9crJ07Vf6IZf1qxWTKqUL6OC5aZdRcvnfa5IqRRJp06CCtOg+VgfaBfK8LX1HzpFL/16VGEFBUvLj3NKsThm9PzV7XM0Yv3s3WK8P3r9TfUmR7JlIh+DH/jojvUfMljPnLkpQUJDUrlhYKpX6yGsDjxDcQ0pCcA8B2RwBHwoQgvsQl10jYIkAIbi5UITgZiNa2C1ACG53/eg9At4QIAT3hiL7QMB+AUJw+2voyRkQgnuiJyKE4B4CsjkCPhQgBPchLrtGwBIBQnBzoQjBzUa0sFuAENzu+gVq72OvnmPlqd0pUcvKfhOCW1k2Oo2A1wX8OQRftiZYfj963+1zLls8pmTKGOR2exqKEIJ7OAoIwT0EZHMEfChACO5DXHaNgCUChODmQhGCm41oYbcAIbjd9QvU3hOCO1tZQnBnvTkaAv4q4M8huL+aBVK/CME9rCYhuIeAbI6ADwUIwX2Iy64RsESAENxcKEJwsxEt7BYgBLe7foHae0JwZytLCO6sN0dDwF8FCMH9tTLO9IsQ3ENnQnAPAdkcAR8KEIL7EJddI2CJACG4uVCE4GYjWtgtQAhud/0CtfeE4M5WlhDcWW+OhoC/ChCC+2tlnOkXIbiHzoTgHgKyOQI+FCAE9yEuu0bAEgFCcHOhCMHNRrSwW4AQ3O76BWrvCcGdrSwhuLPeHA0BfxUgBPfXyjjTL0JwD50JwT0EZHMEfChACO5DXHaNgCUChODmQhGCm41oYbcAIbjd9QvU3hOCO1tZQnBnvTkaAv4qQAjur5Vxpl+E4B46E4J7CMjmCPhQgBDch7jsGgFLBAjBzYUiBDcb0cJuAUJwu+sXqL0nBHe2soTgznpzNAT8VYAQ3F8r40y/CME9dCYE9xCQzRHwoQAhuA9x2TUClggQgpsLRQhuNqKF3QKE4HbXL1B7TwjubGUJwZ315mgI+KuAP4fgwcd/l/tXLrtNFzN9JglKlNjt9jQUIQT3cBQQgnsIyOYI+FCAENyHuOwaAUsECMHNhSIENxvRwm4BQnC76xeovScEd7ayhODOenM0BPxVwJ9D8GuDO8qd/bvcpkvQaYjEfvt9t9vTkBDc4zFACO4xITtAwGcChOA+o2XHCFgjQAhuLhUhuNmIFnYLEILbXb9A7T0huLOVJQR31pujIeCvAoTgDyqz+9sfJePzqSVV8md9Xqq7wcGyYeteKV7oPZ8fy3QAZoKbhAx/TwjuISCbI+BDAUJwH+KyawQsESAENxeKENxsRAu7BQjB7a5foPaeENzZyhKCO+vN0RDwVwFC8AeVad51jDSoXlyyvpbJrVLdu3dfYsQIcqvtw43+9+ufMmrqEpk6rH2UtvfmRoTgHmoSgnsIyOYI+FCAENyHuOwaAUsECMHNhSIENxvRwm4BQnC76xeovScEd7ayhODOenM0BPxVgBBcZPr8tTJ+1nJJmSyJtG9SSQrmeVuGTFggW7/eL/fu35d3s70ifTvWlVgxY0qOTxpLw+rFZcaCdbJ1ySg5cPhX6T96rsSKGUMqlsyv/3zehO6SNlUy2b77oA6779y9K+nSJJd+HetJ/HhxpWStrvLv1Wvy5quZZMbIjtE6NAjBPeQnBPcQkM0R8KEAIbgPcdk1ApYIEIKbC0UIbjaihd0ChOB21y9Qe08I7mxlCcGd9eZoCPirACH4g8qUrN1N+nWsq2eCb9t1QEZNWSJLpvURNde7UuM+0qBaCSlaIKfkLtFMyhTNI+0bVxI1G7xgpbY63P7g3SwyYdZymfLZatm4cLgOzIvX7CJzx3WVzBmfk9mLNsj+w7/I2H4t5Ysv98nStduZCe6vb4rI9IsQPDJatEXAWQFCcGe9ORoC/ihACG6uCiG42YgWdgsQgttdv0DtPSG4s5UlBHfWm6Mh4K8ChOCPhuD379+XGzdv6Vnb6tV7+GxJkyqpNKxeQnKXbCaTBrfVYfnR46elatN+snvNRN3uwsXLkrdsK9myZKTs2f8/WbflG5kytJ3+u+s3bkqu4k3lwMbpsnnHd4Tg/vqGiGy/CMEjK0Z7BJwTIAR3zpojIeCvAoTg5soQgpuNaGG3ACG43fUL1N4TgjtbWUJwZ705GgL+KkAI/mgIfvHSFRk+aaH88ecpkaAgOXXmglQtU1Aa1yypQ/AFE3vK88+l1EuhdBk4TTbMHxpS3mwF68mGBcNk/ZY9MmH2cnkmcaKQv7t67Yas+XSQfPfDL4Tg/vqGiGy/CMEjK0Z7BJwTIAR3zpojIeCvAoTg5soQgpuNaGG3ACG43fUL1N4TgjtbWUJwZ705GgL+KkAI/mgIrmZ+375zRy9zEjNmDOkxdKZe49sVgi+c1FPSp00pvx09KbVaD5KdK8frnYSeCb7vwBHZuH2fjBvQ6pHSsxyKv74botAvQvAooLEJAg4JEII7BM1hEPBjAUJwc3EIwc1GtLBbgBDc7voFau8JwZ2tLCG4s94cDQF/FSAEf1CZcvV7SusGFSRPzizSuud4yfb6i1K7UhE58ttxadl9rBTJ/660bVRRzwR3heC3b9/Ry5+ooPudrC/L6Gmfy8yF60LWBC9dp7t+SKaaNX7oyFFZvXGndG1ZXT9wc9r8tTJ/QncJUh/G0fjiwZge4hOCewjI5gj4UIAQ3Ie47BoBSwQIwc2FIgQ3G9HCbgFCcLvrF6i9JwR3trKE4M56czQE/FWAEPxBZSbOWSmzF62XVvXLyWsvZdDLnMSOFVOyvPqCFPjgbek2ZLoM6tpAug2eHhKCq+3WbdkjI6cskkQJ40uV0gVkxJTFsmr2QEmZPIls331QRk1dIjdv3ZYE8eNKt1bVJXuWl/SM8cqN+0jwvXuy7fPR0To0CME95CcE9xCQzRHwoQAhuA9x2TUClggQgpsLRQhuNqKF3QKE4HbXL1B7TwjubGUJwZ315mgI+KsAIbhnlVEP0VQvNaM7OPieZCtUT/aumyLx4sbxbMcObU0I7iE0IbiHgGyOgA8FCMF9iMuuEbBEgBDcXChCcLMRLewWIAS3u36B2ntCcGcrSwjurDdHQ8BfBfw5BL85f4rc/eWw23TxqjaSmC+94XZ7bzSs0LC3VCiRTyqWyCcrNnwtcxZvkOUz+3tj147sgxDcQ2ZCcA8B2RwBHwoQgvsQl10jYIkAIbi5UITgZiNa2C1ACG53/QK194TgzlaWENxZb46GgL8K+HMI7q9moft14PCv0mfEHLl67bo8m+Rp6dO+jrya+Xkbuq77SAjuYakIwT0EZHMEfChACO5DXHaNgCUChODmQhGCm41oYbcAIbjd9QvU3hOCO1tZQnBnvTkaAv4qQAjur5Vxpl+E4B46E4J7CMjmCPhQgBDch7jsGgFLBAjBzYUiBDcb0cJuAUJwu+sXqL0nBHe2soTgznpzNAT8VYAQ3F8r40y/CMEj4Xzp8lUpWqOTtKpXTiqV+khvSQgeCUCaIuCwACG4w+AcDgE/FCAENxeFENxsRAu7BQjB7a5foPaeENzZyhKCO+vN0RDwVwFCcH+tjDP9IgSPhHPXQdNk7/dHpEHVYoTgkXCjKQLRJUAIHl3yHBcB/xEgBDfXghDcbEQLuwUIwe2uX6D2nhDc2coSgjvrzdEQ8FcBQnB/rYwz/SIEd9N574EjMnHOCnkxQ1rJnDEtIbibbjRDIDoFCMGjU59jI+AfAoTg5joQgpuNaGG3ACG43fUL1N4TgjtbWUJwZ705GgL+KkAI7q+VcaZfhOBuON+5c1cqNuotI3o3k/nLNhOCu2FGEwT8QYAQ3B+qQB8QiF4BQnCzPyG42YgWdgsQgttdv0DtPSG4s5UlBHfWm6Mh4K8ChOD+Whln+kUI7obzxNkr5P79+9KsThnpP3pumBD8u35T3diDfzZ5qX1d/+wYvULASwJBIpIwXiwv7S383Vy5cdfnx+AACCAQdYFEDnwOcD0Q9fqwJQJOCDjxOcD1gBOVDJxj3Fs2y8qTiVG2jpX9Vp124nPg6o27ct9aITqOQOALOPE5EPiK9p4hIbihdsf+OiPt+kyUBRN7SJw4sQMrBG9n7wWMvW85eu6kQFBQkHMh+H07L3fXb7az34WvzHZyKHn1WDHK8NnrVVDTzoKCHLnptToE53rANIr4e8sFnLoe0OGXpdcDtpbY1usY5W3rtYy11zEOXQ/Y/Dlg6/vpk4Jq6hMvBNwTSBQ/tnsNaRWQAoTghrLOXrxBpny6SmLHfjCb9Nr1mxIzZgypWqagtG5QXvb2nmLtwODnz9aWjo67KcByKGaorV/aedFo642jqsidErXMhaGF1wRYDsVMyfWA2YgWdguwHIrd9Yuo97Zex9gcgtt6HcNyKObPAVvfTx/ls3NSj7kitPCFAMuh+ELVnn0SgkeyVg8vh0IIHklAmiPgoAAhuBnb1otdQnBzbWnxQIAQ3DwSCMHNRrSwW4AQ3O76EYL7V/0IwSOux4XLt+T23Xv+VTQ3e2PrfQEhuJsFppkWIAR/sgcCIXgk608IHkkwmiMQjQKE4GZ8Wy92CcHNtaUFIbi7Y4AQ3F0p2tkqQAhua+XM/bb1Okadma3XMoTghODmd6azLQjBnfW2/WiE4LZX0LP+E4J75sdyKB76sTkCvhQgBDfr2nrzaOuNo6qIrTeP5tHkny2YCW6uCyG42YgWdgsQgttdv4h6b+t1DCG482OS5VDM5ra+nwjBzbWlxX8ChOBP9mggBPew/iyH4iEgmyPgQwFCcDOurRe7hODm2tLigQAhuHkkEIKbjWhhtwAhuN31IwT3r/rZ+mU+Ibh5HNl6X0AIbq4tLQjBGQMPBAIqBFdPY797NzjkIZZOFJkQ3AlljoFA1AQIwc1utl7sEoKba0sLQnB3xwAhuLtStLNVgBDc1sqZ+23rdYw6M1uvZQjBIx6XrAluft96uwUhuLdFA3t/zAQP7Pqazs7KELxgpXayedGIR87t0uWrUqpON9m+bIzpvL3294TgXqNkRwh4XYAQ3Exq682jrTeOqiK23jyaR5N/tmAmuLkuhOBmI1rYLUAIbnf9Iuq9rdcxhODOj0lmgpvNbX0/EYKba0uL/wQIwZ/s0WBVCL5z32HZte+wfLZ0k1QvV+iRyv11+pzsPXBEvlkz0bGqEoI7Rs2BEIi0ACG4mczWi11CcHNtafFAgBDcPBIIwc1GtLBbgBDc7voRgvtX/Wz9Mp8Q3DyObL0vIAQ315YWhOCMgQcCVoXgvx87Kas37ZYZC9ZKvveyPVLDuHHjSIlCueXDXFkdqy8huGPUHAiBSAsQgpvJbL3YJQQ315YWhODujgFCcHelaGerACG4rZUz99vW6xh1ZrZeyxCCRzwuWQ7F/L71dgtCcG+LBvb+mAke2PU1nZ1VIbjrZMbPXC7N65YxnZsjf08I7ggzB0EgSgKE4GY2W28ebb1xVBWx9ebRPJr8swUzwc11IQQ3G9HCbgFCcLvrF1Hvbb2OIQR3fkwyE9xsbuv7iRDcXFta/CdACP5kjwYrQ3BVsiO/HZejx0/LzVu3H6lgmU/yOFZVQnDHqDkQApEWIAQ3k9l6sUsIbq4tLR4IEIKbRwIhuNmIFnYLEILbXT9CcP+qn61f5hOCm8eRrfcFhODm2tKCEJwx8EDAyhB8+ORFMnvRBkmZLInEjh3rkVpumD/UsfoSgjtGzYEQiLQAIbiZzNaLXUJwc21pQQju7hggBHdXina2ChCC21o5c79tvY5RZ2brtQwheMTjkuVQzO9bb7cgBPe2aGDvj5nggV1f09lZGYLnLdtKpo/oIJkzPmc6P5//PSG4z4k5AAJRFiAEN9PZevNo642jqoitN4/m0eSfLZgJbq4LIbjZiBZ2CxCC212/iHpv63UMIbjzY5KZ4GZzW99PhODm2tLiPwFC8Cd7NFgZgher0VnWzh3sF5UjBPeLMtAJBB4rQAhuHhi2XuwSgptrS4sHAoTg5pFACG42ooXdAoTgdtePENy/6mfrl/mE4OZxZOt9ASG4uba0IARnDDwQsDIEHzJhgbz1Rmb5OO870V5HQvBoLwEdQCBcAUJw8+Cw9WKXENxcW1oQgrs7BgjB3ZWina0ChOC2Vs7cb1uvY9SZ2XotQwge8bhkORTz+9bbLQjBvS0a2PtjJnhg19d0dlaG4N0GT5eN27+VNKmSSuoUSSVIfa0b6jVpcBvTeXvt7wnBvUbJjhDwugAhuJnU1ptHW28cVUVsvXk0jyb/bMFMcHNdCMHNRrSwW4AQ3O76RdR7W69jCMGdH5PMBDeb2/p+IgQ315YW/wkQgj/Zo8HKEHzYpIUSM0aMcCvXtlFFx6pKCO4YNQdCINIChOBmMlsvdgnBzbWlxQMBQnDzSCAENxvRwm4BQnC760cI7l/1s/XLfEJw8ziy9b6AENxcW1oQgjMGHghYGYL7U/EIwf2pGvQFgbAChODmEWHrxS4huLm2tCAEd3cMEIK7K0U7WwUIwW2tnLnftl7HqDOz9VqGEDzicclyKOb3rbdbEIJ7WzSw98dM8MCur+nsrAzBB42bF+55BQffk+6ta5jO22t/TwjuNUp2hIDXBQjBzaS23jzaeuOoKmLrzaN5NPlnC2aCm+tCCG42ooXdAoTgdtcvot7beh1DCO78mGQmuNnc1vcTIbi5trT4T4AQ/MkeDVaG4K17jg9TtXv378npsxfl2F9npFiBXNK7fW3HqkoI7hg1B0Ig0gKE4GYyWy92CcHNtaXFAwFCcPNIIAQ3G9HCbgFCcLvrRwjuX/Wz9ct8QnDzOLL1voAQ3FxbWhCCMwYeCFgZgodXvG27Dsjub3+Sri2rOVZfQnDHqDkQApEWIAQ3k9l6sUsIbq4tLQjB3R0DhODuStHOVgFCcFsrZ+63rdcx6sxsvZYhBI94XLIcivl96+0WhODeFg3s/TETPLDrazq7gArB1ckWq9FZ1s4dbDpvr/09IbjXKNkRAl4XIAQ3k9p682jrjaOqiK03j+bR5J8tmAlurgshuNmIFnYLEILbXb+Iem/rdQwhuPNjkpngZnNb30+E4Oba0uI/AULwJ3s0BFQI/tvRk1Kv3VDZvmyMY1UlBHeMmgMhEGkBQnAzma0Xu4Tg5trS4oEAIbh5JBCCm41oYbcAIbjd9SME96/62fplPiG4eRzZel9ACG6uLS0IwRkDDwSsDMHzl2/9SP3u3AmWfy5fkUY1SkjLeuUcqy8huGPUHAiBSAsQgpvJbL3YJQQ315YWhODujgFCcHelaGerACG4rZUz99vW6xh1ZrZeyxCCRzwuWQ7F/L71dgtCcG+LBvb+mAke2PU1nZ2VIfi6LXseOa+4T8WWDOlTywvpU5vO2at/TwjuVU52hoBXBQjBzZy23jzaeuOoKmLrzaN5NPlnC2aCm+tCCG42ooXdAoTgdtcvot7beh1DCO78mGQmuNnc1vcTIbi5trT4T4AQ/MkeDVaG4P5UMkJwf6oGfUEgrAAhuHlE2HqxSwhuri0tHggQgptHAiG42YgWdgsQgttdP0Jw/6qfrV/mE4Kbx5Gt9wWE4Oba0oIQnDHwQMDKEDw4+J7MXbpR1m35Rk6cPq9PJH3alFK26IdSsUQ+R2tLCO4oNwdDIFIChOBmLlsvdgnBzbWlBSG4u2OAENxdKdrZKkAIbmvlzP229TpGnZmt1zKE4BGPS5ZDMb9vvd2CENzbooG9P2aCB3Z9TWdnZQg++dNVsmDFFinzSR5JlyaFPsejf52W5et3SNNapaVa2YKm8/ba3xOCe42SHSHgdQFCcDOprTePtt44qorYevNoHk3+2YKZ4Oa6EIKbjWhhtwAhuN31i6j3tl7HEII7PyaZCW42t/X9RAhuri0t/hMgBH+yR4OVIXjhKh1kTL8W8sqL6cNU74effpeug6fLmk8HOVZVQnDHqDkQApEWIAQ3k9l6sUsIbq4tLR4IEIKbRwIhuNmIFnYLEILbXT9CcP+qn61f5hOCm8eRrfcFNofgsVfPMRfGD1vY+jmgKAnB/XBAOdglK0PwHJ80kp0rx0ucOLHDUN2+fUdyFW8q+zdOc4yQENwxag6EQKQFCMHNZLZe7BKCm2tLC0Jwd8cAIbi7UrSzVYAQ3NbKmftt63WMOjNbr2VsDb8IwQP3/UQIbq6tt1vY+jlACO7tkWDf/qwMwSs16iPlS+SVCsXDrv/9+Zrt8tnSTbJiVn/HKkEI7hg1B0Ig0gKE4GYyW28ebb1xVBWx+aLRPKL8rwUzwc01IQQ3G9HCbgFCcLvrF1Hvbb2OIQR3fkwSgpvNbX0/EYKba+vtFjbfzzAT3Nujwa79WRmC7z1wRBp2HC4Z06WSjOlTy/379+Xo8TNy/ORZGdOvpeTJmcWxKhCCO0bNgRCItAAhuJnM1otdQnBzbWnxQIAQ3DwSCMHNRrSwW4AQ3O76EYL7V/1sDb8Iwc3jyNb7AkJwc2293cLWzwHlQAju7dFg1/6sDMEV8dnz/8jqTbvkxKnzWjz9cymk5MfvS7JnEztaAUJwR7k5GAKREiAEN3PZerFLCG6uLS0Iwd0dA4Tg7krRzlYBQnBbK2fut63XMerMbL2WsTX8IgQP3PcTIbi5tt5uYevnACG4t0eCffuzNgT/5/IVCQ6+FxJ6/3nirCRMEE+SJnna0SoQgjvKzcEQiJQAIbiZy9abR1tvHFVFbL5oNI8o/2vBTHBzTQjBzUa0sFuAENzu+kXUe1uvYwjBnR+ThOBmc1vfT4Tg5tp6u4XN9zPMBPf2aLBrf1aG4Lu//VFadB8jPdvW0rO/1Wv2og0yYfYKGTegpeTK/ppjVSAEd4yaAyEQaQFCcDOZrRe7hODm2tLigQAhuHkkEIKbjWhhtwAhuN31IwT3r/rZGn4RgpvHka33BYTg5tp6u4WtnwPKgRDc26PBrv1ZGYKXqdtdKpX6SCqX+iiM9uJV22Thyq2ybEY/x6pACO4YNQdCINIChOBmMlsvdgnBzbWlBSG4u2OAENxdKdrZKkAIbmvlzP229TpGnZmt1zK2hl+E4IH7fiIEN9fW2y1s/RwgBPf2SLBvf1aG4NkK1ZevV4zTy5+EfqklUvKXbyPfb5ruWCUIwR2j5kAIRFqAENxMZuvNo603jqoiNl80mkeU/7VgJri5JoTgZiNa2C1ACG53/SLqva3XMYTgzo9JQnCzua3vJ0Jwc2293cLm+xlmgnt7NNi1PytD8OI1u0jjmiWleMH3wmjPW7ZJFq3cJqvmDHSsCoTgjlFzIAQiLUAIbiaz9WKXENxcW1o8ECAEN48EQnCzES3sFiAEt7t+hOD+VT9bwy9CcPM4svW+gBDcXFtvt7D1c0A5EIJ7ezTYtT8rQ/CtOw9I294TfuN27gAAIABJREFU5OUX0kna1Mnl/v178vufp+X4ybMypm8LyfteVseqQAjuGDUHQiDSAoTgZjJbL3YJwc21pQUhuLtjgBDcXSna2SpACG5r5cz9tvU6Rp2ZrdcytoZfhOCB+34iBDfX1tstbP0cIAT39kiwb39WhuCK+ez5f2T1pl1y4tR5rZ4ubQopUSi3pEj2jKNVIAR3lJuDIRApAUJwM5etN4+23jiqith80WgeUf7Xgpng5poQgpuNaGG3ACG43fWLqPe2XscQgjs/JgnBzea2vp8Iwc219XYLm+9nmAnu7dFg1/6sDcH9hZkQ3F8qQT8QeFSAENw8Kmy92CUEN9eWFg8ECMHNI4EQ3GxEC7sFCMHtrh8huH/Vz9bwixDcPI5svS8gBDfX1tstbP0cUA6E4N4eDXbtjxDcw3oRgnsIyOYI+FCAENyMa+vFLiG4uba0IAR3dwwQgrsrRTtbBQjBba2cud+2XseoM7P1WsbW8IsQPHDfT4Tg5tp6u4WtnwOE4N4eCfbtjxDcw5oRgnsIyOYI+FCAENyMa+vNo603jqoiNl80mkeU/7VgJri5JoTgZiNa2C1ACG53/SLqva3XMYTgzo9JQnCzua3vJ0Jwc2293cLm+xlmgv+/9u47XooiC/v4AZRgFrOuERVRUUQRRV0TBkRFUZGsgErOOeeclBxEgiIYUFEUI6Y1u+ac46IiIoqiAvK+1bx3XkDuPTO3q/v2mfnNX/tZq2u6v6embtVDT4/v0WCrP0LwkPUiBA8JyOEIRChACK7jWl3sEoLrtaXFJgFCcH0kEILrRrSwLUAIbrt+hODJqp/V8IsQXB9HVvcFhOB6bX23sDoPOAdCcN+jwVZ/hOAh60UIHhKQwxGIUIAQXMe1utglBNdrSwtC8HTHACF4ulK0sypACG61cvp5W13HuCuzupaxGn4Rgmfv54kQXK+t7xZW5wFCcN8jwV5/hOAha0YIHhKQwxGIUIAQXMe1unm0unF0FbG8aNRHVPJacCe4XhNCcN2IFrYFCMFt16+gs7e6jiEEj39MEoLr5lY/T4Tgem19t7C8n+FOcN+jwVZ/hOAh60UIHhKQwxGIUIAQXMe1utglBNdrS4tNAoTg+kggBNeNaGFbgBDcdv0IwZNVP6vhFyG4Po6s7gsIwfXa+m5hdR5wDoTgvkeDrf4IwUPWixA8JCCHIxChACG4jmt1sUsIrteWFoTg6Y4BQvB0pWhnVYAQ3Grl9PO2uo5xV2Z1LWM1/CIEz97PEyG4XlvfLazOA4TgvkeCvf4IwUPWjBA8JCCHIxChACG4jmt182h14+gqYnnRqI+o5LXgTnC9JoTguhEtbAsQgtuuX0Fnb3UdQwge/5gkBNfNrX6eCMH12vpuYXk/w53gvkeDrf4IwUPWixA8JCCHIxChACG4jmt1sUsIrteWFpsECMH1kUAIrhvRwrYAIbjt+hGCJ6t+VsMvQnB9HFndFxCC67X13cLqPOAcCMF9jwZb/RGCh6wXIXhIQA5HIEIBQnAd1+pilxBcry0tCMHTHQOE4OlK0c6qACG41crp5211HeOuzOpaxmr4RQievZ8nQnC9tr5bWJ0HCMF9jwR7/RGCp1GzT7/4VgaMnSsffvqV7Fl2V+nSsq6cc9oJwZGE4GkA0gSBIhIgBNfhrW4erW4cXUUsLxr1EZW8FtwJrteEEFw3ooVtAUJw2/Ur6OytrmMIweMfk4TgurnVzxMhuF5b3y0s72e4E9z3aLDVHyF4GvWq1aS3XFnzTGlQ+zx57pV3pNOASfLMvROlTOmShOBp+NEEgaISIATX5a0udgnB9drSYpMAIbg+EgjBdSNa2BYgBLddP0LwZNXPavhFCK6PI6v7AkJwvba+W1idB5wDIbjv0WCrP0JwpV7rN2yQe5c+K5fXOEO2K1EiaF21Zku5a8ZAOeiAvQnBbY13zjbHBAjB9YJbXewSguu1pQUheLpjgBA8XSnaWRUgBLdaOf28ra5j3JVZXctYDb8IwbP380QIrtfWdwur8wAhuO+RYK8/QvAMa/b2+59J+34T5fE7xknx4sUIwTP0ozkCcQoQguvaVjePVjeOriKWF436iEpeC+4E12tCCK4b0cK2ACG47foVdPZW1zGE4PGPSUJw3dzq54kQXK+t7xaW9zPcCe57NNjqjxA8g3p9s3yF3NB1jPTt0FhOPemY4Mj/Dp6RQQ/Janpkl6bJOiHOBgHPAsVEZKcy23nu9Z/d/bp2feTvEdUbLH1sY1RdR9qv5RC8eO0mkdrQ+T8Fdo5hHmA9wMhDINkCccwDltcDya5e/mdndR1jOQS3vI6JYx5Ys3a92Fxdi1j9PNU4z+36bL7+vme2yRNnHjBZNk5aRAjB0xwGH376tbTvO1F6tKkvZ1WrlDrK9Ka3M0FMmuWnmVGBYsWKxReCb7S53F36uM3zthyCG/04SfHLjf7NKFZM4tj0sh6wOrI571wQiGs9EIRfrAdyYUh5uUaraxnWAwWXn3nAy8cjo07KvTkno/ZJanz4YUk6m/TPxew8ICI777B9+hdKy6wTIARPo6Rf/+8Hub7LGBnW83qpXPGILY54ecD0NHpIZhO+/pzMunBW/gR4HIpuafVrj1Y3jnpFktvC6tceeRyKPqZYD+hGtLAtwONQ9PpZXQ/oV5bcFlbXMlbXAzwORf8sWJ0Hjnx7rn5xCW1x6CE2b0iyOg+4YcDjUBL6YYjptAjB04C+tsMIufrSs6XGOVX/0ZoQPA1AmiBQRAKE4Dq81cWu1Y2jXpHktrC62CUE18cUIbhuRAvbAoTgev2srgf0K0tuC6trGavrAUJw/bNgdR4gBNdr67uF1XmAENz3SLDXHyG4UjP3HPAL6nWV7bff8rnCY/q1lOpnnMgPY9ob85xxDgkQguvFtrrYtbpx1CuS3BZWF7uE4PqYIgTXjWhhW4AQXK+f1fWAfmXJbWF1LWN1PUAIrn8WrM4DhOB6bX23sDoPEIL7Hgn2+iMED1kz7gQPCcjhCEQoQAiu41pd7FrdOOoVSW4Lq4tdQnB9TBGC60a0sC1ACK7Xz+p6QL+y5Lawupaxuh4gBNc/C1bnAUJwvba+W1idBwjBfY8Ee/0RgoesGSF4SEAORyBCAUJwHdfqYtfqxlGvSHJbWF3sEoLrY4oQXDeihW0BQnC9flbXA/qVJbeF1bWM1fUAIbj+WbA6DxCC67X13cLqPEAI7nsk2OuPEDxkzQjBQwJyOAIRChCC67hWF7tWN456RZLbwupilxBcH1OE4LoRLWwLEILr9bO6HtCvLLktrK5lrK4HCMH1z4LVeYAQXK+t7xZW5wFCcN8jwV5/hOAha0YIHhKQwxGIUIAQXMe1uti1unHUK5LcFlYXu4Tg+pgiBNeNaGFbgBBcr5/V9YB+ZcltYXUtY3U9QAiufxaszgOE4HptfbewOg8QgvseCfb6IwQPWTNC8JCAHI5AhAKE4Dqu1cWu1Y2jXpHktrC62CUE18cUIbhuRAvbAoTgev2srgf0K0tuC6trGavrAUJw/bNgdR4gBNdr67uF1XmAENz3SLDXHyF4yJoRgocE5HAEIhQgBNdxrS52rW4c9Yokt4XVxS4huD6mCMF1I1rYFiAE1+tndT2gX1lyW1hdy1hdDxCC658Fq/MAIbheW98trM4DhOC+R4K9/gjBQ9aMEDwkIIcjEKEAIbiOa3Wxa3XjqFckuS2sLnYJwfUxRQiuG9HCtgAhuF4/q+sB/cqS28LqWsbqeoAQXP8sWJ0HCMH12vpuYXUeIAT3PRLs9UcIHrJmhOAhATkcgQgFCMF1XKuLXasbR70iyW1hdbFLCK6PKUJw3YgWtgUIwfX6WV0P6FeW3BZW1zJW1wOE4Ppnweo8QAiu19Z3C6vzACG475Fgrz9C8JA1IwQPCcjhCEQoQAiu41pd7FrdOOoVSW4Lq4tdQnB9TBGC60a0sC1ACK7Xz+p6QL+y5Lawupaxuh4gBNc/C1bnAUJwvba+W1idBwjBfY8Ee/0RgoesGSF4SEAORyBCAUJwHdfqYtfqxlGvSHJbWF3sEoLrY4oQXDeihW0BQnC9flbXA/qVJbeF1bWM1fUAIbj+WbA6DxCC67X13cLqPEAI7nsk2OuPEDxkzQjBQwJyOAIRChCC67hWF7tWN456RZLbwupilxBcH1OE4LoRLWwLEILr9bO6HtCvLLktrK5lrK4HCMH1z4LVeYAQXK+t7xZW5wFCcN8jwV5/hOAha0YIHhKQwxGIUIAQXMe1uti1unHUK5LcFlYXu4Tg+pgiBNeNaGFbgBBcr5/V9YB+ZcltYXUtY3U9QAiufxaszgOE4HptfbewOg8QgvseCfb6IwQPWTNC8JCAHI5AhAKE4Dqu1cWu1Y2jXpHktrC62CUE18cUIbhuRAvbAoTgev2srgf0K0tuC6trGavrAUJw/bNgdR4gBNdr67uF1XmAENz3SLDXHyF4yJoRgocE5HAEIhQgBNdxrS52rW4c9Yokt4XVxS4huD6mCMF1I1rYFiAE1+tndT2gX1lyW1hdy1hdDxCC658Fq/MAIbheW98trM4DhOC+R4K9/gjBQ9aMEDwkIIcjEKEAIbiOa3Wxa3XjqFckuS2sLnYJwfUxRQiuG9HCtgAhuF4/q+sB/cqS28LqWsbqeoAQXP8sWJ0HCMH12vpuYXUeIAT3PRLs9UcIHrJmhOAhATkcgQgFCMF1XKuLXasbR70iyW1hdbFLCK6PKUJw3YgWtgUIwfX6WV0P6FeW3BZW1zJW1wOE4Ppnweo8QAiu19Z3C6vzACG475Fgrz9C8JA1IwQPCcjhCEQoQAiu41pd7FrdOOoVSW4Lq4tdQnB9TBGC60a0sC1ACK7Xz+p6QL+y5Lawupaxuh4gBNc/C1bnAUJwvba+W1idBwjBfY8Ee/0RgoesGSF4SEAORyBCAUJwHdfqYtfqxlGvSHJbWF3sEoLrY4oQXDeihW0BQnC9flbXA/qVJbeF1bWM1fUAIbj+WbA6DxCC67X13cLqPEAI7nsk2OuPEDxkzQjBQwJyOAIRChCC67hWF7tWN456RZLbwupilxBcH1OE4LoRLWwLEILr9bO6HtCvLLktrK5lrK4HCMH1z4LVeYAQXK+t7xZW5wFCcN8jwV5/hOAha0YIHhKQwxGIUIAQXMe1uti1unHUK5LcFlYXu4Tg+pgiBNeNaGFbgBBcr5/V9YB+ZcltYXUtY3U9QAiufxaszgOE4HptfbewOg8QgvseCfb6IwQPWTNC8JCAHI5AhAKE4Dqu1cWu1Y2jXpHktrC62CUE18cUIbhuRAvbAoTgev2srgf0K0tuC6trGavrAUJw/bNgdR4gBNdr67uF1XmAENz3SLDXHyF4yJoRgocE5HAEIhQgBNdxrS52rW4c9Yokt4XVxS4huD6mCMF1I1rYFiAE1+tndT2gX1lyW1hdy1hdDxCC658Fq/MAIbheW98trM4DhOC+R4K9/gjBQ9aMEDwkIIcjEKEAIbiOa3Wxa3XjqFckuS2sLnYJwfUxRQiuG9HCtgAhuF4/q+sB/cqS28LqWsbqeoAQXP8sWJ0HCMH12vpuYXUeIAT3PRLs9UcIHrJmhOAhATkcgQgFCMF1XKuLXasbR70iyW1hdbFLCK6PKUJw3YgWtgUIwfX6WV0P6FeW3BZW1zJW1wOE4Ppnweo8QAiu19Z3C6vzACG475Fgrz9C8JA1IwQPCcjhCEQoQAiu41pd7FrdOOoVSW4Lq4tdQnB9TBGC60a0sC1ACK7Xz+p6QL+y5Lawupaxuh4gBNc/C1bnAUJwvba+W1idBwjBfY8Ee/0RgoesGSF4SEAORyBCgbhC8Dvu/1PWrdsY4ZXQ9dYCLHbjHxNWF7uE4PpYIQTXjWhhW4AQXK8f4Zdu5LvFoYfYXDtaXQ8QgusjmHlAN/Ldwuo84Nshzv72urZFnG/HeyVMgBA8ZEEIwUMCcjgCEQoQgkeIW8RdE4LHXwCrm15CcH2sEILrRrSwLUAIrteP8Es38t3CavhldT1ACK6PYOYB3ch3C6vzgG+HOPsjBI9TO3nvRQgesiaE4CEBORyBCAUIwSPELeKuCcHjL4DVTS8huD5WCMF1I1rYFiAE1+tH+KUb+W5hNfyyuh4gBNdHMPOAbuS7hdV5wLdDnP0Rgsepnbz3IgQPWRNC8JCAHI5AhAKE4BHiFnHXhODxF8DqppcQXB8rhOC6ES1sCxCC6/Uj/NKNfLewGn5ZXQ8QgusjmHlAN/Ldwuo84Nshzv4IwePUTt57EYKHrAkheEhADkcgQgFC8Ahxi7hrQvD4C2B100sIro8VQnDdiBa2BQjB9foRfulGvltYDb+srgcIwfURzDygG/luYXUe8O0QZ3+E4HFqJ++9CMFD1oQQPCQghyMQoQAheIS4Rdw1IXj8BbC66SUE18cKIbhuRAvbAoTgev0Iv3Qj3y2shl9W1wOE4PoIZh7QjXy3sDoP+HaIsz9C8Di1k/dehOAha0IIHhKQwxGIUIAQPELcIu6aEDz+Aljd9BKC62OFEFw3ooVtAUJwvX6EX7qR7xZWwy+r6wFCcH0EMw/oRr5bWJ0HfDvE2R8heJzayXsvQvCQNSEEDwnI4QhEKEAIHiFuEXdNCB5/AaxuegnB9bFCCK4b0cK2ACG4Xj/CL93Idwur4ZfV9QAhuD6CmQd0I98trM4Dvh3i7I8QPE7t5L0XIXjImhCChwTkcAQiFCAEjxC3iLsmBI+/AFY3vYTg+lghBNeNaGFbgBBcrx/hl27ku4XV8MvqeoAQXB/BzAO6ke8WVucB3w5x9kcIHqd28t6LEDxkTQjBQwJyOAIRChCCR4hbxF0TgsdfAKubXkJwfawQgutGtLAtQAiu14/wSzfy3cJq+GV1PUAIro9g5gHdyHcLq/OAb4c4+yMEj1M7ee9FCB6yJoTgIQE5HIEIBQjBI8Qt4q4JweMvgNVNLyG4PlYIwXUjWtgWIATX60f4pRv5bmE1/LK6HiAE10cw84Bu5LuF1XnAt0Oc/RGCx6mdvPciBA9ZE0LwkIAcjkCEAoTgEeIWcdeE4PEXwOqmlxBcHyuE4LoRLWwLEILr9SP80o18t7AaflldDxCC6yOYeUA38t3C6jzg2yHO/gjB49RO3nsRgoesCSF4SEAORyBCAULwCHGLuGtC8PgLYHXTSwiujxVCcN2IFrYFCMH1+hF+6Ua+W1gNv6yuBwjB9RHMPKAb+W5hdR7w7RBnf4TgcWon770IwUPWhBA8JCCHIxChACF4hLhF3DUhePwFsLrpJQTXxwohuG5EC9sChOB6/Qi/dCPfLayGX1bXA4Tg+ghmHtCNfLewOg/4doizP0LwOLWT916E4CFrQggeEpDDEYhQgBA8Qtwi7poQPP4CWN30EoLrY4UQXDeihW0BQnC9foRfupHvFlbDL6vrAUJwfQQzD+hGvltYnQd8O8TZHyF4nNrJey9C8JA1IQQPCcjhCEQoQAgeIW4Rd00IHn8BrG56CcH1sUIIrhvRwrYAIbheP8Iv3ch3C6vhl9X1ACG4PoKZB3Qj3y2szgO+HeLsjxA8Tu3kvRcheMiaEIKHBORwBCIUIASPELeIuyYEj78AVje9hOD6WCEE141oYVuAEFyvH+GXbuS7hdXwy+p6gBBcH8HMA7qR7xZW5wHfDnH2Rwgep3by3osQPGRNCMFDAnI4AhEKEIJHiFvEXROCx18Aq5teQnB9rBCC60a0sC1ACK7Xj/BLN/Ldwmr4ZXU9QAiuj2DmAd3Idwur84Bvhzj7IwSPUzt570UIHrImhOAhATkcgQgFCMEjxC3irgnB4y+A1U0vIbg+VgjBdSNa2BYgBNfrR/ilG/luYTX8sroeIATXRzDzgG7ku4XVecC3Q5z9EYLHqZ289yIED1kTQvCQgByOQIQChOAR4hZx14Tg8RfA6qaXEFwfK4TguhEtbAsQguv1I/zSjXy3sBp+WV0PEILrI5h5QDfy3cLqPODbIc7+CMHj1E7eexGCh6wJIXhIQA5HIEIBQvAIcYu4a0Lw+AtgddNLCK6PFUJw3YgWtgUIwfX6EX7pRr5bWA2/rK4HCMH1Ecw8oBv5bmF1HvDtEGd/hOBxaifvvQjBQ9aEEDwkIIcjEKEAIXiEuEXcNSF4/AWwuuklBNfHCiG4bkQL2wKE4Hr9CL90I98trIZfVtcDhOD6CGYe0I18t7A6D/h2iLM/QvA4tZP3XoTgIWtCCB4SkMMRiFCAEDxC3CLumhA8/gJY3fQSgutjhRBcN6KFbQFCcL1+hF+6ke8WVsMvq+sBQnB9BDMP6Ea+W1idB3w7xNkfIXic2sl7L0LwNGry1bc/SK/hM+X9j7+UA/bdUwZ1ayqVjjk8OJIQPA1AmiBQRAKE4EUEH8PbEoLHgLzVW1jd9BKC62OFEFw3ooVtAUJwvX6EX7qR7xZWwy+r6wFCcH0EMw/oRr5bWJ0HfDvE2R8heJzayXsvQvA0atKo7VA5rUpFaVa/pjz9whsybMJt8siCMbL9diUIwdPwowkCRSVACF5U8tG/LyF49MZbv4PVTS8huD5WCMF1I1rYFiAE1+tH+KUb+W5hNfyyuh4gBNdHMPOAbuS7hdV5wLdDnP0Rgsepnbz3IgRXarJy1S9yYf2u8sKSKbJdiRJB6yuv7y/dW9eTKpWOIgRP3pjmjBBICRCCZ+9gIASPv7ZWN72E4PpYIQTXjWhhW4AQXK8f4Zdu5LuF1fDL6nqAEFwfwcwDupHvFlbnAd8OcfZHCB6ndvLeixBcqclrb38sg8bNlftmD0m17DJoqlStXEGuuvgsQvDkjWnOCAFC8BwYA4Tg8RfZ6qaXEFwfK4TguhEtbAsQguv1I/zSjXy3sBp+WV0PEILrI5h5QDfy3cLqPODbIc7+CMHj1E7eexGCKzV5/tV35KaZi+SO6f1TLXuPuFmOLHegXHPVBfLG0JnJq2qaZ1Sp9/VptqQZAjYF1m3YKNuXKBb5yT/02AZZtz7yt+ENNhM4+LVbzHocdURxk+deuk4zk+e9fsNGcUF41C/WA1EL0z8ChRf4+++NUrx49PNAXPNN4SXyP3Lx0g1RdBt5n6wHIif+xxtYXQ9s3CjigvCoX3HtP6K4DuaBKFQL7tPqviB+KX/vaHUO8yeQ2z0Rgiv1f/2dj6XPyFny4K0jUi3b9Z0gZ1Q9LrgTnBcCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAcgUIwZXarFr9q1Sv01meu3+SlC5VMmhds1EPGdytqVSueGRyK8uZIYAAAggggAACCCCAAAIIIIAAAggggAACCAgheBqDoFnnUXLiceXl+gYXyyNPvSw33bxIls4fmfqhzDS6oAkCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAEQgQgqeBvvz7ldJ96HR598Mv5MD995ahPa6TY8ofksaRNEEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoSgFC8ELqz5y/RObe+Yis37BBLjr3FOndrqGUKGHzx84KSRDJYWt+WysDx82R515+R7bffjupe9k50rJxreC9nn3pLRk24TZZsfJnOf6Yw2Vk7+ayZ9ldZd5dj8jHn38bPKKGVziBazuMkD1230XG9m8VdPTVtz9Ir+Ez5f2Pv5QD9t1TBnVrKpWOOVw++OQr6dBvkjx8+6hwb2j8aOaBaApY0DyQ35hkHvBXC+aBzCyZBzLzSrd1YeYB/jalq6u3mzz7Xrnj/iflmXsnsB7QuYR5IA2kQjRhHigEmsdDtp4H/vjzL+k/erY8+fzrUqZ0KWnT9PLgN7KYezeh57dX9ViSnO1q6rzFsvC+ZbJu3XqpVuVYGdS1iexQpjR71RhGRLrzgDuVqjVbyuI5Q2XfvcrGcGa8BQKFEyAEL4Tbi/99T/qMmiVzb+opu+68o7TsMV4uOreq1Lvs3EL0xiGbCwy96Vb56edfg7vtf1r1i9RrNTgIZI8sd6BcWK+rjOnfUqpUqiA3zrhLlv+wUsYNaE0I7mkI3bv0WZk85z45/uhyqRC8UduhclqVitKsfk15+oU3gn+EeGTBGPn0i29zPgRnHvA08LbRTX7zwEnHl5f8xuSCex/nH8M8lIR5IDNE5oHMvDJpXZh5gL9NmQjn3/aLr7+T1r1ulF/X/J4KwVkP5O/FPOBn3G2rF+aB6Gy1nrc1D0yYtUje//grGdu/pXy/YpVc0364zBrXTTZs+Dvn9wW/rPk9372qZs1/L1jg0adfFTf2bhnXXXbasbS07TMheFRtq2tq5bsvYD3gZ1RlMg8ccei/CMH9sNNLxAKE4IUAHjR+nuy3d9ngGeHu5f413N0VPufGHoXojUM2F1j23OtSvtyBwV3H7tWm101y9mknyI47lJZ7HnpGZozuEvz/bmN2Zu328uKSKbJw8bJU+PXdip+kYeshMrJPCznxOH64NN3R9fPqNdKgzRBpfOX58vIbHwQh+MpVv8iF9bvKC0umpJ5/f+X1/aV763qy8047pBa769ZvkOs6j5J/n3K8NKt3Ubpvab4d80B0JcxvHjirWqV8x6T7tkLeN0KYBwpXG+aBzN2YBzI3S/eIwswD/G1KV7fgdk06jpCrLz0n+Idvdyc464GCvZgH/Iy7bfXCPBCdrdbz1vOAa39J454ypMd1wQ0z7jVq8gLZaccycs7plXN+X/Dwky/nu1ctWXJ7jZv/XoDAOx9+HtwBfsKxRwSt5t71iLz30RfSrVU99qoRj5xM5oFW1162RQh+48y75aPPvpZJQztI8eLFIj5TukcgfQFC8PStUi3dD2XWrXWOnPfvk4L/7/OvlkuTjiPlqUU3FqI3DslPwH0F8uLGPYM7DB5/5r+yctVq6dWuYaq5C8HnTegV3KHswq/e7RtKo7bDgiD3kvOrAZuBQO8RN4u7y9Z9rezRp18JQvDX3v5YBo2bK/fNHpLqqcugqVK1cgWpeNRhqcXH//mQAAAeqElEQVTuwHFzZcOGDTKoa249joZ5IIMBFqLp5vPA6l9+y3dMrl37J/NACGd3KPNA5oDMA5mbFeaIdOcB/jYVRnfLY+57+D/y0mvvS7fWdaXWtb2DEJz1QMGuzAPhx106PTAPpKPkp8225gHX8/HnNgvmhF132TF4ozvvf1JeffNDaVrvopzfF0y/9YF896oH/2sfP4Whl0CgRfdxcu4ZlaXcwQewV41wTGQ6D4zq2yIVgr/+9sdy8+0Pyq0TewX5Ai8EkiRACF6IajRoPUSaN7okuPPVvf733Y9yWdM+8vJD0wrRG4dsS8A9c65Dv4lyXIVy4v5V0f1Lonv+epcWV6ean1e3i0wY3FZeeeODIPxa+8efcuiB+0rrJpeDmoGA85sy9z6ZPb6HPPLUK6kQ/PlX35GbZi6SO6b3T/XmQjL3aJqqJ1QIFrtNrr5Q3FfUpo/unLpbPIO3Nt2UeSD68m09DxQ0Jt39BcwDha8J80Dh7JgHCueWyVGZzAP8bcpE9p9t3bdBGrYdGmxa3SsvBGc9ULAr80C4cZfO0cwD6Sj5aZPfPOC++VmpejN59eEZUqZ0yeDNXEjmblRyzwbP9X1BQXvVCkcc7Kc49CJT5twn/33rI5k5pqu8+Nq77FUjGhOFmQcmDWsfhODDe90go6cskDk39pR99to9ojOkWwQKL0AIXgi767qMlto1/h08B9y9Pvz0a2nebSx3ghfCcluHuGeqte45Xk4+oYK0bVo7aDLjtgdk+fcrpX/na1OHnHpxK1k4rX9wJ/iUuYvlr7/WSe/2jeSKmv/2dCbZ3437alndloNkTL+WcuhB+20Rgr/+zsfSZ+QsefDWESmIdn0nyBlVjwvuBG/YZogUL148eFyN+5HSXHsxD0Rb8W3NAwWNSXcnOPNA4WrCPFA4N3cU80Dh7dI5MtN5gL9N6ajm38b9Q7dbe9W64DRZtfrXVAjOeqBgV+aBcONOO5p5QBPy+9/zmwfcu7g7wZ+4a5zsWXbX4E1vW/SYvPXep8Gd4Lm+Lyhor8qd4OHH6MaNG2X4xPny5Tffy/iBbWSHMqWEv03hXfProTDzQN6d4KVLldz0KNtZg8X9b14IJE2AELwQFXE/0rLbLjul7jh+6ImXZNGDTweP7eAVTuDPv9ZJs06j5MKzT5aGV5yX6szdbTz/nseCHyN1rxUrf5YL63cLngm+4L4n5Knn35DubeoHx945vb/s//+eKR7ubLL/6Lc/+FyadRqZ+gP117r14mpwXIXD5MZBbaR6nc7y3P2TUv+9ZqMeMrhb0+BrTU07jZRFMwdJ006jpHOLOlL9jBOzH2yzK2QeiK7c+c0DLpTJb0y+88HnzAOFLAnzQCHhRIR5oPB22pGFmQf426SpFvzfq13aOvWtLhc4rFq9RsrutnNwZ3jtZv1YD+TDxzwQbtwVdDTzQHS2+fWc3zzwwNzh0rj9MOndrpGcfMJRweEDx86RffYqK+43W3J9X1DQXnX77beLv5BZ9o7u+fPf/7hKRvRuLttvVyK4uoL2BawHwg2AwswDLRpfGtwJPnFI+yAb23WXnaRXuwbhToSjEYhAgBC8EKivvf2RdBs8LXge9Y47lpEbuoyROpeezR3IhbDc+hD3FacVP62W/p2u2eI//fb7H8EPX4zs01yqHH+UjJh0u6z5fW1wB/K8ux5J/SDezPlL5IVX3w3+QaJYMX6AIdOSbP44FHese86l+/Vt9yOwjzz1stx08yJZOn+kfPL5t6ln/7lnhXbsP0nuvWVIsFnOlRfzQHSVzm8eKGhM3n7P48wDnkrCPJA+JPNA+laZtizMPMDfpkyV82+/+Z3grAcKdmUe8Dfu0t0XMCajM9+8563nAffc69ff+UjGDWgj3yxfIe5H826b2Du4gcY9DuXh20cFvyGQi/uCgvaq8VQre9/FPbJv6E23yd03D/zH4zfZq0Zf93TnAfetcheCL54zVMqUKiW1mvSWUX1apP7RLPoz5R0QSE+AEDw9p3+0cr9KfPP8JeKej3bZhadL99b1CF0Labn5YdXrdJIVK1dLsc1+Qdj9CGmPNvXlxdfek4Fj58qKlavkJBeE97pBdtt1py1C8A0b/pb6rQbLpRdUkwa1//+d5B5OLSe62Dr8co+g6T50urz74Rdy4P57y9Ae18kx5Q+RDz75KrXYdTAjJy8IHlfj7h7PpRfzQDTVLmgeyG9Mbv6PYcwD4erCPJCZH/NAZl7pti7MPMDfpnR19XZbb3pZDxRsxjygj6nCtGAeKIyav2O2ngfc49MGjJ0jjz3zavCt0I43XBU8Pom5d5N5fntVfxXJzZ56DpspSx5/XkqU2HQHuHsdfsgBcvfMgcH+k71qtOMi3XnAnUVeCL7vXmVl2XOvB4+wue+WIcHjUXghkBQBQvCkVILzQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAuQAjunZQOEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJIiQAielEpwHggggAACCCCAAAIIIIAAAggggAACCCCAAALeBQjBvZPSIQIIIIAAAggggAACCCCAAAIIIIAAAggggEBSBAjBk1IJzgMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAuwAhuHdSOkQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIigAheFIqwXkggAACCCCAAAIIIIAAAggggAACCCCAAAIIeBcgBPdOSocIIIAAAggggAACCCCAAAIIIIAAAggggAACSREgBE9KJTgPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAe8ChODeSekQAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICkChOBJqQTngQACCCCAAAIIIIAAAggggAACCCCAAAIIIOBdgBDcOykdIoAAAggggAACCCCAAAIIIIAAAggggAACCCRFgBA8KZXgPBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS8CxCCeyelQwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGkCBCCJ6USnAcCCCCAAAIIIIAAAggggAACCCCAAAIIIICAdwFCcO+kdIgAAggggAACCCCAAAIIIIAAAggggAACCCCQFAFC8KRUgvPIWOCrb7+XGg26y9P33CR7lt014+M5AAEE7AswD9ivIVeAgA+Bs6/sIF1b1pOLzq3qozv6QAABgwLMAwaLxikj4FmAecAzKN0hkGUChOBZVtBcupxMwq8ff1otZ9ZuvwXPrrvsKMcffbh0aXm1lDt4/1yi41oRyBqBTOYBd9E1G/WQL77+LnX9ZUqXlHIHHyCtrr1Mzjz1+Kxx4UIQyDWBTDa9zAO5Njq43lwRYB7IlUpznQjkL8A8wOhAAIGCBAjBGR9mBTIJv/JC8KkjOsqR5Q4MrnnFytUyfd798v7HX8oD84bLDmVKZWSxYcPfUqJE8YyOoTECCPgVyGQeyAvBLziritS59OzgRH77ba08+MSLcvPtD8rCqf3k6CMPyegEmQcy4qIxApEJZLrpZR6IrBR0jECRCRTlPLB+wwbZrkSJIrt23hgBBDYJMA8wEhBAoCABQnDGR2IE1q1bL8Mn3S4PP/mSlC5VUjrdUEdm3PaAXNegplx6/mniguyew2bKG+9+LPvtvYdc3+Bi6TFsRvA4FBdGn16rrYzs3Vzm3Pmw/PDjKjnkwH1lWM/r5V/77RUc6+4Ev2N6fzm2/KGpa179y29S7dLWMnt8Dzn5hKPkz7/WycjJC4Jz2Pj3Rjn2qMOkd/uGQV9rflsrVWu2DPocNWWBNG94iTS+6gJ5+oU3ZczUhfL18hXBHeXdWteTqidUCN7j/kefkxm3LZFvv/tR9th9F7m2zoXS8Irzgv825MZbZc3va6V0yZLywn/flXXr10uD2udJs3oXJaYmnAgCcQuEmQfcY5Euvba3XHLeqfLy6x/IJ198IzvuUEZ6tm0gp1U5NrgUdwfolTXPlCZ1a2xxaZc37SPVzzhRWje5nHkg7qLzfghsQ2Dh4mXBP079uuZ3ufLiM2XtH3/JX3+tkyHdm8m69Rtk+MT58vCyl6Rkye2Db3JMm7dYurSoGzwOhXmAIYVAdggU9TzgFOff87jMvmOp/Lz6Vzn4X/tK++uukH+fsumbY1dc108urn6q3PPQM3LIQfvJxCHt2Bdkx9DjKhIkYHEecN86HThujrz+ziey5+67SJO6F0mD2tUD1bc/+FxGTrpdPvjkSyldqpSce0Zl6d2uYbCeeeSpV2TMtDuCPGD+osfk51/WyOknHyf9O18T5CO8EEAgvAAheHhDevAkMHP+kmChOWN0F9l377LSf/Qt8p+X35GBXZoEm9r2fSfKb2v/kHEDWsvatX9Kj2HTg6DLheDuj8apF7eSUyofLROHtg/+SHQfOk2+Wf6jLJjSN98Q/Pe1f0qVGs1l1rhuwbHuj85b730qY/q1Eve4lGnz7pely16SJbcOl/XrN8iJF9wQhGm92jWUvffcTdb89odcUL+rDOrSRM6qVkkeeOwFGT/jTnl04RhxAbsL3CYMbidnVK0ob773qVzXebTcNrmPVDzq0GADf+cDT8mYvi2DP34ffvq11LlhgEwe3kFOP7miJ1W6QcCWQJh5wIXgtZv1lZ9+/lXmTeglBx2wt9yxeJmMnrpQnrhzfPCZzi8Ev7r5QDm9akVp27Q284CtIcPZZqGA+3tZv9VguWlwWzmj6nEye+FSmXf3I3LBmVWkf+drZf49jwUB+S3jusvee+4uY6ffKfcufVaGdr8uWC8wD2ThoOCSck4gCfPAMy++KX1H3SJThneU8ocfKM++9JZ0GjBFFs8eIgcdsI/UbTFQflnzezAvHXX4QfLnn+vYF+TcSOWCoxSwOA/sstMOwTqkSqWjpNU1l8lnX/1Pbug6RsYPbBPs8avX6Sw1zq0qra+9XFauWi3XdxktdS45O7hB54lnX5POAycHN8a5R7b++ttaqddyUHCjTscbroqSmr4RyBkBQvCcKXXyL7RB6yFy0vHlUxP88u9XSvWrO8vovi3l/LNOksrnXy+Th3UMAmX3euyZV6VDv0lbhOBj+rWUGuds+lGs197+SBq1HSbPLZ4k7iuKW98J/vvaP+TGmXcHIffS+aNkxx1Ky8kXtQjew90V7l7uUQdVa7aQKcM7yfHHlAvOYWiP6+SyC08P/vusBQ/JI0+9LHdOH5ACdnd/VzvpWNl9153lp59/kb322C3132o16S31LztXrq51ThCCP/fKO7Jk3vDUf2/WaZQcdvB+0rt9o+QXjDNEIAKBMPNAXgh+/DGHS/9O1wRn5+4YrXpRCxnRu7mcf+ZJ/wjB3dzw8LKXpefwGXLrxN5y/NHlmAciqCtdIpCJgPvb/NLr7wf/iO1eGzduDH4I+9QTjw7Cpms7jJDjKhwmnZrXCf77z6vXyGm12gTrhbwQnHkgE3HaIpA8gaKeByodc7i06D4uuHHFfUss79W829hg/nH/X92Wg4Jvgbq9AfuC5I0hzsi+gMV54O33P5P6rQfLCw9MkZ12LBMU4dmX3g5uoCtf7sDgZp2ddigd3MTnXkNvujX4/8b2bxWE4O36TgjyDbevca/gprwnX5LFs4faLyhXgEACBAjBE1AETmGTQPU6naR540vlqovPSpG4R5y4u65PPO5IOeeqjsGzuw87aL/gv3/02TfiHmGw+Z3gLow+pvymZ/q6R5CcX7eL3DNrcPAoEheClyq5vRQvXiz47+6r1W7hOqhbU3EL3RUrf5azruiwzXK4r19fdO4pQQjugrLKFY8I2g0YMye4A2TcgFb/OM5t2l1I/tATL8ovv/4mUqyY/Ljy52DT7h6j4kLwr//3Q3B3Sd6r1/CZwSNS3N3jvBDIRYEw80BeCO4en3Tt1Rem+Nw/puU9isjdCf7t8hWy3XabntvpHoG08047SOfmV8sVNf/NPJCLg45rTpyAe/TZhg0bZFTfFqlz6zRgsuy6845BCF6jQbfgM+3+QTnvVe2S1tKnQ+NUCM48kLiyckIIZCRQ1POAO9mLGnaXL7/5/h/nXeuC04LHI7oQ/OxqJ0jzRpewL8ioujRGID0Bi/OA+62hERPny7P3TdzmRS577nWZvfAhWf7DT8F/dzmBe5Sq+za7C8Hdt91fWTo9daz7ptuoyQvkhSVT0kOjFQIIFChACM4ASYyAC7ndV4bcsz/zXv++vJ30aNNAKlY4VC6s303unzssCK7dy/2g5ZXX998iBHc/bFexwmHBf//q2x+CjfKDt44I/hXWheAuXD7isAOC/77rLjsFG+q8V95zwxfdPCj4SuPWLxeWuRB88+eKuxB89a9rgq83bf1yzwccN/0umTqyU3AXiXu5Zwe6hXNeCP7lN9/JtJGdU4d2Hzpd/v777+BuNl4I5KJAmHkgLwSvWf3ULZ6t7/ps0biW1LnkrOBOcPeVQhd4u1eZ0qW2+LYG80AujjquOWkC7m+hbBQZ2ad56tQ6D5wi7ivGLgQ/96pOcn3Di6XuZiG4+ybXgM6bHp/mvobMPJC0qnI+CGQmUNTzgDvbixv3DNYObt2+rZcLwd1jmvJ+Z4R9QWY1pjUCmoDFecCF4MMm3BZ8G33r1+dfLZfLmvQJbsK75Lxqwc157vfIvvnfD6kQvOvgqfLaozNThy568BmZMGtRkHnwQgCB8AKE4OEN6cGTQJ3mA4Jnf7pn8rrX9ytWBXd/u0D47NNOCJ7dPXVEp9TjUNwfmG6Dp20RgrsNs/uBGvd68bX3xD1e5JWl08Q9+3tbP4y59alXqdFC+nZsFPwQZ97L3VF+wL57BneMbh2Cu2eS3v/o83L/nP//9aQ5dzwcnK97trH7kb+8Tbz7YU33a9Xu+vJC8GdefEuWzh+Zei/3+Bb32JUuLa72pEo3CNgSCDMP5IXg7h/C3G8JuNcff/4lp9RsKROGtAt+yCq/Z4JvrsQ8YGvMcLbZJ+Ce4//We5/JrRN7pS7OPQ7llMoVghDcBU8nVzoq9TiUvG9ybf44FOaB7BsXXFFuCSRhHmjVc7yU3W2X4Ad5817ucY377FU2CK+2DsHZF+TWGOVqoxewOA+43xer12pwcCd42d12DpDcD166f8hf8dPPMn7GXfLk3Tem8Bq3GxbcmJd3J7h7HIr77+7xKe418ZZ75D8vvR3ciMcLAQTCCxCChzekB08C7g/CQ8teklljuwV/MAaPnydPPv966s4u9wzQEiWKy6g+LcQFyn1Gzgqe+73541AqVzxSRvVpHjzeoMugqcFd1e6HNvPu7tz8Lu5tnbb7Ycxl/3lNJg/rIP/af2+5e8lTMuHmRfL4neOCxydsHYK7oN79MGbXlldLzXNPlUeffiX4Eb6Hbx8tC+97Qh5+8mVZMLVf8KOa/cbcIp9+8b8gIHcht3scyj0PPStdWtSRy2ucIa+8+aG06D5WbpvUJ3guMS8EclEgzDyQF4K7X1J3vw9wbPlD5eYFD8m8ux6RpxbdGPxgbjohOPNALo48rjlJAv95+W1p2WOcTB/VWapUqiBz7lgqt979qJx7euUgBJ8y5z65a8lTwd9397kfPWVh8Pd3UFf36LJNd4IzDySpopwLApkLJGEecD+M2bH/ZLlxUFupdtIx8sa7n4gLxqeO6Chuz7F1CM6+IPM6cwQCBQlYnAfcI1Evb9pXjjrioGDP/9W330vLHuODvUmpkiWDH8K8Z9YgOXD/vWXK3MXirnG7EsVl4bT+weNQuvzfO8EvPb+adG1ZN3hWeNNOI+XqS8+W6xtczGBBAAEPAoTgHhDpwo+A+6HKfqNni1twursuurWqG3yVqEvLunLh2SeLu/Oi5/CZ4n5swt2Z3bH5VdKm101BQO1+1PLUi1sFP0zj7sT+ZvkPckz5Q2VErxtkv332SDsEd3eNuq8kuR+7dL/w7n68okeb+nLc0eW2eSe4u3IX1I+bdqd8vXxF8Lzybq3rySmVjw5+qMt9ffut9z+VffcqG/z/3634SUZOul3aNK0dXI9bLO+95+7ifkzTBXTuGaebP8vYjyy9IGBHIMw8sN/eZYPwyz3uxP2a/Ktvfij777OH9O7QKPhMulc6ITjzgJ3xwplmr4DbGN6xeFnww9YNap8nX3/7g5QpU0r6dWwc/D12/1D+xLP/DX5Yqk3Ty+XWux6V6xrUDL7JxTyQveOCK8stgaKeB5z2bYsekzl3PhzsJdya4oaGl8hlF54eFGLrEJx9QW6NT642HgGL88BnXy2XgWPnBPuRPXbbRZrWqxGsZdxr0Ph58uDjL8gOZUoF/9/pJ1cMgu6Tji8vtc4/PbhxzoXn7g5w9212t69xa5+8H9KMR513QSB7BQjBs7e2Jq/M/VhlmdIlg3N3G9+Ta7SQm8d2S/0QZX4X5X6c0oXg980eIkcc+i8T1+7uBHch+I2D/vk8cRMXwEkiEJFAYecBdzou/Lqi5pnSoHb1iM7Ob7fMA3496S17BDafB9xVNes8Sk6uVCH1A3QFXSnzQPaMA64ktwWYB3K7/lw9Ak4gl+YBdyd439Gz5Pn7J1N8BBCISIAQPCJYus1cYOHiZTJt3v0ya2zX4O7tWQseEvdDEEvnj0oF44TgmbtyBAKWBMLMA4TglirNuSKQv8CnX3wrtZr0CZ7lf1qVY+WFV9+V9n0nyoKpfeXoIw9R6QjBVSIaIJB4AeaBxJeIE0QgcoFcmwcIwSMfUrwBAkIIziBIjIC783vstDtlyWPPy9o//pTy5Q6SHm0bSMWjDlXPkTvBVSIaIGBCIMw8QAhuosScJAJpCdzz0DMy47Yl8v2Pq4JHoDVveIlccn61tI4lBE+LiUYIJF6AeSDxJeIEEYhcIJfmAULwyIcTb4AAIThjAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCB7BbgTPHtry5UhgAACCCCAAAIIIIAAAggggAACCCCAAAI5L0AInvNDAAAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCB7BQjBs7e2XBkCCCCAAAIIIIAAAggggAACCCCAAAIIIJDzAoTgOT8EAEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJXgBA8e2vLlSGAAAIIIIAAAggggAACCCCAAAIIIIAAAjkvQAie80MAAAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHsFCMGzt7ZcGQIIIIAAAggggAACCCCAAAIIIIAAAgggkPMChOA5PwQAQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsleAEDx7a8uVIYAAAggggAACCCCAAAIIIIAAAggggAACOS9ACJ7zQwAABBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgewUIwbO3tlwZAggggAACCCCAAAIIIIAAAggggAACCCCQ8wKE4Dk/BABAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyV4AQPHtry5UhgAACCCCAAAIIIIAAAggggAACCCCAAAI5L0AInvNDAAAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCB7BQjBs7e2XBkCCCCAAAIIIIAAAggggAACCCCAAAIIIJDzAoTgOT8EAEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJXgBA8e2vLlSGAAAIIIIAAAggggAACCCCAAAIIIIAAAjkvQAie80MAAAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHsFCMGzt7ZcGQIIIIAAAggggAACCCCAAAIIIIAAAgggkPMChOA5PwQAQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsleAEDx7a8uVIYAAAggggAACCCCAAAIIIIAAAggggAACOS9ACJ7zQwAABBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgewUIwbO3tlwZAggggAACCCCAAAIIIIAAAggggAACCCCQ8wKE4Dk/BABAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyV4AQPHtry5UhgAACCCCAAAIIIIAAAggggAACCCCAAAI5L0AInvNDAAAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCB7BQjBs7e2XBkCCCCAAAIIIIAAAggggAACCCCAAAIIIJDzAoTgOT8EAEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJXgBA8e2vLlSGAAAIIIIAAAggggAACCCCAAAIIIIAAAjkvQAie80MAAAQQQAABBBBAAAEEEEAAAQQQQAABBBBAIHsFCMGzt7ZcGQIIIIAAAggggAACCCCAAAIIIIAAAgggkPMChOA5PwQAQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsleAEDx7a8uVIYAAAggggAACCCCAAAIIIIAAAggggAACOS9ACJ7zQwAABBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgewUIwbO3tlwZAggggAACCCCAAAIIIIAAAggggAACCCCQ8wKE4Dk/BABAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyV+D/ACjqIh6VZlblAAAAAElFTkSuQmCC",
"text/html": [
"<div> <div id=\"e36e05e3-0a91-4d5a-a56e-a4291a1bbb8e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"e36e05e3-0a91-4d5a-a56e-a4291a1bbb8e\")) { Plotly.newPlot( \"e36e05e3-0a91-4d5a-a56e-a4291a1bbb8e\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=China\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[400.448611,575.9870009,487.6740183,612.7056934,676.9000921,741.2374699],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=Germany\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[7144.114393000002,10187.82665,12902.46291,14745.62561,18016.18027,20512.92123],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=India\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[546.5657493,590.061996,658.3471509,700.7706107000001,724.032527,813.3373230000002],\"xaxis\":\"x3\",\"yaxis\":\"y3\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=Switzerland\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[14734.23275,17909.48973,20431.0927,22966.14432,27195.11304,26982.29052],\"xaxis\":\"x4\",\"yaxis\":\"y4\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=United States\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[13990.482080000002,14847.12712,16173.14586,19530.36557,21806.03594,24072.63213],\"xaxis\":\"x5\",\"yaxis\":\"y5\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=China\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[962.4213805,1378.904018,1655.784158,2289.234136,3119.280896,4959.114854],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=Germany\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[22031.53274,24639.18566,26505.30317,27788.88416,30035.80198,32170.37442],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=India\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[855.7235377000002,976.5126756,1164.406809,1458.817442,1746.769454,2452.210407],\"xaxis\":\"x3\",\"yaxis\":\"y3\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=Switzerland\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[28397.71512,30281.70459,31871.5303,32135.323010000004,34480.95771,37506.41907],\"xaxis\":\"x4\",\"yaxis\":\"y4\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=United States\\u003cbr\\u003egdpPercap=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[25009.55914,29884.350410000006,32003.93224,35767.43303,39097.09955,42951.65309],\"xaxis\":\"x5\",\"yaxis\":\"y5\",\"type\":\"histogram\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,0.18400000000000002],\"title\":{\"text\":\"gdpPercap\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"count\"}},\"xaxis2\":{\"anchor\":\"y2\",\"domain\":[0.20400000000000001,0.388],\"matches\":\"x\",\"title\":{\"text\":\"gdpPercap\"}},\"yaxis2\":{\"anchor\":\"x2\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"xaxis3\":{\"anchor\":\"y3\",\"domain\":[0.40800000000000003,0.5920000000000001],\"matches\":\"x\",\"title\":{\"text\":\"gdpPercap\"}},\"yaxis3\":{\"anchor\":\"x3\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"xaxis4\":{\"anchor\":\"y4\",\"domain\":[0.6120000000000001,0.7960000000000002],\"matches\":\"x\",\"title\":{\"text\":\"gdpPercap\"}},\"yaxis4\":{\"anchor\":\"x4\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"xaxis5\":{\"anchor\":\"y5\",\"domain\":[0.8160000000000001,1.0],\"matches\":\"x\",\"title\":{\"text\":\"gdpPercap\"}},\"yaxis5\":{\"anchor\":\"x5\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"annotations\":[{\"font\":{},\"showarrow\":false,\"text\":\"country=China\",\"x\":0.09200000000000001,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=Germany\",\"x\":0.29600000000000004,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=India\",\"x\":0.5,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=Switzerland\",\"x\":0.7040000000000002,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=United States\",\"x\":0.908,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"}],\"legend\":{\"title\":{\"text\":\"source\"},\"tracegroupgap\":0},\"title\":{\"text\":\"Combined Histogram of gdpPercap\"},\"barmode\":\"overlay\"}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('e36e05e3-0a91-4d5a-a56e-a4291a1bbb8e');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"drift_detector.plot_hist(\n",
" baseline,\n",
" target,\n",
" column=\"gdpPercap\",\n",
" facet_col=\"country\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "976eaa68-f96b-495f-ae0f-1d6c3e2af8d0",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=China<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": true,
"type": "histogram",
"x": [
556263527,
637408000,
665770000,
754550000,
862030000,
943455000
],
"xaxis": "x",
"yaxis": "y"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=Germany<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
69145952,
71019069,
73739117,
76368453,
78717088,
78160773
],
"xaxis": "x2",
"yaxis": "y2"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=India<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
372000000,
409000000,
454000000,
506000000,
567000000,
634000000
],
"xaxis": "x3",
"yaxis": "y3"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=Switzerland<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
4815000,
5126000,
5666000,
6063000,
6401400,
6316424
],
"xaxis": "x4",
"yaxis": "y4"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=baseline<br>country=United States<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "baseline",
"marker": {
"color": "#636efa",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "baseline",
"offsetgroup": "baseline",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
157553000,
171984000,
186538000,
198712000,
209896000,
220239000
],
"xaxis": "x5",
"yaxis": "y5"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=China<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": true,
"type": "histogram",
"x": [
1000281000,
1084035000,
1164970000,
1230075000,
1280400000,
1318683096
],
"xaxis": "x",
"yaxis": "y"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=Germany<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
78335266,
77718298,
80597764,
82011073,
82350671,
82400996
],
"xaxis": "x2",
"yaxis": "y2"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=India<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
708000000,
788000000,
872000000,
959000000,
1034172547,
1110396331
],
"xaxis": "x3",
"yaxis": "y3"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=Switzerland<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
6468126,
6649942,
6995447,
7193761,
7361757,
7554661
],
"xaxis": "x4",
"yaxis": "y4"
},
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "source=target<br>country=United States<br>pop=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "target",
"marker": {
"color": "#EF553B",
"opacity": 0.5,
"pattern": {
"shape": ""
}
},
"name": "target",
"offsetgroup": "target",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
232187835,
242803533,
256894189,
272911760,
287675526,
301139947
],
"xaxis": "x5",
"yaxis": "y5"
}
],
"layout": {
"annotations": [
{
"font": {},
"showarrow": false,
"text": "country=China",
"x": 0.09200000000000001,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=Germany",
"x": 0.29600000000000004,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=India",
"x": 0.5,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=Switzerland",
"x": 0.7040000000000002,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {},
"showarrow": false,
"text": "country=United States",
"x": 0.908,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
}
],
"autosize": true,
"barmode": "overlay",
"legend": {
"title": {
"text": "source"
},
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"fillpattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Combined Histogram of pop"
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
0.18400000000000002
],
"range": [
-0.5,
1399999999.5
],
"title": {
"text": "pop"
},
"type": "linear"
},
"xaxis2": {
"anchor": "y2",
"autorange": true,
"domain": [
0.20400000000000001,
0.388
],
"matches": "x",
"range": [
-0.5,
1399999999.5
],
"title": {
"text": "pop"
},
"type": "linear"
},
"xaxis3": {
"anchor": "y3",
"autorange": true,
"domain": [
0.40800000000000003,
0.5920000000000001
],
"matches": "x",
"range": [
-0.5,
1399999999.5
],
"title": {
"text": "pop"
},
"type": "linear"
},
"xaxis4": {
"anchor": "y4",
"autorange": true,
"domain": [
0.6120000000000001,
0.7960000000000002
],
"matches": "x",
"range": [
-0.5,
1399999999.5
],
"title": {
"text": "pop"
},
"type": "linear"
},
"xaxis5": {
"anchor": "y5",
"autorange": true,
"domain": [
0.8160000000000001,
1
],
"matches": "x",
"range": [
-0.5,
1399999999.5
],
"title": {
"text": "pop"
},
"type": "linear"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
0,
6.315789473684211
],
"title": {
"text": "count"
}
},
"yaxis2": {
"anchor": "x2",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
},
"yaxis3": {
"anchor": "x3",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
},
"yaxis4": {
"anchor": "x4",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
},
"yaxis5": {
"anchor": "x5",
"autorange": true,
"domain": [
0,
1
],
"matches": "y",
"range": [
0,
6.315789473684211
],
"showticklabels": false
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcEAAAFoCAYAAACfcTNMAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3XWcFeX//vFrKQkRkQZFsVtMEEVRUFBKWkG6u7u7u6RBpKVTShERBRUVAxNFQgUJ6Vj297tvP7vfJZY5y2Fmz5x9nX98yN4z98zzPfeJ69znnoioqKgo8UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAwFIgjBw7CqnBICCCCAAAIIIIAAAggggAACCCCAAAIIIICAFSAE50JAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCFsBQvCwLS0nhgACCCCAAAIIIIAAAggggAACCCCAAAIIIEAIzjWAAAIIIIAAAggggAACCCCAAAIIIIAAAgggELYChOBhW1pODAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQIAQnGsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIGwFCMHDtrScGAIIIIAAAggggAACCCCAAAIIIIAAAggggAAhONcAAggggAACCCCAAAIIIIAAAggggAACCCCAQNgKEIKHbWk5MQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFCcK4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbAVIAQP29JyYggggAACCCCAAAIIIIAAAggggAACCCCAAAKE4FwDCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmErQAgetqXlxBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIwbkGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMJWgBA8bEvLiSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggQgnMNIIAAAggggAACCCCAAAIIIIAAAggggAACCIStACF42JaWE0MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAgBOcaQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhbAULwsC0tJ4YAAggggAACCCCAAAIIIIAAAggggAACCCBACM41gAACCCCAAAIIIIAAAggggAACCCCAAAIIIBC2AoTgYVtaTgwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAEJxrAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBsBQjBw7a0nBgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAITjXAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDYChCCh21pOTEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABQnCuAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGwFSAED9vScmIIIIAAAggggAACCCCAAAIIIIAAAggggAAChOBcAwgggAACCCCAAAIIIIAAAggggAACCCCAAAJhK0AIHral5cQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECMG5BhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTCVoAQPGxLy4khgAACCCCAAAIIIIAAAggggAACCCCAAAIIEIJzDSCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiErQAheNiWlhNDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIATnGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIWwFC8LAtLSeGAAIIIIAAAggggAACCCCAAAIIIIAAAgggQAjONYAAAggggAACCCCAAAIIIIAAAggggAACCCAQtgKE4GFbWk4MAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgBA8ntfA+fNRWvzeR1q06iP9+MsfOnn6jDJluFFPPnKPqpQrrHvvzBnPPV5d86WrP1a7PuO1ckZ/5cyRJc6dFKnYRo89dJf6tK99dR3Fc6u3572n/qNnafOyMbrh+tSX3docU46sGTVpSJvL/j1P0foq8HRu9e9U1/6984DJ2vz5t1o7Z3A8j4bmRmDBig81fOJ8/XvshCYPaaNHH7wLGAQQQAABBBBAAAEEEEAAAQQQQAABBBKNACF4PEp99lykmnQaoQ8/+UovP/+ECuR7VNenTqXfdv+peUs/0J9//6N+HeuqyAtPxWOvV9c00BB8+bpPlPGmdMrz6H1X11E8t3IjBN/65Q79tf+Qir30dMBHU6pGJzWtVVYF8uUOeJtwbfhsyca647bsat+4km7JnllpUqcM11PlvBBAAAEEEEAAAQQQQAABBBBAAAEEELhEgBA8HhfFsAnvasKMZerdrpZeK/LsBVueOHlKtVoO1C+/79XqWYOU7oY08dhz/JsGGoLHf8/BbeFGCB7fIzpx8rTyFK2nkb2aehKCmy9HkidLGt/D9Kz9AwWqqX6VkmpUo5RnfdIRAggggAACCCCAAAIIIIAAAggggAACoSJACB5gJU6eOqP8rzXSE4/cq7f6t7jsVnv/PKBzkeeVM0dm+3ezdMqUOSs1f/kGmb+lTHmdXZqkWe1yuvv2m22bboOm6qvvflbLehU0YMxs7drzl7JlzqD2jSvqpvQ3qNew6XbZFTObu2ntsipaMK/dLjoEnzK0nSbPXqHPvtqhJEmS6IV8j6pz8yq6Pk0q2y72cij7/zmsAmWaaWDn+vry25+06v0tMuH9PXfktNvEXsrlky++0+gpi/Tdj78pIkJ6+L471Kx2WT18/x0x5/7Lb3vUfcg0bd+xU9enTqliL+Wzxzlk3FxXl0PZ8fMuDZswT9/s+E3HT55S1kzpVfzlZ1Svcgl99tUPqt68X8wxpkqZQp+tGm////2Pt2nc9KXWMyIiQnflyqHalYqrYP7HYtqv3fi5hk94V3/s/VvZs2ZUw+ql9Mnn3+mrb3/Wkml9bLuXX2+lF5551HrPWbze2pV6Jb+t3dDx8/T51z/apUcyZ7hRrxbMq4bVXlPy5MmCqvflLjin62vzZ9+qVquBF2xqrpenHr33kt0VLNdCLz77qF3aZ/bi9Tp46F87a7x53fJ68ZlHY9r/vHOPzJdBn339g06dOm2NzLnXfKOokiSJsG7mmuvVtqbMDP73N23TqTNn9cj9d1inO27NHuCIoxkCCCCAAAIIIIAAAggggAACCCCAAALXRoAQPEDHLdt22HDVhHsm9AvkYQLRqXNWqVX9Cnr+6dw6fOSo+o6aqd927dPSt/vawNiE3MvWbla+Jx5U5+aVlSQiieq1G6I9+/brrlw3q2vLasqSKb0Ny1dv2Kr17w5VurRpYkLw23NmU+WyLyv3g3fpy29+Up+RM1T4+Sdj1tOOHYIfOnJUZmkME1yawNgsL3Ls+EnVaT3IhsLvTuhuT8uElzVa9NdLzz2h+lVL2n8bNXmhPtqy3bbJlTObzpw5q1crt9N1KZKrZ5uaypD+Bi1ZvUnvLtugAwePOIbgWTPfpDF9m12W8YWyzeNcE/xcZKReKNPMhvGNqpdSmtSpbEDdY+jbqlelhF2X/fOvflDNlgOswbNPPqQb012vjZ9uV722g1WuWAFVKlNIEYrQ9Pmr7fGOG9BSzz71kH745Q+Vrd1Fz+V9RI1rlNbZs+fUe/h0HTl6QiZMXzCppz3eopXbKUXyZMqVM7sqlS6kW2/OoptuvEFFKrZWuhuuV8emb1oPE9a37zNelcsWVtNaZey2V1vvy0E5XV/mWI4dP2FrXv31V1TzjVd1fZrUl521XviN1jp+4pSKFsprg//IyEj1HTFDqz7YokVTestcZ+ZLlJLVOuq2W7KqTcM37Dlu2PyVBoyZpRqvv2q/JNn390EVKt/CXtst65VXkQJPae9f/6hpl5E6efK0lr/TP6RnzQcyrmmDAAIIIIAAAggggAACCCCAAAIIIOAvAULwAOu1bM1mte09TlOHtdOTuS+dSXvxbszM8WdLNtIrL+axwXn047c//rQhqgkMa1cqZkPRWYvWafXsQfZmkeYxbd57GjB6lkb2aqIXn/1vlvKn275Xjeb99c6ojvbGhtEzwRtULWlDy+iHmZm9cMWH+mT5WKW8LsUFM8GjQ/DCBZ7SkG4NYrYxS7yY2b1frploZyybAPnX3/fqvZkDlSJFctvOnE+hCi308nNP2GDehJ8N2g+94BhNu8qN++iL7T86huBmxvCVHsUKPX3ZG2Pu3rdfJrC9eEkaE2Cbta5vzpZJ3/ywUxXqdtfoPs1ilkOp2rSvXVfc3EjUBP7mERl53s7qNutljx/YSgPHzLbB+Afzh+umG9PaNvv++keFK7bWnbfliAnBS1TrqL8PHNKGBcPtlwDmYWZl7973t1KnSmkD4OhHk84jtPfPf2K+YLjael/t9WW2M8uhXHydXLw/82WJ+VWA+ZIlWdL/lnY5cvS4vYbNddqkZhmNnrJQY99eovdmDYy5Vk27Nj3f0vsff6mPl47WP4eOyMwqN1+gDOvRKKab9Zu2qXHH4Zo0uI3yPn5/gKOOZggggAACCCCAAAIIIIAAAggggAACCAQvQAgeoOHK9Z+qVY+xmjy0bUA3mTRLhLxer/tl1w9/pmQj5Xn0fhtEm1B00aqNMUt2mMNZuHKjOvWfZAPbnDmy2CM0s4rL1OqiMX2b6/mnH4kJwacNb68nHrkn5izmL/9QXQZO1sLJveySK5ebCW5m6JqZu9EPs6SHmUltQl0T4D5euI4KPvuYBnSud4FOow7D7ZIfZlmQiTOX26U/1s0boqyZboppF71u+uZlY3TD9akvq2uO6Ya0qdWuUcXL/r1um8F68ZnHLhuCm+C6UsOe2vnHn3rjtYJ6+okH9NiDd8UsN2J2eLkQ3JyTuWGpCc9jP5p3HWWXUNm4aKSdEW9C9hXv9L+gzev1e9iZ79EzwU0IniF9WpmlRWI/vv/pd+ti/mtmVUdFReno8ZN2xvTaOYNt06ut98VQgV5fZrtAQ3Azw/vipX7MrO4H7sml4T0bq17bIXbN+zWzB11wODMXrrMz5s11Yb6IMCH4xddY9JcXHZpUUqXSLwU46miGAAIIIIAAAggggAACCCCAAAIIIIBA8AKE4AEafrH9J1Vu3FtdmldRhZIvOm4VvR7zqD5N7TrdsR+vVGpr1w03y3CYUHTF+k/08ZLRMU2iQ/DYAXN0CB49uzl6JrgJHmOvsxwd1s8c09muw3y5ELxDkzftMh7Rj9ghuFk65JGCNe36zkn/NyM4up1ZIiNtmtR2xm902L115TilTnVdzL4mzVrh+prg5saX099drTUffmYDZ9N/iZefUfM65exa6BeH4GYJFXNOVcsVtst4xH50HTRFS1Z/rG2rJ6hSw146HxWlWWM6X9DGhP97/zpwQQhulgeJPdPZzDJ/rXpH3ZIjs9o3rqRsWTLYGdWmvuZ4YofgV1Pviy+4QK8vs12gIfgD99ymwV3/7xcCZttiVdore5YMdqb8m41669TpMzGz2qOPySzn07bXOOuWOVN6G4JfPE7MEjnPl24a8wsIxwFEAwQQQAABBBBAAAEEEEAAAQQQQAABBK6RACF4gJBnz0Xqudca647bctglSS73MOshm6VIzLrUv+3+0y7Jcbk1xPMVb6h8Tz6oQV3qBx2CzxjdSbkfuDPmcKID7SVTe9tjjW8IbmaCP/lKXeXP84ga1fi/ZVaiO0gSEWHXhB7/zlINnzhfHy4cYWc6Rz8GvTVHU2avdFwOxSz9MmlIm8s65ilaP841wS/e4PCRY3at9IFj56hQ/sfVt0Pty84Ef6JIHb38/JPq0772Bbto2nmkvvz2ZzsL3iwDc+jw0ZiwO7phxQY9bfgbeyb4xSG4WdLGBN5mqRCzJEv0w9yY0iyBc61D8Oig3+n6MscRaAieI1tGu1xJ7McLZZvZ5XeGdGuo+u2G6qedu2POJbrdjAVr1GfEDC17u69SpbrOhuBm+ZS6lYvH7Mr8gsB8+dOpWWU7g58HAggggAACCCCAAAIIIIAAAggggAACXgkQgsdDeszURRo9ddElSz2YXZjlL8xyEb/u2qul0/raZSHMesqF8j9hg9nox88796hk9Y52RrKZmRzsTPBW9SrYmx5GP8xSKGb98k+WjbHreV9NCF671SC7tvP8iT1i1s82+9+1529lzZTe7nfdxi9k1rse26+5vZFk9KNs7a52drbTcihXG4Lv/fOAtn37s4oWzHtB5czyMeYGmeaGo9EBcexZ+CbgNsdv1jk3s9zNw8wQN4HtQ/feLtO259C37VI0Zqa7WU/dPMwM7+h1w68Ugkd/KfDp8rF2Nrp5mHXPi1Vur0wZ0mnt3CH236623hdfpqfPnA3o+jLbBRqCH/n3mD6Itc65uRFmgTLN7Jch9auU1LjpSzVi0nytnDHA/pIh+mGWlPn0i+/tkjL7Dx62puZGo+aXDtGP6F8ovD2igx5/+O54jDqaIoAAAggggAACCCCAAAIIIIAAAgggEJwAIXg8/Exo2qLbaBsA58/zkMwNJtOlTWPXp5675H17I0GzREbex/678d+oyQs1fsZStWnwhr1Bo7mZYt+RM2XCxcVTe9ttrzYUXbJ6k9r3maA7c+VQg6qv6cF7c2nb9p/seuDFXnpaPVrXsMdwNSG4WSO7evN+KvPq83qjVEGlSnmdPtqyXQPHzlabBq/bmbzmRplFKra2N4I0S1+YZVRMgGxukGiCardC8O3f/6o3GvRUlbIvq2SRZ+1SKD//tkddB06xN2Ps3LyKDZ/NeZu1p0u/mt8uF/P51z/KzMo2/1+1fBGdOxepKXNWavnazZo2vIMee+guuza4uYGmuSln3SoldOrUafUbNVMHDx9ViuTJrjgTfMu2HdaszpvFVbFUQZkvO8ySMbluzaZV72/Rosm9lCNbJvUfNfOqlr+53GUayPUVnxD85KnTdn35upVLyNw7dNDYOfaGrEun9dEt2TPrn0P/qkS1Dnad+vaNKtqar934uV0bvmmtsqpVsaj+3H/QhuCZM96oiqUK2THy1/6D6thvov3yZPGU3kqaNEk8Rh1NEUAAAQQQQAABBBBAAAEEEEAAAQQQCE6AEDyefuZmh0vXfGwD359+3aPjJ0/Z2dH58zxsw1Uzwzn6YdpOnbNKc5d+YINhMzs87+P327WrTahoHlcbgi9Y8aE6D5is2WO7aMSkBfpi+49KliypDYI7Nq2sVCn/m8l8NSG42e6Tz7+zs96/+/E3ux+zBMrrr72ocsUKxJyf+Zs5fvPfNGlSqWjBp3XvnbfY4zKzgm+6Me1ldc0xXe1McLPD9z/epkkzV9jw28yINv4mbG1QtaQNWs3DhK5m9nG6G9Jo4aReNrDdsPkrjZ22SD/8ultmWZf7775NDau/FvOlhdnOfJkxfsYyHfjnsHLlzGZrNW/ZBvvFhbE2D3NjzIuXQzH/PmHGMs1YsFb/Hj1u9922UUUb0tdtPUgnT5/R28Pba9ai9dcsBA/k+jLHFehM8EceuMMet1lvff+Bw7r1lqxqXb+CvbajH7/u2qchb83Vli+/1+nTZ3XrzVnsFyXRS5xEh+DmBpjmi4D3Pthqz/3R/79kT7dW1WJu9BrPYUdzBBBAAAEEEEAAAQQQQAABBBBAAAEErlqAEPyq6dgwHAXMbOcb0qZR8mRJY06veJX2Nhzu36luOJ6yPSfzxYS5kWqw5xgdgndvVV1liz0ftl6cGAIIIIAAAggggAACCCCAAAIIIICAfwQIwf1TK47UZYEff92t0jU767Uiz9qbm5rZ4mbG/9S5qzRteHu7VEi4PgjBw7WynBcCCCCAAAIIIIAAAggggAACCCCAACE41wACsQTMkinjpi/RTzv32Bto3n5rdtV5s5heyPdoWDsRgod1eTk5BBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd305OwQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFELEIIn6vJz8ggggAACCCCAAAIIIIAAAggggAACCCCAQHgLEIKHd30T/dktXLlRpV7Jf00dPvzkK42Ztlg//PKHUl2XQk/kvket6lVQzhxZ9NPO3arTepDef3fYJX1Omb1Sv+7ap55talzT42FnCCRmATfG+MZPt+uttxfr+59+V9KkSXX37TerXpWSyp/nocRMzbkjEDYC1/p5o22vccqVM5vqVSkRL6M8Retr8dTeOnDwiFp1H6tVMwfEa3saI5BYBa71GP732An1HzVTH3/2jU6fOat0adOoYqlCqlz25YCIv/lhZ8wYPhcZqVXrt6jYS08HtK1To7fnvaefdu65Zp8frvX+nI6fvyNwLQSu9ZgvUa2jWtQppwL5cscc3p4/D6hIxdbavn7KFQ859mf6zZ99q1y3ZlPWTDfF6zSjX/8vt9246Uu1YMWHOnbipJIlTaoXn31M7RpV1HUpkmvXnr/se4bHHrr7iv0F2i5eB01jBMJEgBA8TArJaVwqEBUVpedLN9WHC0dc8Mfz56OUJEnEVZF98PGXat3zLftCVPDZx2Te6E6b+54WrdqoZdP76e8Dh+IMwU+eOqPIyEhdnybVVfXNRgggcKGAG2P8/Y+3qV3v8XaMmzfG5s3nuo++UO/h72jS4NZ6+P47AipDMM8zAXVAIwQQuCoBN543gg3BM96UTkePnVD6dGmv6pzYCIHEJODGGO46aIoiI8+rY9PKSpUyhZ3UUrPFAPVuVzugL8DN54HoMWy+QB86fp7GD2wVdFnMMc1YsIYQPGhJduBnATfGfDAheOzP9I06DFftN4vpkQA/H0TXIa4QfNnazTIh+1v9WyhThht16MhRNe08UrkfuFMt6pbXtHnv6cyZs6pdqdgVSxpoOz9fFxw7AlcrQAh+tXJsF5TA6g2fafjEd3Xi5Ck99eh96tm6hlKkSK73Ptii0VMX69y5czIfCru1qq7bc2bThBnLtPfPA+rasprtN/b/5y3WwH6Tu/rDz7R7736VfjW/6rxZXI07jdD6j77QHbfl0LgBLVWiagfVebOYJs1aoZIvP6PI8+fVqVllu78jR4/rhTLNtG7ekCt+CC1ds7NKvPyMqlUocsH5z1/+oZ5/+hH7QtWg/TCVefU5zV/xoQ29e7SuoWefesi+oEXPBI/rmM1OF7+3SeOmL9G5c5HKliWD+nWsq2yZ4/ftclDFYWMEroGAX8d4qRqdVLbY86pU+qULFPb99Y8yZ0yvpEmT2H83szSWrN6kiIgI5X3sfrVt+IaSJ0+mJ1+pF/M8s37eUL1Yrrma1CyjdRs/1+97/lL7RpX0weYv7Qfs5MmS2uem1KlSavuOneoxZJr+PXrczvTo2Kyy8jx6n3b8vEsd+k7Q80/n1udf/6D9/xxRx6Zv6qH7brfPWatnD7LPleYxYPQsnY+KsgE+DwT8KODX543YIfj0d1fbX4qZD6m79v5tg7XhPRope9aM+mjLdvUePl1JkiSxs0Ttl+hTel0wE9x82O8/epZ9/2LG81O571WPNjXsF3I8EAh1Ab+O4cqNe+v11wqqaMG8McTmdf/G///FVLdBU/Rk7nvtewMzA9NMsJkwqJXyPfGgvvvxN3XoO1G92tW0M8HnT+xhP2/8e+y4Hr7vDtV441WZgD36YfZpwvFnnnxQGzZ/ZcPys+fO6ZbsmdSzTU0bek2du0o//brb/hrtubyP6KYb08aE4PF9r2A+f5iZ7Z36T9S27T8pa+YMuv/uW2VCPH6ZGuqjyR/H59cx7xSCx/X+O/a8MrtzAAAgAElEQVRn+ltvzqJRUxYqS8b0alW/gl567ok4Px/E9fp/8UzwEZPm6+Cho+rW6r/MwzwOHj6qJBER2vHLLrXoOlrJkiW1v3RvVrvsZd8vfPbVDxe0a16nXJzHtWnrNxowZpZ9z5I8WTJ7HuZ5hwcC4SxACB7O1Q3Rc/v7wGGZMHnOuK72p0ONOw3Xow/epWKFnlapmp01d1xXu7TI3KUfaMHyDZr9VtcrhuD5SjRU+eIv2BeCv/YfUuE3WmnzsrE6dfq0XijbXF+umWgl8hVvqFKv5rdLl5g3lnXbDNb784fZD5YmeF6+drOdAVK+brdL5F585jF1aFJJJrxeM3uQ/TB7uYcJtsrV6aYeravbsNycw+JVH2nG6E4XhOBxHbN5ASpQtpmWTO2tW7JnVrdBUxURoZjwP0RLymEhcIGA38e4Ca+zZEofZ1VNODVswrt2XJsAu1nXUTawfrPMSxc8z5iA3Iz1mm8UVc03XrXPB31HztDiKb3sc1z15v1UrtgLerVgHpWt3dX+7Lpk4We0fN0nGjN1kZZP72fDcvN8OaZvCzsbbcW6T+2sMNN3ww7D9PTjD9h+zePl11tpYJf68Z6NwuWLQCgI+PV5o2+H2oodgs9YsFajpy7Ukql97BdU3QdPVbobrlfjGqVVsHwL9Wpb034xPnvxevUaNl1r5w6+IAQ3v0YZOm6e5k3oLvObtQr1uqt2peL2eYIHAqEs4OcxbJYIMZNkzOzKfE8+aCfgRD/MsgRfbP/Jjt33PtiqKbNXKH+eh9Wweim9M3+Ndu/bb7/Uil7SyLSZv3zDJTPB3122wbafN76bnXxTrEp7TR/ZQXflullT56zSF9/8qBE9m9jX+LHTlmjW2M72s0Ds5Uuu5r2Cea4xn3GmDGunkydPq2KDnsr94F2E4KE8mHxybH4e804h+JXef8ee2Gb2Y75QMjPB4/p88MZrBeN8/b84BN/+/a/284GZjGOWQXngntsu+BLcvG8wn1HMc9WV3i/Ebnelzy3m+Lu1rGqXVzHB/8yFa+0EPh4IhLMAIXg4VzdEz23Rqo+09sPPNapPU3uEZjZC0iQRWrpms9Zu/Fxj+zW3/25mLjz2cm19smyM/bAY10xwEzJNGtxG9911q93u6WIN7IfHNKlTXhiCl2iosf1axARE5s2nmTFpPow27jjcvtBcaf1wM3ujUIWW+mL1BDtTM64QvGKDXtq68i37ZzMbrGH7oVo7d8glIfjljvnmbJl0/MQpe+zmYcIwswbaxEGtQ7SaHBYClwr4dYyb55iXXm+lr9ZNinnDaX4Obd4Im4f50Nu7XS116j9Jt92SVbUqFrX/bmZzTZmzUlOHtbOhd+znGfP/bw/voDtz5dAnn39nZ4Eufbuv3a7LwMn2lypVyxXWqdNn7AwMM9N8/z+HVah8S3scpu9KDXtpy4pLn1NMID59/mrNGtPZvnFt1GGY1swZbGen80DAbwJ+fd4wzheH4GaN0Oj3OCb0+vaH3+zPpd+o30OfLh97wXsc8wu02GuCm5ngJ0+dtl+wmYf5Mjx71gz2F248EAhlAT+PYeNqAqUFKzZqy7bvlTrVdSpf4gXVqVRc+/7+R/XbDrGv3X1GzLChlPklmHkf36LbaDvpJWOGdFcMwc37i7J1usZ8XjGTb1as+8T+Gsw8zC9jzUSbbasn2s88GzZ/GROixw7Br+a9QsvuY+xSbua9hnmY2edmZikzwUN5NPnj2Pw85gMJweN6/x1XCB7X54MuLarG+fp/uTXBf/x1t8yvyj7e+o3M/QoKF3jSTuK7Md319svz6BD8Su8XYre70ueWmi0H6Labs6pq+SLKmSOzPy48jhKBIAUIwYMEZPP4C0yevUI//bpHZvZU7IdZ4uTX3/dd8O+PF66jhZN72pkXVwrBZ4/tYmdWmocJncz/p70+9SUh+KwxXWR+umQe5uaWf+z5W+aFqUCZpnZZAXMjnLgeJ06e1pOv1NXKGf1j+rq47cU3xoz9/7FfMKOP8eJjvjlbZjuDbNOW7XbXR46eUPYsGTRpSJv4Q7MFAgkk4PcxHvvXHoePHLNr/5tZFBs//VojezdV/XZD9dV3P8eEVOfPn1eG9Ons7C4ztmM/z5j/nze+u3Jkzagt23Zo4NjZtp15mBmidkb466/YGd6zFq3V2XORdvmEHT//bm/Mc6XnFPMF4nOlmmjBpB5avGqTTp05Y98k80DAjwJ+fd4w1heH4F9/94v6d6pry2Bmhpv/f/21F+09RdbOGRxTHvMeZ/k7/S4IwU04NWjsbP36+16Zn4KZ9z7mBn3xvemmH68BjtnfAn4ew7HlzT09tn3zkzoPmKTSrz5nv/A2v7QyE2xqtxqoKUPb6Y0GPbVwUk/769NFU3rrt91/xhmCm6CqVsuBevyRe9SgaknblflMYN7vm+VWoh/Hjp/Usrf72s88X337swZ0rmf/FDsEv5r3CrVaDbTLvERP9DF12rnrT0Jwfw+3kDh6P4/516p3UpOape0kuOjH77v/UsnqHe2vyAP9TB97Jnhcnw/Mr8njev13uqGmWUp1yFtz7bJJ5kuz2OH2ld4vxG53pc8t/xz6V2+9vdhOREybJrXaNa5ol3rigUA4CxCCh3N1Q/TczLfGq97/VG/1/2/2g/lJoAmYzbedaz7cGvPvJuB5okgdOwNyzpL12rX775j1scxSBEf+PWaXCYkrUL5cCB47LDd3TTY/KzT7MD8THNO3ucyLX1zLoZjQ3vzt+byP2J9Axn6MmrxQRV54SlGKuuDGmPENwc1af+PfWarpIzvqhutTa+nqj2W8CMFD9GLmsC4r4Ocxbj7YFng6t+pWvnDWpflVxqr1n9oQvPOAyborVw5V+d+sqtgIl3s+cgrBXy2YV0UqtdG7E7rrjluz68/9B/VShZaOIXh0+GZmmS9f+4mdpW5mqPFAwI8Cfn7eCCQEr1O5uF2GIHomuJn5ae4hcPFMcDPz+8zZs3Z9YPPLEPN8Y75EIwT341WduI7Zr2PYTIYx9+0oWijvBb+kMpNzzC86B3Wpr479Jtpfjk6evdJ+kW1mVxcu8JSmzlmpmWM665sfdsYZgs9cuE5mSZXZb3WJ+ZWZeX+/esNW+57i4kf0F2fRX6RFh+CNqpe6qvcKLbqNUe4H7oh5zzJwzGw7u5SZ4IlrfLpxtn4d8+YzvVkW1SwpGPs+X+s2fqFBb82xE96uJgSP6/PBL7/vjfP1/+IQ3Pwi5cF7ctn7A0Q/vvruFzXpNEIbFgy/IAS/0vuF2CH4lT63xL4uzGSfNj3f0qYlo5UkCb8qdWPMsM/QECAED406JKqjMOt2l6jWQTNHd9Jtt2RTqx5jdP/dt6n4y/lUslpH++bSzI40a+Kten+rXS/P3Cl59qL1emdUR7tsgPkgadbeulIInj5dWhuQf7r8LfuzxovDKYNuQu2Dh/5V01plbf9Oj48/+0bmLtDm7syvvPjf+pzT5q7Syve3aNHkXtr714GgQvCNn27Xpq3bbSBvvhwwN784fvKUndnOAwG/CPh5jH+67Xu7rEjzOmaMP6VUKa/T5s+/Vb+RM1X8pXxqVKOU1m/aprHTFtvlT8zSRWatb3OTSzPL6mpC8GfzPKRqzfrp/XlDlTRpUg2dMM/OEvv8vfH6Y+/fcT6nmOvBLMXSc+g0JUuWTKtmDvDLJcJxInCJgJ+fNwIJwXu1q2VvZtu3Qx27vr8Z40PGz7VLGMVeDqVZl1HK/cCd9oO5WebIfPA1X7Kb9x08EAhlAb+OYfPrq1cqtbH35KjxRlGlSpnCrvPdtPNIlSn6vCqWKmjvHWSWKXng7tvUqVllu7b3yvWfKs9j99mbX8cOwc0vxybMXG4/5/yxd79er9dd00a0t2t/Rz/MmDczUc39PcwvVM0kmKWrN6lDkzdjfj1ycQhepdzLV/VewYToaz78XJOHttWx4yfsZ6gnHrmXEDyUB5NPjs2vY97wvvfBFvUdOVNDujXUQ/fmsqG3ma1drlgB+/obaAheplYXNatdzr6ux/X5oNhL+eJ8/b84BG/XZ7yOHjuhbi2r2SDcfGHVb+QMu0za0O6N1G/UTKVInsy+J7jS+4XY7eI6riIv5LHrjw/r0cjep80875nz2bx0DCG4T8Ygh3l1AoTgV+fGVkEKrHp/i4ZPnP/fGniP36+erWsoRYrk9ieAo6cu0tmz5+wyIObOyOamMGZWeKOOw2SWJsiWOYPuuC27Dh05am/cENdMcBOkm58Amju3j+vfUnXbDrZhcvQSJDbAnveevcHdxoUjdH2aVAGdlVnrc8y0RfbmmuaY8z/1sFrWq6DMGW8M+AUzrmO+Pk1qNWg/VEf+Pa6smdOree1yatxpRMwdoAM6QBohEAICfh7jW7/cYce4WcfXLHVyzx05VbF0Iftz4uiH+cWGmQFz7lykXR+8V9ta9jngakJwsxxK+z4TtPWrHXZJptYNXtfoKYts3+Y5sE7rQXr/3WG264vflJulWp4v3dS+aTc3B+aBgJ8F/Pq8EUgIbgItE471HTVTZnmEskWft6GaCcHM+5nom+qZZRjM84H5Yu2h+25XwWcfV8f+E+1ScS/ke9TP5eXYE4GAX8fwrj1/a9Bbs/XF1z/ZJdDMRJrSr+a3S6GY+2zs+/ugCpVvYZcoMe8FTGhtwm0TLJsbY8cOwU3Abf4Wef68XU5l0szlSn/j/y170qJOeTvxxnyJbdbnNpN7zBfqHZu+aW9OF9dMcDNz+2reK5hf27bvM15ffvuzsmW+SXkeu9/ee6RP+wuXpUwElyen6IKAX8e8oTCTWMwX0vv+OqBMGdOrQokX7I3szZgPNAQ3y6uaX4Q0rVXG3swyrs8Hcb3+m196xX6YzGPo+Ll2eRIzds1EPnNPIvO8ke6GNDIT8pp2HqUX8uXWG6UKxvl+wdy/LLqded6K67jMvcfGv7NMkZGRSpnyOrtETKH8j7twpbBLBEJHgBA8dGrBkSSAgFniwPwE0nwLzAMBBMJPIDGMcXOT32HdG9mbb/JAAIHgBRLD80bwSuwBgdAVYAyHbm04MgTcEGDMu6HKPhEITwFC8PCsK2cVgIC5Ac2bjXqrc/MqevzhuwPYgiYIIOAngcQwxs0MDrO2qJmNxgMBBIIXSAzPG8ErsQcEQleAMRy6teHIEHBDgDHvhir7RCB8BQjBw7e2nNkVBMyNLzoPnKTXS75o1/LjgQAC4SWQGMa4+RLP3CB4dN9mFyzzFF6V5GwQ8E4gMTxveKdJTwh4L8AY9t6cHhFISAHGfELq0zcC/hQgBPdn3ThqBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQAECMEDQKIJAggggAACCCCAAAIIIIAAAggggAACCCCAgD8FCMGDrNvef04GuQc2RwABtwRSJEuijOmuc2v3Mfvdd/CkoqJc74YOEEDgKgSSJY1Q5htTXsWW8dvkr0OnFHmeJ4L4qdEaAW8EkiaJUJb07j8P/H34lM5F8jzgTVXpBYH4CURESNluShW/ja6i9YEjp3Xm3Pmr2JJNEEDAC4HsGdx/HvDiPOjj6gQIwa/OLWYrQvAgAdkcARcFCMFdxGXXCPhEgBDcJ4XiMBFwUYAQ3EVcdo2ATwQIwX1SKA4TAZcFCMFdBg7x3ROCB1kgQvAgAdkcARcFCMFdxGXXCPhEgBDcJ4XiMBFwUYAQ3EVcdo2ATwQIwX1SKA4TAZcFCMFdBg7x3ROCB1kgQvAgAdkcARcFCMFdxGXXCPhEgBDcJ4XiMBFwUYAQ3EVcdo2ATwQIwX1SKA4TAZcFCMFdBg7x3ROCB1Cgs2fPqfuQaVq9YauuT5NKTWuVVcnCz9gtCcEDAKQJAgkkQAieQPB0i0AICRCCh1AxOBQEEkiAEDyB4OkWgRASIAQPoWJwKAgkoAAheALih0DXhOABFGHU5IX6+bc96tuhjv1v14GTNXNMZ6W8LgUheAB+NEEgoQQIwRNKnn4RCB0BQvDQqQVHgkBCCRCCJ5Q8/SIQOgKE4KFTC44EgYQUIARPSP2E75sQPIAaFCzXQpOGtNFtt2S9pDUzwQMApAkCCSRACJ5A8HSLQAgJEIKHUDE4FAQSSIAQPIHg6RaBEBIgBA+hYnAoCCSgACF4AuKHQNeE4A5F+PfYCT1Xqola1augGQvW6LoUKdSkZmm9+OxjdktC8BC4ijkEBOIQIATn0kAAAUJwrgEEECAE5xpAAAFCcK4BBBAwAoTgifs6IAR3qP+ePw+oSMXWalyjtGpVLKbtO35VndaDtHRaX2XOeKOOnjyXuK8gzh6BEBaIkHR9qmSuHyHPA64T0wECQQmk9eB54NjJc4oK6ijZGAEE3BTw4nmA9wNuVpB9IxC8gBfPA7wfCL5O7AEBNwW8eB5w8/jZd3AChOAOfmYm+NPFGujT5WPtTTHNo2aLASpf4gUVLvCkjp44G1wF2BoBBFwTiIiI8CQE/6L/NEWdOe3aeQSy47tbVg+kGW0QSHwCERHy4s2u/dAbRQye+C4wztgPAl69H9g2cp7OHz6UoCS8H0hQfjoPZYFE9H7g/MIpIVGJJKX4fBISheAgLhBImzp52ImYzyDmY0iSJGYaII8rCRCCB3B9mBB83oTuujlbJtu6RvP+erPMS3ZJFJZDCQCQJggkkIBXy6Fs6TNVSuAQ/ObGVRJImW4RCG0BlkMJ7fpwdAh4IeDVcihbh89V1KGEDcF5P+DFFUUffhRITMuhJF86LSRKdLZ41ZA4Dg4CgdgCXi+H8um27zVwzGzt3LVPqVJep5cLPKn2jSoqefJkOnX6jAa/NUfrP9qmEydP6f57blPHppV1e85sOnDwiJ4v3VQrZ/RXzhxZ7CnMWLBW85dv0IJJPbV+0zYNHDNLZYsV0KgpCzVrTGfde2dOTZixzLY7dvyEHn/4HnVtUVXZs2aM2X7KnJU6fOSobr05q5rWKqPn8j6SqC4QQvAAyt1nxDs6cfK0urWqpu9++E112gzWsrf7KuNN6QjBA/CjCQIJJUAInlDy9ItA6AgQgodOLTgSBBJKgBA8oeTpF4HQESAE974WhODem9Ojs4DXIXj+1xrb5ZVLF33OBttNOo1QycLPqlLpQuo1bLq++u4XDe/RSDemS6vRUxZq2drNem/WQB07fvKKIfjGT79W655vqUiBp1S3SgllTH+DPtj8pXoMmabRfZrZkLvPyHf0++6/NHtsF334yVfqPGCyxvRtrnvuvEVm+xbdxmjxlF4xIbuznv9bEIIHUMOjx06oQ7+J2rLte9104w1qXb8CN8YMwI0mCCS0ACF4QleA/hFIeAFC8ISvAUeAQEILEIIndAXoH4GEFyAE974GhODem9Ojs4CXIfi5yEjlLVpfvdrWUpEXnrIHFxl5XkmTJrHLKD5euI4GdK6nQvkft38zs8HzFW+o4T2b6IF7bnMIwberXtvBWjN7UMxMb/P/d9yWQ63rv273Z0L3Tz7/Tq+8mEcNOwzTQ/fmUsPqpWKQ6rYZrIfvu/2Cf3MW9HcLQvAg68dyKEECsjkCLgoQgruIy64R8IkAIbhPCsVhIuCiACG4i7jsGgGfCBCCe18oQnDvzenRWcDLENwcjVmaxCxbctftt+iZJx9UicLP2OVO9v9zWAXKNNPiKb11Z64cMQf+YrnmqvnGqypc4CnHELxRh2H6at2kmG1ffbOtqpQrrNdLvngJhPmbmRV+8aNk4WfUp31tZ7gwaUEIHmQhCcGDBGRzBFwUIAR3EZddI+ATAUJwnxSKw0TARQFCcBdx2TUCPhEgBPe+UITg3pvTo7OA1yG4OaKDh4/q/U3btH7TF9q09RsN6dbQzso2IfiSqb3t7O3oxwtlm6lWxWIqXODJy4TgazR/+Yd2TfCNn25X864j9dmq8ReE4G+WeVkVSxW8BKJYlfYqX7yADckT84MQPMjqE4IHCcjmCLgoQAjuIi67RsAnAoTgPikUh4mAiwKE4C7ismsEfCJACO59oQjBvTenR2cBL0Nws+TJP4f+tfcTjH70GzVTu/fu18jeTfTkK3XVr2PdmOVQzFLMz5ZsrFF9min3A3cob7EGF4TkA8fO1ubPvo0zBDfLm9ySPbM6NatsuzN9v7tsg2q8/oqadhlpl3fu1bZmzLHs++sfZcl0k5IkiXCGC5MWhOBBFpIQPEhANkfARQFCcBdx2TUCPhEgBPdJoThMBFwUIAR3EZddI+ATAUJw7wtFCO69OT06C3gZgv+8c48q1OtuA++nHr1P/x49odY9x+quXDerXaOKMoH4F9t/1IheTZQ2TWoNHjdXH27+UitnDFDy5Mn0XKkmqlmxqKqWK6zd+/arVsuBSp3qujhD8Pc+2KouAydreI/GuvuOWzRk3Fz9vHO3Zr/V1d4Ys3nX0RrWo7HyPfGAvvz2ZzVoP1Rj+zXXYw/d7QwXJi0IwYMsJCF4kIBsjoCLAoTgLuKyawR8IkAI7pNCcZgIuChACO4iLrtGwCcChODeF4oQ3HtzenQW8DIEN0ezZPUmTXhnmXb/eUBpUqVUgXy51b5xJaVJnVInTp5WnxHvaO3Gz5UkIkKPPHCnOjSpZGdzm4f59/6jZylpkiS67ZYsyp/nYc1Z8oGdHX655VDMNuOmL9XMhWt17PhJPf7w3erasppyZM1o9/fO/DWaOneVvWFm9iwZVOfN4nqtyLPOaGHUghA8yGISggcJyOYIuChACO4iLrtGwCcChOA+KRSHiYCLAoTgLuKyawR8IkAI7n2hCMG9N6dHZwGvQ3DnI6KFlwKE4EFqE4IHCcjmCLgoQAjuIi67RsAnAoTgPikUh4mAiwKE4C7ismsEfCJACO59oQjBvTenR2cBQnBno3BuQQgeZHUJwYMEZHMEXBQgBHcRl10j4BMBQnCfFIrDRMBFAUJwF3HZNQI+ESAE975QhODem9OjswAhuLNROLcgBA+yuoTgQQKyOQIuChCCu4jLrhHwiQAhuE8KxWEi4KIAIbiLuOwaAZ8IEIJ7XyhCcO/N6dFZgBDc2SicWxCCB1ldQvAgAdkcARcFCMFdxGXXCPhEgBDcJ4XiMBFwUYAQ3EVcdo2ATwQIwb0vFCG49+b06CxACO5sFM4tCMGDrC4heJCAbI6AiwKE4C7ismsEfCJACO6TQnGYCLgoQAjuIi67RsAnAoTg3heKENx7c3p0FiAEdzYK5xaE4EFWlxA8SEA2R8BFAUJwF3HZNQI+ESAE90mhOEwEXBQgBHcRl10j4BMBQnDvC0UI7r05PToLEII7G4VzC0LwIKtLCB4kIJsj4KIAIbiLuOwaAZ8IEIL7pFAcJgIuChCCu4jLrhHwiQAhuPeFIgT33pwenQUIwZ2NwrkFIXiQ1SUEDxKQzRFwUYAQ3EVcdo2ATwQIwX1SKA4TARcFCMFdxGXXCPhEgBDc+0IRgntvTo/OAqEcgu/eG6Xjx53PIbpFjuwRuj5N4O1pKRGCB3kVEIIHCcjmCLgoQAjuIi67RsAnAoTgPikUh4mAiwKE4C7ismsEfCJACO59oQjBvTenR2eBUA7BR4w/p6+/jXI+if+1aFwnmR55ICLg9jQkBA/6GiAED5qQHSDgmgAhuGu07BgB3wgQgvumVBwoAq4JEIK7RsuOEfCNACG496UiBPfenB6dBQjB/zPKU7S+Fk/trayZbnJGC6JFdD8HDh5Rq+5jtWrmgCD2FvymzAQP0pAQPEhANkfARQFCcBdx2TUCPhEgBPdJoThMBFwUIAR3EZddI+ATAUJw7wtFCO69OT06CxCCJ0wInvGmdDp67ITSp0vrXCQXWxCCB4lLCB4kIJsj4KIAIbiLuOwaAZ8IEIL7pFAcJgIuChCCu4jLrhHwiQAhuPeFIgT33pwenQUIwf8vBK9XuYTmLv1AJ06eUvXXX1G18kXsHxe/t0njpi/RuXORypYlg/p1rKtsmW/Snj8PqF3v8Tpw8LAiI8+rXPECql2pmN1m3PSlWrJ6kyIiIpT3sfvVtuEbSp48WcyM89gzwae/u1o//PKHzpw5q117/7b7Gt6jkbJnzajf/vhTXQdNkWmfOlVKdWhSSY8+eJdzYQNsQQgeIFRczQjBgwRkcwRcFCAEdxGXXSPgEwFCcJ8UisNEwEUBQnAXcdk1Aj4RIAT3vlCE4N6b06OzACH4/4XghQs8qe6tqmvXnr/1Wo1OWjG9nw2eC5RtpiVTe+uW7JnVbdBUmefPri2rqdew6TIzuutVKWFndXceMFk929TQ1i93aNiEdzVjdCe7fbOuo5Tn0fv0ZpmXLhuCz1iwVqOnLtSSqX3s/roPnqp0N1yvZrXLqkytLnr9tRdVrlgBbd+xU407Dtea2YNsoH4tHoTgQSoSggcJyOYIuChACO4iLrtGwCcChOA+KRSHiYCLAoTgLuKyawR8IkAI7n2hCMG9N6dHZwFC8P8LwScMbKWH77/D/kPFBj1VtXwRmWD8+IlTSpM6pf335es+0cKVGzVxUGs72/vjz75Rq3oV9MA9uZQkyX835ezUf5JuuyWralUsav9/w+avNGXOSk0d1i7OEHzzZ99qVJ+mtv0789fo2x9+U5OapVW8anttWTEuZt/l63ZT6/qv68nc9zoXN4AWhOABIF2pCSF4kIBsjoCLAoTgLuKyawR8IkAI7pNCcZgIuChACO4iLrtGwCcChODeF4oQ3HtzenQWIAT/z8jcsHL+xB66OVsm+//12g5RwfyPqcyrz9tZ2pu2bLf/fuToCWXPkkGThrTRuchITZm9UsvXfqKDh/9VzYpFVbVcYdVvN1RfffeznQVuHufPn1eG9Ok0b3y3OEPwr7/7Rf071bXtzcxw8/+Vy72sN+r3UJZYN+s8eeq0ujSvasP5a/EgBA9SkRA8SEA2R8BFAUJwF3HZNQI+ESAE90mhOEwEXBQgBHcRl10j4BMBQnDvC0UI7r05PToLEIL/Z2RC8ClD2+r+u2+z/1+pYeOLdUAAACAASURBVC9Vq1BEZ86e0/h3lmr6yI664frUWrr6Yy1a9ZENwWM/ft/9l6o166vRfZpp1qL1uitXDlUpV/iSAph+Fk/tbdf4btV9rFbNHBATel8cgjevW04lq3XUp8vHOhfyKlsQgl8lXPRmhOBBArI5Ai4KEIK7iMuuEfCJACG4TwrFYSLgogAhuIu47BoBnwgQgntfKEJw783p0VmAEPz/QvBSr+RXu0YVtXvffhs+m4B69YbPtGnrdo3p21xHjh5Xi66jdfzkKc0e20WteoxVycLPKn+eh3T6zFmVrdVFfTvW0d8HDmvstMV2+ROzjIq52WbyZEll9h+fENyE4mVrd7U36SxaMK8OHj6qviPfseuWR88yd67wlVsQggcpSAgeJCCbI+CiACG4i7jsGgGfCBCC+6RQHCYCLgoQgruIy64R8IkAIbj3hSIE996cHp0FCMH/M3rylbpqUrOM5i//0N7kslalonrjtYI2eG7QfqiO/HtcWTOnV/Pa5dS40wgbaBfM/7h6DJmmw/8eU5KICJV4OZ8aVi9l92dmj5sZ4+fORdr1wXu1raXMGW+Mdwj+2x9/qtvgqfrz74OKiIhQtfKFVaHki86FDbAFIXiAUHE1IwQPEpDNEXBRgBDcRVx2jYBPBAjBfVIoDhMBFwUIwV3EZdcI+ESAENz7QhGCe29Oj84ChODORuHcghA8yOoSggcJyOYIuChACO4iLrtGwCcChOA+KRSHiYCLAoTgLuKyawR8IkAI7n2hCMG9N6dHZ4FQDsEXLIvULzujnE/ify1KF0uqO3JFBNyehhIheJBXASF4kIBsjoCLAoTgLuKyawR8IkAI7pNCcZgIuChACO4iLrtGwCcChODeF4oQ3HtzenQWCOUQ3PnoaRGsACF4kIKE4EECsjkCLgoQgruIy64R8IkAIbhPCsVhIuCiACG4i7jsGgGfCBCCe18oQnDvzenRWYAQ3NkonFsQggdZXULwIAHZHAEXBQjBXcRl1wj4RIAQ3CeF4jARcFGAENxFXHaNgE8ECMG9LxQhuPfm9OgsQAjubBTOLQjBg6wuIXiQgGyOgIsChOAu4rJrBHwiQAjuk0JxmAi4KEAI7iIuu0bAJwKE4N4XihDce3N6dBYgBHc2CucWhOBBVpcQPEhANkfARQFCcBdx2TUCPhEgBPdJoThMBFwUIAR3EZddI+ATAUJw7wtFCO69OT06CxCCOxuFcwtC8CCrSwgeJCCbI+CiACG4i7jsGgGfCBCC+6RQHCYCLgoQgruIy64R8IkAIbj3hSIE996cHp0FCMGdjcK5BSF4kNUlBA8SkM0RcFGAENxFXHaNgE8ECMF9UigOEwEXBQjBXcRl1wj4RIAQ3PtCEYJ7b06PzgKhHIJH7vpFUUePOJ/E/1okzXmHItKmC7g9DSVC8CCvAkLwIAHZHAEXBQjBXcRl1wj4RIAQ3CeF4jARcFGAENxFXHaNgE8ECMG9LxQhuPfm9OgsEMoh+PF+bXT2i4+dT+J/LdK07a/kjz8TcHsaEoIHfQ0QggdNyA4QcE2AENw1WnaMgG8ECMF9UyoOFAHXBAjBXaNlxwj4RoAQ3PtSEYJ7b06PzgKE4P8Zbf7sW+W6NZuyZrrJGS3IFuciI7Vq/RYVe+npIPcU/ObMBA/SkBA8SEA2R8BFAUJwF3HZNQI+ESAE90mhOEwEXBQgBHcRl10j4BMBQnDvC0UI7r05PToLEIL/Z9Sow3DVfrOYHrn/Dmc0SefPRylJkoiA2l7c6PufftfQ8fM0fmCrq9r+Wm5ECB6kJiF4kIBsjoCLAoTgLuKyawR8IkAI7pNCcZgIuChACO4iLrtGwCcChODeF4oQ3HtzenQWIASXJs5crlFTFipLxvRqVb+CCuV/XP1Hz9L6j77Q+agoPZX7XvVoU0PJkibVk6/UU503i2nSrBVaP2+otn3zk3oNm65kSZOofIkX7L/PGN1JObJm1IbNX9mw++y5c7oleyb1bFNTqVOlVImqHfTvseN6+L47NGlIG+ciudiCEDxIXELwIAHZHAEXBQjBXcRl1wj4RIAQ3CeF4jARcFGAENxFXHaNgE8ECMG9LxQhuPfm9OgsQAj+n1GJah3Vs00NOxP8/Y+3aei4eZo3obvMXO8K9bqrdqXierVgHuUr3lClXs2vVvUq2NnghSq0sOH2s089pNFTFmrcO0u1evYgG5gXq9Je00d20F25btbUOav0xTc/akTPJnrvg62av3wDM8GdL8/Qb0EIHvo14ggTrwAheOKtPWeOQLQAITjXAgIIEIJzDSCAACG499cAIbj35vToLEAIfmkIHhUVpZOnTttZ2+bRbdBUZc+aQXXeLK58JRpqbL8WNizfuWufKjboqc3Lxth2Bw4e0fOlm2rdvCH69IvvtWLdJxo3oKX924mTp5S3WANtWz1Razd+TgjufGn6owUhuD/qxFEmTgFC8MRZd84agdgChOBcDwggQAjONYAAAoTg3l8DhODem9OjswAh+KUh+MHDRzVo7Gz9+vteKSJCe/88oIqlCqlelRI2BJ81potuvTmLXQqlfZ8JWjVzQAx07kI1tWrWQK1c96lGT12oG9OljfnbseMnteztvvr86x8JwZ0vTX+0IAT3R504ysQpQAieOOvOWSNACM41gAACsQUIwbkeEECAENz7a4AQ3HtzenQWIAS/NAQ3M7/PnD1rlzlJmjSJOg+YbNf4jg7BZ4/topw5sujnnXtUtVlfbVo8yu4k9kzwrdt2aPWGrRrZu+klRWA5FOfr0jctCMF9UyoONBEKEIInwqJzyghcJMBMcC4JBBAgBOcaQAABQnDvrwFCcO/N6dFZgBD8P6MytbqoWe1yyp/nITXrMkq5H7hT1SoU0Y6fd6lJpxEq8sJTalG3vJ0JHh2Cnzlz1i5/YoLuJx65R8MmvKvJs1fErAn+WvVO9iaZZtb49h07tXT1JnVo8qa94eaEmcs1c3QnRZgn4wR8cGPMIPEJwYMEZHMEXBQgBHcRl10j4BMBQnCfFIrDRMBFAUJwF3HZNQI+ESAE975QhODem9OjswAh+H9GY6Yt1tQ5K9W0Vhndf/dtdpmT5MmS6qH7blfBZx9Xx/4T1bdDbXXsNzEmBDfbrVj3qYaMm6O016fWG68V1OBxc7Vkah9lyZReGzZ/paHj5+nU6TNKkzqlOjZ9U489dLedMf56ve6KPH9e7787zLlILrYgBA8SlxA8SEA2R8BFAUJwF3HZNQI+ESAE90mhOEwEXBQgBHcRl10j4BMBQnDvC0UI7r05PToLEII7G12phbmJpnmYGd2RkeeV+6Wa2rJinFKlTBHcjj3amhA8SGhC8CAB2RwBFwUIwV3EZdcI+ESAENwnheIwEXBRgBDcRVx2jYBPBAjBvS8UIbj35vToLBDKIfipmeN07sdvnE/ify1SVayrpHc/GHD7a9GwXJ1uKle8gMoXL6BFqz7StLmrtHByr2uxa0/2QQgeJDMheJCAbI6AiwKE4C7ismsEfCJACO6TQnGYCLgoQAjuIi67RsAnAoTg3heKENx7c3p0FgjlENz56BO+xbZvflL3wdN07PgJ3ZT+BnVvVV333XVrwh9YgEdACB4gVFzNCMGDBGRzBFwUIAR3EZddI+ATAUJwnxSKw0TARQFCcBdx2TUCPhEgBPe+UITg3pvTo7MAIbizUTi3IAQPsrqE4EECsjkCLgoQgruIy64R8IkAIbhPCsVhIuCiACG4i7jsGgGfCBCCe18oQnDvzenRWYAQ3NkonFsQgsejuoePHNOrlduqac0yqlDyRbslIXg8AGmKgMcChOAeg9MdAiEoQAgegkXhkBDwWIAQ3GNwukMgBAUIwb0vCiG49+b06CxACO5sFM4tCMHjUd0OfSdoy5c7VLtiUULweLjRFIGEEiAETyh5+kUgdAQIwUOnFhwJAgklQAieUPL0i0DoCBCCe18LQnDvzenRWYAQ3NkonFsQggdY3S3bdmjMtEW687YcuitXDkLwAN1ohkBCChCCJ6Q+fSMQGgKE4KFRB44CgYQUIARPSH36RiA0BAjBva8DIbj35vToLEAI7mwUzi0IwQOo7tmz51S+bjcN7tZQMxesJQQPwIwmCISCACF4KFSBY0AgYQUIwRPWn94RCAUBQvBQqALHgEDCChCCe+9PCO69OT06CxCCOxuFcwtC8ACqO2bqIkVFRalh9VLqNWz6BSH40ZPnAtgDTRBAICEEIiRdnyqZ611/0X+aos6cdr2fK3Vwd6saCdo/nSMQygJpPXgeOHbynKJCGYFjQyCRC3jxPLBt5DydP3woQaV5P5Cg/HQe4gJePA+EwvuB8wumhEQlkpSuHhLHwUEgEFvAi+cBxENXgBDcoTa//fGnWnYfo1ljOitFiuSXhuAnzoZudTkyBBK5QEREROIJwVvyJjORX+6cflwCERHy4s2u/dAbRQxuyrBybcI7vFLIfA3KA4H/BLx6PxASITjvB7jsEbi8gEfvB9ZtPKd/Dp1P0CoUPjo1QfuP7jxJKT6fhEQhOIgLBNKmTo5IIhYgBHco/tS5qzTu7SVKnvy/2aTHT5xS0qRJVLFUITWrXVZ7/zmZiC8fTh2B0BZgOZTQrg9Hh4AXAiyH4oXyhX2s/yDhA+gXCyR8EO+9PD3GJcByKFwbCCDg1XIoq94/owMHCcHNFcdyKIy7UBRgOZRQrIp3x0QIHk/ri5dDIQSPJyDNEfBQgBDcQ2y6QiBEBQjBvS8MIbj35vR4ZQFCcK4QBBAgBPf+GiAE996cHp0FCMGdjcK5BSF4PKtLCB5PMJojkIAChOAJiE/XCISIACG494UgBPfenB4JwaMFbm5chcsBAQQuI0AI7v1lQQjuvTk9OgsQgjsbhXMLQvAgq8tM8CAB2RwBFwUIwV3EZdcI+ESAENz7QhGCe29Oj4TghOCMAgSuLEAI7v0VQgjuvTk9OgsQgjsbhXMLQvAgq0sIHiQgmyPgogAhuIu47BoBnwgQgntfKEJw783pkRCcEJxRgAAheLRAqNwYkxCcURmKAoTgoVgV744prELwqKgonTsXGXMTSy8YCcG9UKYPBK5OgBD86tzYCoFwEiAE976ahODem9MjITghOKMAAUJwQnBGAQLOAoTgzkbh3MKXIXihCi21ds7gS+py+MgxlazeURsWDPesZoTgnlHTEQLxFiAEjzcZGyAQdgKE4N6XlBDce3N6JAQnBGcUIEAITgjOKEDAWYAQ3NkonFv4KgTftPUbfbz1G70zf43eLPPSJXX5Y9/f2rJthz5ZNsazmhGCe0ZNRwjEW4AQPN5kbIBA2AkQgntfUkJw783pkRCcEJxRgAAhOCE4owABZwFCcGejcG7hqxD8l9/2aOmazZo0a7kKPJ37krqkTJlCxV/Kp+fyPuJZzQjBPaOmIwTiLUAIHm8yNkAg7AQIwb0vKSG49+b0SAhOCM4oQIAQnBCcUYCAswAhuLNROLfwVQgeXYhRkxeqUY1SIVEXQvCQKAMHgcBlBQjBuTAQQIAQ3PtrgBDce3N6JAQnBGcUIEAITgjOKEDAWYAQ3NkonFv4MgQ3Bdnx8y7t3LVPp06fuaQ+pV7J71nNCME9o6YjBOItQAgebzI2QCDsBAjBvS8pIbj35vRICE4IzihAgBCcEJxRgICzACG4s1E4t/BlCD7orTmaOmeVsmRMr+TJk11Sn1UzB3hWM0Jwz6jpCIF4CxCCx5uMDRAIOwFCcO9LSgjuvTk9EoITgjMKECAEJwRnFCDgLEAI7mwUzi18GYI/X7qpJg5urbty3ZzgtSEET/AScAAIxClACM7FgQAChODeXwOE4N6b0yMhOCE4owABQnBCcEYBAs4ChODORuHcwpcheNHK7bR8er+QqAsheEiUgYNA4LIChOBcGAggQAju/TVACO69OT0SghOCMwoQIAQnBGcUIOAsQAjubBTOLXwZgvcfPUuPPniXXn7+iQSvDSF4gpeAA0AgTgFCcC4OBBAgBPf+GiAE996cHgnBCcEZBQgQghOCMwoQcBYgBHc2CucWvgzBO/abqNUbPlP2rBmULXMGRUREXFCjsf2ae1YzQnDPqOkIgXgLEILHm4wNEAg7AUJw70tKCO69OT0SghOCMwoQIAQnBGcUIOAsQAjubBTOLXwZgg8cO1tJkySJsy4t6pb3rGaE4J5R0xEC8RYgBI83GRsgEHYChODel5QQ3HtzeiQEJwRnFCBACE4IzihAwFmAENzZKJxb+DIED6WCEIKHUjU4FgQuFCAE54pAAAFCcO+vAUJw783pkRCcEJxRgAAhOCE4owABZwFCcGejcG7hyxC878gZcdYkMvK8OjWr7FnNCME9o6YjBOItQAgebzI2QCDsBAjBvS8pIbj35vRICE4IzihAgBCcEJxRgICzACG4s1E4t/BlCN6sy6gLanI+6rz2/XVQv/3xp4oWzKturap5VjNCcM+o6QiBeAsQgsebjA0QCDsBQnDvS0oI7r05PRKCE4IzChAgBCcEZxQg4CxACO5sFM4tfBmCx1WQ9z/eps2ffacOTSp5VjNCcM+o6QiBeAsQgsebjA0QCDsBQnDvS0oI7r05PRKCE4IzChAgBCcEZxQg4CxACO5sFM4twioEN4UqWrmdlk/v51nNCME9o6YjBOItQAgebzI2QCDsBAjBvS8pIbj35vRICE4IzihAgBCcEJxRgICzACG4s1E4twirEPznnXtUs+UAbVgw3LOaEYJ7Rk1HCMRbgBA83mRsgEDYCRCCe19SQnDvzemREJwQnFGAACE4ITijAAFnAUJwZ6NwbuHLEPyFss0uqcnZs5E6dOSo6lYuriY1y3hWM0Jwz6jpCIF4CxCCx5uMDRAIOwFCcO9LSgjuvTk9EoITgjMKECAEJwRnFCDgLEAI7mwUzi18GYKvWPfpJTVJeV1y3ZYzm27Pmc3TehGCe8pNZwjES4AQPF5cNEYgLAUIwb0vKyG49+b0SAhOCM4oQIAQnBCcUYCAswAhuLNROLfwZQgeSgUhBA+lanAsCFwoQAjOFYEAAoTg3l8DhODem9MjITghOKMAAUJwQnBGAQLOAoTgzkbh3MKXIXhk5HlNn79aK9Z9ot379tv65MyRRaVffU7lixfwtF6E4J5y0xkC8RIgBI8XF40RCEsBQnDvy0oI7r05PRKCE4IzChAgBCcEZxQg4CxACO5sFM4tfBmCv/X2Es1atE6lXsmvW7JntvXZ+cc+LVy5UQ2qvqZKpQt5VjNCcM+o6QiBeAsQgsebjA0QCDsBQnDvS0oI7r05PRKCE4IzChAgBCcEZxQg4CxACO5sFM4tfBmCF36jtYb3bKx778x5QW2+/u4Xdeg3Ucve7utZzQjBPaMOqCM+eP/HlHzptIC8wr1RkkxZlaHoa66f5pY+U6Uzp13v50od3Ny4SoL2T+cIhKoAIbj3leG12HtzeiQEJwRnFCBACE4IzihAwFmAENzZKJxb+DIEf/KVutq0eJRSpEh+QW3OnDmrvMUa6IvVEzyrGSG4Z9QBdcQHb0Lw2BcKIXhAw4ZGCIS1ACG49+Xltdh7c3okBCcEZxQgQAhOCM4oQMBZgBDc2SicW/gyBK9Qt7vKFn9e5YpduP73u8s26J35a7RoSi/PakYI7hl1QB3xwZsQnBA8oKFCIwQSjQAhuPel5rXYe3N6JAQnBGcUIEAITgjOKEDAWYAQ3NkonFv4MgTfsm2H6rQZpFy3ZFWunNkUFRWlnbv+1K49f2l4zybKn+chz2pGCO4ZdUAd8cGbEJwQPKChQiMEEo0AIbj3pea12HtzeiQEJwRnFCBACE4IzihAwFmAENzZKJxb+DIENwX5a/8hLV3zsXbv3W/rk/PmzCrx8jPKeFM6T+tFCO4pt2NnfPAmBCcEdxwmNEAgUQkQgntfbl6LvTenR0JwQnBGAQKE4ITgjAIEnAUIwZ2NwrmFb0PwQ0eOKjLyfEzo/fvuv3R9mlTKkP4GT+tFCO4pt2NnfPAmBCcEdxwmNEAgUQkQgntfbl6LvTenR0JwQnBGAQKE4ITgjAIEnAUIwZ2NwrmFL0PwzZ99q8adhqtLi6p29rd5TJ2zSqOnLtLI3k2U97H7PasZIbhn1AF1xAdvQnBC8ICGCo0QSDQChODel5rXYu/N6ZEQnBCcUYAAITghOKMAAWcBQnBno3Bu4csQvFSNTqpQ8kW9XvLFC2ozd8n7mr14vRZM6ulZzQjBPaMOqCM+eBOCE4IHNFRohECiESAE977UvBZ7b06PhOCE4IwCBAjBCcEZBQg4CxCCOxuFcwtfhuC5X6qljxaNtMufxH6YJVJeKNtcX66Z6FnNCME9ow6oIz54E4ITggc0VGiEQKIRIAT3vtS8FntvTo+E4ITgjAIECMEJwRkFCDgLEII7G4VzC1+G4MWqtFe9KiVUrNDTF9RmxoI1mrP4fS2Z1sezmhGCe0YdUEd88CYEJwQPaKjQCIFEI0AI7n2peS323pweCcEJwRkFCBCCE4IzChBwFiAEdzYK5xa+DMHXb9qmFt1G657bb1GObJkUFXVev/y+T7v2/KXhPRrr+acf8axmhOCeUQfUER+8CcEJwQMaKjRCINEIEIJ7X2pei703p0dCcEJwRgEChOCE4IwCBJwFCMGdjcK5hS9DcFOQv/Yf0tI1H2v33v22PrfkyKziL+VT5ow3elovQnBPuR0744M3ITghuOMwoQECiUqAENz7cvNa7L05PRKCE4IzChAgBCcEZxQg4CxACO5sFM4tfBuCh0pRCMFDpRL/HQcfvAnBCcFDa0xyNAgktAAhuPcV4LXYe3N6JAQnBGcUIEAITgjOKEDAWYAQ3NkonFsQggdZXULwIAGv8eZ88CYEJwS/xoOK3SHgcwFCcO8LyGux9+b0SAhOCM4oQIAQnBCcUYCAswAhuLNROLcgBA+yuoTgQQJe48354E0ITgh+jQcVu0PA5wKE4N4XkNdi783pkRCcEJxRgAAhOCE4owABZwFCcGejcG5BCB5kdQnBgwS8xpvzwZsQnBD8Gg8qdoeAzwUIwb0vIK/F3pvTIyE4ITijAAFCcEJwRgECzgKE4M5G4dyCEDzI6hKCBwl4jTfngzchOCH4NR5U7A4BnwsQgntfQF6LvTenR0JwQnBGAQKE4ITgjAIEnAUIwZ2NwrkFIXiQ1SUEDxLwGm/OB29CcELwazyo2B0CPhcgBPe+gLwWe29Oj4TghOCMAgQIwQnBGQUIOAsQgjsbhXMLQvAgq0sIHiTgNd6cD96E4ITg13hQsTsEfC5ACO59AXkt9t6cHgnBCcEZBQgQghOCMwoQcBYgBHc2CucWhOBBVpcQPEjAa7w5H7wJwQnBr/GgYncI+FyAENz7AvJa7L05PRKCE4IzChAgBCcEZxQg4CxACO5sFM4tCMGDrC4heJCA13hzPngTghOCX+NBxe4Q8LkAIbj3BeS12HtzeiQEJwRnFCBACE4IzihAwFmAENzZKJxbEIIHWV1C8CABr/HmfPAmBCcEv8aDit0h4HMBQnDvC8hrsffm9EgITgjOKECAEJwQnFGAgLMAIbizUTi3IAQPsrqE4EECXuPN+eBNCE4Ifo0HFbtDwOcChODeF5DXYu/N6ZEQnBCcUYAAITghOKMAAWcBQnBno3BuQQgeQHV/+W2Pug2eph9+2aWMN6VTq/qv68VnHrVbEoIHAOhhEz54E4ITgns44OgKAR8IEIJ7XyRei703p0dCcEJwRgEChOCE4IwCBJwFCMGdjcK5BSF4ANUtWb2jyhZ9XpVKv6RNW79Ri26j9OHCkUqVMgUheAB+XjbhgzchOCG4lyOOvhAIfQFCcO9rxGux9+b0SAhOCM4oQIAQnBCcUYCAswAhuLNROLcgBHeo7rnISC1cuVGlXsmvZEmT2tZ5itbXvPHdlTNHZkLwEBsdfPAmBCcED7FByeEgkMAChODeF4DXYu/N6ZEQnBCcUYAAITghOKMAAWcBQnBno3BuQQgez+pu//5XNe0yUmvnDFGSJBGE4PH0c7s5H7wJwQnB3R5l7B8BfwkQgntfL16LvTenR0JwQnBGAQKE4ITgjAIEnAUIwZ2NwrkFIXg8qrt7337VaT1InZtV0dNPPGC3PHryXDz2QFO3BVauiXK7C8f9v/JShGMbtxucXzDF7S58sf+IjFl0Q+ESrh/rF/2nKerMadf7uVIHd7eqkaD90zkCoSyQNlUy1w/v2MlzSvhXINdPM6AOeC0OiIlGHgt48TywbeQ8nT98yOMzu7A73g8kKD+dh7iAF88D6zae0z+HEvYdQeGjU0OiEklKVw+J4+AgEIgt4MXzAOKhK0AIHmBtfvjlDzXtPFLtGlVUgXy5Y7Y6euJsgHugmRcCK9cm7BsOL84xkD5C5Y1PIMfqZpuIjFkTTwjekjeZbl5L7NvHAhER8uLNrg3Bo3gNMldKKLwW8zoYWmM2SamEfY2KiIjQ9R58GRYSITjvB0Lr4udoQkfAo/cD/4Xg5xP0vO/4KjRC8Lt5PkrQ64DOLy+QNnVyaBKxACF4AMX/Y+/fqt1qkPq0r63HHrrrgi32/nMygD3QxCuBUPgJtlfneqV++PD/n06STFmVoehrrpdkS5+pUgLPBL+5cRXXz5MOEPCjAMuheF+1UHgt5nXQ+7pfqcezxasm6AElTRKhLOlTun4MW4fP1f9r787jNpvr/4G/xxjZSkmWSiiFJEVComLsspZdthj7OpaMfYlhLDPC2LIlQ0aRXfaQiKREUvElZV8mMZb5/a6rx9xmLPd17vt8zrnOOffz/nPmnM/nc57v93zOdV5z3dc16fnuvhPc64HCy2yCmgoMGhQx16wzFL76q2+cGM88190Q/HP3n1P4dWaZwH6URckxZQv4OJSyxas1nxA8Qz222O2o2GDNb8Wqyy/5rqOF4BkASzykCg/eJV7u+07l4V8IXoU+tAYCVRAQgpdfL6fE8AAAIABJREFUhSrci90Hy6+7EDxCCF6tvrMaAlMKCMHL7wchePnmZuwsIATvbNTkI4TgHarb+hzwlTfaK4YMmfrzREcduH0MXXZxX4xZsX8dVXjwrgKJh38heBX60BoIVEFACF5+FapwL3YfLL/uQnAheLW6zmoITC0gBC+/I4Tg5ZubsbOAELyzUZOPEILnrK53gucETHx6FR68E19Sv4bz8C8E71fjOIlAAwWE4OUXtQr3YvfB8usuBBeCV6vrrIaAELzbPSAE73YFzP9eAkLwgd0XQvCc9ReC5wRMfHoVHrwTX1K/hvPwLwTvV+M4iUADBYTg5Re1Cvdi98Hy6y4EF4JXq+ushoAQvNs9IATvdgXMLwTXA+8UEILn7AkheE7AxKdX4cE78SX1azgP/0LwfjWOkwg0UEAIXn5Rq3Avdh8sv+5CcCF4tbrOaggIwbvdA0LwblfA/EJwPSAET9wDQvDEoDmHq8KDd85LSHK6h38heJJGMgiBBggIwcsvYhXuxe6D5dddCC4Er1bXWQ0BIXi3e0AI3u0KmF8IrgeE4Il7QAieGDTncFV48M55CUlO9/AvBE/SSAYh0AABIXj5RazCvdh9sPy6C8GF4NXqOqshIATvdg8IwbtdAfMLwfWAEDxxDwjBE4PmHK4KD945LyHJ6R7+heBJGskgBBogIAQvv4hVuBe7D5ZfdyG4ELxaXWc1BITg3e4BIXi3K2B+IbgeEIIn7gEheGLQnMNV4cE75yUkOd3DvxA8SSMZhEADBITg5RexCvdi98Hy6y4EF4JXq+ushoAQvNs9IATvdgXMLwTXA0LwxD0gBE8MmnO4Kjx457yEJKd7+BeCJ2kkgxBogIAQvPwiVuFe7D5Yft2F4ELwanWd1RAQgne7B4Tg3a6A+YXgekAInrgHhOCJQXMOV4UH75yXkOR0D/9C8CSNZBACDRAQgpdfxCrci90Hy6+7EFwIXq2usxoCQvBu94AQvNsVML8QXA8IwRP3gBA8MWjO4arw4J3zEpKc7uFfCJ6kkQxCoAECQvDyi1iFe7H7YPl1F4ILwavVdVZDQAje7R4Qgne7AuYXgusBIXjiHhCCJwbNOVwVHrxzXkKS0z38C8GTNJJBCDRAQAhefhGrcC92Hyy/7kJwIXi1us5qCAjBu90DQvBuV8D8QnA9IARP3ANC8MSgOYerwoN3zktIcrqHfyF4kkYyCIEGCAjByy9iFe7F7oPl110ILgSvVtdZDQEheLd7QAje7QqYXwiuB4TgiXtACJ4YNOdwVXjwznkJSU738C8ET9JIBiHQAAEhePlFrMK92H2w/LoLwYXg1eo6qyEgBO92DwjBu10B8wvB9YAQPHEPCMETg+YcrgoP3jkvIcnpHv6F4EkaySAEGiAgBC+/iFW4F7sPll93IbgQvFpdZzUEhODd7gEheLcrYH4huB4QgifuASF4YtCcw1XhwTvnJSQ53cO/EDxJIxmEQAMEhODlF7EK92L3wfLrLgQXgler66yGgBC82z0gBO92BcwvBNcDQvDEPSAETwyac7gqPHjnvIQkp3v4F4InaSSDEGiAgBC8/CJW4V7sPlh+3YXgQvBqdZ3VEBCCd7sHhODdroD5heB6QAieuAeE4IlBcw5XhQfvnJeQ5HQP/0LwJI1kEAINEBCCl1/EKtyL3QfLr7sQXAhera6zGgJC8G73gBC82xUwvxBcDwjBE/eAEDwxaM7hqvDgnfMSkpzu4V8InqSRDEKgAQJC8PKLWIV7sftg+XUXggvBq9V1VkNACN7tHhCCd7sC5heC6wEheOIeEIInBs05XBUevHNeQpLTPfwLwZM0kkEINEBACF5+EatwL3YfLL/uQnAheLW6zmoICMG73QNC8G5XwPxCcD0gBE/cA0LwxKA5h6vCg3fOS0hyuod/IXiSRjIIgQYICMHLL2IV7sXug+XXXQguBK9W11kNASF4t3tACN7tCphfCK4HhOCJe0AInhg053BVePDOeQlJTvfwLwRP0kgGIdAAASF4+UWswr3YfbD8ugvBheDV6jqrISAE73YPCMG7XQHzC8H1gBA8cQ8IwROD5hyuCg/eOS8hyeke/oXgSRrJIAQaICAEL7+IVbgXuw+WX3chuBC8Wl1nNQSE4N3uASF4tytgfiG4HhCCJ+4BIXhi0JzDVeHBO+clJDndw78QPEkjGYRAAwSE4OUXsQr3YvfB8usuBBeCV6vrrIaAELzbPSAE73YFzC8E1wNC8MQ9IARPDJpzuCo8eOe8hCSne/gXgidpJIMQaICAELz8IlbhXuw+WH7dheBC8Gp1ndUQEIJ3uweE4N2ugPmF4HpACJ64B4TgiUFzDleFB++cl5DkdA//QvAkjWQQAg0QEIKXX8Qq3IvdB8uvuxBcCF6trrMaAkLwbveAELzbFTC/EFwPCMET94AQ/G3QKjz0Ji5vbYfz8C8Er23zWjiBxAIDKQR3H367eT53/zmJO6nvw80376S+n9TQM17/9uZdvbLB0wyKOT4yfeFruGv0RTHp+ecLn6e3CYROXeU3eYUFBg2KmGvWGQpf4dU3Toxnnnur8Hl6m6AK98DW+uxHXW0Dk7+PwMc/Wvw+AL+6AoMmTZrkFXqO+gjBheA52qewU4XgQvDCmsvABGomIASvWcESLbcKAYAQ/O1iCsETNXaGYYROGZAcMiAFhODll91+VL65GTsLCME7GzX5CCF4zuoKwYXgOVuokNOF4ELwQhrLoARqKCAEr2HREixZCJ4AMeEQQvCEmB2GEjqVZ22megkIwcuvl/2ofHMzdhYQgnc2avIRQvCc1RWCC8FztlAhpwvBheCFNJZBCdRQQAhew6IlWLIQPAFiwiGE4AkxheDlYZqpUQJC8PLLKQQv39yMnQWE4J2NmnyEEDxndYXgQvCcLVTI6UJwIXghjWVQAjUUEILXsGgJliwET4CYcAgheEJMIXh5mGZqlIAQvPxyCsHLNzdjZwEheGejJh8hBM9ZXSG4EDxnCxVyuhBcCF5IYxmUQA0FhOA1LFqCJQvBEyAmHEIInhBTCF4eppkaJSAEL7+cQvDyzc3YWUAI3tmoyUcIwXNWVwguBM/ZQoWcLgQXghfSWAYlUEMBIXgNi5ZgyULwBIgJhxCCJ8QUgpeHaaZGCQjByy+nELx8czN2FhCCdzZq8hFC8JzVFYILwXO2UCGnC8GF4IU0lkEJ1FBACF7DoiVYshA8AWLCIYTgCTGF4OVhmqlRAkLw8sspBC/f3IydBYTgnY2afIQQPGd1heBC8JwtVMjpQnAheCGNZVACNRQQgtewaAmWLARPgJhwCCF4QkwheHmYZmqUgBC8/HIKwcs3N2NnASF4Z6MmHyEEz1ldIbgQPGcLFXK6EFwIXkhjGZRADQWE4DUsWoIlC8ETICYcQgieEFMIXh6mmRolIAQvv5xC8PLNzdhZQAje2ajJRwjBc1ZXCC4Ez9lChZwuBBeCF9JYBiVQQwEheA2LlmDJQvAEiAmHEIInxBSCl4dppkYJCMHLL6cQvHxzM3YWEIJ3NmryEULwnNUVggvBc7ZQIacLwYXghTSWQQnUUEAIXsOiJViyEDwBYsIhhOAJMYXg5WGaqVECQvDyyykEL9/cjJ0FhOCdjZp8hBA8Z3WF4ELwnC1UyOlCcCF4IY1lUAI1FBCC17BoCZYsBE+AmHAIIXhCTCF4eZhmapSAELz8cgrByzc3Y2cBIXhnoyYfIQTPWV0huBA8ZwsVcroQXAheSGMZlEANBYTgNSxagiULwRMgJhxCCJ4QUwheHqaZGiUgBC+/nELw8s3N2FlACN7ZqMlHCMFzVlcILgTP2UKFnC4EF4IX0lgGJVBDASF4DYuWYMlC8ASICYcQgifEFIKXh2mmRgkIwcsvpxC8fHMzdhYQgnc2avIRQvCc1RWCC8FztlAhpwvBheCFNJZBCdRQQAhew6IlWLIQPAFiwiGE4AkxheDlYZqpUQJC8PLLKQQv39yMnQWE4J2NmnyEEDxndYXgQvCcLVTI6UJwIXghjWVQAjUUEILXsGgJliwET4CYcAgheEJMIXh5mGZqlIAQvPxyCsHLNzdjZwEheGejJh8hBM9ZXSG4EDxnCxVyuhBcCF5IYxmUQA0FhOA1LFqCJQvBEyAmHEIInhBTCF4eppkaJSAEL7+cQvDyzc3YWUAI3tmoyUcIwXNWVwguBM/ZQoWcLgQXghfSWAYlUEMBIXgNi5ZgyULwBIgJhxCCJ8QUgpeHaaZGCQjByy+nELx8czN2FhCCdzZq8hFC8JzVFYILwXO2UCGnC8GF4IU0lkEJ1FBACF7DoiVYshA8AWLCIYTgCTGF4OVhmqlRAkLw8sspBC/f3IydBYTgnY2afIQQPGd1heBC8JwtVMjpQnAheCGNZVACNRQQgtewaAmWLARPgJhwCCF4QkwheHmYZmqUgBC8/HIKwcs3N2NnASF4Z6MmHyEEz1ldIbgQPGcLFXK6EFwIXkhjGZRADQWE4DUsWoIlC8ETICYcQgieEFMIXh6mmRolIAQvv5xC8PLNzdhZQAje2ajJRwjBc1ZXCC4Ez9lChZwuBBeCF9JYBiVQQwEheA2LlmDJQvAEiAmHEIInxBSCl4dppkYJCMHLL6cQvHxzM3YWEIJ3NmryEULwDNV97ImnYr8jT48/P/xofGLO2eLQvbeKLy08f/tMIbgQPEMLlX6IEFwIXnrTmZBARQWE4BUtTMHLEoIXDNzH4YXgfQTLcbjQKQeeUxstIAQvv7z2o/LNzdhZQAje2ajJRwjBM1R3s52PiGWWWCS23nj1uPmO38cPx/wkrrlgVAyZdrAQfAq/G24alEHTIWUICMGF4GX0mTkI1EFACF6HKqVfoxA8vWmeEYXgefT6dq7QqW9ejh44AkLw8mttPyrf3IydBYTgnY2afIQQvEN1n33+pVhl473ijstPjmkHD24f/Z1tDop9dtwolvjSgkJwIXgl9wchuBC8ko1pUQS6ICAE7wJ6BaYUglegCFMsQQheXj2ETuVZm6leAkLw8utlPyrf3IydBYTgnY2afIQQvEN177n/4Tj0uHPiF2cd3nPk8ENPiSUXWyi+u8Y3heBC8EruD0JwIXglG9OiCHRBQAjeBfQKTCkEr0ARhOBdKYLQqSvsJq2BgBC8/CLZj8o3N2NnASF4Z6MmHyEE71Dd2+/+Y4w+fXxceOpBPUeOOOqM+Nxn5o7Nv7tyk3ujz9d26VVv9vkcJxQjIAT/n+tbH50jZlxhjWKQpxj1vmPOjUkTXyt8nt4m+NKIbbo6v8kJVFXgjTcnRSsIL/rnrbcmxTTTFD9Pb9fhPvy2zjz3/Ljoknccf8HPTtPxmIFywPTrb93VSy3r3+cfThofb73wXFev1euBrvKbvMICkyZFtILwon9uvuOteOGFSUVP0+v4VbgHthZoP+pqG5icAIH3EBCCd2iLe//4cOw/8sy44ryjeo7c5YAxseySX2y/E9wPAQIECBAgQIAAAQIECBAgQIAAAQIECFRXQAjeoTbPv/hyDF1/z7jtsh/F9B+Yrn306pvtG4ftvVUstsjnqltZKyNAgAABAgQIECBAgAABAgQIECBAgACBEIJnaIKt9zw6Fv/iArHNJmvENTf9NkafMT6uOn9kzxdlZhjCIQQIECBAgAABAgQIECBAgAABAgQIECDQBQEheAb0J//9bOxzxKnxp4f+EXN/fPY4Yt/vx8ILzJvhTIcQIECAAAECBAgQIECAAAECBAgQIECAQDcFhOD91D/9/MvjnIuuiTfefDNWW2GpGLHLpjF4sC9AeidnFqdb77w/tt/3uJh22sE9p++1/YaxybpD2++6P+Onl8fgwYNjmkGD4qOzzhIbrb18bLXhav2sXLNOa/XfCadfHGeNuyp+femJ8ZFZPti+QG7l1DlLf5ezkmrPksXJPtD/Gr7fPnDH3X+K7w8/JoYMmTYGDRoUM884fXxj6S/F/rtt1vPxXv2f1ZmTBbL0N62IW+/8Q/xwzE/i6WdfiEUXnj9GjhgWs806y1Q0Eye+Hl9eaZt2z07+WX6ZL8dxB+/ovtahiewD3f1XZh/I5p93H3Bf693ZPpCtD4s6Kkt/FzV3ncbN4tTb6wH7QOdqX/6rO+KQY8+Ow/f5fqz8zSXaJ3Dr7OaIgSEgBO9HnX/zuwdi/6PPjHNG/yBm+eBMsf2+x8dqKywZG629Qj9Ga+4pWZ2uvP7OuO6Wu+L4Q3Z6F0YrzH3muRfbn8He+vnzw4/G5rseGaeP2isW/fxnmouX8cp2HjE6Fpz/UzH2vMvilp+PmSoE55YRsZ+HZe3vfg7fmNOyOtkH+l/y99sHWi92DznunLj6p0e3B2+FjzvtNzqGLrd4++O9/OQXyNrf+Weq9wgvTXglVtlorxh10PaxxJcWihNO+1k8+dSz7XB7yp/WfWutLUfEbZf+yOuBPpbcPtBHsISH2weyYabYB9zXere2D2TrxSKOytrfRcxdpzGzOvX2esA+0HvFz77o6vjdfQ+1X/dvueFqU4Xgngvq9K/FWosSEIL3Q/bQ48+NuWaftSdEuPH2e9vvCj/7hH37MVpzT8nqdNFlN8b9D/69J+ieUuSdIXjr7zbe4bDYZL0VY/UVlmouXsYre/Cvj7VD8EWW37LXEJxbRtA+HJa1v/swZCMPzepkH+h/+d9vH3jnQ0JrhtZvjrzw4oQ4ePgW/Z/QmT0CWft7oJNdfeNv45Irb4nTjhnepnh5wivxjXV3jd9cfnJMN92QHp6/P/Zk+40Fk//jxuuB7J1jH8hulfpI+0A20RT7gPta79b2gWy9WMRRWfu7iLnrNGZWp95eD9gHOu8DC3xm7vj+nsfE+mt+631DcM8FdfqXY60pBYTg/dBsfVHmhmstHysu95X22a1NesvdR8ZN40/ox2jNPSWr0xk/vSKuu/nu+O9rE+OFF1+Or391kRix62Yx04zTt3/9efI7midNmhT3PfBI7HrAifGz0w6J2Wf7cHPx+nhlvYXg3PqImfHwrP2dcbjGHpbVyT6QvwXeuQ+88yHhX08/F9vtfVzsus168a2vfTn/hEaIrP090KlOPe+X8ezzL8Z+u2zaQ9EKwc8ds1/M88k5ev7sDw88EjvvPybm+9Rc8fDfH48FPj13HLjH5jHv3HN6PZCxiewDGaESHmYfyIaZYh9wX8tmbR/I5pTyqKz9nXLOOo6V1am31wP2gWyV33qPo3sNwT0XZHN0VPMEhOD9qOkmOx4ewzb7diy31KLts//5r2di7a32j99eObYfozX3lKxO191ydzvc3nKDVWPawYNj+KGnxLxzz9EOwlsh+FnjrowPfGC6ePPNN+PV116PHbdcO7bbbM32Z9z6+Z/Ae4Xg3Irtjqz9Xewqqj96Vif7QP5avtdD7zZ7jWr/h2LrP8P+88qrsfzXF4uj9tu2/Wd+8gtk7e/8M9V7hNZvILQ+q3b4dhv0XMiKGw6PMYftHAt9dp6eP3vkH0/EuRdfGxuvMzTmm3vOOOXcy+LG2+6NX5x1uNcDGVvAPpARKuFh9oFsmCn2gVb45b7W2ds+0Nko9RFZ+zv1vHUbL6tTb68H7APZqv5eIbj9M5udo5otIATvR31bXzS27qrLtT8HvPXz0CP/F8P2PtY7wd9h2V+n3/3hL7H/yDPiqvOPnuqdX63hn3vh5faXPHxyro/FXjts2I/qNfOUTh+Hwi193fvb3+lXUu0R++tkH+h7XTu98+vV1ybGeRdfG63/cLjo1IP7PoEz3iXQ3/4eaJSn/eSX8eS/n42D9nz7Y3iWXmOHGDf2oKneCf5Ol1Zw/pWVt41rLhgV4y69YarvCHFfe+8usg+U/6/LPpDNPMU+8LdH/znVd124r9kHsnVf8Uf1t7+LX1m1Zuiv05SvB+wD2Wra6Z3g9s9sjo5qnoAQvB81PWL0efHhD80cO265Tvvs1he6jb/i5jjzuL37MVpzT8nq9Mij/4wPzjRjz8eb3Hnvn+OI0T+Jy84+4l0heEvr+lvvidFnjm//vZ//CXQKwbml75Ss/Z1+5nqNmNXJPpC/rp3Cr9YMrS8kaoWPv770xJ4v0s0/88AdIWt/D1yh/135tTffHedfcl37C8VbP60va1pl473bnwk+ZMi0PTytP3/xpf/E/PN9ov1nr7/+Riy+yrZx8yWj49yfXTtVCO6+9t5dZR8o/1+bfSCbeYp94MGHH5sqBHdfsw9k677ij8ra38WvpNozZHXq7fWAfSBbjTuF4PbPbI6Oap6AELwfNb3n/r/E3oeNbX+W5UwzzRDbDh/V/ryl9VZfrh+jNfeU3pz+9tiT8cSTT8eyS36x/UVtD/zlH3HCoTvFpEkRexx8UrS+zGGPYeu/KwRvPRwffOxZMd2QITFy/2HNxevjlXUKwbn1ETTD4faBDEgRYR/I5pTiqE7h18SJr8d5469rh5HXX3Scj5RKgG4fyIbY+iieVTbeq33fXmLRBeOoH/00Jrzy3xg5YlhM+Xrg9rv/GPuPPDPOO3FEzPmxWeOUcy6NX991f4w75UCvB7JRv+s/xd/52an2gYyQfTjMPpANq7d9oPVlua3fUlp3teWit31AP2ez9nogm1PKo3rr75Tz1H0s+0B5FewUgns9UF4tzFQtASF4P+txzs+uiTPOvzxef+PNWHuVr8c+O24kUHgPy/dzuvDSG9rvDGu9e771qziHHX9u3HTH79ufCd76zNq9d9goZph+uvZD7xk/vTwGDx7cHn3mGWeIZZb4Qvxg503iw7PM3M/qNeO0F16cEN/8zm7ti2m9W27yu+l+deGxcf4lv+JWQpntA9mQ7QPZnPpzVG/7wMN/ezxav6Y/eW+Ybsi0sfAC88Y+O24cC87/qf5M55w+3OdgTS3wm3seiEOOPSeefvb5+EorCN9v2/Z9fMrXA60zzhp3VZw3/tp49dWJschCn25/MeYn5pzN64FeGso+0P1/bV4PZKvB++0Drf8MW2uL/eL+G85qD/R++0ArBHdfe29r+0C2HizyqPfr7yLnrOPY9oFiq/adbQ6Kv/7jiXjjjTdj8DTTxKBpBsXIEdvGh2aeyf5ZLL3RayIgBK9JoSyTAAECBAgQIECAAAECBAgQIECAAAECBPouIATvu5kzCBAgQIAAAQIECBAgQIAAAQIECBAgQKAmAkLwmhTKMgkQIECAAAECBAgQIECAAAECBAgQIECg7wJC8L6bOYMAAQIECBAgQIAAAQIECBAgQIAAAQIEaiIgBK9JoSyTAAECBAgQIECAAAECBAgQIECAAAECBPouIATvu5kzCBAgQIAAAQIECBAgQIAAAQIECBAgQKAmAkLwmhTKMgkQIECAAAECBAgQIECAAAECBAgQIECg7wJC8L6bOYMAAQIECBAgQIAAAQIECBAgQIAAAQIEaiIgBK9JoSyTAAECBAgQIECAAAECBAgQIECAAAECBPouIATvu5kzCBAgQIAAAQIECBAgQIAAAQIECBAgQKAmAkLwmhTKMgkQIECAAAECBAgQIECAAAECBAgQIECg7wJC8L6bOYMAAQIECBAgQIAAAQIECBAgQIAAAQIEaiIgBK9JoSyTAAECBAgQIECAAAECBAgQIECAAAECBPouIATvu5kzCBAgQIAAAQIECBAgQIAAAQIECBAgQKAmAkLwmhTKMgkQIECAAAECBAgQIECAAAECBAgQIECg7wJC8L6bOYMAAQIECBAgQIAAAQIECBAgQIAAAQIEaiIgBK9JoSyTAAECBAgQIECAAAECBAgQIECAAAECBPouIATvu5kzCBAgQIAAAQIECBAgQIAAAQIECBAgQKAmAkLwmhTKMgkQIECAAAECBAgQIECAAAECBAgQIECg7wJC8L6bOaNmAtfcdFeMGnthbL3RanH++OvihZcmxNe/+sU4aM/NY/oPTNe+mgt+cX2cf8mv4t9PPxef+sQcsdNW68S3vvbl9t+tucWI+PaKS8dv730w/vqPx2OmGWeIH+y8SSyzxBdqJmG5BAaugH1g4NbelROYLJB3Hzj8hPNiwiv/jemnmy7u+N2f4vU33ohN1l2x/frCDwEC9RB4/sWX4+tr7RwjRwyLsy+6Op565vmYd+4544c/2CY+OdfH2hdx1+8fjGPHXhiPPPpkzDbrh2Ld1ZaLrTdaPaaZZlDYB+pRZ6sk0JuAfUB/EBi4AkLwgVv7AXPl1996T+x5yEntB9Xh228QL//nv7HR9ofG0GUXj923/W60HooPHnVWnHTk7rHIgvPFDbfdG8MPPTnGnXJQLLzAvLHu1gfEcy+8HOeO2S8+9YnZ48JLb4hjThkX1190fMzyoZkGjKMLJVBnAftAnatn7QTSCOTdB4488fy46Jc3xagDto8Vll0sHnrk/2L9bQ+Ok47cLb7+1UXSLNIoBAgUKvDShFdi6TV2iKUW+3yceMSu7TfE7HPE2Hj8yWfigpMPiH8//XysvPFeMWLXTWOtlZaJvz32ZAzb+9j2f3Z977srh32g0PIYnEApAvaBUphNQqCSAkLwSpbFolIKtB56dzlgTNx8yeiYbdZZ2kOPPfeyuOrGO+PSs45ov7Cd55Nzxn67bNIz7cY7HBZfXuSzsdf2G7ZD8EUXnj8O2mPz9t+//sabseRq28VRI4bFSt/4SsqlGosAgYIE7AMFwRqWQI0E8u4DrfDrtrv+GJefe2TPVW+9x9Hx6XnmihG7blYjCUslMHAFJodfow7cPlZdfsk2xD33/yU22/mHcdulP4qLr7g5rvjVHfHzHx/eg3TC6RfH7Xf/MS469eB2CG4fGLj948qbIWAfaEYdXQWB/ggIwfuj5pxaCbQeevf94alx11Wn9qz751fdGkefdEHccfnJsdqm+8Sm660UG6+zQs/f73PEqfHqqxNj9GE7t0PwNVdaJrbYYJWevx+6wZ6xxfqrxKbrrVgrC4slMFAF7AMDtfKum8DbAnn3gVbs4tGVAAAI/0lEQVT49X//fCpOPnL3nkH3O/L09kekjDlsF9QECNRAYHL41Qq0W7/x2fp54l/PxEobDo9LzjwsLvj59fHiyxPi+EN26rma8Vfc0v54lNt/eVI7BLcP1KDQlkigFwH7gPYgMHAFhOADt/YD5spbD717HXZK3HPt6VO9mB1z5vj2u8NbIfhm31kpNlp7ihD88FPjtYmvxwmH7tQOwVcfuvRUn/m5/Hd3j+2+t1as/+1vDhhHF0qgzgL2gTpXz9oJpBHIuw+0wq9HH/9XjB25Z8+CWv9p/tZbb8UxB2yfZpFGIUCgUIHJ4de4Uw6MRRb6dHuux554KlbdZO+44ryj4uwLr46XJvwnjjt4x551XHz5zXHcaRfF7Zf9LwS3DxRaIoMTKFzAPlA4sQkIVFZACF7Z0lhYKoHJv/5848UnxOyzfbg97Ik/viR+fef9ceGpB8V2+xzX/jLMKT8OZYNhh8SSiy0Uewxbvx2Ct14kHzJ8y/a5r742MZZaffsYc/gusdxSi6ZapnEIEChQwD5QIK6hCdREIO8+0Aq/bvnNH+Kq80f2XHHrIxQWXfgzMXy7DWqiYJkEBrbA5PBr5P7DYo2hS7cxfnPPA9H6aKO7rhob4y69IX557e1TfRzKqLEXxt33PRSt4Nw+MLD7x9U3Q8A+0Iw6ugoC/REQgvdHzTm1Emg99A7//+8EX3Olr7U/47v1JZdb7TEyNljzW7HNJmvEDb++J0YcdUaMPXrP+Pxn54krb7gzDjj6zBh/xqHx2fk+2Q7BX3hpQrQ+O/ALC8wXZ1xwZZz7s2vipvEntL9Mxw8BAtUXsA9Uv0ZWSKBogbz7QCv8uuTKW2P4duvHOqsuG3fd91Bst8+x8ZMf7R+Lfv4zRS/f+AQIJBCYHH4ttsjn4uj9h8UHZ54xhh96Svs3Ok47Zng889yL7Y9G2X+3zeLbK34tHvzrY7HdvsfFLlutGxustXw7BLcPJCiEIQh0UcA+0EV8UxPosoAQvMsFMH3xAq2H3gNH/bj9Lq3WO8Bf+e9rMXTZxePA3b8X0003pL2AH4+7Ms67+Np4ecIr8el5Ph57bLt+LLX459t/1wrBW8ff98Aj7XeBfHyOj8aI3TZrf6u8HwIE6iFgH6hHnaySQJECefeBVvj176efj9ln+0hcdu1t7f8Ib30/yJTfGVLk+o1NgEB+gcnh1xH7fr/90SePP/lULLzAfHHUftvGXHN8tD3BrXfeH6PGjmt/TMpcs88aG68zNDZZd2gMGjSoHYLbB/LXwQgEuilgH+imvrkJdFdACN5df7OXINB66D3gmDPbn+PXn59WCL7e6t9ov/j1Q4BAPQXsA/Wsm1UTSCmQdx+YHH61vi/EDwEC9RSYHH794qzD27/x2dcf+0BfxRxPoHoC9oHq1cSKCJQlIAQvS9o8XRPI+9ArBO9a6UxMIJmAfSAZpYEI1FYg7z4g/Kpt6S2cQI+A8EszECBgH9ADBAaugBB84NZ+wFx53odeIfiAaRUX2mAB+0CDi+vSCGQUyLsPCMEzQjuMQIUFhF8VLo6lEShJwD5QErRpCFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikERCCp3E0CgECBAgQIECAAAECBAgQIECAAAECBAhUUEAIXsGiWBIBAgQIECBAgAABAgQIECBAgAABAgQIpBEQgqdxNAoBAgQIECBAgAABAgQIECBAgAABAgQIVFBACF7BolgSAQIECBAgQIAAAQIECBAgQIAAAQIECKQREIKncTQKAQIECBAgQIAAAQIECBAgQIAAAQIECFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikERCCp3E0CgECBAgQIECAAAECBAgQIECAAAECBAhUUEAIXsGiWBIBAgQIECBAgAABAgQIECBAgAABAgQIpBEQgqdxNAoBAgQIECBAgAABAgQIECBAgAABAgQIVFBACF7BolgSAQIECBAgQIAAAQIECBAgQIAAAQIECKQREIKncTQKAQIECBAgQIAAAQIECBAgQIAAAQIECFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikERCCp3E0CgECBAgQIECAAAECBAgQIECAAAECBAhUUEAIXsGiWBIBAgQIECBAgAABAgQIECBAgAABAgQIpBEQgqdxNAoBAgQIECBAgAABAgQIECBAgAABAgQIVFBACF7BolgSAQIECBAgQIAAAQIECBAgQIAAAQIECKQREIKncTQKAQIECBAgQIAAAQIECBAgQIAAAQIECFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikERCCp3E0CgECBAgQIECAAAECBAgQIECAAAECBAhUUEAIXsGiWBIBAgQIECBAgAABAgQIECBAgAABAgQIpBEQgqdxNAoBAgQIECBAgAABAgQIECBAgAABAgQIVFBACF7BolgSAQIECBAgQIAAAQIECBAgQIAAAQIECKQREIKncTQKAQIECBAgQIAAAQIECBAgQIAAAQIECFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikERCCp3E0CgECBAgQIECAAAECBAgQIECAAAECBAhUUEAIXsGiWBIBAgQIECBAgAABAgQIECBAgAABAgQIpBEQgqdxNAoBAgQIECBAgAABAgQIECBAgAABAgQIVFBACF7BolgSAQIECBAgQIAAAQIECBAgQIAAAQIECKQREIKncTQKAQIECBAgQIAAAQIECBAgQIAAAQIECFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikERCCp3E0CgECBAgQIECAAAECBAgQIECAAAECBAhUUEAIXsGiWBIBAgQIECBAgAABAgQIECBAgAABAgQIpBEQgqdxNAoBAgQIECBAgAABAgQIECBAgAABAgQIVFBACF7BolgSAQIECBAgQIAAAQIECBAgQIAAAQIECKQREIKncTQKAQIECBAgQIAAAQIECBAgQIAAAQIECFRQQAhewaJYEgECBAgQIECAAAECBAgQIECAAAECBAikEfh/FBLiW2YWfzMAAAAASUVORK5CYII=",
"text/html": [
"<div> <div id=\"b75f5574-af57-4042-ae88-eaf44890a7de\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"b75f5574-af57-4042-ae88-eaf44890a7de\")) { Plotly.newPlot( \"b75f5574-af57-4042-ae88-eaf44890a7de\", [{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=China\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[556263527,637408000,665770000,754550000,862030000,943455000],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=Germany\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[69145952,71019069,73739117,76368453,78717088,78160773],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=India\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[372000000,409000000,454000000,506000000,567000000,634000000],\"xaxis\":\"x3\",\"yaxis\":\"y3\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=Switzerland\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[4815000,5126000,5666000,6063000,6401400,6316424],\"xaxis\":\"x4\",\"yaxis\":\"y4\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=baseline\\u003cbr\\u003ecountry=United States\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"baseline\",\"marker\":{\"color\":\"#636efa\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"baseline\",\"offsetgroup\":\"baseline\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[157553000,171984000,186538000,198712000,209896000,220239000],\"xaxis\":\"x5\",\"yaxis\":\"y5\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=China\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":true,\"x\":[1000281000,1084035000,1164970000,1230075000,1280400000,1318683096],\"xaxis\":\"x\",\"yaxis\":\"y\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=Germany\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[78335266,77718298,80597764,82011073,82350671,82400996],\"xaxis\":\"x2\",\"yaxis\":\"y2\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=India\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[708000000,788000000,872000000,959000000,1034172547,1110396331],\"xaxis\":\"x3\",\"yaxis\":\"y3\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=Switzerland\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[6468126,6649942,6995447,7193761,7361757,7554661],\"xaxis\":\"x4\",\"yaxis\":\"y4\",\"type\":\"histogram\"},{\"alignmentgroup\":\"True\",\"bingroup\":\"x\",\"hovertemplate\":\"source=target\\u003cbr\\u003ecountry=United States\\u003cbr\\u003epop=%{x}\\u003cbr\\u003ecount=%{y}\\u003cextra\\u003e\\u003c\\u002fextra\\u003e\",\"legendgroup\":\"target\",\"marker\":{\"color\":\"#EF553B\",\"opacity\":0.5,\"pattern\":{\"shape\":\"\"}},\"name\":\"target\",\"offsetgroup\":\"target\",\"orientation\":\"v\",\"showlegend\":false,\"x\":[232187835,242803533,256894189,272911760,287675526,301139947],\"xaxis\":\"x5\",\"yaxis\":\"y5\",\"type\":\"histogram\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,0.18400000000000002],\"title\":{\"text\":\"pop\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"count\"}},\"xaxis2\":{\"anchor\":\"y2\",\"domain\":[0.20400000000000001,0.388],\"matches\":\"x\",\"title\":{\"text\":\"pop\"}},\"yaxis2\":{\"anchor\":\"x2\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"xaxis3\":{\"anchor\":\"y3\",\"domain\":[0.40800000000000003,0.5920000000000001],\"matches\":\"x\",\"title\":{\"text\":\"pop\"}},\"yaxis3\":{\"anchor\":\"x3\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"xaxis4\":{\"anchor\":\"y4\",\"domain\":[0.6120000000000001,0.7960000000000002],\"matches\":\"x\",\"title\":{\"text\":\"pop\"}},\"yaxis4\":{\"anchor\":\"x4\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"xaxis5\":{\"anchor\":\"y5\",\"domain\":[0.8160000000000001,1.0],\"matches\":\"x\",\"title\":{\"text\":\"pop\"}},\"yaxis5\":{\"anchor\":\"x5\",\"domain\":[0.0,1.0],\"matches\":\"y\",\"showticklabels\":false},\"annotations\":[{\"font\":{},\"showarrow\":false,\"text\":\"country=China\",\"x\":0.09200000000000001,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=Germany\",\"x\":0.29600000000000004,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=India\",\"x\":0.5,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=Switzerland\",\"x\":0.7040000000000002,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"},{\"font\":{},\"showarrow\":false,\"text\":\"country=United States\",\"x\":0.908,\"xanchor\":\"center\",\"xref\":\"paper\",\"y\":1.0,\"yanchor\":\"bottom\",\"yref\":\"paper\"}],\"legend\":{\"title\":{\"text\":\"source\"},\"tracegroupgap\":0},\"title\":{\"text\":\"Combined Histogram of pop\"},\"barmode\":\"overlay\"}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('b75f5574-af57-4042-ae88-eaf44890a7de');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"drift_detector.plot_hist(\n",
" baseline,\n",
" target,\n",
" column=\"pop\",\n",
" facet_col=\"country\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
from scipy.stats import chi2_contingency, entropy, ks_2samp, wasserstein_distance
class DriftStatistics:
# created with the help of duck.ai / GPT4o
def __init__(self):
pass
def psi(self, baseline, target):
"""Calculate Population Stability Index (PSI)"""
def calculate_psi(expected, actual, bins=10):
hist_expected, _ = np.histogram(expected, bins=bins, density=True)
hist_actual, _ = np.histogram(actual, bins=bins, density=True)
hist_expected += 1e-10 # Avoid division by zero
hist_actual += 1e-10
psi_value = np.sum(
(hist_expected - hist_actual) * np.log(hist_expected / hist_actual)
)
return psi_value
psi_value = calculate_psi(baseline, target)
drift_detected = psi_value > 0.25 # Threshold for drift
score = min(1, psi_value / 0.5) # Normalize score to 0-1
return {"drift": drift_detected, "metric": psi_value, "score": score}
def kl_divergence(self, baseline, target):
"""Calculate Kullback-Leibler Divergence (KL)"""
hist_baseline, _ = np.histogram(baseline, bins=100, density=True)
hist_target, _ = np.histogram(target, bins=100, density=True)
hist_baseline += 1e-10 # Avoid division by zero
hist_target += 1e-10
kl_value = entropy(hist_baseline, hist_target)
drift_detected = kl_value > 0.1 # Threshold for drift
score = min(1, kl_value / 1) # Normalize score to 0-1
return {"drift": drift_detected, "metric": kl_value, "score": score}
def js_divergence(self, baseline, target):
"""Calculate Jensen-Shannon Divergence (JS)"""
hist_baseline, _ = np.histogram(baseline, bins=100, density=True)
hist_target, _ = np.histogram(target, bins=100, density=True)
hist_baseline += 1e-10 # Avoid division by zero
hist_target += 1e-10
m = 0.5 * (hist_baseline + hist_target)
js_value = 0.5 * (entropy(hist_baseline, m) + entropy(hist_target, m))
drift_detected = js_value > 0.05 # Threshold for drift
score = min(1, js_value / 0.2) # Normalize score to 0-1
return {"drift": drift_detected, "metric": js_value, "score": score}
def ks_test(self, baseline, target):
"""Perform Kolmogorov-Smirnov Test (KS)"""
ks_stat, p_value = ks_2samp(baseline, target)
drift_detected = p_value < 0.05 # Drift detected if p-value < 0.05
score = min(1, ks_stat) # KS statistic is between 0 and 1
return {"drift": drift_detected, "metric": ks_stat, "score": score}
def wasserstein(self, baseline, target):
"""Calculate Wasserstein Distance"""
w_distance = wasserstein_distance(baseline, target)
drift_detected = w_distance > 0.1 # Threshold for drift
score = min(1, w_distance / 0.5) # Normalize score to 0-1
return {"drift": drift_detected, "metric": w_distance, "score": score}
def chi_squared_test(self, baseline, target):
"""Perform Chi-squared test for categorical data."""
baseline_counts = baseline.value_counts(normalize=True)
target_counts = target.value_counts(normalize=True)
# Create a DataFrame to align the categories
all_categories = baseline_counts.index.union(target_counts.index)
baseline_counts = baseline_counts.reindex(all_categories, fill_value=0)
target_counts = target_counts.reindex(all_categories, fill_value=0)
# Create a contingency table
contingency_table = np.array(
[[baseline_counts[cat], target_counts[cat]] for cat in all_categories]
)
chi2, p_value, _, _ = chi2_contingency(contingency_table)
drift_detected = p_value < 0.05 # Drift detected if p-value < 0.05
score = min(1, chi2 / 10) # Normalize score to 0-1, adjust as needed
return {"drift": drift_detected, "metric": chi2, "score": score}
def compute_statistics_for_dataframe(self, baseline_df, target_df):
"""Compute all statistics for each column in the DataFrames."""
results = {}
# Identify numeric columns
numeric_columns = baseline_df.select_dtypes(include=np.number).columns.tolist()
for col in baseline_df.columns:
if col in target_df.columns:
baseline = baseline_df[col].values
target = target_df[col].values
if col in numeric_columns:
stats = {
"PSI": self.psi(baseline, target),
"KL Divergence": self.kl_divergence(baseline, target),
"Jensen-Shannon Divergence": self.js_divergence(
baseline, target
),
"KS Test": self.ks_test(baseline, target),
"Wasserstein Distance": self.wasserstein(baseline, target),
}
else: # Treat all other columns as categorical
stats = {
"Chi-squared Test": self.chi_squared_test(baseline, target)
}
results[col] = stats
return results
def compare(self, baseline_df, target_df, best=False):
"""Compare two DataFrames and return a dict with drifted columns and their highest scores."""
drift_results = {}
# Identify numeric columns
numeric_columns = baseline_df.select_dtypes(include=np.number).columns.tolist()
for col in baseline_df.columns:
if col in target_df.columns:
baseline = baseline_df[col]
target = target_df[col]
# Collect all statistics
stats = {}
if col in numeric_columns:
stats["PSI"] = self.psi(baseline, target)
stats["KL Divergence"] = self.kl_divergence(baseline, target)
stats["Jensen-Shannon Divergence"] = self.js_divergence(
baseline, target
)
stats["KS Test"] = self.ks_test(baseline, target)
stats["Wasserstein Distance"] = self.wasserstein(baseline, target)
else: # Treat all other columns as categorical
stats["Chi-squared Test"] = self.chi_squared_test(baseline, target)
# Find the highest score and associated statistic
if stats and best:
highest_score_stat = max(
stats.items(), key=lambda item: item[1]["score"]
)
if highest_score_stat[1]["drift"]:
drift_results[col] = {
highest_score_stat[0]: highest_score_stat[1]
}
else:
drift_results[col] = stats
return pd.DataFrame(
[
{
"col": col,
"statistic": k,
"drift": v["drift"],
"metric": v["metric"],
"score": v["score"],
}
for col in drift_results
for k, v in drift_results[col].items()
]
)
def plot_drift(
self,
drift_results,
col=None,
statistic=None,
x="statistic",
y="metric",
color="col",
facet_col="col",
query=None,
**plot_kwargs
):
"""Plot drift statistics for each column that detected drift."""
flt = (drift_results["col"] == col if col else drift_results.index >= 0) & (
drift_results["statistic"] == statistic
if statistic
else drift_results.index >= 0
)
dfx = drift_results[flt]
dfx = dfx.query(query) if query else dfx
fig = px.bar(dfx, x=x, y=y, color=color, facet_col=facet_col, **plot_kwargs)
return fig
def plot_hist(self, df1, df2, column="pop", query=None, **plot_kwargs):
"""
Plots a combined histogram of the specified column from two DataFrames.
Parameters:
df1 (pd.DataFrame): The first DataFrame.
df2 (pd.DataFrame): The second DataFrame.
column (str): The column name to plot. Default is 'pop'.
"""
# Add a source label to each DataFrame
df1, df2 = df1.copy(), df2.copy()
df1.loc[:, "source"] = "baseline"
df2.loc[:, "source"] = "target"
# Combine the two DataFrames
combined_df = pd.concat([df1, df2], ignore_index=True)
dfx = combined_df.query(query) if query else combined_df
# Create the histogram
fig = px.histogram(
dfx,
x=column,
color="source",
barmode="overlay",
title="Combined Histogram of " + column,
**plot_kwargs
)
fig.show()
# Example usage:
# baseline_data1 = np.random.normal(0, 1, 1000)
# target_data1 = np.random.normal(0.5, 1, 1000)
# target_data2 = np.random.normal(0.5, 1.5, 1000)
# df1 = pd.DataFrame({'feature_1': baseline_data1, 'feature_2': target_data1, 'feature_3': np.random.choice(['A', 'B', 'C'], size=1000)})
# df2 = pd.DataFrame({'feature_1': baseline_data1, 'feature_2': target_data2, 'feature_3': np.random.choice(['A', 'B', 'D'], size=1000)})
# drift_detector = DriftStatistics()
# drift_results = drift_detector.compare(df1, df2)
# print(drift_results)
# drift_detector.plot_drift_statistics(drift_results)
Copyright (c) 2024 miraculixx
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pandas
plotly
matplotlib
scipy
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment