Created
February 6, 2021 09:51
-
-
Save mlaves/5ca7c9502824b5be869cacfafbc1fe6a to your computer and use it in GitHub Desktop.
bayesian_optimization_gpytorch.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "bayesian_optimization_gpytorch.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyMcKxEhN9YBQSiG+7nRlSbh", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"accelerator": "GPU", | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"d8baa83a091a4b6696d84954cff3dd1f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"state": { | |
"_view_name": "HBoxView", | |
"_dom_classes": [], | |
"_model_name": "HBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_dabecce7608f4d399d63147ca2fe0ad5", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_b1a5c4c8444f4d7b99e946bf4fd90390", | |
"IPY_MODEL_9a9642b271804c2e86da05d98fb0d303" | |
] | |
} | |
}, | |
"dabecce7608f4d399d63147ca2fe0ad5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"b1a5c4c8444f4d7b99e946bf4fd90390": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_853d30d4fec7464ba56be8bfc7a077d5", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "success", | |
"max": 1, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 1, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_c6c3ab354a1240f7bcd6d6a01fbb9a6c" | |
} | |
}, | |
"9a9642b271804c2e86da05d98fb0d303": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_865f729a6f7f41e28b29431e66b47145", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 26427392/? [00:03<00:00, 6754584.16it/s]", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_e99b3f6bb3a443c3962e4df6def1c6be" | |
} | |
}, | |
"853d30d4fec7464ba56be8bfc7a077d5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "initial", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"c6c3ab354a1240f7bcd6d6a01fbb9a6c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"865f729a6f7f41e28b29431e66b47145": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"e99b3f6bb3a443c3962e4df6def1c6be": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"c7caff994da24bd4b9fc48e77db05302": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"state": { | |
"_view_name": "HBoxView", | |
"_dom_classes": [], | |
"_model_name": "HBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_3cfa8a411e4048ac829d10d1056c2b86", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_6786a5114fac4730926e3e9e0fb80894", | |
"IPY_MODEL_6e1c75f3f9b7406c8f4cc49c60be7512" | |
] | |
} | |
}, | |
"3cfa8a411e4048ac829d10d1056c2b86": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"6786a5114fac4730926e3e9e0fb80894": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_d426350c0cab43cd9676bfca72eb4da6", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "success", | |
"max": 1, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 1, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_d85af530539349cbbd9a4668a32675cf" | |
} | |
}, | |
"6e1c75f3f9b7406c8f4cc49c60be7512": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_06710594a195470b9e28b5a47d2f4de4", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 32768/? [00:01<00:00, 17502.95it/s]", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_dd12e479eefd468582888eadee9b7a87" | |
} | |
}, | |
"d426350c0cab43cd9676bfca72eb4da6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "initial", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"d85af530539349cbbd9a4668a32675cf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"06710594a195470b9e28b5a47d2f4de4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"dd12e479eefd468582888eadee9b7a87": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"92c0ee67bdce4826abdd2aad43924375": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"state": { | |
"_view_name": "HBoxView", | |
"_dom_classes": [], | |
"_model_name": "HBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_d46cb4293d574f71b1ac365695a1c8b5", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_56d91005f4b34e4791a08d4356a6f7f9", | |
"IPY_MODEL_751f1a1317ba4ccea5aef08726cff175" | |
] | |
} | |
}, | |
"d46cb4293d574f71b1ac365695a1c8b5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"56d91005f4b34e4791a08d4356a6f7f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_2b355518375c455f8cdea4e8764024b4", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "success", | |
"max": 1, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 1, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_a1e52ae1e6ce4f44ab8a1953a5b07f59" | |
} | |
}, | |
"751f1a1317ba4ccea5aef08726cff175": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_23569677a8c54a3fb107e9fdfededd79", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 4423680/? [00:01<00:00, 3088528.66it/s]", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_9b2dd42550024bcda1b79624de21ee72" | |
} | |
}, | |
"2b355518375c455f8cdea4e8764024b4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "initial", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"a1e52ae1e6ce4f44ab8a1953a5b07f59": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"23569677a8c54a3fb107e9fdfededd79": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"9b2dd42550024bcda1b79624de21ee72": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"73b9b5972f0c42b6ad119c646a317d8a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"state": { | |
"_view_name": "HBoxView", | |
"_dom_classes": [], | |
"_model_name": "HBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_0c3cc96e91a3431f94d161b4d4d247d4", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_f9eefb3a45d942eebd8e3f02965ab851", | |
"IPY_MODEL_6eb0c9a8d57141479acc48e8b789bb8c" | |
] | |
} | |
}, | |
"0c3cc96e91a3431f94d161b4d4d247d4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"f9eefb3a45d942eebd8e3f02965ab851": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_1eedc2377d9f4f3b9a40b7f616053685", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "success", | |
"max": 1, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 1, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_a4780c20cf384a8383b4d8efc9dd777c" | |
} | |
}, | |
"6eb0c9a8d57141479acc48e8b789bb8c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_8e72068379b94ba3b335e587544438c5", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 8192/? [00:00<00:00, 18822.92it/s]", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_429e6d5c908e4844b8a448937c6fbcd2" | |
} | |
}, | |
"1eedc2377d9f4f3b9a40b7f616053685": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "initial", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"a4780c20cf384a8383b4d8efc9dd777c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"8e72068379b94ba3b335e587544438c5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"429e6d5c908e4844b8a448937c6fbcd2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
} | |
} | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/mlaves/5ca7c9502824b5be869cacfafbc1fe6a/bayesian_optimization_gpytorch.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "TCApN3OHP6vp", | |
"outputId": "54b2f2db-bd9b-4f91-c1bc-36893614dd4d" | |
}, | |
"source": [ | |
"!pip install gpytorch" | |
], | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Collecting gpytorch\n", | |
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/99/5724d11056e703f1d8e6ecaa6153991eb3b5b014affbeafa2901a522fe46/gpytorch-1.3.1.tar.gz (283kB)\n", | |
"\r\u001b[K |█▏ | 10kB 25.8MB/s eta 0:00:01\r\u001b[K |██▎ | 20kB 30.1MB/s eta 0:00:01\r\u001b[K |███▌ | 30kB 22.1MB/s eta 0:00:01\r\u001b[K |████▋ | 40kB 25.4MB/s eta 0:00:01\r\u001b[K |█████▊ | 51kB 25.1MB/s eta 0:00:01\r\u001b[K |███████ | 61kB 27.6MB/s eta 0:00:01\r\u001b[K |████████ | 71kB 18.0MB/s eta 0:00:01\r\u001b[K |█████████▎ | 81kB 19.4MB/s eta 0:00:01\r\u001b[K |██████████▍ | 92kB 18.2MB/s eta 0:00:01\r\u001b[K |███████████▌ | 102kB 18.2MB/s eta 0:00:01\r\u001b[K |████████████▊ | 112kB 18.2MB/s eta 0:00:01\r\u001b[K |█████████████▉ | 122kB 18.2MB/s eta 0:00:01\r\u001b[K |███████████████ | 133kB 18.2MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 143kB 18.2MB/s eta 0:00:01\r\u001b[K |█████████████████▎ | 153kB 18.2MB/s eta 0:00:01\r\u001b[K |██████████████████▌ | 163kB 18.2MB/s eta 0:00:01\r\u001b[K |███████████████████▋ | 174kB 18.2MB/s eta 0:00:01\r\u001b[K |████████████████████▉ | 184kB 18.2MB/s eta 0:00:01\r\u001b[K |██████████████████████ | 194kB 18.2MB/s eta 0:00:01\r\u001b[K |███████████████████████ | 204kB 18.2MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 215kB 18.2MB/s eta 0:00:01\r\u001b[K |█████████████████████████▍ | 225kB 18.2MB/s eta 0:00:01\r\u001b[K |██████████████████████████▌ | 235kB 18.2MB/s eta 0:00:01\r\u001b[K |███████████████████████████▊ | 245kB 18.2MB/s eta 0:00:01\r\u001b[K |████████████████████████████▉ | 256kB 18.2MB/s eta 0:00:01\r\u001b[K |██████████████████████████████ | 266kB 18.2MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▏| 276kB 18.2MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 286kB 18.2MB/s \n", | |
"\u001b[?25hBuilding wheels for collected packages: gpytorch\n", | |
" Building wheel for gpytorch (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for gpytorch: filename=gpytorch-1.3.1-py2.py3-none-any.whl size=474648 sha256=22e14eafc552ac3e9e2038029b3f3b130439fb3241347ba6e9d9dca6c956e786\n", | |
" Stored in directory: /root/.cache/pip/wheels/74/8d/e0/a2fefbbe64dbbcbf79bccc3385baa67b693ae4f8bb86306214\n", | |
"Successfully built gpytorch\n", | |
"Installing collected packages: gpytorch\n", | |
"Successfully installed gpytorch-1.3.1\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "W9Y9f8GfJ_Fu" | |
}, | |
"source": [ | |
"import torch\n", | |
"import torch.nn as nn\n", | |
"import torch.nn.functional as F\n", | |
"import torch.optim as optim\n", | |
"import torch.autograd as autograd\n", | |
"from torch.distributions import constraints, transform_to\n", | |
"from torchvision import datasets, transforms\n", | |
"import numpy as np\n", | |
"from matplotlib import pyplot as plt\n", | |
"import gpytorch" | |
], | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "EY1tHg3bKCgD" | |
}, | |
"source": [ | |
"class Net(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(Net, self).__init__()\n", | |
" self.conv1 = nn.Conv2d(1, 32, 3, 1)\n", | |
" self.conv2 = nn.Conv2d(32, 64, 3, 1)\n", | |
" self.dropout1 = nn.Dropout(0.25)\n", | |
" self.dropout2 = nn.Dropout(0.5)\n", | |
" self.fc1 = nn.Linear(9216, 128)\n", | |
" self.fc2 = nn.Linear(128, 10)\n", | |
"\n", | |
" def forward(self, x):\n", | |
" x = self.conv1(x)\n", | |
" x = F.relu(x)\n", | |
" x = self.conv2(x)\n", | |
" x = F.relu(x)\n", | |
" x = F.max_pool2d(x, 2)\n", | |
" x = self.dropout1(x)\n", | |
" x = torch.flatten(x, 1)\n", | |
" x = self.fc1(x)\n", | |
" x = F.relu(x)\n", | |
" x = self.dropout2(x)\n", | |
" x = self.fc2(x)\n", | |
" output = F.log_softmax(x, dim=1)\n", | |
" return output" | |
], | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "6VDe958DTXPn" | |
}, | |
"source": [ | |
"def train(model, device, train_loader, optimizer, epoch):\n", | |
" model.train()\n", | |
" for batch_idx, (data, target) in enumerate(train_loader):\n", | |
" data, target = data.to(device), target.to(device)\n", | |
" optimizer.zero_grad()\n", | |
" output = model(data)\n", | |
" loss = F.nll_loss(output, target)\n", | |
" loss.backward()\n", | |
" optimizer.step()" | |
], | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "1xQ5g4DATn9l" | |
}, | |
"source": [ | |
"def test(model, device, test_loader):\n", | |
" model.eval()\n", | |
" test_loss = 0\n", | |
" correct = 0\n", | |
" with torch.no_grad():\n", | |
" for data, target in test_loader:\n", | |
" data, target = data.to(device), target.to(device)\n", | |
" output = model(data)\n", | |
" test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss\n", | |
" pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability\n", | |
" correct += pred.eq(target.view_as(pred)).sum().item()\n", | |
"\n", | |
" test_loss /= len(test_loader.dataset)\n", | |
" return correct / len(test_loader.dataset)" | |
], | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "5sv0PIj0TwqI", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 369, | |
"referenced_widgets": [ | |
"d8baa83a091a4b6696d84954cff3dd1f", | |
"dabecce7608f4d399d63147ca2fe0ad5", | |
"b1a5c4c8444f4d7b99e946bf4fd90390", | |
"9a9642b271804c2e86da05d98fb0d303", | |
"853d30d4fec7464ba56be8bfc7a077d5", | |
"c6c3ab354a1240f7bcd6d6a01fbb9a6c", | |
"865f729a6f7f41e28b29431e66b47145", | |
"e99b3f6bb3a443c3962e4df6def1c6be", | |
"c7caff994da24bd4b9fc48e77db05302", | |
"3cfa8a411e4048ac829d10d1056c2b86", | |
"6786a5114fac4730926e3e9e0fb80894", | |
"6e1c75f3f9b7406c8f4cc49c60be7512", | |
"d426350c0cab43cd9676bfca72eb4da6", | |
"d85af530539349cbbd9a4668a32675cf", | |
"06710594a195470b9e28b5a47d2f4de4", | |
"dd12e479eefd468582888eadee9b7a87", | |
"92c0ee67bdce4826abdd2aad43924375", | |
"d46cb4293d574f71b1ac365695a1c8b5", | |
"56d91005f4b34e4791a08d4356a6f7f9", | |
"751f1a1317ba4ccea5aef08726cff175", | |
"2b355518375c455f8cdea4e8764024b4", | |
"a1e52ae1e6ce4f44ab8a1953a5b07f59", | |
"23569677a8c54a3fb107e9fdfededd79", | |
"9b2dd42550024bcda1b79624de21ee72", | |
"73b9b5972f0c42b6ad119c646a317d8a", | |
"0c3cc96e91a3431f94d161b4d4d247d4", | |
"f9eefb3a45d942eebd8e3f02965ab851", | |
"6eb0c9a8d57141479acc48e8b789bb8c", | |
"1eedc2377d9f4f3b9a40b7f616053685", | |
"a4780c20cf384a8383b4d8efc9dd777c", | |
"8e72068379b94ba3b335e587544438c5", | |
"429e6d5c908e4844b8a448937c6fbcd2" | |
] | |
}, | |
"outputId": "94a5c76e-d280-4b4b-b8c9-35992eab53a2" | |
}, | |
"source": [ | |
"use_cuda = True\n", | |
"\n", | |
"device = torch.device(\"cuda\" if (use_cuda and torch.cuda.is_available()) else \"cpu\")\n", | |
"\n", | |
"transform=transforms.Compose([transforms.ToTensor()])\n", | |
"\n", | |
"dataset1 = datasets.FashionMNIST('../data', train=True, download=True,\n", | |
" transform=transform)\n", | |
"dataset2 = datasets.FashionMNIST('../data', train=False,\n", | |
" transform=transform)\n", | |
"\n", | |
"train_loader = torch.utils.data.DataLoader(dataset1, batch_size=256, num_workers=1, pin_memory=True, shuffle=True)\n", | |
"test_loader = torch.utils.data.DataLoader(dataset2, batch_size=256, num_workers=1, pin_memory=True, shuffle=True)" | |
], | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ../data/FashionMNIST/raw/train-images-idx3-ubyte.gz\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "d8baa83a091a4b6696d84954cff3dd1f", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Extracting ../data/FashionMNIST/raw/train-images-idx3-ubyte.gz to ../data/FashionMNIST/raw\n", | |
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ../data/FashionMNIST/raw/train-labels-idx1-ubyte.gz\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "c7caff994da24bd4b9fc48e77db05302", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Extracting ../data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ../data/FashionMNIST/raw\n", | |
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to ../data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "92c0ee67bdce4826abdd2aad43924375", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Extracting ../data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ../data/FashionMNIST/raw\n", | |
"Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ../data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "73b9b5972f0c42b6ad119c646a317d8a", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Extracting ../data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/FashionMNIST/raw\n", | |
"Processing...\n", | |
"Done!\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"/usr/local/lib/python3.6/dist-packages/torchvision/datasets/mnist.py:480: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:141.)\n", | |
" return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)\n" | |
], | |
"name": "stderr" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "tj6F_3DhUBg1" | |
}, | |
"source": [ | |
"def run(train_loader, test_loader, lr=3e-4, epochs=10, device=torch.device('cpu')):\n", | |
" torch.manual_seed(0)\n", | |
" model = Net().to(device)\n", | |
" optimizer = optim.Adam(model.parameters(), lr=lr)\n", | |
"\n", | |
" for epoch in range(epochs):\n", | |
" train(model, device, train_loader, optimizer, epoch)\n", | |
" acc = test(model, device, test_loader)\n", | |
" \n", | |
" return acc" | |
], | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "zAdkwneWUrz0" | |
}, | |
"source": [ | |
"f = lambda x: run(train_loader, test_loader, lr=x, epochs=3, device=device)" | |
], | |
"execution_count": 8, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "DEJ6F-3OMEs_", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "599ec159-f40e-4e1a-918f-6a611b7be7bb" | |
}, | |
"source": [ | |
"# We will use the simplest form of GP model, exact inference\n", | |
"class ExactGPModel(gpytorch.models.ExactGP):\n", | |
" def __init__(self, train_x, train_y, likelihood):\n", | |
" super(ExactGPModel, self).__init__(train_x, train_y, likelihood)\n", | |
" self.mean_module = gpytorch.means.ConstantMean(\n", | |
" prior=gpytorch.priors.NormalPrior(0.1, 0.25)\n", | |
" )\n", | |
" self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())\n", | |
"\n", | |
" self.covar_module.base_kernel.lengthscale = 3e-1\n", | |
" \n", | |
" def forward(self, x):\n", | |
" mean_x = self.mean_module(x)\n", | |
" covar_x = self.covar_module(x)\n", | |
" return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)" | |
], | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"\n", | |
"\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "d2g8acrtnHJ-" | |
}, | |
"source": [ | |
"def train_gp(X_train, Y_train, iter_max=100):\n", | |
" # initialize likelihood and model\n", | |
" #likelihood = gpytorch.likelihoods.GaussianLikelihood(\n", | |
" # noise_prior=gpytorch.priors.NormalPrior(0, 10.0)\n", | |
" # ).double()\n", | |
" likelihood = gpytorch.likelihoods.FixedNoiseGaussianLikelihood(\n", | |
" noise=torch.ones_like(X_train)*1e-4\n", | |
" ).double().to(device)\n", | |
" gp = ExactGPModel(\n", | |
" X_train,\n", | |
" Y_train,\n", | |
" likelihood).double().to(device)\n", | |
" gp.train()\n", | |
" likelihood.train()\n", | |
"\n", | |
" # Use the adam optimizer\n", | |
" optimizer_gp = torch.optim.Adam(gp.parameters(), lr=0.05)\n", | |
" mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, gp)\n", | |
"\n", | |
" for i in range(iter_max):\n", | |
" # Zero gradients from previous iteration\n", | |
" optimizer_gp.zero_grad()\n", | |
" # Output from model\n", | |
" output = gp(X_train)\n", | |
" # Calc loss and backprop gradients\n", | |
" loss = -mll(output, Y_train)\n", | |
" loss.backward()\n", | |
" if i % 10 == 0:\n", | |
" print('Iter %d/%d - Loss: %.3f lengthscale: %.3f noise: %.3f' % (\n", | |
" i + 1, iter_max, loss.item(),\n", | |
" gp.covar_module.base_kernel.lengthscale.item(),\n", | |
" gp.likelihood.noise[0].item()\n", | |
" ))\n", | |
" optimizer_gp.step()\n", | |
"\n", | |
" gp.eval()\n", | |
" likelihood.eval()\n", | |
" return gp, likelihood" | |
], | |
"execution_count": 10, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "_ZXtcNeapat2" | |
}, | |
"source": [ | |
"# acquisition function\n", | |
"\n", | |
"def upper_confidence_bound(gp, X_, kappa=4):\n", | |
" pred = gp(X_)\n", | |
" return pred.mean + kappa * pred.variance.sqrt()" | |
], | |
"execution_count": 11, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "BnnLFjO-2PZJ", | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"outputId": "f0c12e61-501c-4d4b-c730-b95041344289" | |
}, | |
"source": [ | |
"from scipy.signal import find_peaks\n", | |
"\n", | |
"def find_candidates(acq, X_):\n", | |
" acq = acq.cpu().numpy()\n", | |
" peaks, _ = find_peaks(acq)\n", | |
" peaks = np.append(peaks, np.argmax(acq)) if np.all(acq != np.argmax(acq)) else peaks\n", | |
" peaks = np.unique(peaks)[:5] # limit to 5 candidates per step\n", | |
" candidates = X_[peaks].cpu().numpy()\n", | |
" exp_impr = acq[peaks]\n", | |
" return candidates, exp_impr" | |
], | |
"execution_count": 12, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"\n", | |
"\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "MNYrAlRoEBp9" | |
}, | |
"source": [ | |
"def find_candidates2(gp, X_):\n", | |
" with torch.no_grad():\n", | |
" acq = upper_confidence_bound(gp, X_/X_[-1], kappa=4)\n", | |
" acq = acq.cpu().numpy()\n", | |
" peaks, _ = find_peaks(acq)\n", | |
" peaks = np.append(peaks, np.argmax(acq)) if np.all(acq != np.argmax(acq)) else peaks\n", | |
" peaks = np.unique(peaks) # limit to 5 candidates per step\n", | |
" \n", | |
" X_init = X_[peaks]\n", | |
"\n", | |
" constraint = constraints.interval(X_[0]/X_[-1], X_[-1]/X_[-1])\n", | |
" candidates = []\n", | |
" expected_improvement = []\n", | |
"\n", | |
" for i in range(len(X_init[:5])):\n", | |
" unconstrained_X_init = transform_to(constraint).inv(X_init[i].unsqueeze(0)/X_[-1])\n", | |
" unconstrained_X = unconstrained_X_init.clone().detach().requires_grad_(True)\n", | |
" minimizer = optim.LBFGS([unconstrained_X], line_search_fn='strong_wolfe')\n", | |
"\n", | |
" def closure():\n", | |
" minimizer.zero_grad()\n", | |
" x = transform_to(constraint)(unconstrained_X)\n", | |
" y = -upper_confidence_bound(gp, x)\n", | |
" autograd.backward(unconstrained_X, autograd.grad(y, unconstrained_X))\n", | |
" return y\n", | |
"\n", | |
" minimizer.step(closure)\n", | |
" X = transform_to(constraint)(unconstrained_X)\n", | |
"\n", | |
" expected_improvement.append(upper_confidence_bound(gp, X).detach().cpu().item())\n", | |
" X *= X_[-1]\n", | |
" candidates.append(X.detach().cpu().item())\n", | |
" \n", | |
" return candidates, expected_improvement" | |
], | |
"execution_count": 13, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "_BY1AzzNsdEb" | |
}, | |
"source": [ | |
"# preparations\n", | |
"\n", | |
"lr_init = 2e-2\n", | |
"X = []\n", | |
"Y = []\n", | |
"X_ = torch.linspace(1e-6, 3e-2, 1000, dtype=torch.double).to(device)\n", | |
"\n", | |
"candidates = [lr_init]\n", | |
"\n", | |
"prior_mean = 0.1 # accuracy of a random model\n", | |
"\n", | |
"runs_num = 0" | |
], | |
"execution_count": 14, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 501 | |
}, | |
"id": "2tFLKuIBaqVh", | |
"outputId": "4876830b-79f2-4c5f-b040-67d3bc963a1a" | |
}, | |
"source": [ | |
"# first run\n", | |
"\n", | |
"print(\"lr acc\")\n", | |
"\n", | |
"for candidate in candidates:\n", | |
" y = f(candidate)\n", | |
" print(f\"{candidate:.6f} {y:.6f}\")\n", | |
" X.append(candidate)\n", | |
" Y.append(y)\n", | |
"\n", | |
"X_train = (torch.DoubleTensor(np.array(X))/X_[-1].item()).to(device) # normalize input data\n", | |
"Y_train = torch.DoubleTensor(np.array(Y)).to(device)\n", | |
"\n", | |
"gp, likelihood = train_gp(X_train, Y_train)\n", | |
"\n", | |
"#candidates, exp_impr = find_candidates(acq, X_)\n", | |
"candidates, exp_impr = find_candidates2(gp, X_)\n", | |
"\n", | |
"with torch.no_grad():\n", | |
" pred = gp(X_/X_[-1])\n", | |
" acq = upper_confidence_bound(gp, X_/X_[-1], kappa=4)\n", | |
"\n", | |
"fig, ax = plt.subplots()\n", | |
"ln1 = ax.plot(X_.cpu(), pred.mean.cpu(), label='mean acc')\n", | |
"ax.fill_between(X_.detach().cpu(), pred.confidence_region()[0].detach().cpu(),\n", | |
" pred.confidence_region()[1].detach().cpu(),\n", | |
" alpha=0.5)\n", | |
"ln2 = ax.plot(X, Y, 'r.', label='observed')\n", | |
"ax.set_xlabel('learn rate')\n", | |
"ax.set_ylabel('accuracy')\n", | |
"ax.set_title(f\"step {runs_num}\")\n", | |
"runs_num += 1\n", | |
"\n", | |
"ax2 = ax.twinx()\n", | |
"ln3 = ax2.plot(X_.cpu(), acq.cpu(), color='tab:orange', label='acquisition')\n", | |
"ln4 = ax2.plot(candidates, exp_impr, 'g.', label='candidates')\n", | |
"ax2.set_ylabel('expected improvement')\n", | |
"ax.set_ylim([ax.get_ylim()[0], ax2.get_ylim()[1]])\n", | |
"\n", | |
"lns = ln1 + ln2 + ln3 + ln4\n", | |
"labels = [ln.get_label() for ln in lns]\n", | |
"ax.legend(lns, labels, loc='lower right')\n", | |
"\n", | |
"fig.tight_layout()\n", | |
"fig.show()" | |
], | |
"execution_count": 15, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"lr acc\n", | |
"0.020000 0.875400\n", | |
"Iter 1/100 - Loss: 0.901 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: 0.666 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 21/100 - Loss: 0.646 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 31/100 - Loss: 0.641 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 41/100 - Loss: 0.639 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 51/100 - Loss: 0.639 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 61/100 - Loss: 0.639 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 71/100 - Loss: 0.639 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 81/100 - Loss: 0.639 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 91/100 - Loss: 0.639 lengthscale: 0.300 noise: 0.000\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3zV5dn48c919skmZAciKIiADFmK2opS96qrrtbq01Zrx6Mdv+6q9enew7aWuhXFbR1YRcWNyt4gQwghiySQffb1++N7EkIIyck8J8n9fr3O66zvuBLIuc49vtctqophGIZhJBpbvAMwDMMwjI6YBGUYhmEkJJOgDMMwjIRkEpRhGIaRkEyCMgzDMBKSSVCGYRhGQjIJyjAMw0hIJkEZRjeJyB0i8kg/Hj9TRJ4VkUYR2S0i1/TXuQwjkTniHYBhGIf5OxAAcoHpwEsislZVN8Y3LMMYWKYFZRhHICLfF5G9IlIvIltFZL6InAP8CLhSRBpEZG1023QRuVdEyqL7/FxE7NH3rheR90TkLhGpFZEtIjL/COdMBi4DfqqqDar6LvA88IWB+akNI3GYFpRhdEBEJgDfAGaraqmIjAHsqrpDRH4JjFPVz7fZ5QGgEhgHJAMvAnuAf0XfPxF4CsgCLgWeEZGxqlrT7tTHAiFV/bjNa2uB0/rwxzOMQcG0oAyjY2HADUwSEaeq7lLVHR1tKCK5wHnAraraqKqVwJ+Aq9psVgn8WVWDqvo4sBU4v4PDpQB17V6rBVJ79+MYxuBjWlCG0QFV3S4itwJ3AJNF5BXg26pa2sHmRwFOoExEWl6zYbWgWuzVQysz7wYKOjhWA5DW7rU0oL7bP4RhDHKmBWUYR6Cqj6rqqVgJSIHftLzVbtM9gB/IUtWM6C1NVSe32aZQ2mQvoAjoKNl9DDhEZHyb16YBZoKEMeyYBGUYHRCRCSJyhoi4AR/QDESib1cAY0TEBqCqZcCrwB9EJE1EbCJyjIi0HTfKAf5XRJwicgUwEVjc/ryq2gg8A9wpIskicgpwMfBwP/2ohpGwTIIyjI65gV8DVUA5VoL5YfS9J6P31SKyKvr4OsAFbAL2Y02IyG9zvA+B8dHj/QK4XFWrj3DurwFerHGrx4CbzRRzYzgSs2ChYfQvEbke+HK0u9AwjBiZFpRhGIaRkEyCMgzDMBKS6eIzDMMwEpJpQRmGYRgJachdqGuz2dTr9cY7DMMwjITU1NSkqjooGidDLkF5vV4aGxvjHYZhGEZCEpHmeMcQq0GRRQ3DMIzhJ24JSkQ8IvKRiKwVkY0i8rMOtnGLyOMisl1EPoxWlDYMwzCGgXi2oPzAGao6DWtRtnNE5KR223wJ2K+q47CqQ/8GwzAMY1iIW4JSS0P0qTN6az/n/WLgwejjp4D57QpuGoZhGENUXMegRMQuImuwao4tUdUP221SSHTJAlUNYa2LM7KD49woIitEZEUoFOrvsA3DMIwBENcEpaphVZ0OjALmiMjxPTzOAlWdpaqzHI4hNzHRMAxjWEqIWXyqegBYCpzT7q29wGgAEXEA6cCRKkAPe8v2LONX7/yKZXuWxTsUwzAGoUSbvBa35oaIZANBVT0gIl7gTA6fBPE88EVgGXA58IYOp9pMqhDygb/eugUaINAIIT9EQhAOQiQI4SDLqjYx/91fEIiEcNkdvP7pnzE3ZwrYnGB3gjsNPOngSbMeOz3x/ukMw0g8LZPXGkTECbwrIi+r6gdttmmdvCYiV2F9bl/ZH8HEsz8sH3hQROxYLbknVPVFEbkTWKGqzwP3Ag+LyHagBrgqfuH2AX8DNO6DxiporIw+3gcN+w4+bqoGXx0E6q3tNRzTod/ET4AAYYFAKMCbb9zBXNxH3sHuhuRsSMuH1OgtrQAyj4aR46x7k8QMY1iJNgBimbx2R/TxU8BdIiL90XgYcsVik5OTdcAqSUTC0FQTTS6V0cSzDxoqO0hEVRBs6vg47nRIzoKUHEgaabVw3KngTgFXivW49T4ZHO5oy8jR2kJaVrGO+f+5jkA4iMvu5PUL7mFu9mSrpRXyR1thdeCrPXjfUAn1ZVBXZt3769oEJZBRBDkToeCEg7eUnAH51RqG0T9EpElVkzt53w6sBMYBf1fV77d7fwNwjqqWRJ/vAE5U1aq+jtXMKGgv0HSwNdPawmmTfNomoqZq0Mjhx7A5rNZJcpZ1P3L8wcfJ2daHfNvnjk5aOjGamz2B19NH8eauN5k3Zh5zR8/t/kF8dVCzA6p3QNU2qN4GFRvh41do/RKVNgrGnAJjP23dMop6HbthGAPKISIr2jxfoKoLWp6oahiYLiIZwLMicryqbhjwKDEtqIPWLoIXvw3BI+zrTjs0qXSYbKKPPRlgS4j5J33D3wDl66B0NZQsh13vWgkaYMRYGH8WTLwAik62WnWGYSSsrlpQ7ba9DWhS1d+3ee0V4A5VXRadvFYOZJsuvhj0OEGVrISNzxyebFpaQk5TIb2VKlRuhk/ehp1LYeeb1mQObyZMOBemXAFjTxtaSdowhojOElQHk9deBX6jqi+22ebrwBRV/Wp0ksSlqvq5fonVJCij1/wNsON12Pyi1R3or4X00TDtKph+jTXhwjCMhNBFgpqKVb2n7eS1O9tOXhMRD/AwcALRyWuqurNfYjUJyuhTQR9seRHWPAo73gDU6gI86Wtw9DwwlaoMI66608UXbyZBGf2ndi+sfhiW32ONWeVMhrlfg6lXWtdmGYYx4EyCiiOToBJQ0AcbnoJl/4DKjZBxFJz2/WiiMpMqDGMgmQQVRyZBJTBV2PYqLP0FlK2FzGPgjB/D5EtN159hDBCToOLIJKhBQBW2Loalv4SKDTD6JDj319aFwIZh9CuToOLIJKhBJBKG1Y/A63daFz2fcC185k5IPmxFFcMw+ohJUHFkEtQg5KuFt38HH9xtFbM997dw/GWm288w+sFgSlDmSkoj/jzpcNbP4aa3rAkUT38JFl0DdaXxjswwEosqrHoIGofHqkMmQRmJI3cyfPk1K1ntWAr/OAk2/SfeURlGYmiohEevhOe/CSvui3c0A8J08RmJqXqH1ZIqXQ0zb4CzfwmupHhHZRjxsfNNePrLVkHnM++EOTf2uJTYYOriMwnKSFyhACz9Obz3F8g+Dq54wFr+wzCGi0gY3v49vPkryDrW+hvIndSrQ5oEFUcmQQ1B21+HZ2+CYDNccjdMvDDeERlG/2usslpNO5fClM/BBX+y1ojrpcGUoOI2BiUio0VkqYhsEpGNInJLB9vME5FaEVkTvd0Wj1iNOBs3H258C7InwOOft66finSwDpdhDBWVm+Hfp8Pu9+HCv8ClC/okOQ02cWtBiUg+kK+qq0QkFWsFx8+q6qY228wDvquqF8R6XNOCGsKCPnjp27BmIUw4Hy77t7XCsGEMJdtegyevt5b4ufoxGDWrTw9vWlAxUNUyVV0VfVwPbAYK4xWPMQg4PXDx363rpD5+GR64ABr2xTsqw+g7H/4LHr0CRoyBG5f2eXIabBJimrmIjMFaW+TDDt6eKyJrReRlEZl8hP1vFJEVIrIiFAr1Y6RG3InAiTfBlQutbpB7z7Rm/BnGYKYKS26Hl78Hx54D//NfSB8V76jiLu6TJEQkBXgL+IWqPtPuvTQgoqoNInIe8BdVHd/Z8UwX3zCyZzk8+jkQG1z7BBTOjHdEhtF9kTC8eKt1Ae7MG+D8P4DN3m+nM118MRIRJ/A0sLB9cgJQ1TpVbYg+Xgw4RSRrgMM0EtXo2fClJdY41IMXQ3FHDXDDSGAhvzXetOoh+NR3rZl6/ZicBpt4zuIT4F5gs6r+8Qjb5EW3Q0TmYMU7PGp8GLHJGmd1h6TmwsOXwK534x2RYcQm6LNKem1+3roQff5PTf3JduI5i+9U4B1gPdAyZ/hHQBGAqt4tIt8AbgZCQDPwbVV9v7Pjmi6+Yaq+HB66GPbvtmY+HXN6vCMyjCML+a1LJra9Chf+FWZ+ccBOPZi6+OI+BtXXTIIaxhr2WUmqers1JnX0vHhHZBiHC/nhievg4//CBX+GWTcM6OkHU4JKiFl8htEnUrLh+hdh5DHw2DVQsiLeERnGocJBePIGKzmd/8cBT06DjUlQxtCSlAlfeBZScuCRy6B8Q7wjMgxLJAL/+TpsfQnO+z3M/lK8I0p4JkEZQ09qHlz3H3AmWRMnzHVSRrypwpKfwrrH4YyfwJyvxDuiQcEkKGNoGnGUlaQ0bCUpU3HCiKf3/wrL7oI5N1nTyY2YmARlDF3Zx8K1T1oLvT12FQSa4h2RMRyteQyW3AaTL4Vzfm2mkneDSVDG0FY4Ey67B/auhGe+Yl21bxgDZde71gq4Y0+zlorp4SKDw5X5bRlD38QLrAsht7xofZM1jIFQs9O61ilzLHzuIXC44x3RoOOIdwCGMSBOuhn277LGAUaOM9N7jf7lq4VHr7QeX70IvBnxjWeQMi0oY3gQgXN+BeM+A4v/n6nbZ/SfcMiqr1ezEz73sHVdntEjJkEZw4fNbo1HpY+CJ74AdWXxjsgYil6/A3a8YRV+HfupeEczqJkEZQwv3hFw1aPgb7CSVMgf74iMoWTT8/D+32D2l2HGdfGOZtAzCcoYfnInwSX/hJLlVnefYfSFqu3w3NesmaNn/zLe0QwJJkEZw9Oki+HUb8OqB2Ht4/GOxhjsAo1Wi9zuhCseNDP2+ohJUMbwdfqP4ahT4MVvQdW2eEdjDFaq1v+hys3WGGfG6HhHNGSYBGUMX3aH9YHicFuzroLN8Y7IGIxWPWTV2Dv9RzBufryjGVJMgjKGt7QCuHQBVGyAV34U72iMwaZqG/z3BzD206bGXj+I55Lvo0VkqYhsEpGNInJLB9uIiPxVRLaLyDoRmRGPWI0hbvyZcMotsOI+2PhsvKMxBotQAJ7+ktUCv+RfpoxRP4jnbzQEfEdVJwEnAV8XkUnttjkXGB+93Qj8c2BDNIaNM35qzb564VaoK413NMZg8Mb/QdlauOguqyVudEhEfhPLax2JW4JS1TJVXRV9XA9sBgrbbXYx8JBaPgAyRCR/gEM1hgO7Ey5ZYF0X9Z9vWAPfhnEkO5ZaS2jMvMGq9Wh05swOXjs3lh0Tok0qImOAE4D29WcKgT1tnpdweBJDRG4UkRUisiIUCvVXmMZQlzUOzv457Hgdlt8T72iMRNVUA89+FbKOHXLXO8U49DJPRGpFZE301mEFZhG5WUTWAxOiQzQtt0+AdbHEE/disSKSAjwN3KqqdT05hqouABYAJCcnm6++Rs/N+hJsfRle/SkcPQ+yxsc7IiPRvPx9aKqCa58AV1K8o+lrLUMvq0QkFVgpIktUdVO77d5R1a6ajo8CLwO/An7Q5vV6Va2JJZi4tqBExImVnBaq6jMdbLIXaHtRwajoa4bRP0SsMQWnB569ySr8aRgttrwE65+wZuzlT4t3NH0uxqGXWI9Vq6q7VPVqrN6vIKBAiogUxXKMeM7iE+BeYLOq/vEImz0PXBedzXcSUKuqpsKn0b/S8q1Cn3tXwnt/inc0RqJoqrEuyM2dAp/6Tryj6Q1Hy5BI9HZjRxt1MvQCMFdE1orIyyIyubOTicg3gApgCfBS9PZiTIHGslE/OQX4ArBeRNZEX/sRUASgqncDi4HzgO1AE2AW8TEGxuRLYONz8NZvYeLF1vLxxvD23x9AUzVc+xQ4XPGOpjdCqjqrsw26GHpZBRylqg0ich7wHNZM6yO5FZigqtXdDVR0iM1WSk5O1sbGxniHYQwFDZVw12zImQjXLzbXuQxnWxbDoqvhtB/A6T+MdzS9IiJNqprcyftOrBbOK530brXdfhcwS1WrjvD+UuBMVe12f7n5izOMI0nJsWZpFS+DFffGOxojXpoPwIu3DoWuvS7FMvQiInnR7RCROVh5pLPW0U7gTRH5oYh8u+UWSzxxn8VnGAlt+jWw/kl47Q449hxTCHQ4ev1OaNwH1zwx2Lv2YhHL0MvlwM0iEgKagau086644ujNFb3FzHTxGUZX9u+Cf8yFMadaH1LWl0djOChZAfd8Bk66Gc75Vbyj6RNddfH143mTVLWpO/uYLj7D6MqIMXDGT2Dbq7Cxo6shjCEpHIQXbrHKGJ1uCgn3lIjMFZFNwJbo82ki8o9Y9jUJyjBiceJXIW8qvPJj8NfHOxpjIHzwT6vK/bm/AXdqvKMZzP4MnE10nEpV1wKfjmVHk6AMIxY2O5z/R6gvgzd/He9ojP52oBje/BUcey4cZ2rt9Zaq7mn3UjiW/UyCMoxYjZ4NM66LfrNuX/nFGFJe/r51f95vzZhj7+0RkZMBFRGniHwXq0JFl0yCMozumH8HeNJg8XdNxfOhatsS2LoYTvs+ZMRUkcfo3FeBr2OVTNoLTI8+75KZxWd0KBSOEAhHCIbUum+9KaFIhFBYCUWUcJtbRFtuoKq0/Z8lgIhgE7CJYBPBbrNuDpvgtNtw2gWXw4bLYcPtsON22PA47dhtCfYNdsX91nUxlyyAaVfGOxqjL4UC8M+51uOblyXUtHJVxR+KoApel73Hx4nXLL6eMNdBDWHBcITmYBhfMIw/ePCxLxixXgtF8Ies54HoY3/IehyOJM4XF5fDhtdpJ8llJ9ntINltJ8XtJMXtINXjIM3rJNXtwDZQiWzGdbDqIXj1JzDhHPCkD8x5jf730b+gejtc8+SAJidfMEydL0hdc4gGf4gGn3Xf6A/RFAzTHAjRHIgQUeWYnBQumjZ4FkgUkbHAN4ExtMk5qnpRV/uaBDVIRCJKczBs3QLt7lseR5/7ordgOHGSTG8Eokmztjl4xG1sIqR5HWQkOclIcpGZ5CIz2UVWirtX3zY7Ppkdzv8D/Pt0eOcPcOadfXt8Iz4aKq3ai+PPgmPP6vPDRyLK/qYA1Y0BahoD7G8McKA5yIGmIL5gTHMGBqvnsKpTvABEurOjSVBx0tq6CYRpOkKiablvCoTxh8JmyKMTEVUONFl/7FZd4YNS3A6yUl3kpHrISXWTk+Yh3evs3QkLZ8C0q60JEzNvgMyxvTueEX+v/wyCzXB27y/IDYYj7Kv3U1Hno7Lez756PzWNgYTqmRhAPlX9a092NAmqD7R0k/mDLS2Yg91pLUmobQIaSq2bwaDBb3WX7Ko6mLiS3Xby0r0UpHsoyPCSm+bp/ljX/Ntg039gyW1w5cN9HLUxoPaugtUL4eRvWCsrd1O9L8jeA82UHfBRWttMVX2AiPlG2eIvInI78Crgb3mxZd2pzpgE1UZTwPog8wcjh4zPtIzN+KPjNu3HcYbpt6JBrdEfZkdlAzsqGwBw2oX8dC+jM5MoykwiN82NdDW9OK0ATrkV3vwl7HoPxpwyAJEbfU7VmlaenA2f/l5MuzQFQhTXNLGnppmS/U3RlrtxBFOw6vudwcEuPo0+75RJUG28/XEVm8t6tOq8McgFw0pxTRPFNU28B3icdo4amcSYkcmMzUo+8jjWyd+EVQ/CKz+Cryw1S3IMRpueg5KPrJWUPWkdbqKqlNf5+GRfI59UN7Kv3m+63GN3BXC0qga6u6NJUIbRAV8wzNbyeraW1yMCBelejslJYVx2CulJbcavXEkw/3Z49kZYt8iqfm4MHqEAvPYzyJl82L9dKByhuKaJHfsa2bmvgabAkJ7I0J82ABlAZXd3jGuCEpH7gAuASlU9voP35wH/AT6JvvSMqpopU8aAUoW9B5rZe6CZtz/eR26ah2NzUzg2L5U0jxOmXAEf3m190E26GFyD4hITA2Dl/bD/E7j2abDZCUeU3dWNfFxRz459jQRC3Zp0ZnQsA9giIss5dAwq4aeZPwDcBTzUyTbvqKophmUkjIo6HxV1Pt7dXkVBhpeJeWkc+5mf437oPCtRDfFF7YYMXy289RsYexpl2SezeUsFH1c00GxaSn3t9p7uGNcEpapvi8iYeMZgGD2lCnv3N7N3fzNv2nK4Mm8eWe/8GZl5A5KUGe/wjC4E3v4TrqZqXsi9me3LS+IdzpClqm+JyFHAeFV9TUSSgJguThwMI7pzRWStiLwsIpPjHYxhdCQUUf6bdxMSqGfD47ezYleN+SaegFSV4uomXvtgFbYP/sHmrLPZbj8m3mENaSLyFeAp4F/RlwqxLt7tUry7+LqyCjhKVRtE5DysH2p8+41E5EbgRgCXK3FqZxnDS3XyODZnn8fE4kXcv+FzLNuRx/jcVE4oyiA3zRPv8IY1fyjMptI61pXUUtMY4MxtfwKN8P5RN8c7tOHg68Ac4EMAVd0mIjmx7JjQLShVrVPVhujjxYBTRLI62G6Bqs5S1VkOR6LnXGMoW1Z0I6CcVPxvQhFlc1kdj35YzBPL97C9sp6hVpw50dX5grz18T7ueecT3ty6j5rGACObdjCp8kXW5l9Bnacw3iEOB/62U8xFxAHE9IeQ0J/mIpIHVKiqisgcrIRaHeewDOOI6jwFrMu7jOllT7Cq8FpqkqwSSC2zADOSnMw8agST8tNw2BP6++GgVlnvY+Wu/Xxc0XBYRYe5xQsI2r18NOqGOEU37LwlIj8CvCJyJvA1rLp8XYrrX4iIPAYsAyaISImIfElEvioiX41ucjmwQUTWAn8FrlLzFdRIcB+N/h+Cdi8nF//zsPcONAV5fXMl9733CSt21ZhpzH2s9EAzz63ey8IPitlSXn9Ycspu2Mr46jdYVXANPmdGnKIcdn4A7APWAzcBi4GfxLJjvGfxXd3F+3dhTUM3jEGj2TmClQXXcvKeBeTWb6Qi9fC5PY3+MO9sq2LF7v3MKBrBtNHpuB19XHV9GCnZ38SHO2sormnqdLuTi+/G50hjVYG5oHoAfRZ4SFX/3d0dTR+DYfSDVQXX0OxIZ+6eBZ1u1xwI8972Ku5/bxfLd9UQDJsWVXeU1Tbz9MoSnlxR0mVyyqvfwNH732VFwecJOFIGKEIDuBD4WEQeFpELomNQMTEJyjD6QdCRzMrCzzN2//vk1a/vcvvmQJh3t1Vx/3ufsGbPAVOAuAv76v38Z81eFn20p8vE1OLk4rtpcmSwpsCsgjyQVPUGYBzwJHA1sENE7ollX5OgDKOfrMn/HE2ODOYWd96KaqvRH2bplkoefH8XW8vNrL/26nxBXtlYzsIPd7NzX2PM+xXWruKoAx+yfNQXCdqT+jFCoyOqGgReBhYBK7G6/boUU4ISkWdE5HwRMQnNMGIUtCexovA6xhz4gPy6dd3at7Y5yOL1ZSxavoeS/bG1EIYyf8hqYT743i42ldZ1r5K4KicX302DM4t1eZf3W4xGx0TkXBF5ANgGXAbcA+TFsm+sCecfwDXANhH5tYhM6EmghjHcrM2/nEZnZpdjUUdSXuvjyRUlvLiulNphuOaQqrK+pJYHomN0oR50fRbVfsSoutV8NPoGQnZzwXQcXIdVZGGCql6vqotVNRTLjjElKFV9TVWvBWYAu4DXROR9EblBRHq5drZhDF0hu5cVhV/gqAMfUlC3tsfH2VbRwEPLdvH+9qphMzW9ZH8TCz8s5rXNFT1f6kKVucULqHPlsiE3pl4lo49FZ2svA86MTpKIqYoEdGMMSkRGAtcDXwZWA3/BSlhLuhWtYQwz6/Kirajif3W9cSdCEeXDT2p4aNkuPq6o75vgElCDP8TL68t4ckUJ++r9Xe/QiVG1KymoX8fyUdcTtpkyaPEgIlcAH2EtXPg54EMRiamvNabpfiLyLDABeBi4UFXLom89LiIruh+yYQwfIbuH5YVfZN6uP1FYu5q96Sf06nj1vhAvrStjfWYtZxyXw4jkofHBG4koa0oOsGxHdZ+1Ek8suZcGZxYbcy/sk+MZPfITYLaqVgKISDbwGlYB2U7F2oL6q6pOUtVftUlOAKjqrO5GaxjDzbq8S2l0ZjKn5L4+O2ZxTROPfLCb93dUERrk10+V1/p49KNi3tq6r8+SU37dWopqV7Ci8AuEbe4+OabRI7aW5BRVTYy5J9YENUlEWuuCiMgIEflaNwI0jGEtbPewquBaxhz4gNz6TX123FBE+XBnDY98sJs9MV4PlEj8IWta/aLlxb3uzmtvTsn9NDkyWJ93SZ8e1+i2/4rIKyJyvYhcD7yEVe6oS7EmqK+o6oGWJ6q6H/hKt8M0jGFsXd6l+OypzN77QJ8fe39TkKdWlrBkUwW+4OBYh2rnvgYeXrabNXsOdG/aeAxyGrZw9P73WFV4DSG7t28PbsRMRASrjuq/gKnR2wJV/X4s+8dacsIuItJSqFVE7MDQ6Pg2jAEScKSwJv9znFRyL5lNO6lJOrrPz7Fhby27qho5/bgcxuUkZjmf5kCYN7dWsqW8/yZ6zCm5D589lbV5V/TbOYyuRVeiWKyqU4Bnurt/rC2o/2JNiJgvIvOBx6KvGYbRDasLriJo8zC75KF+O0eDP8QLa0tZvL4s4Vb1/biinoeW7erX5DSyaQfjq5eypuBKU3MvMawSkdk92THWFtT3scqktyw/uQTramDDMLrB58xgXd6lnFD6OMuKbqTOU9Bv59paXs+emibmT8xhXE5qv50nFs2BMG9sqRyQ6fGz99xPwJbE6nxTcy9BnAh8XkR2AY2AYDWupna1Y0wJSlUjwD+jN8MwemFlwbVML3uCWXsf4o1jftCv52oKhHlhbRkT8xuYNyEHj3Pgl/TYXtnA67252LYb0pv3MKFqCSsLP2/We0ocZ/d0x1hr8Y0XkadEZJOI7Gy59fSkhjGcNbpz2JRzAZMrXiA5UDUg59xcVs8jH+xmd3XsBVZ7yx8K88rGcl5YWzogyQlgZulCImJnVUGnS80ZA0hVdwMjgYuBi4CR0de6FOsY1P1YracQcDrwEPBI90M9lIjcJyKVIrLhCO+LiPxVRLaLyDoRmdHbcxpGIlhe+EVsGmJG6aMDds56X4hnV+9l6dbKfl93ak9NE498UMym0rp+PU9b3kANkytfZHPOeTS5sgbsvEOJiIwWkaXRxshGEbmlg2269bksIrcBD2IlqSzgfhGJaUXdWBOUV1VfB0RVd6vqHcD5Me7bmQeAczp5/1xgfPR2I6aL0Rgiar2j+DjrTKaWPY07NHBli1RhTfEBHvuomMo6X58fPxxR3t1WxdOrSqhrHtjittPLn8QR8bOy4PMDet4hJgR8R8bAmp8AACAASURBVFUnAScBXxeRSe226e7n8rVYlSRuV9Xbo8f9QizBxJqg/NGlNraJyDdE5BKg19NjVPVtoKaTTS7GWipYVfUDIENE8nt7XsNIBCsKv4Ar0sTx5c8N+LmrGwIsWr6HFbtq+mzNqZrGAIuWF7N8V02fX9fUFUfYx7SyJ9mR+Wn2J40Z2JMPIapapqqroo/rgc1AYbvNuvu5XAq0LSPvBvbGEk+sCeoWIAn4X2Am8HngizHu2xuFwJ42z0s4/JdlGIPSvpQJFKfP5oSyRdgiA7+URjiivLOtimdW7aXBH9PqB0e0vqSWRz/cTWVd31aDiNXkyufxhmpZUXhdXM4/FInIGOAE4MN2b3X3c7kW2CgiD4jI/cAG4EC0m/CvncXQ5Sy+6EW5V6rqd4EG4Iau9hloInIjVlMTl8tcP2wMHisKP8+lm25hQtUSNuecF5cYWmr6fWZibrcv7vUFwyzZVMH2yoZ+iq5roiFm7l1IaeoUStOmxS2OQcTRrsj3AlU9ZMEyEUkBngZuVdXeDiQ+G721eDPWHbtMUKoaFpFTexBUX9gLjG7zfBQdNA2jv9wFAMnJyWaNbGPQ2J0xl6qkY5i59xE2Z58LInGJozkQ5oW1pUwbnc6nxmfjtHfdubKnpolXNpZT7+td66u3xlcvJd1fyltjb41rHINIqLMi39E1/p4GFqpqR9UfYvpcbqGqD/Y00Fi7+FaLyPMi8gURubTl1tOTdsPzwHXRWSMnAbXtq6kbxqAmwsqCa8hu2kZR7Ufxjoa1e2pZ9FHnhVvDEeW97dZEiHgnJ1SZVfIw+z1F7Mz8dHxjGQKitfPuBTar6h+PsFm3PpejixSuFpEaEakTkXoRialVFmslCQ9WifQz2rym9KC2Ulsi8hgwD8gSkRLgdsAJoKp3Y1W8PQ/YDjSRgN2LhtFbW7PP4dTd/2Dm3kcozjgx3uFQ1RBg0UfFzD1mJDOKRmCzHWzVVTf4eWVjBRX9MAOwJ0bVriS3cTOvHfNDVAb+IuQh6BSsGXbrRWRN9LUfAUXQ48/lPwOXAuu1mzNyYq0k0S+JIboUcGfvK/D1/ji3YSSKsM3F6oIrOXX3P8hq3EZV8vh4h0QoOoFia0U9p1VtI+OjZWybNJN3ssYTjiROL/qs0odpdGayKTs+43dDjaq+i1WKqLNtuvu5vAfY0N3kBLGvqHs/VovpEKr6P909oWEYh1uXeylz9tzPjNKFvDr+jl4dS1UJhCP4ghGag2H8wXD0PoIvGCYQjhAMK6HofTASIRRWguEI4Yii0WNEFKYUb+TSh36IMxzkOLuTP1z3KzYUTcYmgs2GdS+C3SY47YLLYcNpt+Gy23A6rHuX3YbHacPrsuN12vG67Hgc9kNaZj2R2fQJY/e/z/tFNxG2e7rewYiX7wGLReQtoLXvuJMuxFaxdvG92OaxB7gEa267YRh9wO9MZ2PuRUwtf5r3ir5Gozunw+0CoQh1viAN/hCN/hCN/vDBxwHreWMg1Ol1SA6b4LTbcNgFpy16b7eR5LJjtwmCIGLN15hfsRlXOIhdIxAJMr9iM5XHzyCi1hLtkWgiC0eUpkCYA03BaAK0kl9n3A4raSW7HKS4HaR4ovdtHie57NiOMHFketnjhMTFurzLYv49G3HxC6wZ4B66uUxTrF18T7d9Hh07erc7JzIMo3OrCq5mWtmTHLfncZ7N/BJ1zUFqm4PWvS9IXXOI5g4WI/Q4bSS7HaS4HIxMdpPstuNxRm8O28HHThtuh5WEYmET4YTCz2J74xEIBLC5XORedA7njo3tWnlVJRhWAiGrJdccDOMLhmkOhFufNwfCNAXClNf5aKgMEW6XWW0CqR4n6d5Db3muZiZWvsSW7HNodo6IKR4jbgpU9fie7BhrC6q98UDHX/EMw+hSKBxhf1OQmsYA+5sC1DQGqGkKMToyg1nlz/CV3Wfgx9X6AZ3mdXBMdjJp0Q/olpZGksuOI4Yp4d2V7nVy7pQ88tPHw+jX4c03sc2bx1lzTsS7vYo1xQe6PIaI4HJY3X4pnq4/alSV5qDVImzwhax7f4jaaKLeVuHDF7JqCN5ofwGX08dPyk9lX10JmckuRia7yIzeklx2JE5T9o3DLBaRs1T11e7uGOsYVD2HjkGVY60RZRhGJyKq1DYF2dfgp6rBz756PzWNAeraTc9O9zoZkeTknZTLOevAD/jZ2E1szf8sKW5Hr8dqumt8bgpnTsrF7YjOips717phfWCcPiGH0SOSeHVTOf5g3xWdFRGSXA6SXA6OtHyVPximrqmZr255nY22qQSSJxFpCvBxRT3+0MFY3A5ba7IamewiK8VNdqo7LsuNGNwMfFdE/ECQg+tBpXW1Y6xdfPFd7cwwBgF/KExVQ4Cq+mgyavBT3RAgFJ31JgKZSS7y0jxMzLc+PEckuRiR5DzYCtIC9q0Zxxl1z1I29vIBvXDXbhNOHZ/FjKKuu8zG5aSQnXIUL64vHdDyRm6nnZODH5IZquTd4/4fZ47MBazWV1MgTHVjtDUave3c18jGNhXVUz0OsqPJKjvVTXaKm1SPw7S2+lFv8kesLahLgDdUtTb6PAOYp6oDX+XSMBJAMByhst5PRZ2Pyjrr/kCb6t0eh42sVDfHF6aTneImK9VKSA5bF91xIqzJv5Izd/yCwrpV7E2f2c8/iSXF7eC8qfkUZnhj3ic9ycmVs0bzxpbKQ5JAfzuhbBG17gJ2Zn6q9TURIdntINntoCgz6ZDtmwIh9tVbXxj21fupqg/wSVVja5eQy2EjO8VNTqqb3DQPuWlu0r1Ok7R6SUSOU9UtR1qOo6UobWdiHYO6XVVbaymp6gERuR0wCcoY8sIRparBSkIVdX4q6n3UNARaP+BS3A5y09xMzE8jO9VNVoqLFHfPv5Vvzj6HU3ffxQlljw9Igioc4eX8Kfkku7s/JO2w2zhrch756V6Wbq3s92ukchq2UFi3hjfHfCvmC3OTXA6OGungqJHJra8FwxGqGwKtSWtfvZ91e2sJ77HG1jwOWzRZWQkrN83To9/PMPdtrBqpf+jgPeXQwg8divU33tHXPvOvZQw5qkq9L0RpbTNltT4q6nxU1QdaZ5d5nXZy0twck5XSbx9cYbuH9bmfZdbeh0n1lVHv6b8VZqYXZXDa+Oxej3NNGZVOVqqLl9aV9Wv5oxNKFxGwJbEx96JeHcdpt5GX7iEv/eD1U+GIUtMYoLzOF/0y4rOWDom+n+J2kBdNWHnpVvKKpWbhcKWqN0bvT+/pMWL9y1ohIn8E/h59/nVgZU9PahiJIhSJsK/eT9kBH6W1zZTX+miMLk/utAu5aR6mF2WQG+3+GajxirX5lzNr7yNML3+Sd8b8b58f32ETzpiYw+SC9D47Zn66l6vnFPHSujL2Hmjus+O2SApUcWzVq6zPu4SAo9fL0R3GbpPWsakphdbvpW1XbksLevs+q3K7CGSnuMlP95Cf7iU/w0NqL1rOxuFiTVDfBH4KPI7VNFuCKUFkDEKN/hBltT7Koi2kyjp/a+so3etkdGZS6wfOyBTXES8S7W8N7jy2jzyd48ufY9norxCyxz421JVUj4MLpxWQm9b31ReS3Q4umzmKtz6uZO2e2j499tTyZ3BokDX5n+vT43bGabdRmOE9ZGyuORimvM3/oY2ldawtsX7WZLfdSlbpHgrSvWSnumO+7sw4XKyz+BqBH/RzLIbRpyIRparRah2V1fkoO9DcOr3bbhNyUt1MH51BfoaHvAQcY1hdcCXHVr/GxH0vsz6vbxYPKBzh5YKp+SS5+u9ntduEM47LJSfVwxtb+mZcyh4JMLX8aXaOOJUD3qP6IMqe8zrtjM1KZmyWNaZ1yP+zaOJqWR/LbhNyU92tLaxE/H+WyGKdxbcEuEJVD0SfjwAWqerZ/RmcYXSHPxiOfkBY3XUVdb7Wcjst32ynjfaQn+4hO9Xd9Yy6OCtNnUZF8gSmlz3O+txLej3lfOqodOZNyBmwb/THF6aTmezixXWlNPoPr4DRHeOql5IcrBnQ1lOsbDYhJ9VDTqqHadFVkhr8IcqiXcZltT7W7DnAyuKDLfWCDKuFVZDhZUTS0JwxeKTZey36chZfVktyih54v4iYShJG3Kgqdb4QpQearQkNB3xUNwaAg2MDk/LTWrtbBuW1LtEp52dvv5NRtSspyTjiGnOdstuEeROymToqo48D7FpBhjUu9eK6Mspre75Ex7TypzjgGcXuBFiOJBYpbgfjc1IZH73iOBQdy2ppYe2qamJzWT1gzRjMz/BSkO4hP8NLbqq7X6qDxEHL7D0PMAtYi3WR7lRgBTC3qwPEmqAiIlKkqsXQulZ94tTcN4a8cETZ1+Cn7EAzpbVWd13LZAaX3UZ+uofxuSkUpHvJTfPgcgyJP3C2Zp3Jabv+zLTyp3uUoJJcds6fms+oEUldb9xPUj1Orpg5itc2V7R+KHfHyMbtFNat4a0xt4AMzn9Xh91GQYbVYoIRqCoHmoPWF6wDVtL6pKoRALsIOWnuaAvLGg/1ugZfBYyW2Xsi8gwwQ1XXR58fD9wRyzFiTVA/Bt6NlksX4FNY89sNo1+0dNe1tI7K63ytFRnSPA5GZSZZ3zjjPJmhv4XtHjbkXMgJZYtIDlTR6MqKed/sVDcXTS8gzePsxwhj47DbOOf4fLJT3byzrarTauvtTSt/ipDNzaacC/ovwAEmItEqIq7WmZRNgegEnuiM0tV79rOy2Np+RJKTgoxob4DXgaoOph6BCS3JCUBVN4jIxFh2jHWSxH9FZBZWUlqNdYFur+eRisg5wF8AO3CPqv663fvXA7/j4Hr3d6nqPb09r5FYYumuO74wvbULJGWYDTKvz7uUWaULOb7iOT4c/eWY9jk2N5WzJucm3HU6M4/KJDPZzcsbymKq4+cKNTCx8mW2Zn0Gn3PguygHUpLLwTHZKRyTbU2hD4UjVNT5W6/J217ZwMbSOl7bXEkgFOFr88bFOeKYrRORe4BHos+vBdbFsmOskyS+DNwCjALWACcBy4jhSuBOjmnHuq7qTKAEWC4iz6vqpnabPq6q3+jpeYzE09IfX14XnfXUSXddXrq5GPKAt4jdGScypfxZPhp1PSpH/rMVgZOOHslJR48cwAi7Z2xWMlfNLuL5NXvZ3xTsdNvj9r2MK9LE2rwrBii6xOGw2ygc4aVwhDXFXdW6kDgYUeYflxvn6LrlBqyCsbdEn78N/DOWHWP9KnoLMBv4QFVPF5HjgF92N8p25gDbVXUngIgsAi4G2icoYxBTVWqbg5TX+VpnNFU1+GmZeTycuut6Y23eZVy05XuMrXmPnSNP63Abl8PG2ZNzGXekUuAJJDPZxVVzili8vozd1U0db6TKtPKnqUg+joqUSQMbYAISEUamuDkmJ4UJeYn/b9xCVX0icjewWFW3dmffWBOUL3oSRMQdLQA4ofuhHqIQa636FiVAR1N0LhORTwMfA99S1T0dbGMkCH8oTEWdn/JaX2tSallkr6Uyw4yiEVaZGXNNSMx2Zn6KelcO08qf6jBBpXmdXDgtn5zUwbP0ucdp57PTC3l72z5Wd7C+VGHdGrKadvDquJ8MaFV3o2+JyEVYQzUuYKyITAfuVNUu61XF+ulQEq1g/hywRET2A7t7GnA3vAA8pqp+EbkJeJAOuhVF5EaikzZcrm6tKGz0QigcoaoxQGVLEdW6g2NHYC0tMTYruTUZmdZRz6k4WJ/7WU7es4D05j3Ueke3vleY4eWCaf178W1/sdmEeRNyyEpxH3ZR79Typ/DZU9iaZS63HORux+oxexNAVdeIyNhYdox1ksQl0Yd3iMhSIB34b/fjPMReYHSb56M4OBmi5bzVbZ7eA/z2CPEtABYAJCcnm+nv/SAUsao/V9T5qKz3U1nvp7pNV53HYRXfHJ+bQl6alZDcZnG4PrUh97OctOdeppY/wztjre784wvTOeO4gbv4tr8cX5hORpKTl9aV0RQIkxSoZnz1G6zNu5yQffC0Co0OBVW1tt2sw5g+p7v9lUtV3+ruPkewHBgfzaR7gauAa9puICL5qloWfXoRsLmPzm10IhSOUN0YoLLOT2W9lZDajhu5o0sRzCgaQU6am9zUQXoh7CDT6M5mx8jTmFz5Ah+MuZmTjyuMaXHBwWLUiCSumlPE82tLGbvpeewaYl3eZfEOy+i9jSJyDWAXkfHA/wLvx7Jj3PoEVDUkIt8AXsGaZn6fqm4UkTuBFar6PPC/0f7LEFADXB+veIciVaXBH7JWgY0uSV5VH2B/c6D1OhW3w0ZOmpsTikaQm+omJ81DmklGcbM27zLGV7/BlUkryS46Pt7h9Ll0r5MrZxQQeutZitNnsz9pTLxDMnrvm1jX0vqBR7E+8/8vlh3j2mmtqouBxe1eu63N4x8CPxzouIaiYDhCTWNLIjq4LLkvdPBalFSPg6wUN+NyUshKcZlklIAa8k8mXDaO7C2PwKlfjHc4/cK1cwmu5jKaZv8EelfCz0gM56vqj7GSFAAicgXwZFc7Dr5RVaNTvmCYmsaAdWsKtD5uu4icwyZtEpE7enOZMaMEd9TIJM6bko/d/iV45YdQvh7ypsQ7rL638gFIyeW4065E9vlYsqm8teivMSj9kMOTUUevHcYkqEEoHFHqfUEONAc50BRkf5uE1BQ4+JXTbhMyk1zkp3uYXOAiM9lFVoqbdK/TzKYbZA5Z+XbaVfDaHbDyQTj/9/EOrW/V7oXtS+CUW8HuZEKek4wkJy+sLe3XlXqNvici5wLnAYUi8tc2b6VhDdt0ySSoBBWKRKhrDnGgOUBtk5WMWu7rfMFDapm57DYyk12MGZlMZrKr9ZbqcZhENMhZayvlcHxhm5VvkzJh0sWw7gk4805wxa8QbJ9bsxA0AjO+0PpSbpqHq+YU8cLa0l5VRDcGXClW1fKLOHQF9nrgW7EcwCSoOAmGI9T7QtT5gtQ3R+99Iep9Qep8IRr8h37BcNltZCQ5yU11c2xuChleF+lJTjK8TpJcdjNONAR1Wol8xnWw/gnY/LzVohoKIhFY9TCMPQ0yjz7krRS3o1cV0Y2Bp6prgbUi8izQqKphaC1z547lGCZB9TFVJRCK0OAP0RgI0+gPRW9h6v3B1qTka1co0ybWH2Gqx8noEV5SvU5GeJ3RJOTC47SZJDSMZKe6uXBaAeneI1QiH3MqZB5jdfMNlQS18w2oLYYz7+jw7ZaK6Fkpbt7d3r2K6EZcvQp8BmiIPvdGXzu5qx1NgoqBqhIIR2gOhPEFIzQFQzQHwjQHwzT62yShaEIKdbDEtctusxKQ10FOmps0j5NUj5WQ0jwOkt2mO86wjM9N4axJeZ2vaSVitaJeux32fQzZxw5cgP1l5YPgzYTjOl9WY9aYTDKTXby8oZxAqOuK6EbceVS1JTmhqg0iElO/tElQUZtK61i8vozimqbW5NP2PnyEr2tOu5DsshJMbpqbFHcyyW5H9DV76+OhsoCe0X9E4MSxIznp6MzYWsvTr4E3/g9WPwRn/bz/A+xPDZWwdTGc+FVwdN37c3R2ClfNHs3za0s50EVFdCPuGkVkRssS7yIykxiXazIJKmpTWR3Pry3FZbfhddnxOu2keBxkp7pbn3ud9oOPo/cm8Rh9oUeVyFNyYMK5sOYxOOM2cAziOpRrH4NIyGoVxmhkipuru6qIbiSCW4EnRaQUa8HbPODKWHY0CSrqwmn5uB02tlc2dL2xYfShdK+TC6cVkJ0a07jxoWZcD5tfgK0vweRLutw8IanCqodg9EmQ3b1FEloqor+zvYpVu/f3U4BGb6jq8ugSTS3/uFtVNaZmr/n6H+V22If9wnjGwBudmcTVc4p6lpwAjjkd0kdb4zeD1e73oHo7zOxZZQybTTjt2GzOnpyHY5AXzR2KouNN3wduUdUNwBgR6XygMcp8IhtGnEwvyuDSEwrxunpRwcNmhxM+DzuXwv5dfRbbgFr5ILjTYdJne3WYSQVpXDFrNKke0zGUYO4HAsDc6PO9QEyDpiZBGcYAc9iEsybncvqEHKsyRG+d8HkQG6x+pPfHGmhNNbDpPzD1ij654Dgv3cPVc4oozPD2QXBGHzlGVX8LBAFUtQlrLKpLJkEZxgBK9Ti4YtZoJhekd71xrNJHwbjPWAkqPMjKAa17AsJ+mNF3hW+T3Q4umzmKKYV9+Ds2eiMgIl6ia0CJyDFYlc27ZBKUYQyQwgwvV88pIi+9Hxbgm/FFqC+z6tgNFqqw6kEoOAHyp/bpoe024TOTcvnMxNxBv5jjEHA71gK3o0VkIfA68L1YdjQJyjAGwPTRGVw2cxTJ7n4aHzn2bEjJtUoFDRZ7V0Hlpm5NLe+uKaPSuXzmKFL66/c+BInIfSJSKSIbjvD+PBGpFZE10dttHW3XQlWXAJdiref3GDBLVd+MJRbzr2YY/chhE86YmNO3XXodsTth6pXwwT+gYR+kZPfv+XohGAxSUlJCxrt3kW53s805hcjm/l0s++QstS6476DKy2DjIMDmzbVdbufxeBg1ahRO5xHKZR3ZA8BdwEOdbPOOqsY0Ey/qNOBUrG4+J/BsLDuZBGUY/STN6+SCqfnkpvVDl15Hpl8L7//VKiI79+sDc84eKCkpIdXrImPv68iki5kwbfaAnFdVqfeFaA4O7lUQ3Q4bGUmdX5StqlRXV1NSUsLYsWO7dXxVfVtExvQ8wkOJyD+AcVitJ4CbROQzqtrlf9K4dvGJyDkislVEtovIDzp43y0ij0ff/7Avf2mG0Z+KMpO4Zk7RwCUngJzjoHAmrF5IIldS9fl8jNz3AeKrtco1DRARIc3rJM3jjG0K2SAmIowcORKfr8PlSRwisqLN7cYenGKuiKwVkZdFZHIX254BnK2q96vq/VhrRJ0Ry0nilqCiJdf/DpwLTAKuFpFJ7Tb7ErBfVccBfwJ+M7BRGkb3iMCcsZlcOqOX1zf11PRroXIjlK0Z+HN3g6xZaF1gPPa0AT+312VnRLJryE+e6KSeY0hVZ7W5LejmoVcBR6nqNOBvwHNdbL8dKGrzfHT0tS7FswU1B9iuqjtVNQAsAi5ut83FQMsl8k8B88WsOWEkKLfTxoXTCjhlXFb8lkY5/jKwu61WVIJyNFXCjjdg2tVgi89HkNNuIzPJhdvU0uw2Va1rqU6uqosBp4hkdbJLKrBZRN4UkaXAJiBNRJ4Xkec7O1c8x6AKgT1tnpcAJx5pG1UNiUgtMBKoartRtIl6I4DLNYgLZhqDVnaqmwunFpCe1O0B6b7lzYCJF8D6J+HsX8RUGXygpe96GVCYfnVc47DZhHSvk6ZA+LAFQo0jE5E8oEJVVUTmYDV0qjvZpdNZfp0ZEpMkok3UBQDJycmJ2/luDEnHF6Zz+oRsHIlSy3H6tbDhaWv5ikQrIKtK+icvwlGnHLZqbjyICMluB067UNscZAhM8us1EXkMmAdkiUgJ1nVMTgBVvRu4HLhZREJYy2ZcpdrpoOc+Vd3U7hzzYplqHs8EtRerL7LFqOhrHW1TIiIOIJ3OM7VhDBinXTj9uAGYQt5dR8+DtEKrmy/REtSeD3E37IH5PwTgZy9sZFNpXZ+eYlJBGrdfeORx+127dnHOOedw0kkn8f777zN79mxuuOEGbrv9dioqKrjr3/czY+ZsGhsb+fH3vs2WTRsJBUN894c/5pzzL6R4926+edP/0NRoLfHxy9//kdknzuW9d97m97/+OZmZI9m6eRNTp5/A3/99/2HdvY88cB8PP3AvwWCQsWOP5m8L7iMpKYl9lRV871vfZPeuXQD85o9/YfaJc3nisYX8829/RkSYNPl4/n3fA336+2pPVTtt2qrqXVjT0GP1hIg8BPwO8AC/BWZxsDbfEcXzK99yYLyIjBURF3AV0L4/8nmgpQbK5cAbXWRqwxgQI1NcXDWnKPGSE1gFZKddBTteh7rSeEdzqDULiTi8MKn9cPPA2r59O9/5znfYsmULW7Zs4dFHH+W9d9/lD7//PX//4+8A+Mvvf8Opn57Hf5e+y9Mv/pc7f/ojGhsbycrO5vHnXmLJO8v41wMP8+Pvfbf1uBvWreX/fv073v5oNbt3fcJHH7x/2LnPu+hiXnnzPd547yPGTziORx9+AIAff+87zD3lU7zx3kcseXsZE46bxJbNm/jz737NUy+8zBvvfcT//fr3A/L76WMnYk2SeB/rc78UOCWWHePWgoqOKX0DeAWwA/ep6kYRuRNYoarPA/cCD4vIdqAGK4kZRlxNzE/jjONyEnuxyunXwjt/gHWPw6nfinc0lkAjbHiWulFnkOFOAei0pdOfxo4dy5QpUwCYPHky8+fPR0SYOnUqJXuKyfA6eWvp67zy8kv8829/BsDv97G3ZA95efn86P99iw3r12G329m5fVvrcU+YMYuCwlHWcadMY09xMSfOPfSzeMumTfzm53dQW1tLY0MDp88/E4B3336Lv/3rXgDsdjtp6ek8sWghF372UkaOtOYgjMjM7NffSz8JYnUFerFaUJ+oaiSWHeM6BhWdAbK43Wu3tXnsA64Y6LgMoyMuh415E7ITs9XU3shjoGiu1c13yq3W/Pd42/wiBOqpHXs+GXEOxe0+OHnEZrO1PrfZbIRCIdxOO3aBBxcuYswx4w/Z93e/+jlZ2Tm88d5HRCIRjso5+NO42hzXbreO1d4tN3+FBx59gslTprJo4cO8/+7bff3jJZrlwH+A2UAWcLeIXKaqXX62J/BXQMNIHFmpbq6a3cdVyPvb9GuhehuULI93JJY1j8CIMTRlnxDvSGJy9tln89A9d5PktK5nW7/Wurasvq6W3Lw8bDYbTy56lHC4e5UpGhsayMnLIxgM8swTi1pf/9Rp83jwXuuSpHA4TF1tLad+eh4vPPcMNTXW0Pv+mpq++NEG2pdU9TZVDapqmapezOHDOR0yCcowujBtdDpXzx7NyJTEm7LdqcmfBWdSYqwTtX83xc2W9AAAHnRJREFUfPK2lTQToTUXg5/+9KeEQiFOnjOD0+fO5Le/uBOA6798E088tpAzTpnD9o+3kpSc3K3jfu/Ht3HeGZ/mwrNOZ9z/b+/O47qq8sePv97wYQeRRVwQBXNDkU1FUFDcTf26RVqjjmbL2LeZcZZmMhvN+tWM9XVqfubMmG1m33Ip08yWySVGLU2xgMQlyxg1Gys0RlBE4Xz/uBdEBUH47Jzn4/F5fD587r3nnvO5wPtz7j33fbp2rX7/sScW89GO7WSm9WHEoP58cfgg3WN7MOf+B5g4egRDBqTw8EMPWLWNdrJPRKZVJZUVkQ7A4YZsKO425iAgIECVlpY2atv39/+bg99ad0SR5rr8vD0ZFtuazhGBjq5K462fDYfegd8etsqEgI2W/QRk/wl+lc/Bb0uJjY11XF0aqbJS8Z+yi1y41KDLJzbTkFx8VQ4ePHjNZy0i55RSNxZVm0BE/g5UAkOUUrEiEgJ8oJSqNwmj7kFpWi2iQv2Z2q+DawcnMHosF/4DhzY5rg6VlZD7KsQMhJYd6l/fSXl4CC39vQnytbh9Lj8r62cmhi0DUEqdARoUYXWA0rQaPD2EjC7h3JIcSZCvg7NCWEPHAUZQyH3NcXU49jH8+C9jano34O9tITTAG4ub5/Kzootm7tWqGXVbYfSo6qUDlKaZjHubougTHeq4XHrW5uEB8bfB1/903D1RuavAOxC638j0Qc7N4ulBaIA3/o5ICOx6lmDM/xQhIo8DO4E/NmRDHaC0Zk8Ekjq05CcpHYgIsuP0GPaScBuoSiM/n72Vn4MDbxk35jryGpgNiAhBvl6E+Hvj6S5faGxAKfUqxhTvfwK+BSYopRr0y+gWufg0rbGCfC2M7NmGqFD3+ud5hbCboH1fyFsN/X9p31F0X7wH5WeN2X7dlLfFg9BAb0rcYDJEW1FKHQIO3eh2ugelNVs927VgelpH9w5OVeKnwHcH4N+f23e/eWuMvIDRGfbdr515mJMhtvTzwkP3pqxGByit2QnytTAhKZIRPdvgY2km1xDibgEPLyP1kb2UfA9fboFetzps3qeGKiwsJC4ursnl+Hh5Ehbgja+XdX6vJo4ZQe6n+6xSlity7t8aTbOynu1aMC21IzHhdrsNxDn4h0LXkcZ1qAo7zX20fx2oCuMaWFPt2gV/+pPx7OSq5pkK9BLdm2oiHaC0ZqGFnxeTko1ek7W+3bqc+ClQcgqOZttnf/mroU08RDTxptxdu2DoUJg/33i2QpB66qmniIuLIy4ujr/8xUgGe+nSJaZOnUpsbCxZWVmcO2dMpzF37lx69OhBfHw8999vZC7//vvvueWWW+jbty99+/blo48+AmDhwoVMnz6dAQMGcNesmfzX8EEUHrl86aWqR1RaWsqv7vsZowanMyw9lfffeRuA8+fP87M7ppPRN5E7pk6m7Pz5JrfVlelBEppbE4GEqJYMuCncubOP20PXkeDb0ggcXYbZdl/ffwEnP4ORDRpNfH3Z2VBeDhUVxnN2NqTVO5VQnfbt28dLL73EJ598glKKfv36MWjQIA4fPswLL7zAgAEDmDVrFn/729+44447WL9+PYcOHUJE+PHHHwGYM2cOv/71r0lPT+fYsWOMHDmSgwcPAnDgwAF27tyJn58fTz/9NO9uXM9D8xfwReFxvvv3v0lM7s0fH1lA+sBM/vLXZyn+8UduHpJBRuYQXnnpefz8/dmxN5cD+z9n+MDGt9MdNPO/WM2dGQleOzC4m5NPjWEvFh+Im2RkFb9w1rb7yl8N4gFxWU0vKzMTvL3B09N4zsxsUnE7d+5k4sSJBAQEEBgYyKRJk9ixYwdRUVEMGGBMjTFt2jR27txJcHAwvr6+3Hnnnbz55pv4+xsDarZs2cLPf/5zEhMTGTduHP/5z38oKSkBYNy4cfj5+QEwefJk3njjDbwtnmzZtIGJkyYBkL1tK888vZih6f2YNHZk9VQeuz/eSdZkY77AHnG96NGzV5Pa6up0D0pzO16eQmqnMJI7hOCh7/a/UvxtkPMiHNgISVNts4/KSshfCzcNgaDWTS8vLQ22bjV6TpmZTeo9Xc/VN2eLCBaLhT179rB161beeOMNli5dyrZt26isrGT37t34+l5731xAjeSxkZGRhIWFkZ+fz9q1a1m2bBmhAd4IihdeWUXnLl2v2V67TH+t1NxKp1YBTE+Lpk90qA5OtYlKgZAYo4djK8c+huLjRjC0lrQ0ePBBqwSnjIwMNmzYwLlz5ygtLWX9+vVkZGRw7NgxdpnXt1577TXS09MpKSmhuLiY0aNH8/TTT5OXlwfAiBEjeOaZZ6rLzM3NrXN/U6ZM4cknn6S4uJj4+Hi8PD24edRIXnl+GWb2n+qpPFL7p/Pm68ZIy4MHCjhQYOfbApyMQwKUiISKyGYROWI+h9SxXoWI5JqPBs0fojVPLfy8GJfYjvGJkQT7uUEOPVsRMUbVfb0Dik/YZh95q83URmNsU34TJScnM3PmTFJSUujXrx933XUXISEhdOvWjb/+9a/ExsZy5swZ7r33Xs6ePcvYsWOJj48nPT2dp556CoAlS5aQk5NDfHw8PXr0YNmyZXXuLysri9WrVzN58uTq9xYsWICqrGDYgBQyU5N5wpzKY8ad91BaWkJG30T+5/FHiU90jbmzbMUh022IyJPAaaXUIhGZC4Qopa6Z6ERESpRSN5ROWk+30bxYPIQ+0aH0jQ7B4qlPCDTI6aOwJAmGPgwZv7Fu2RfPw+KuRt69iX+vdZXapoBo7sovVXK27CKXKuv/f+xq0200haP+oscDL5uvXwYmOKgemgvr0jqQn/aPJu2mMB2cbkRoJ4hKNW7atfYX1MPvGdN7JLhvaiNb8LYYyWdb+FrQZ6Yvc9RfdWul1Lfm638DdV1J9RWRHBHZLSJ1BjERucdcL+fSJTvdhKg5TKsgH7J6t2dsfDt9Oq+xEqbA94fg27qvnTRK/hoIauf2qY1sQUTw87YQFuCjs6SbbDaKT0S2AG1qWfRQzR+UUkpE6voa11Ep9Y2IdAK2icjnSqmvrl5JKbUcWA7GKb4mVl1zUoE+FtJuCqNnuxbuMx2Go/ScCO89YOTKa2el6xylPxipjdLuAw/9D7axPDyMLOl+Xp6UXLjk8Bl8HclmAUopVeedgCJySkTaKqW+FZG2wHd1lPGN+XxURLKBJOCaAKW5N2+LB707htC7Ywhe+lSedfiFQNdRRuqjEf8PPK3QE92/DiovWXf0XjNm8TSuNZVfqqTkwkUuVjS/796O+mvfCMwwX88A3rp6BREJEREf83U4MAA4YLcaag7n6SEkRrXkjgHRpHYK08HJ2hJug3M/wFfbrFNe3mpo0wta97BOeRpQdX3Kh2A/Lzyb2QUqR92ouwhYKyJ3Av8CJgOISB9gtlLqLiAWeFZEKjEC6SKllA5QzYAIdG/TgrROYQT762tMNtN5OPiFGoGl68imlfXDETj5KYx43Dp1067h6+WJj8WjQSP93IVDvpIqpYqUUkOVUl2UUsOUUqfN93PM4IRS6mOlVC+lVIL5/IIj6qrZjwh0bR3E9NSOjIpro4OTrVm8jWk4Dr0DZcVNKyvPTG3UywqpjVzcggUL2LJlS53Lly1bxsqVKwFYsWIFJ0+erF521113ceBA3d/DRaRZnUnQqY40hxOBzhGB9IsJo1WQj6Or07wk3AZ7nzOmZU/+aePKqEpt1GkwBNU2Lqp5efTRR6+7fPbs2dWvV6xYQVxcHO3atQPg+eeft2ndXI0OUJrDVPWYUmJCCQ/UgckhIntDWGejB9TYAHVsFxQfg6Hzb3zb9+Zaf5bfNr3g5kXXXWXChAkcP36csrIy5syZwz333MP777/PvHnzqKioIDw8nK1bt1JUVMTtt9/ON998Q1paGps3b2bfvn2UlJQwduxY9u/fD8DixYspKSlh4cKFzJw5k7Fjx5KVlcXcuXPZuHEjFouFESNGsHjxYhYuXEhgYCDR0dHk5OQwdepU/Pz82LVrFzfffDOLFy+mT58+rFq1ij/+8Y8opRgzZgxPPPEEAIGBgcyZM4dNmzbh5+fHW2+9RevWVsh56ISaT19RcxqeHkJcZDAz0qIZ3autDk6OJGKMuvvXR3DmX40rI381eAU4bWqj2rz44ovs27ePnJwclixZwqlTp7j77rtZt24deXl5vP766wA88sgjpKenU1BQwMSJEzl27FiD91FUVMT69espKCggPz+fP/zhD1csz8rKok+fPrz66qvk5uZWZ0AHOHnyJA888ADbtm0jNzeXvXv3smHDBgBKS0tJTU0lLy+PgQMH8txzz1nhE3FOugel2Y2Plwe9IoNJ6hBCoI/+1XMa8ZPhw8eM03SDfndj214sg4K3IPa/wLsR2XPq6enYypIlS1i/fj0Ax48fZ/ny5QwcOJCYmBgAQkNDAdi+fTtvvvkmAGPGjCEkpNa0obWqOVXH2LFjGTt2bIO33bt3L5mZmbRq1QqAqVOnsn37diZMmIC3t3d1Wb1792bz5s0NLtfV6B6UZnMt/LwY2LUVd6bHkNGllQ5OziakI3QcYPSEbjT10RfvwYVil0ptlJ2dzZYtW9i1axd5eXkkJSWRmJh4Q2VYLBYqKy/fQFtWVlbrOnv27CErK4tNmzYxatSoJtcdwMvLq/pGdU9PT9w5e44OUJrNRIb4MTa+LXf0j6Z3xxB8LDq7gNNKuA2KvoRv9t3YdvlrIagtxAyyTb1soLi4mJCQEPz9/Tl06BC7d++mrKyM7du38/XXXwNw+vRpAAYOHMhrr70GwHvvvceZM2cAaN26Nd999x1FRUVcuHCBTZs2XbOfuqbqqCkoKIizZ6+dPDIlJYV//vOf/PDDD1RUVLBq1SoGDXKdz9ha9FdZzaq8LR50ax1EQlRLPSLPlfQYD+/+zhgs0b5Pw7YpLYIjH0DqvS6V2mjUqFEsW7aM2NhYunXrRmpqKq1atWL58uVMmjSJyspKIiIi2Lx5Mw8//DC33347PXv2pH///nTo0AEwejELFiwgJSWFyMhIunfvfs1+zp49y/jx4ykrK0MpVT1VR00zZ85k9uzZ1YMkqrRt25ZFixYxePDg6kES48ePt92H4qQcMt2GLenpNhwjPMiHXpHBxLYN0j0lV/X6TDj6T/jtYeMeqfrseQ7evR9mfwRt4hq8G1eebqNq5F14eLijq9Igrj7dhu5BaY1W1VuKiwymTfC1U19rLibhdihYD19ubtiIvPw1ENHzhoKTpt0IHaC0GyICUSH+9GjXgs4Rgc3qrna3d9MQ8A83TvPVF6CKvoITe2H49W9KdTeFhYWOrkKzogOU1iCtgnzo3iaIbm2CCPLVKYjckqcX9LoVcl6A82eMjOd1yV8DiLG+ptmI/vqr1Sks0JvUTmHM6B/NtNSO9IkO1cHJ3SVMgYpy41RfXZQyAlTMQGjRzn510+xCRF4Uke9EZH8dy0VElojIlyKSLyLJtqqL7kFpV2gV5EPniEA6RwTqDA/NUdtECO9mnObrM6v2dY7vgTOFMOgBu1ZNs5sVwFJgZR3Lbwa6mI9+wN/NZ6vTAaqZ8xAhMsSPTq0CuCk8UGcQb+5EjHuitj4Cp49CaKdr18lfDRY/I3uE5naUUttFJPo6q4wHVipjCPhuEWlZNQGtteuiT/E1QwE+nvRo14Ix8W352aBOZPVuT3KHEB2cNEP8ZECM6eCvdqkc9r9pDKLwCbJ71ZzVwoULWbx4MVD3dBvZ2dn1pjvKzc3l3XfftUkda7CISE6Nxz03uH0kcLzGzyfM96xO96CaAYuH0K6lHx3C/OkY5k+rQJ/qVCmado3g9hCTYfSUMucavaoqX7wHZT8avSw72nV8F9mF2WRGZ5IWlWbXfd+o+qbbuJ7c3FxycnIYPXq0FWt0jUtKqQbeje1YDulBicitIlIgIpXmLLp1rTdKRA6bF+Pm2rOOrszTQ4hs6Ue/mFCyerfn3sybuKV3e/pGhxIR5KuDk1a/+NuM60zHP7ny/X0vQ4tIY0i6new6vouhK4cy/8P5DF05lF3Hd9W/UT1WrlxJfHw8CQkJTJ8+nbfffpt+/fqRlJTEsGHDOHXqFGD0jGbNmkVmZiadOnViyZIl1WU8/vjjdO3alfT0dA4fPlz9/syZM3njjTcAeP/99+nevTvJycnVSWcB9uzZQ1paGklJSfTv35/Dhw9TXl7OggULWLNmDYmJiaxZs4bS0lJmzZpFSkoKSUlJvPXWWwAUFBSQkpJCYmIi8fHxHDlypMmfyQ34Boiq8XN78z2rc1QPaj8wCXi2rhVExBP4KzAcowu5V0Q26mnfr+Xj5UHbYF/aBfvRrqUfbYN9sej7k7Sm6DEO3vmtMViiQ6rx3pl/wVfbYNDv7ZraKLswm/KKcipUBeUV5WQXZjepF1VQUMBjjz3Gxx9/THh4OKdPn0ZE2L17NyLC888/z5NPPsmf//xnAA4dOsSHH37I2bNn6datG/feey/5+fmsXr2a3NxcLl26RHJyMr17975iP2VlZdx9991s27aNzp07M2XK5YS63bt3Z8eOHVgsFrZs2cK8efNYt24djz76KDk5OSxduhSAefPmMWTIEF588UV+/PFHUlJSGDZsGMuWLWPOnDlMnTqV8vJyKioqGv15NMJG4OcishpjcESxLa4/gYMClFLqIFDfN/kU4Eul1FFz3dUYF+eadYDyECEs0Js2LXxpE2w8wgK8da9Isy6fIGMQxP43YcRj4BMIn/2vsSxpml2rkhmdibenN+UV5Xh7epMZndmk8rZt28att95ana4oNDSUzz//nClTpvDtt99SXl5ePe0GGNNs+Pj44OPjQ0REBKdOnWLHjh1MnDgRf39/AMaNG3fNfg4dOkRMTAxdunQBYNq0aSxfvhwwEtbOmDGDI0eOICJcvHix1rp+8MEHbNy4sfr6VllZGceOHSMtLY3HH3+cEydOMGnSpOp9WIOIrAIygXAROQE8DHgBKKWWAe8Co4EvgXPAHVbb+VWc+RpUbRfiah3KaF7kuwfA27sBOcRchKeHEBrgTUSQDxEtfIkI8qFVkI/O3qDZR8o98PlayH3VCEo5L0CX4dCyg12rkRaVxtafbrXpNahf/OIX/OY3v2HcuHFkZ2ezcOHC6mU+Ppdvt7DW9Bbz589n8ODBrF+/nsLCQjIzM2tdTynFunXr6Nat2xXvx8bG0q9fP9555x1Gjx7Ns88+y5Ah1jntqpS6vZ7lCrjPKjurh83+04nIFhHZX8vD6il5lVLLlVJ9lFJ9LBZnjrm1E4EgXwsx4QH0iQ5hVFwbpqV25L7BnZmW2pERPduQGNWSdi39dHDS7CeqL0Slws6/wI4/w7kiyLjfIVVJi0rjwYwHrRKchgwZwuuvv05RURFgTK1RXFxMZKQxEO3ll1+ut4yBAweyYcMGzp8/z9mzZ3n77bevWad79+4UFhby1VdfAbBq1arqZTX3t2LFiur3r55+Y+TIkTzzzDNUJfX+7LPPADh69CidOnXil7/8JePHjyc/P/9GPgKXYbP/5kqpYU0swm4X4uzF4iG09Peipb83oQHehFQ9B3jpDOCacxrxGLww3AhQ3cdCB5vcj2lXPXv25KGHHmLQoEF4enqSlJTEwoULufXWWwkJCWHIkCHV80LVJTk5mSlTppCQkEBERAR9+/a9Zh1fX1+WL1/OmDFj8Pf3JyMjozr4/P73v2fGjBk89thjjBlzOe/h4MGDWbRoEYmJiTz44IPMnz+fX/3qV8THx1NZWUlMTAybNm1i7dq1vPLKK3h5edGmTRvmzZtn3Q/JSTh0ug0RyQbuV0rl1LLMAnwBDMUITHuBnyilCq5XpqOn2/D39qSFnxctfL0I9vOipb/xHOzvRZCPRV8r0lzPkc1w8jNj3icr3PvkytNtuBo93UYjiMhE4BmgFfCOiOQqpUaKSDvgeaXUaKXUJRH5OfAPwBN4sb7gZGu+Xp4E+ngS6GshwNtCoK+FFr5eBPlaCDKf9Sk4ze10GW48NM3OHDWKbz1wTTZKpdRJjNEhVT+/izFixC7aBvvibRH8vCz4e3sS4OOJv7cRjAJ8PPXQbU3TNDtyvREFNpQQ1dLRVdC0ZkEppU9325g7zJauuwSaptmVr68vRUVFbvEP1FkppSgqKsLX17VnutY9KE3T7Kp9+/acOHGC77//3tFVcWu+vr60b9/e0dVoEoeO4rOFpozi0zRNc3euNIpPn+LTNE3TnJIOUJqmaZpT0gFK0zRNc0pudw1KRCqB843c3AI0PROk4+l2OBd3aIc7tAF0OwD8lFIu0TlxuwDVFCKS4yozTV6PbodzcYd2uEMbQLfD1bhEFNU0TdOaHx2gNE3TNKekA9SVlju6Alai2+Fc3KEd7tAG0O1wKfoalKZpmuaUdA9K0zRNc0o6QGmapmlOya0DlIiMEpHDIvKliMytZbmPiKwxl38iItE1lj1ovn9YREY2tEwXakehiHwuIrkics2Mxs7SBhEJE5EPRaRERJZetU1vsw1fisgSscP8DTZqR7ZZZq75iHDidgwXkX3m575PRIbU2Maux8NGbXClY5FSo555YkwE26AyXYZSyi0fGLPwfgV0AryBPKDHVev8N7DMfH0bsMZ83cNc3weIMcvxbEiZrtAOc1khEO4CxyIASAdmA0uv2mYPkAoI8B5ws4u2Ixvo4yJ/G0lAO/N1HPCNI46HDdvgSsfCH7CYr9sC32HcwGv3/1O2erhzDyoF+FIpdVQpVQ6sBsZftc544GXz9RvAUPNb33hgtVLqglLqa+BLs7yGlOkK7bC3RrdBKVWqlNoJlNVcWUTaAi2UUruV8Re6Ephg01bYoB0O0pR2fKaMma8BCgA/8xu+vY+H1dtgw7peT1PacU4pVZVNwheoGvHmiP9TNuHOASoSOF7j5xPme7WuYx7oYiDsOts2pExrs0U7wPhl/sA8xXGPDepda/1qqcc161zVhuuVeaKeMq3NFu2o8pJ5qma+HU5VWqsdtwCfKqUuYP/jYYs2VHGZYyEi/USkAPgcmG0ud8T/KZtw5wClXV+6UioZuBm4T0QGOrpCzdhUpVQvIMN8THdwfeolIj2BJ4CfOboujVVHG1zqWCilPlFK9QT6Ag+KiGtPoXsVdw5Q3wBRNX5ub75X6zoiYgGCgaLrbNuQMq3NFu1AKVX1/B2wHtue+mtKG65XZs3pQp39WNSpxrE4C7yG7U/DNqkdItIe43fmp0qpr2qsb8/jYYs2uNyxqKKUOgiUYF5Ta0CZrsHRF8Fs9cC4WHgUY3BA1YXCnletcx9XXnxca77uyZWDC45iXHist0wXaUcAEGSuEwB8DIxyxjbUWD6T+gdJjHbWY1FXO8wyw83XXhjXGGY7azuAlub6k2op127HwxZtcMFjEcPlQRIdgZNAeEPKdJWHwytg44M/GvgCY0TLQ+Z7jwLjzNe+wOsYgwf2AJ1qbPuQud1haoxGqq1MV2sHxuiePPNRYI92NLENhcBpjG+IJzBHJAF9gP1mmUsxM6O4UjswviDsA/LNY/H/MUdaOmM7gD8ApUBujUeEI46HtdvggsdiulnPXOBTYML1ynTFh051pGmapjkld74GpWmaprkwHaA0TdM0p6QDlKZpmuaUdIDSNE3TnJIOUJqmaZpT0gFKa/ZEpMTRdaiNiESLyE8cXQ9NcxQdoDTNSkTEsxHbWK6zOBrQAUprtnSA0rQaROR3IrJXRPJF5JEa728wE+sW1Eyua87v9GcRyQPSzJ8fN+fn2S0irWvZx0IReUVEPgJeMXtKO0TkU/PR31x1EZBhJi79tYh4isj/1Kify+bB07SG0AFK00wiMgLogpF/LRHoXSOJ7iylVG+MbAm/FJGqrNgBwCdKqQRlTKcRAOxWSiUA24G769hdD2CYUup2jHl8hisjee8UYIm5zlxgh1IqUSn1NHAnUKyU6ouRHPRuEYmx2gegaU7meqcXNK25GWE+PjN/DsQIWNsxglLVjKVR5vtFQAWwrkYZ5cAm8/U+YHgd+9qolDpvvvYClopIolle1+vUL15Essyfg816fN2g1mmai9EBStMuE+BPSqlnr3hTJBMYBqQppc6JSDZGfjSAMqVURY3VL6rL+cMqqPtvrLTG618Dp4AEjLMadU1qKMAvlFL/aFhzNM216VN8mnbZP4BZIhIIICKRIhKB0VM5Ywan7hgZu60pGPhWKVWJkQC0arDFWSDoqvrdKyJeZv26ikiAleuiaU5D96A0zaSU+kBEYoFd5kSqJcA04H1gtogcxMgKv9vKu/4bsE5Efmruq6p3lQ9UmAMwVmBk144GPjVnev0e209zr2kOo7OZa5qmaU5Jn+LTNE3TnJIOUJqmaZpT0gFK0zRNc0o6QGmapmlOSQcoTdM0zSnpAKVpmqY5JR2gNE3TNKf0fwQoQwfIdWOcAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "biuKWOKtk9yZ", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 1000 | |
}, | |
"outputId": "8444a3f6-aaed-4949-f59c-526a26f300d7" | |
}, | |
"source": [ | |
"# next run\n", | |
"\n", | |
"for i in range(1,10):\n", | |
"\n", | |
" print(\"lr acc\")\n", | |
"\n", | |
" for candidate in candidates:\n", | |
" y = f(candidate)\n", | |
" print(f\"{candidate:.6f} {y:.6f}\")\n", | |
" X.append(candidate)\n", | |
" Y.append(y)\n", | |
"\n", | |
" X_train = (torch.DoubleTensor(np.array(X))/X_[-1].item()).to(device) # normalize input data\n", | |
" Y_train = torch.DoubleTensor(np.array(Y)).to(device)\n", | |
"\n", | |
" gp, likelihood = train_gp(X_train, Y_train)\n", | |
"\n", | |
" #candidates, exp_impr = find_candidates(acq, X_)\n", | |
" candidates, exp_impr = find_candidates2(gp, X_)\n", | |
"\n", | |
" with torch.no_grad():\n", | |
" pred = gp(X_/X_[-1])\n", | |
" acq = upper_confidence_bound(gp, X_/X_[-1], kappa=4)\n", | |
"\n", | |
" fig, ax = plt.subplots()\n", | |
" ln1 = ax.plot(X_.cpu(), pred.mean.cpu(), label='mean acc')\n", | |
" ax.fill_between(X_.detach().cpu(), pred.confidence_region()[0].detach().cpu(),\n", | |
" pred.confidence_region()[1].detach().cpu(),\n", | |
" alpha=0.5)\n", | |
" ln2 = ax.plot(X, Y, 'r.', label='observed')\n", | |
" ax.set_xlabel('learn rate')\n", | |
" ax.set_ylabel('accuracy')\n", | |
" ax.set_title(f\"step {runs_num}\")\n", | |
" runs_num += 1\n", | |
"\n", | |
" ax2 = ax.twinx()\n", | |
" ln3 = ax2.plot(X_.cpu(), acq.cpu(), color='tab:orange', label='acquisition')\n", | |
" ln4 = ax2.plot(candidates, exp_impr, 'g.', label='candidates')\n", | |
" ax2.set_ylabel('expected improvement')\n", | |
" ax.set_ylim([ax.get_ylim()[0], ax2.get_ylim()[1]])\n", | |
"\n", | |
" lns = ln1 + ln2 + ln3 + ln4\n", | |
" labels = [ln.get_label() for ln in lns]\n", | |
" ax.legend(lns, labels, loc='lower right')\n", | |
"\n", | |
" fig.tight_layout()\n", | |
" fig.show()" | |
], | |
"execution_count": 16, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"lr acc\n", | |
"0.004854 0.904400\n", | |
"Iter 1/100 - Loss: 0.987 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: 0.622 lengthscale: 0.454 noise: 0.000\n", | |
"Iter 21/100 - Loss: 0.374 lengthscale: 0.672 noise: 0.000\n", | |
"Iter 31/100 - Loss: 0.163 lengthscale: 0.964 noise: 0.000\n", | |
"Iter 41/100 - Loss: 0.008 lengthscale: 1.304 noise: 0.000\n", | |
"Iter 51/100 - Loss: -0.108 lengthscale: 1.664 noise: 0.000\n", | |
"Iter 61/100 - Loss: -0.198 lengthscale: 2.019 noise: 0.000\n", | |
"Iter 71/100 - Loss: -0.268 lengthscale: 2.357 noise: 0.000\n", | |
"Iter 81/100 - Loss: -0.323 lengthscale: 2.674 noise: 0.000\n", | |
"Iter 91/100 - Loss: -0.368 lengthscale: 2.971 noise: 0.000\n", | |
"lr acc\n", | |
"0.000001 0.561200\n", | |
"Iter 1/100 - Loss: 0.681 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: 0.403 lengthscale: 0.441 noise: 0.000\n", | |
"Iter 21/100 - Loss: 0.387 lengthscale: 0.430 noise: 0.000\n", | |
"Iter 31/100 - Loss: 0.375 lengthscale: 0.389 noise: 0.000\n", | |
"Iter 41/100 - Loss: 0.369 lengthscale: 0.394 noise: 0.000\n", | |
"Iter 51/100 - Loss: 0.368 lengthscale: 0.395 noise: 0.000\n", | |
"Iter 61/100 - Loss: 0.367 lengthscale: 0.393 noise: 0.000\n", | |
"Iter 71/100 - Loss: 0.367 lengthscale: 0.401 noise: 0.000\n", | |
"Iter 81/100 - Loss: 0.367 lengthscale: 0.398 noise: 0.000\n", | |
"Iter 91/100 - Loss: 0.367 lengthscale: 0.399 noise: 0.000\n", | |
"lr acc\n", | |
"0.013047 0.883000\n", | |
"0.030000 0.852100\n", | |
"Iter 1/100 - Loss: 0.489 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: 0.295 lengthscale: 0.367 noise: 0.000\n", | |
"Iter 21/100 - Loss: 0.244 lengthscale: 0.317 noise: 0.000\n", | |
"Iter 31/100 - Loss: 0.217 lengthscale: 0.314 noise: 0.000\n", | |
"Iter 41/100 - Loss: 0.208 lengthscale: 0.290 noise: 0.000\n", | |
"Iter 51/100 - Loss: 0.206 lengthscale: 0.284 noise: 0.000\n", | |
"Iter 61/100 - Loss: 0.206 lengthscale: 0.279 noise: 0.000\n", | |
"Iter 71/100 - Loss: 0.206 lengthscale: 0.279 noise: 0.000\n", | |
"Iter 81/100 - Loss: 0.206 lengthscale: 0.279 noise: 0.000\n", | |
"Iter 91/100 - Loss: 0.206 lengthscale: 0.281 noise: 0.000\n", | |
"lr acc\n", | |
"0.008541 0.898900\n", | |
"0.016833 0.874400\n", | |
"0.025586 0.868300\n", | |
"Iter 1/100 - Loss: -0.371 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: -0.443 lengthscale: 0.293 noise: 0.000\n", | |
"Iter 21/100 - Loss: -0.466 lengthscale: 0.292 noise: 0.000\n", | |
"Iter 31/100 - Loss: -0.475 lengthscale: 0.275 noise: 0.000\n", | |
"Iter 41/100 - Loss: -0.476 lengthscale: 0.265 noise: 0.000\n", | |
"Iter 51/100 - Loss: -0.475 lengthscale: 0.264 noise: 0.000\n", | |
"Iter 61/100 - Loss: -0.476 lengthscale: 0.266 noise: 0.000\n", | |
"Iter 71/100 - Loss: -0.476 lengthscale: 0.268 noise: 0.000\n", | |
"Iter 81/100 - Loss: -0.476 lengthscale: 0.269 noise: 0.000\n", | |
"Iter 91/100 - Loss: -0.476 lengthscale: 0.269 noise: 0.000\n", | |
"lr acc\n", | |
"0.006866 0.900100\n", | |
"0.015899 0.881700\n", | |
"0.021879 0.881200\n", | |
"0.027478 0.840500\n", | |
"Iter 1/100 - Loss: -1.141 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: -1.190 lengthscale: 0.321 noise: 0.000\n", | |
"Iter 21/100 - Loss: -1.195 lengthscale: 0.317 noise: 0.000\n", | |
"Iter 31/100 - Loss: -1.196 lengthscale: 0.299 noise: 0.000\n", | |
"Iter 41/100 - Loss: -1.197 lengthscale: 0.292 noise: 0.000\n", | |
"Iter 51/100 - Loss: -1.199 lengthscale: 0.276 noise: 0.000\n", | |
"Iter 61/100 - Loss: -1.215 lengthscale: 0.234 noise: 0.000\n", | |
"Iter 71/100 - Loss: -1.227 lengthscale: 0.220 noise: 0.000\n", | |
"Iter 81/100 - Loss: -1.230 lengthscale: 0.210 noise: 0.000\n", | |
"Iter 91/100 - Loss: -1.230 lengthscale: 0.205 noise: 0.000\n", | |
"lr acc\n", | |
"0.006008 0.906300\n", | |
"0.023022 0.871400\n", | |
"Iter 1/100 - Loss: -1.474 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: -1.519 lengthscale: 0.324 noise: 0.000\n", | |
"Iter 21/100 - Loss: -1.522 lengthscale: 0.322 noise: 0.000\n", | |
"Iter 31/100 - Loss: -1.523 lengthscale: 0.305 noise: 0.000\n", | |
"Iter 41/100 - Loss: -1.523 lengthscale: 0.308 noise: 0.000\n", | |
"Iter 51/100 - Loss: -1.523 lengthscale: 0.302 noise: 0.000\n", | |
"Iter 61/100 - Loss: -1.524 lengthscale: 0.306 noise: 0.000\n", | |
"Iter 71/100 - Loss: -1.524 lengthscale: 0.306 noise: 0.000\n", | |
"Iter 81/100 - Loss: -1.524 lengthscale: 0.308 noise: 0.000\n", | |
"Iter 91/100 - Loss: -1.524 lengthscale: 0.309 noise: 0.000\n", | |
"lr acc\n", | |
"0.007683 0.894400\n", | |
"0.018932 0.873400\n", | |
"Iter 1/100 - Loss: -1.678 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: -1.724 lengthscale: 0.256 noise: 0.000\n", | |
"Iter 21/100 - Loss: -1.742 lengthscale: 0.244 noise: 0.000\n", | |
"Iter 31/100 - Loss: -1.753 lengthscale: 0.234 noise: 0.000\n", | |
"Iter 41/100 - Loss: -1.758 lengthscale: 0.226 noise: 0.000\n", | |
"Iter 51/100 - Loss: -1.759 lengthscale: 0.219 noise: 0.000\n", | |
"Iter 61/100 - Loss: -1.759 lengthscale: 0.217 noise: 0.000\n", | |
"Iter 71/100 - Loss: -1.759 lengthscale: 0.216 noise: 0.000\n", | |
"Iter 81/100 - Loss: -1.759 lengthscale: 0.216 noise: 0.000\n", | |
"Iter 91/100 - Loss: -1.759 lengthscale: 0.217 noise: 0.000\n", | |
"lr acc\n", | |
"0.005452 0.908800\n", | |
"0.022670 0.874800\n", | |
"Iter 1/100 - Loss: -1.871 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: -1.916 lengthscale: 0.263 noise: 0.000\n", | |
"Iter 21/100 - Loss: -1.933 lengthscale: 0.249 noise: 0.000\n", | |
"Iter 31/100 - Loss: -1.943 lengthscale: 0.236 noise: 0.000\n", | |
"Iter 41/100 - Loss: -1.948 lengthscale: 0.227 noise: 0.000\n", | |
"Iter 51/100 - Loss: -1.949 lengthscale: 0.220 noise: 0.000\n", | |
"Iter 61/100 - Loss: -1.949 lengthscale: 0.217 noise: 0.000\n", | |
"Iter 71/100 - Loss: -1.949 lengthscale: 0.216 noise: 0.000\n", | |
"Iter 81/100 - Loss: -1.949 lengthscale: 0.216 noise: 0.000\n", | |
"Iter 91/100 - Loss: -1.949 lengthscale: 0.217 noise: 0.000\n", | |
"lr acc\n", | |
"0.005665 0.907300\n", | |
"0.011274 0.896700\n", | |
"Iter 1/100 - Loss: -1.986 lengthscale: 0.300 noise: 0.000\n", | |
"Iter 11/100 - Loss: -2.033 lengthscale: 0.263 noise: 0.000\n", | |
"Iter 21/100 - Loss: -2.049 lengthscale: 0.244 noise: 0.000\n", | |
"Iter 31/100 - Loss: -2.059 lengthscale: 0.234 noise: 0.000\n", | |
"Iter 41/100 - Loss: -2.064 lengthscale: 0.228 noise: 0.000\n", | |
"Iter 51/100 - Loss: -2.065 lengthscale: 0.222 noise: 0.000\n", | |
"Iter 61/100 - Loss: -2.065 lengthscale: 0.219 noise: 0.000\n", | |
"Iter 71/100 - Loss: -2.065 lengthscale: 0.218 noise: 0.000\n", | |
"Iter 81/100 - Loss: -2.065 lengthscale: 0.218 noise: 0.000\n", | |
"Iter 91/100 - Loss: -2.065 lengthscale: 0.218 noise: 0.000\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3hc1bW33zVdM6Ne3TsudGOKqQZCAiR0CJ2QkI/kAmlckkBIcrkEAgSSkAIkEMCEUALEIdxAwHSbjsENd1sukmzL6r1MWd8f50iWjewZyRrNaLTf55nnzNln73PWyLJ+s/Zeey1RVQwGg8FgSDUcyTbAYDAYDIbeMAJlMBgMhpTECJTBYDAYUhIjUAaDwWBISYxAGQwGgyElMQJlMBgMhpTECJTBYDAYUhIjUAZDDETkFhH5WwLvf52ILBKRDhGZm6jnGAxDDVeyDTAYDGwFbgO+BGQk2RaDIWUwHpTBYCMiPxaRChFpEpE1InKyiJwK/AS4UESaRWSp3TdbRB4WkW32mNtExGlfu1JE3hWRP4pIg4isFpGT9/RcVZ2nqs8DNYPyQQ2GIYLxoAwGQESmAtcBh6vqVhEZDzhVdYOI/BKYrKqX9RgyF9gBTAYCwL+BMuDP9vUjgeeAAuBcYJ6ITFDV2kH4OAZDWmA8KIPBIgJ4gRki4lbVTaq6obeOIlIMnA58X1VbVHUH8Fvgoh7ddgD3qmpIVf8OrAG+nNiPYDCkF8aDMhgAVV0vIt8HbgH2F5FXgOtVdWsv3ccBbmCbiHS1ObA8qC4qdNdMzJuBkQNuuMGQxhgPymCwUdUnVfVYLAFS4K6uS7t1LQM6gAJVzbFfWaq6f48+o6SHegFjsYIhDAZDnBiBMhiw1qBE5CQR8QLtQBsQtS9XAuNFxAGgqtuA+cCvRSRLRBwiMklETuhxyyLguyLiFpELgOnAS3t4tktEfIATcIqIT0TM7IZh2GMEymCw8AJ3AtXAdiyBucm+9qx9rBGRT+33VwAeYCVQhxUQMaLH/T4Eptj3ux04X1X3FKX3UyxBvBG4zH7/033/SAbD0EZMwUKDYWARkSuBb9rThQaDoZ8YD8pgMBgMKYkRKIPBYDCkJGaKz2AwGAwpifGgDAaDwZCSpE0oq8Ph0IwMk2fTYDAYWltbVVWHvAOSNgKVkZFBS0tLss0wGAyGpCMibcm2YSAY8gprMBgMhvTECJTBYDAYUhIjUAaDwWBISYxAGQwGgyElSahAicipdmXS9SJyYy/Xx4nI6yKyTETeEpHRPa6NFZH5IrJKRFbaBeQMBoPBMExImEDZ5a/vA04DZgAXi8iM3brdA/xVVQ8CbgXu6HHtr8DdqjodOAKrAJzBYDAYhgmJ9KCOANaraqmqdgJPA2ft1mcG8Ib9/s2u67aQuVT1VQBVbVbV1kQY+X7Z+9yx8A7eL3s/Ebc3GAwGQz9J5D6oUexaYbQcOHK3PkuBc4HfAecAmSKSD+wH1IvIPGAC8Bpwo6pGBtLA98ve5+S/nkRnuBOPy8vrV7zO7DGzB/IRBoPBYOgnyQ6SuAE4QUQWAycAFUAESziPs68fDkwErtx9sIhcLSKLRGRROBzu88Pf2vQWneEOIkTpjHTy1qa3+v1BDAaDwTCwJFKgKoAxPc5H223dqOpWVT1XVQ8Fbrbb6rG8rSX29GAYeB6YufsDVPVBVZ2lqrNcrr47g3PGz8Hj8uIEPAhzxs/p8z0MBoPBkBgSKVAfA1NEZIKIeICLgBd6dhCRgq4y2ljVSx/pMTZHRArt85OwKpcOKLPHzOb1K97gF6OO43XNYHageKAfYTAYDIZ+kjCBsj2f64BXgFXAM6q6QkRuFZEz7W5zgDUishYoxiqNjb3WdAPwuogsBwR4KBF2zh4zm5sufIbZTj+8dVciHmEwGAyGfpA29aACgYDuU7LY+T+D9/4A13wARdMGzjCDwWAYZESkVVUDybZjX0l2kETqcMz3wROAt+6I3ddgMBgMCccIVBeBfDjqGlj5PGxblmxrDAaDYdhjBKons68FXza8+ctkW2IwGAzDHiNQPcnIgaO/C2v/A2UfJ9sag8FgGNYYgdqdI78N/gJ487ZkW2IwGAzDGiNQu+MNwnHXQ+lbsHFhsq0xGAyGYYsRqN6Y9Q3IHAFv3g5pEoZvMBgMQw0jUL3hzoDjb4At78OG15NtjcFgMAxLjEDtiUOvgJyx8MZtxosyGAyGJGAEak+4PHDCjbB1Max+MdnWGAwGw4AyFCqeG4HaGwddCPmTrbWoaDTZ1hgMBsOAMFQqnhuB2htOF8y5CXashBXzkm2NwWAwDBRDouK5EahY7H8uFB9grUVFQsm2xmAwGAaC3iqej9qtT1fFc9hDxXMRWSwid9se2YBjBCoWDgec/D9QtxE+fSzZ1hgMBkM8uLqqjduvq/txj32qeD4Q9L0M7XBkyikw9mh4+1dw8MVW1nODwWBIXcKqOmsv1+OqeI7tQYlIEDhPVetFpLviuX3teeAo4OEBtB8wHlR8iMAXboHmSvjggWRbYzAYDPtKylc8ByNQ8TP2SJh6Orz7O2itTbY1BoPB0G+GSsVzU1G3L1SuhAeOhqO/A1/8RWKfZTAYDP3EVNSNg33ZCGZfzxKRchH5YyLtjJviGXDwRfDRg9BQEbu/wWAwGPpNwgRqADaCAfwCWJAoG/vFnJtAo/D2ncm2xGAwGNKaRHpQ/d4IBiAih2HNe85PoI19J3cczLoKFv8NqtYm2xqDwWBIWxIpUP3eCGZHjvwaayEu9Tjuv8HthzfMOpTBYDAkimRH8e1pI9g1wEuqWr63wSJydddGtHA4nHhruwgWwuzrYNULUPHJ4D3XYDAYhhEJi+ITkdnALar6Jfv8JgBV3X2dqat/EFitqqNF5AmsncpRIAh4gPtV9XOBFl0MShRfTzqa4HcHW2mQvvZC7P4Gg8EwSJgovtj0eyOYql6qqmNVdTyWl/XXvYlTUvBmwvE/hI1vw4Y3Yvc3GAwGQ59ImEDty0awIcOsb0D2WHjtf005DoPBYBhgzEZd4F9LKijJ8rH/qGyC3j6mJ1zyFDz/bTj/UTjg3Nj9DQaDIcGkyxSfESjg8fc3Ud3ciUOECYUBDhiZxfj8AA6HxB4cjcCfjoVwO1zzoVWJ12AwGJJIughUsqP4UoqoKht2NPOvJVt55N2NvLehmsb2GDWgHE4rkWxtKXzy6GCYaTAYDMMC40Gx04PqDREYl+/ngJHZTCwM4uzNq1KFx86wKu9+dzH4svtlh8FgMAwExoMaJqjCpupW/r1sG39ZWMrCdVXUtuwmZiJW8tjWGnjn3uQYajAYDGmGEag+0NoZYdGmOh57bxPPLCpjxdYGQhE7em/koXDgBfDB/SaRrMFgMAwARqD6SUVdG/NXVPLgglJeX1XJ9oZ2OOlnViLZN4dWtLzBYDCkIkag9pHOcJRl5Q089dEWHl8DldOvRJc8CduXJ9s0g8FgGNIYgRpAqps6+EfgQjpcmeyYdyObqltIlyAUg8FgGGyMQA0wHa4sPhz9DYp2vMMnb87j4Xc28t76aupbe48SNBgMBkPvGIFKAEtHXECDdyTHbfodzW0dfLixlrk9Ais6wyYtksFgMMTCCFQCiDg8vDPuWopa1jGt6mXAClfvCqx4aGEp81dsp7yuNcmWGgwGQ+piBCpBrC34AtuD0zl68wM4I+27XOsMR1mxtZFnF5Xz6Lsb+bC0JnbGCoPBYBhmGIFKFOJgwfjvkdVZycxtT++xW31riPc21PDIOxt57pNyVm5t3Lm3ymAwGIY4InJXPG29YQQqgVRkH8aG3OM4vHwuvlD9XvuqQlltK6+s2M6DC0p5ZcV2ympbTRSgwWAY6pzSS9tp8Qw0ApVg3hl/He5IG0eV/SXuMZ3hKCu3NvLcJ+U88u4m3ttgogANBsPQQkT+S0SWA1NFZFmP10ZgWTz36GPxI0NfqfVP5LPiszlo+3MsLTmfOv/4Po1vbAvxYWktH5bWMjLHx/QRWexXnInP7UyMwQaDwTAwPAn8B7gD6FkRvUlVa+O5gclmzt6zmQ8EGZ21fP3Tc6nIOpR/zfjtPt/P6RAmFgaYVpLFhIJA7xnWDQbDsCXVspmLiBOranq3U6SqW2KNMx7UINDmyePD0Vdx/ObfM7b+Q7bkHLlP94tElXWVzayrbCbD42S/4iDTSrIYmZMxQBYbDAbDwCAi1wG3AJVAVwSYAgfFHGs8qMR7UADOaCdXLP4qYYePvx3yN1QG/rtBjt/N1JJMppdkkRswlX0NhuFKKnlQIrIeOFJVa/o6NqFBEiJyqoisEZH1InJjL9fHicjr9sLZWyIy2m4/RETeF5EV9rULE2nnYBBxeFg4/rsUtG7ggMoXEvKM+lZrvWrue5t46qMtfLqljpaOcEKeZTAYDHFSBjT0Z2DCPCh7znEtVohhOfAxcLGqruzR51ng36r6mIicBHxdVS8Xkf0AVdV1IjIS+ASYrqp7jNVOdQ8KAFXO/+zb5Ldt5NGZ8+h0BRP+SIcIY/IymFqSyeSiIF6XCa4wGNKdFPOgHgamAi8CHV3tqvqbWGMT6UEdAaxX1VJV7QSeBs7arc8M4A37/Ztd11V1raqus99vBXYAhQm0dXAQYcGEH5ARqufI8kcG5ZFRVTbXtFoplhaU8u9lW1m/o4mw2QxsMBgGhy3Aq4AHyOzxikkigyRGYbl2XZQDu0cHLAXOBX4HnANkikh+z7lKETkC64Nt2P0BInI1cDWAxzM01lx2BKexougrHLL1aZYVn0tDxuhBe3YosjO4wut2MKkwyLSSTMbk+nGYSECDwZAAVPV/AUTEr6p9SkCa7I26NwAniMhi4ASgAoh0XRSREcDjWFN/n/vKr6oPquosVZ3lcg2dgMT3xl1DVFwct/n3SbOhI2RtBp73aQUPLSzljdWVlNeZzBUGw3ChvzEC9rWIiCyxX3tdVBeR2SKyElhtnx8sIvfHY2Mi/6pXAGN6nI+227qxp+/OBRCRIHBe1zqTiGRhzVnerKofJNDOQafFU8DHo7/GMVv+xKiGT6jIPiyp9rR2Rlha1sDSsgYyfS4mFwWZWpLJiGwTtm4wpCN2jMB99IgREJEXesYIAPcAf+0RI3AHcLl9rU1VD4nzcfcCXwJeAFDVpSJyfDwDE+lBfQxMEZEJIuIBLuoysAsRKRCRLhtuAh6x2z3AP7F+OM8l0Mak8cnIS2n0FHPCxt8iGok9YJBoag+zeEs9T39UxsPvbGTB2ioqG9tjDzQYDEOJfscI9AdVLdutKa4/egkTKFUNA9cBrwCrgGdUdYWI3CoiZ9rd5gBrRGQt1i7j2+32rwLHA1f2cCPjVeshQcTp453x36G4ZQ3Td7yYbHN6pbEtxCeb63jywy088s5GFq4zYmUwDBFcIrKox+vq3a73FiMwarc+XTEC0CNGwD732ff9QETOjmFLmYgcDaiIuEXkBixNiInZqMsghpnvjioXLr+K7PatPHrYPEJO/+Db0A+yMtxMKQoypThISZYPERNgYTCkErHCzEXkfOBUVf2mfX451mba63r0GQn8EZgALADOAw5Q1XoRGaWqFSIyEcvLOllVPxfIZt+nACsQ7guAAPOB78WzcXfoRBakIyK8PeF6Ll72dQ4vn8t7465JtkVx0eVZfbK5rnvNanJRkFE5GUasDIahwT7FCKhqhX0sFZG3gEPpJdLa7lMNXNofI41AJZntmQewqvA0Dqt4ghXFZ9LgG7yw84Gga81q8ZZ6Al4nEwsssRqT5zdJbA2G1KU7RgBLmC4CLunZwfZ8au0I6p4xArlAq6p22H2OAX61pwfZz/gOMJ5dk8WeuacxXRiBSgEWjvsOk2re4viN9/J/0+9Jtjn9pqUjwvKKBpZXNOB1O5hYEGBSYZBx+QE8rmTvaDAYDF2oathO4voK4AQe6YoRABap6gtYMQJ3iIhiTfFdaw+fDvxZRKJYcQx37hb9tzvPAw8D/8fOZLFxYdagSOIaVA9mlT/GcZv/yLwZv2dz7uyk2jLQuBzC2Hw/kwqDTCgIEPCa70UGQyJJsVRHH6pqv0o4GIEiNQTKGe3k8sUXoyI8fshTRB3upNqTKERgRLaPiYVBJhYEyA96k22SwZB2pJhAXQJMwQqO6JmL79NYY81X2RQh4vDw1oTrOWfV9zlk29/5dNRlyTYpIajC1vp2tta38866anL8bibYU4EjczLMupXBkH4ciLXB9yR2rQd1UqyBRqBSiE15x1CaeyxHlf2FNYWn0uIpSLZJCae+NdQdZOFxORifH2BCQYDxBX78HvPraTCkARcAE+0NwX1i2E/xvbG6kqc+2oLH6STX7yY7w43LmbwF/ey2Mq5YfCFrCr/I/Cm3JM2OZCMCxVk+S6zyAxRneU0Iu8EQJyk2xfc8cLWq7ujr2GH/FfXtNVW8unLXn1uWz0Wu30OO373LMehz4UjwH8mGjDF8OvISjqh4jOXF57ItK2ZV5LREFbY3tLO9oZ33N9Tg9zgZl+9nfEGAcXkBMjymrpXBMETIAVaLyMfsugYVM8x82HtQAA8t2MCGqhbqWjupbw11H+tbQ3T2qJvkdAg5Ge7PCVdewIPPPXB/MN2RVq789Hxa3AU8efBcEBOi3RMRKMr0MT7fz9h8PyOyzdqVwdCTFPOgTuitXVXfjjnWCNSeo/hUldbOSLdo9RSwhrYQ0R4/Or/HSV7A0/3Kt48Zbme/pqamVr3M6Wt/xvzJP2VFcb9zNA4LPC4Ho3MzGJvnZ1x+gLzA0KgNZjAkilQSKLBKdwBTVPU1EfEDTlVtijnOCFT/wsyjUaWxPURda4i6lk5qWjqptV89vS6f20Ge37ObeHkJeGMIlypf/exqcts2M3fmP+hwxVWA0gBk+lyMyfMzJtfysIJm35VhmJFKAiUi/w+rsGyeqk4SkSnAn1T15JhjjUAN7D4oVaWlI0JNS0e3YNXaAtYR3ilcHqfDEqugh4Kgl4Kgh/ygl4weU4WFzWu4ZOkVLBnxVd6e+N8DYt9wJC/gYUxeBmNy/YzO9Zv1K0Pak2ICtQSrvMeHqnqo3bZcVQ+MNdZ8tRxgRISgz0XQ52Jc/s7fj67pwtqWTmpbbeFq7mRDVTMrtjZ29wt4nZZgBbwUBEcwJe9MDt/2LJ8Vn0VNYPLnnjdi5WJGL/2I8oOPYNuMQwflMw41ur4kLC1rQATyg15G52YwOieDUbkZJpzdYEgsHara2TVjJCIurH1QMTEeFMnNJNElXNXNHVQ3d9rHDupaQkRUyaGJN7z/zSYZw41Zd1KQ6ev2uKZsWM75N34dZ6iTiNvDP+6aa0Sqj4hYHtYoW6xG5WSQ6UvPLB6G4UOKeVC/AuqBK7CSxl4DrFTVm2ONNV8dk4yIEPC6CHh39bgiUaW+tZPq5k6ervom1zTey6zG+Ty545juPt/58GWksxOHRtFQiPxF71Mx/ZCEh8KnE6pQ09xJTXMny8obAKve1agcHyNzMhiZk0F+wGP2YBkM/edG4CpgOfAt4CXgL/EMNAKVojgdQn7QS37QS0fxxWxd/jo/bX+SwplnUdHuo7qlg20dRxJ+92kIhwg5nDzAaJa9tYHCTC+FQS+FWV6Kgl7ygh5cDhOqHi+NbSEa20Ks2mYFGXndDkZmZzAi28eI7AyKs714XWYdy2CIk7OBv6rqQ30daKb4SI1ksbEoaFnLpUsuZ3nJObwx6cbu9hErFzNyyYes2G8mn46aRlVjBzua26lu2hlN6BDID3gpzPRSlGkdC4JeUwKjn3StY43I8lGS7WNEto8842UZUogUm+J7FCvv3gLg78DLqhqOa2wiBUpETsUq9esE/qKqd+52fRxWEaxCoBa4TFXL7WtfA35qd71NVR/b27PSXaAATij9DYdue5qnDnqUysz999pXValvC1HV1MGOpg6q7FdbKNLdJ8/voTjLS3GWj+IsHwVBT1LTPA1lPC4HJbZgdf1MzVqWIVmkkkABiIgbOA24EDgWeLWr3PxexyVKoETECawFTgHKsSo4XtyzsJWIPAv8W1UfE5GTgK+r6uUikgcsAmZhRXt8AhymqnV7et5wEChPuJmvfXoBLZ5Cnjr4UVT6Ns2kqjR3hLtFa0dTB5WN7bR2WqLlECgIdgmWdcwLeMyaVj8JeJ0UZ/koytz58zS1sAyDQaoJFHSL1KnA14HjVTVmNuy4/reIyDysioj/scv/xsMRwHpVLbXv8TRwFtCz8uIM4Hr7/ZtYlRcBvoSlsLX22FexPthTcT47Lel0BXl7wg/48tqbOXD7PJaNuKBP40WETJ+bTJ+biYVBwBKtpo4wlY3tVDZagrVmexPLK6yAAZdDKOrysuw/tNkZbjOdFQctHRFKq1oordr5xSnodVGU1TXd6qMoy0uW8bQMaYyIdHlOc4C3sAIkvhrP2Hi/zt2PpXq/t72eR1V1TYwxo4CyHuflwO5VFZcC52JNA54DZIpI/h7Gjtr9ASJyNdYOZTye4ZHeZm3BKRxQ+S+O2Xw/6/NPotWTv0/3ExGyfG6yfG6mFFnZKlSV+tbQTtFqamdZeQORaD0APpeD4h7rLyVZPrwDmIswnWnuCNNcFd5FtHxupxXYYge3FGRa2UZMfkFDmnAF1trTt1S1I1bnnsQlUKr6GvCaiGQDF9vvy4CHgL+paqiPBndxA/BHEbkSawGtAojsdcSudj0IPAjWFF8/bRhaiPDGpB9x+eKLOW7T73llv/9NwCOE3ICH3ICHaSOstkhUqWnp6PayKhvb+Whjbfduuzy/p1uwTNBA32gPRSirbaWstrW7zemw/g0KuzONeMkPesy6lmHIoaoXi0gxcIr9N+GjeEtvxD0hbns2l2FVRlwMPIG12PU1LNdtdyqAMT3OR9ttPQ3fiuVBISJB4DxVrReRit3uORrLNTQA9RnjWDTqco4qf4TPis+kIvuwhD/T6RBrSirTx4GjsgHoDEfZ3miVxNjW0EZpVTMrt1lZMTxOByXZu3pZA5nxPd2JRJXqpg6qmzqAnTk1fW6nnR7LQ17AS37AEjCTvsmQqojIBcA9WH/DBfiDiPxQVZ+LOTaeIAkR+ScwFXgcmKuq23pcW6Sqs3oZ48IKkjgZS5g+Bi5R1RU9+hQAtaoaFZHbgYiq/twOkvgEmGl3/RQrSKJ2TzYOhyCJnrgi7Vyx+ELCDi9/O+QJoo7kf7Puihzc1rBTtGqaO7u9rFy/mxHd+4mMlzWQdGXTz+8hXLkBj0mUO0xJpSAJEVkKnNLlNYlIIfCaqh4ca2y8v72/V9U3e7vQmzjZ7WERuQ54BSvM/BFVXSEitwKLVPUFLC/pDhFRrCm+a+2xtSLyCyxRA7h1b+I0HAk7fbw58QbOXnU9M7c+yaLRX0u2SdbUoN9Drt/DjBFZgOVlVTa2W6LV2E5p9U4vy+dyMCLHSi80Msfyzsy6S/9o7YzQ2tlGeV3bLu1eO5t+rp1JP7e7lpnH/KwNg4Vjtym9GiCu/SzxelDXAk+oar19nosVMn5/P4xNCMPNg+rijFU/ZFz9+zx+6NM0+EYn25yYdHtZ9e1U1LextaGN+lZrCdPpEEqyfN2CVZLtMxkbEoRDhKyMXStH5/o9ZPvdZPlcxrMd4qSYB3U3cBA7o7AvBJap6o9jjo1ToJao6iG7tS3uSp2eCgxXgQp2VHLF4gvZlnkg/5zxeyvNwRCjpSPMtgZbsOrbqGruQNWarC7M9DIy2xKskTkZZh/RIOByCNl+N9kZbnL8nu4q0jkZHjJ9LhzG80p5UkWgxPqmMxo4HCtmAWChqv4znvHx/m93ioiorWb2JtzhEded4jR7i3l33DWcVHo306peZnXRack2qc8EvC4mFwWZXGTtzeoMR9nW0MbWhna21rfx2dYGlpRbIe7ZGW5G5lhe1uhcP9kZyV97SzfCUe1OoAu7funr8ryyM9yfe2VluE0gjGEXVFVF5CW79tO8vo6PV6BeBv4uIn+2z79ltxlSgGUl5zGt6mVO2PgbNuXOpt2dk2yT9gmPy8G4/EB3dvdIVKlq6mBrfRsV9W1srG7pTuSa6XPZtZ38jM7NIMsIVkKJ2nvkuqZld8frdlhi5bMEK8vnso9usjJcZsp2ePKpiByuqh/H7ror8U7xObBEqatE76tYufXi3rOUaIbrFF8X+S3ruXTpZawuPI35U/4n2eYkFFWltqWT8jorKKC8vpX2kJXgJMvnYlSu5V2NzjGClWp43Q6yfG4yfa7uY2b30UXQa9a/BoJUmeIDEJHVwBRgE5ZLLljO1UExx5ps5ukhUABHb76fI8sf5bn976cs5/BkmzNoqCo1LZ1U1LVRVtdKRX1b74KVm2HSCqU4DhECXidZPrdVmdprVafOtI9Br4uAx6yDxSLFBGpcb+2qujnm2Dg9qCnAHVi583w9HjAxfjMTixEocEbauXzJJQA8fsiTRJy+GCPSky7BsjysVirq2mgP7xSs0bl+xuRmMCbPb4IuhiAOEfweJ0GfVegz6HUS8FgCFvB0tbnwuR3D1htLJYECEJGZWEESCryrqp/GNS5OgXoH+B/gt8AZWHn5HKr6835bPMAYgbIYU/8x56+4ho9GX8m7465NtjkpgapS3dxJRf3nBSsv4GFsrp8xeVbJd7NGkj44HZaQdVWsDnic+D0uAl7r6PdYwub3OnGnWZmZVBIoEfk5cAE7gyTOBp5V1dtijo1ToD5R1cNEZLkdjdHdtg92DyhGoHZyyrpbmV71Ek8e/DjVgSnJNiflUFWqmjsoq21jS601JRiJKiJQkuVjTK6fsXl+SrLNxuHhgsflIMPtJOB1kuFx4Xc78Xuc+DzW0e924fNYfTLczpSvm5ZiArUGOFhV2+3zDGCJqk6NNTbe+Y0OO1BinZ0dogII9tdgQ2JZOP67TKx7hy+s/yV/P+gvfa4ble6I7MwreNi4XMKRKNsa2imra6Wsto2PN9Xy0aZaXA5hVG4GY/P8jMn1UxA0qZnSlc5wlM5wlIa2+PJedwlahscSLJ/bic/t6PG+q92B1z56nMN2ynEr1tJQu33uZbe8rHsiXg/qcGAVkAP8AsgC7lbVD/pjbSIwHtSuTK16mdPX/ow3J9zAkpEXJtucIUVHKEJ5veVdldW2Uve92e0AACAASURBVGeHVGe4nYzJs9auxub6TYSgoU84RPC6HfhcO0XL63LiddlHtwOvy4HHPs/JcJMb6N9203g8qH2peG5fz8Kq7/e8ql63l+c8j7VR91WsNahTgI+wyiihqt/d49hYAmVvyr1LVW/Ya8ckYwRqN1Q5Z+V3Gdm4lMcPfZpG38hkWzRkaWoPUVbXRlltK1tqW7srEOf63fZ+LSukPdWnfQxDi+kjsjj1gJJ+jY0lUPtS8bzH9d9hi1cMgdprolBVfWxP12JO8alqRESOjdXPkGKI8Nrkm7ni0wv5wvrbmbf/H4dkGqRUINPnZsYINzNGZHVHCG6pbWVzTSvLKxpYUlaP0yGMyslgXL6fcXl+k6ndkOrsS8VzROQwoBgrYUOvCcO72JsAxSLeNajFIvIC8Cw9cp+oap9TVxgGjyZvCQvHf5eTS+/kgMp/8VnJ2ck2acgjIt0FBGeOzSUUiVJR38bmmla21LSycF01C7FKu3eJ1dg8v6k4bBhsXCKyqMf5g3aB1y72peJ5HfBrrPqAX4hliIh8BWtpaByW5nRt1M2K+SFidbDxYaVIP6lHm9KP3EqGwWVZyTlMqXmN4zfdy6bc2TR7i5NtUlrhdjoYnx9gvJ2WqbE9xJaaVjbVtLCuspkVWxu7owPH5fkZlx+gKMuLw3hXhsQS3lMppD6wp4rn1wAvqWp5nLME92IJ3XKNJ+ihB/GWfP96X25qSCHEwWuTb+byxRdz8oY7+Nf035qpvgSS5XNzwKhsDhiVTSSqbG9sZ3NNC5trWvlgYy0fbKzF53IwNt/PBDvfoKmGa0gC+1LxfDZwnIhcgxXN7RGRZlW9cQ/PKgM+66s4QZwCJSKPAp+7uap+o68PNPQNERDEPu5EAVVQlFj/7A2+0bwz7lpO3Phrple9xKqiLyfSZINN17rUqJwMjp4ErZ1httS22h5WK2srmwEYke1jfH6ACQUBE8puGCw+BqaIyAQsYboIuKRnh54Vz4GbsCL6UNVLe/S5Epi1F3EC+BHwkoi8DXR0Narqb2IZGe8U3797vPdhzUdujXNs2uNySPc+CK+7R9ioHTLqcVl7INxOBx6X4HI4cDkFt9OB0yG4HILTfjlk59EhxP3HKhpVIqpEVYlEd77C9jEUvp72ZxdwyubfMuHIL9PqKSQUUTrCETrDUTrCUdpDke5jW8hqT5NUjSmB3+NiWkkW00qsYIvKxg421rSwqbqF90treL+0hqDXxfh8P+MLAozN86ddhgNDarAvFc/7we1AM5Z29Cluvl/JYu1Nu++o6tF9HpwgBjrM3Od2Wjm+vK4e6VGcZLitFCldu8wz3EMoTUr1evjTMTDpZLjoiZhTfdGo0haK0NoZoa0zQmsoTEtHhNbOMC0dYZo7IjS3h2juCBOKGCXbF1o6wmyqaWFjdQtltW10RqI4xdooPKHA8q5M7avhRSLDzAcTEflMVQ/o19h+CtRU4EVVnRyjX6yNYGOBx7A2ADuBG1X1JRFxA38BZmJ5eX9V1Tv29qx9EajPKhpwOsRK+e91E/CmfiqTfvPu7+DVn8N5D8OB5w/YbdtDERrbQzS1h2lsC9FoHxvsV6ed+84Qm0hUqahvY1N1CxtrWrprL+X63UwosAIyRuZkmDRMaU4aCdSvgNdUdX6fx8aZSaKJXdegtgM3qeo/9jImno1gDwKLVfUBEZmBFRkyXkQuAc5U1YtExI8Vmz9HVTft6Xn7IlDDimgEHj4FajfCtR9BsHBQHtvaGaa+NURdayf1rSFqWzqpb+2krjVEJGq8r71R39rJxuoWNtVYiW4jqnicDsbl+5lYaAmWqWSbfqSRQDUBAaz1pxADHWauqpn9sCuejWCKlTYJIJud61oKBETEBWQAnUBjP2ww7I7DCWfdB38+Hl78AXz18UGJ6rOyR7sYmZOxS3s0qjS0hahp6bDKjLd0Ut3cQV1LiKhZAAMgx+/h0LEeDh2bS2c4SlldKxurrenAdTuacQiMzMlgYkGASYVBk4LJkFL0Uz+A+KP4zgHeUNUG+zwHy6N5fi/D4tkIdgswX0S+g6WwXZu+nsMSs22AH/iBqtb2YtfVwNUAHk//clYNS4qmw4k/gddugWXPwMHJy9XncAi5AQ+5AQ+Ti3a2hyNRalo6qWrqoKqpgx1N7VQ3dw77qUKPy8GkwiCTCoOoWmHspVUtlFa3sGBdNQvWVZMf9DCpIMjEwgBFmV4TFWhICiIyTVVX27WgPkc8NaHineJboqqH7Na2WFUP3cuY84FTVfWb9vnlwJE9czaJyPW2Db+2Y+sfBg4AZmNtBrsSyAUWAqd1eWO9Yab4+kg0Ao+eBjtWwzXvQfboZFsUk65S79sb29nR2MH2xnaqmjrMFKFNfWsnpdUtlFa1sLW+zZqG8DqZWBBkYkGA0XkZuBxpuraahgz1KT4ReVBVrxaRN3u5rKp6Ui/tuxBvmHlvv9WxxsbcCAZcBZwKoKrvi4gPKMCKx39ZVUPADhF5Fyvf0x4FytBHHE4450/wwLHw/DVw+fOQ4n+8RIT8oJf8oJf97dy34UiUHU0dbGtoY1tDO1vr22jpiCTX0CSR4/cwc6yHmWNzaeuMsKmmhQ1Vzaze3sjyigbcTmFcfoCJdlSgWbcyJBJVvdo+ntjfe8QrUItE5DfAffb5tcAnMcbE3AgGbAFOBuaKyHSsOPkqu/0k4HERCQBHYaXLMAwkeRPhS7fBv38AH/8Fjrw62Rb1GZfTwcicjF3Wtupbreq5FXVtVNS3dUfBDScyPE6mj8hi+ogswpEoZXVtlFY1U1rdwvodzYjAqOwMJhUFmVQYINNn1q0MqUe8U3wB4GdYa0SKVdfjdlXd65yaiJyOJSxdG8Fu77kRzI7cewgrXYYCP1LV+XZajUexsukK8Kiq3r23Z5kpvn6iCk+cD5vehW8vhIL0q8Db1B6ivK6N8jqrxlNjnEXp0pGuDcKl1c1sqGqhtsXa/1ec5WVyYZBJRUFy/WY9NxUY6lN8A0G/9kGlIkag9oHGbXD/UZA/Cb4xH5zxOtZDk4bWkFUuo9baFNseGp5TggC1LZ1sqGpm/Y5mdjR1MLNiFSdtX8n2mUcRPXK2Sb2URIxAxe9BvQpcoKr19nku8LSqfinB9sWNEah95LN/wHPfgBN/Cif8MNnWDBpdkXCbqlvZXNPC9sb2YZveKWvxx1z206twhkOEnC4uveh2Nkw+yPasApRk+YxYDSJDXaD2FL3XRTxRfPF+VS7oEif7xnUiUrS3AYYhxgHnweoX4e07YcopMPKQ2GPSABFhRHYGI7IzmD0pvzu4wNoY20JHaPiEtU9d/SnuSAiHRpFohEvaNvKHjMNYXFbHJ1vqCHpdTCq09lqNysnAYTJZGPbOr+2jDyvIbSnWks1BwCKsaO29Eq9ARUVkrKpuARCR8fSS3dwwxDn9Hmst6p/fgqvfAndGrBFpR8/ggqidcmhDVTOlVS00pPnaVfnBRxBxeyAUIup2Ez7ueM6eMYr2UIRN1S2sr7LqWy0tb8DndjCxIMjkoiBj8/wm7ZLhc3RF74nIPGCmqi63zw/A2gMbk3in+E4FHgTexlLA44CrVfWVflmeAMwU3wCx7jV44jw44mo4fa9xKcOOqqaO7vWaqqaO2AOGICNWLmb00o8oP/gIts34/DbHUCRqha/vsLzMzkgUr8vBxMIA+xVlMsaI1YAx1Kf4uhCRFaq6f6y2XsfGGyRhT+ldDSzGSj+0Q1UX9MPehGAEagB5+Sb44H64+O8w9dRkW5OS1Ld2sn5HM2srm6lsbE+2OUkhHI1SVtvGusomNlTtFKtJhUGmFAcZk2vEal9II4F6CmgB/mY3XQoEVfXimGPj9KC+CXwPa7PtEqx9Se/HsxN4sDACNYCEO+Chk6FpK/zXe5DZv/8kw4WG1hDrdjSxprKJHY3p6VnFIhyNsqW2lXWV1nRoT7HarzjIaCNWfSaNBMoH/BdwvN20AHhAVWN+s4tXoJYDhwMfqOohIjIN+KWqntt/swcWI1ADzI7V8OAcGHsUXDYv5bNMpAp1LZ2sqWxizfam7j1Gw41wNMqWmlbW7dgpVj6Xg0lFQaYUGbGKl3QRKAARyQDGquqaPo2LU6A+VtXDRWQJVj69jnjnEAcLI1AJYNEjVpaJL94GR38n2dYMOXY0trNqexNrtjcO2/RL4YjlWa3d0UxpVTOhiBqxipN0ESgRORO4G/Co6gQROQS4VVXPjDU23ii+cjuD+fPAqyJSB2zut8WGocFhX4f1r8Nr/wvjjxs2oecDRVGWj6IsH8dNLmBLbSurtjWywf4jPVxwOR1MLAwysTBIOBJlsz0NuLayiRVbG/G5HUwuDLJfcSajcjNwmH1W6cj/YJVfegtAVZfYKfBi0udMEiJyAlbtppdVNWXmMIwHlSBaa+GBo8ETgG8tsI6GftMRjrCuspmVWxupqG9LtjlJo0us1lY2sbG6hVBECXicTCnOZGpxJsVZpkxIGnlQH6jqUT0rYIjIMlU9KOZYk+rIEJPSt+GvZ8HMy+HMPyTbmrShrqWTFVsbWbWtkeaOcLLNSRqhSJSN1S2s2d7E5ppWIqpkZ7iZWpzJfsVB8oPeZJuYFNJIoB4GXgduBM4Dvgu4VfXbMccagTLExWu3wDu/hfMfsbJOGAaMaFTZWNPCZxUNbKpuHdaVhNtDETZUNbNmexPldVZNq4Kgh/1sz2o4VQtOI4HyAzcDX7SbXgF+oaoxQ16NQBniIxKCR0+HHavgW29biWUNA05Te4jPKhpZsbWBpvbh61UBtHSEWbfDEqvt9l6zEdk+phZnMrkoSMCb3kmN00igLlDVZ2O19TrWCJQhbhrK4U/HQtZo+OZr4PYl26K0pcurWl7ewKaalmGbwLaLhrYQayutvWY1zZ0IMCbPz37FQSYXBvGmYfHFNBKoT1V1Zqy2XscagTL0ibXz4ckLrAi/M0wNycGgoTXEsop6VmxtpK1zeIar96S6ucMSq+1NNLaHcYowvsDP1JJMJhQE0qas/VAXKBE5DTgd+Crw9x6XsoAZqnpEzHsYgTL0mVf/B969F857GA48P9nWDBvCkSirtzextLx+2Gas6ElX8cU1lU2srWyitTOC1+VgSlGQaSVZjMwZ2uVB0kCgDgYOAW4Fft7jUhPwpqrWxbyHEShDn4mEYO5XoPIzK+t5GlbhTXUq6ttYsqWe9Tuah3VQRRfRqFJW18rq7U2s39FMOKpk+VxMLclkekkWuYGhVyV4qAtUFyKSBbSoasQ+dwJeVW2NOdYIlKFfNFTAn4+DzBH2etTwK82RCjS2h1hW1sDyioZhXRm4J53hKKVVzaza3kRZbSsKFGV6mT4ii/2Kg/g9QyO4Io0E6gPgC6rabJ8HgfmqenTMsYkUKLtMx+8AJ/AXVb1zt+tjgceAHLvPjar6kn3tIODPWPOVUeDwvSUXNAKVBLpKc8y8wuyPSjKhSJSVWxtZvKWOutb0rlvVF1o6wqypbGL19iaqmjoQgXF5fqaVZDGxMIDbmbrrVWkkUEtU9ZBYbb2OTZRA2W7cWuAUoBz4GLhYVVf26PMgsFhVHxCRGcBLqjpeRFzAp8DlqrpURPKB+i4XsTeMQCWJ12+Fhb+Gs+6DQy9LtjXDHlWltLqFTzbXUVE3fDNV9EZNc4edG7GJ5o4wHqeDSUUBppdkMTo3I+XWq9JIoN4FvtNV4l1EDgP+qKoDVlG3PxwBrFfVUtuop4GzgJU9+iiWhwRW+qSt9vsvAstUdSmAqtYk0E7DvjDnJ1DxCfz7eiiaAaNiRo4aEoiIMKkwyKTCINsb2lm0uZb1O5qHfZg6QH7Qy7GTvRwzKZ/yurbu9apV25oIeq31qmklmRQM08wVCeT7wLMishWr4G0JcGE8AxPpQZ0PnKqq37TPL8fKhH5djz4jgPlALhDAmqf8RES+DxwGFAGFwNOq+qtennE1VhFFPB7PYR0dJrIpKbTUWKU5NGpt4g0UJNsiQw/qWzv5ZHMdK7c2Eo4apepJOBKltLqF1dub2FzTQlSt9aoZI7LYrySTjCTur0oXDwpARNzAVPt0jarGNQ+d7AnYi4G5qjoaK17+cRFxYHl2x2JVXjwWOEdETt59sKo+qKqzVHWWyzU0Fj7TkkA+XPg4tFbDc1+HyPDOgJBq5Pg9nDy9mKuOm8ARE/LwupP93z51cDkd7FecyZkHj+SqYydwwn6FKPDW2ir+srCUF5dto7S6magR9n5jpzr6MfA9Vf0MGC8iX4lnbCJ/UyuAMT3OR9ttPbkKeAZAVd8HfEAB1prVAlWttkMRXwLM3FEqM/IQ+MpvYeMCeP2WZFtj6AW/x8Uxkwu46tgJHDulgIA3/bIv7At+j4tDxuRwyRFjueSIsRw8OoeK+jb+b+k2Hn53IwvXVVHdnD6zNCJyqoisEZH1InJjL9fHicjrIrJMRN4SkdE92j8VkSUiskJEYiV9fRToBLrWnCqA2+KyMYFTfC6sIImTbYM+Bi5R1RU9+vwH+LuqzhWR6VgZb0dhRfW9juU9dQIvA79V1Rf39DwTJJEivHgDfPwQnP8oHJAyBZcNvRCKRFmxtZFFm2qHfd6/PRGJKptrWli5rZGN1YM7BZjIKb44g9ieBf6tqo+JyEnA11X1chHxYGlHhx0y/hlwtKpu/fyTQEQWqeqs3cptLFXVg2N9joTNi6lqWESuw8pc6wQeUdUVInIrsEhVXwD+G3hIRH6AFTBxpVqKWSciv8H6oSlWdN8excmQQnzpl7B9OfzrOiicBsUzkm2RYQ+4nQ4OGZPDgaOyWbWtkY831VJvQtR3wemQ7oKLrZ1h1lY2s3JbI2+trWLBuiomFgSZPjKT8XkBHEOrMnA8QWwzgOvt929iFaxltzqAXmLPxHXaJd/VftYkIC5X1GzUNQw8TdvhzydYyWS/+Ya1RmVIeaJRZfX2Jj7aWGP2UsWgqqmDVdsaWb29ibZQBL/HybSSTKaPyBqwKMB99KA6geU9mh5U1Qd7XI8niO1J4ENV/Z2InAv8AyhQ1RoRGQO8CEwGfqiq9+3FllOAn2IJ3nzgGCxn5K2Yn8MIlCEhlC+yynOMPhwu/ye4hl6qmeFKNKqsqWzio4211LakTNHslGRvU4BTSzLx7cMUYIKn+OIRqJHAH4EJwAKsYoMHqGr9bn2eB85Q1cq9PC8fOAorzPwDVa2O63MYgTIkjGXPwrxvWpkmzvg9pNhGSMPeUbU8qg9L++5RuSXK9KwQQVd6/H2JB8Va1wtFlEhUEcDlFNxOB65+TP+5nQ4yPHsXOJ/Px+jRo3G7dy3kGIdAzQZuUdUv2ec3AajqHXvoHwRW2xHXu197BGsZ5rm9PO9crJgCBd5R1X/u9YPZmNhsQ+I46AKoWg0L74HC6TD7mmRbZOgDIsL0EVlMLc60hGpjTdxrVNOzQowrKSCYnZNyGRoGg1AkSlsoQnsoiqridAgZbic+txNnnGLlczvJ3ksFYVWlpqaG8vJyJkyY0FcTPwamiMgErCC2i4BLenYQkQKgVlWjwE3AI3b7aKBGVdtEJBdLeH67pweJyP1YU4FP2U3fEpEvqOq1sYw0AmVILCfebInU/JutrOdTTkm2RYY+4nAIM0ZmMa0kk5XbGvlwYy2NbXsXqqBLh604geX9uJ0OMr1KRzhKW2eE5o4wzR1hvC4HPrcTr8u5T5MKIkJ+fj5VVVV9HhtnENsc4A4RUawpvi5BmQ782m4X4B5VXf65h+zkJGC6HQCHiDwGrNhL/52f0UzxGRJOZws88iWo2wxXvQpF05JtkWEfiESV5RUNfLyxluaO3sPTj85vZ/zk/QbZstQmHFXaOyO0hSJEVXGI4HM7yXA7cTk/r1SxPKguVq1axfTp03dpS6VMEiLyb+BaVd1sn4/DysV3RqyxZku5IfF4AnDx0+DywVMXWqmRDEMWp0M4ZEwOVx4znuOmFOxTIMBwwuUQgj4XBUEvORlu3E4HbZ1halo6qG3ppK0zQro4DLuRCayyN/u+iRXKniUiL4jIC3sbaKb4DIND9mi4+CmY+2VLpK54ATz+ZFtl2AfcTgezxudxwKhsPt1cx+KyejrD0WSblfKIgNftxOt2Eom6aA9ZXlVje4imDsHncljrVa608R9+HrtL7xiBMgweo2fBuQ/BM1fAvP8HX/0rOMy376GOz+3k6MkFHDwmh4821rK8oiHZJg0ZnA4h4HXh97h2CaxoC0Vo6gjjcAiZvtjTfClOVc8MFQAiMieefVBGoAyDy4wz4bS74D8/gpdvhNN+ZcLP04SA18WJ04qYOTaXDevWdLf/5tW1rKtsGtBnTSnO5PpT9rzGtWXzZi4570xmHn4Eiz78gENmHsZFl17B3Xf8guqqKu77y6PMPOxwWlpauPlH17N65QrCoTA33HQzp375DLZs3sx3vvUNWlusquS/vOc3HH7kbN5duIB77ryNvLx81qxayUGHHMp9Dz36uWCQv819hMfnPkwoFGLChIn84cFH8Pv9VO2o5Ec/+A6bN20C4K7f/I7Dj5zNs08/wQN/uNeKnJxxAPfc9xDt4QhCWvzfeEZE/grcjZVv9VfALHbm5tsjRqAMg8+R34KGMnjvD5A9Bo75brItMgwg2X43GR4neQEPzUnM8bexdAMPPfYEU+/7M6fOOZZ5z/2dF155g1de+je///WvmPvks/zunrs49vg53Hvfn2mor+e0k47juDknUVBYyN+ffxGfz0fphvV8+xtfY/7b7wLw2bKlvP3BJ5SMGMkZXzyRjz54jyNnH7PLs08/8ywuu/IbANz5i1t48vG5fPNb13Dzj/6b2cccx6NPPEMkEqGluZnVq1Zy79138n+vvkl+fgF1tbVkeJzkBjzpktD3SOAu4D2s9agnsLJJxMQIlCE5fOFWaKiAV38GWSPhwPOTbZFhgHE7HeQGPNx65v40d4QHvRbV2HHjmb7/AQDsN306x50wp9tDKduyBYC33nidV/7zIg/84V4AOjraqSgvo6RkBD/54Q/4bPkynE4npevXdd/30JmzGDnK2q+6/4EHU7Zly+cEavXKldx12y00NDTQ0tzMiSdb2yveWfA2f/jzwwA4nU6ysrN55uknOOPsc8nPt+qo5eblAeCoWoWMOTBBP51BJQS0ARlYHtRGe29VTIxAGZKDwwFnPwDNlfD8f0GwCCYcn2yrDAnA63bicTloD0Vo7rBCrAcDj3dnTjyHw4HHY52Lw0E4bHt2qjz8+FNMnrLrdOHdd9xGQWERb7z7EdFolHFFOb3e1+nsca8efO+//h9zn3yG/Q88iKefeJz33lnQJ9szlj5G8M2fwKl3whH/r09jU5CPgX8Bh2OVU/qTiJynqhfEGpg2YSKGIYjbBxc9AXkT4alLoOLTZFtkSBAiQobHRX7QQ8DrSpmVlTknf4GH/3x/d3j38qVLAGhqbKC4pASHw8GzTz9JJBLp031bmpspKikhFAox75mnu9uPO2EOjz1s5WyNRCI0NjRw7PFz+L/n51FbWwORTjwvfpes139EePwcOOirA/NBk8tVqvpzVQ2p6jZVPQvYa3h5F0agDMklI9dKJuvPhb+dBztWJ9siQwJxiBD0usgPepNaTr2LH/zoJsKhMCcefTjHHzmTu26/FYArv/ktnnnqCU465gjWr12DP9C3Pa8/uvnnnH7S8ZzxxROZvN9O7+y2u+7h3YULmDN7Fl884WjWrlnFtOkz+N4NP+Yb55zMlp9OJnfN32mZdR2t5z0BvuwB/bxJ4hMRuUxEfg4gImOBNTHGACaThCFVqNkAj5wKDhd842XIHZdsiwz7QG/ZDXojFInS3B6mMzK890+5qlaQ86+v4WipovGLv6Z9+vnplEniASAKnKSq0+38ffNV9fBYY40HZUgN8ifBFc9DqBX+epZVU8qQ9nQFUuRkuONOoppu+FY+R95TX4ZomNoL/0X79LQLGDrSTgzbDqCqdUBc9XeMQBlSh+L94dLnoHkHPH4utNYm2yLDIOF1O8kPeAh6XcNnW1y4g8zXf0z2y9cSKjmU2kvnEy45JNlWJYKQXWK+K1lsIZZHFRMjUIbUYszhVuBEzTprTaqtPvYYQ1ogYmVVKAikxvpUInE0VZD7zNn4l86lZda11J3/LNFAUbLNShS/B/4JFInI7cA7wC/jGZhQgRKRU0VkjYisF5Ebe7k+VkTeFJHFIrJMRE7v5XqziNyQSDsNKcakE600SNuXw9/OhXaTOmc44XAIWRlu8gIe3M70+w7t2fw2+X87BVftWurPeITm439urb2mKar6BPAj4A5gG3C2qj4bz9iE/evbLt19wGlYtegvFpEZu3X7KfCMqh6KVTDr/t2u/wb4T6JsNKQwU0+Drz4G25bB4+cYkRqGuJ0O8gIesjPcONJh3k+j+D+8l5x5FxH1F1B7ySt0TPlysq0aFFR1tarep6p/VNVV8Y5L5NeTI4D1qlqqqp3A08BZu/VRIMt+nw1s7bogImcDG4mzsJUhDZn2ZVukllprUkakhiU+t9PaPxWj/Hkq42jZQc68i8h89w7a9zuL2ov/QyRvcrLNSnkSKVCjgLIe5+V2W09uAS4TkXLgJeA7ACISBH4M/G8C7TMMBaZ9GS54DLYtsdak2huTbZEhCThECPrc5Ac8ePehDMWWzZs54ajDBtCy2Hg2vUXe4yfiKf+Qxi/cTePpD6CeXSPAz/nyF1ny6SeDatdQINkTvBcDc1V1NHA68LiIOLCE67eq2ry3wSJytYgsEpFFvaUbMaQJ078CF8yFrYutEHQT3ZeevP8+3HGHddwDLqeDHL817edMkWm/Pf7tiYQILvwFufMuRDPyqbn0ZdoOusJk7+8DiRSoCmBMj/PRdltPrgKeAVDV97ESCRZgZb/9lYhsAr4P/ERErtv9Aar6oKrOUtVZLlf6LjIagOlnwFcfh8oVVtFDs08qvXj/ff5/e+cdwIqKOgAAHMRJREFUH1WVPfDvyaSHIh0XpAqLgFQpCS30EkRAEVEp4goqVtRdWUUiK+qu+tsVsQAKCIoFFGkChhJBpYXeqwgoUhKMpLfz++O9hBGSEEmGzEzu9/O5n3nz3n33nTM3mTP33nPPoWtXGD/ees3HSIHztF/+//fvTXmTTm1b0qltS6a98xYAmRkZPPy3EXRo1Yz7hw4hKclKqfHShOfp0Lo5ncNaEfmc5dN17txZ7r/3LnqGt6NneDs2bfgBsGL1PTJqJLf26Mwjo0bSp2tH9u+7mPLo4ds7ETCjKyGbp7AyvhYd5mTQuf99LF+6GIDk5GRG3zeUDq2acd89d5KSnHx1n5uX48pv9c1APRGpjWWY7gLuvqTOcaArMEtEbsIyUGdVtUN2BRGJBBJUdYoLZTV4Ag36wD2fW3H7ZvSCYQtNxAlvIToa0tIgM9N6jY6G0PzTBYlYKdQD/Xy4kJpxWTbfHdu28unHc/h61VpQpXfXjoS268DhQwf5vynv0rptGE+MGc2s96dy173DWLZkEd/F7EBEiP/N2t4w/h9PM2rMo7QJbcfJE8cZMrAf6zZb8foO7t/PwhWrCAoKYurbk1m04AsaNLiJ1A0fMLPVAUqllWZmcjeSGvblqxeH/CGdx5yZ7xMUHMy6zdvZu3sX3TteMTVSicRlBkpVM+xRzwrAAcxQ1T0iMhGIUdVFwFPAdBF5EsthYoR6S+wlg2uoE24Zpo9vt43UV1Dpr8UtlaGwhIeDv79lnPz9rfcFxNfhQ7lgf1LSM7mQkpETLX3Thh/o3bcfIXYcvYhbb2Pj+u+pVr06rduGAXDHnUN4f+rbjHr4UQICA3nykQfp3rM33XtZO17WRq/h4IGL8SEvXPidxARr5aFHnwiCgoIA6Dfgdh4c3IeyN/9E4KHFHHVUIfXexfyv392kLn79snQeG374jr+NHgNAw8Y307CRV6TVKHJcOi+mql9jOT84n3vB6XgvV0hcpaqRLhHO4Lnc0ApGfG25n8/sDffMg2rXduHbUMSEhsKqVdbIKTz8iqOn3Ai003okpmaQlJZP9PFL1oBEBF9fX5atXse6b9ewZOECZkx7jy+WLEezsli68lsCAwMvayY4ODjnuGbKXpb0OYf/4WW8daASjR+ZTcOyNfNM52EoGMXtJGEwXB1VG1tBZf1DYFZfOLC8uCUyFJbQUBg37qqMUzY+IpQOtDb5tmvfnuVLF5OUlERiYiJfL1lEm9B2/HziBDGbNgDw5bzPaN02jMSEBH7/PZ5uPXox8eX/sHf3LgA6denKB1Mvbs/cvXPHH54naYmUjnqKcl/dS1ZQBZ450pYp2/1peLMVsiivdB5tw9rz5bzPANi3dw979+y6ap29GWOgDJ5Lhbpw/0qoWB8+HQKbPyhuiQxugp/Dh/CwNgwbNozeXTrQp2tH7hk2grLXlePGevWZOX0qHVo1I/638wy/fxQJCRcYeudAOoe1ol+vrkS+/G8AXvrPG+zYtpXOYa3o0Lo5s2e8n/OMmnqc8nM6E7TrYxJbPcLZwUt5c+4K+g24PadOXuk8ht8/isTEBDq0asZrkybSpFnza/sBeQgm3YbB80lNgPkj4dAKaPcEdJ1gZew1FBsFTbdxLcjMUhJS0knJKJqUHpL6O6XWTiR41xwyytbk915vkV6tTZG07Yy3pNsoDMY32+D5BJSCu+bC10/D9/+D+JNw2xTwCypuyQxugMNHKBvsT6DtRJFZiB/lAUeWU3rlP/BJOkNiy4dJCHsG/IKvfKPhqjAGyuAdOHyh73/huhqw6kWIO2pFRS/zl+KWzOAmBPg58CuIE0Uu+CSeofSa5wg8uIj0ig357bZZZFQ103KuxsyDGLwHEegwFgZ/DOcOwrRwOLGpuKUyuBHOThS+BUmQqFkE7p5LhVkdCDiynIR2z9p5m4xxuhYYA2XwPm7qC/dHWVN8syJg20fFLZHBzciOlF4qwJe8zJTvmV2U+7QvZb95kowK9Ym9dxWJbZ4Ex5XXhQxFgzFQBu+kSkN4YA3UDIOFY2Dp05CRWtxSGdyI7ASJ5UP88XfKOyUpv1F61TjKf9wD39+OEd9zMucHLySzgtnLdK0xa1AG7yW4PNzzBaycAOunwM8xcMdMKF+7uCUzuBG+Dh/KhfiTnJpG+ta5lFo7EUk5T3LTESSEPYsGli1uEUssZgRl8G4cvtBzkrUuFXcUpnaCfYuLWyqDu3F8A0Gze1FmxeNklatD3D3fcKHLK/kap39PmsjaNavzvP7hB9P5/JOPAfj04zn8eion3R1jH3mIA/sLnLfPJRQg43lNEVllZzuPFpHq9vlmIrJeRPbY1wa7TEazD8pQYjh/DObdB79shTYPQbdI8Ls8hI2h8LjTPqh8iTsKURNg3yIofT10GQ9Nh5CSqVxISSeriL4eB0T0YMK/XqFZi4KH5HLlPig74/lBoDtWrr7NwBA7/Fx2nXnAElX9UES6APep6lARqQ+oqh4Skb8AW4CbVPW3AitXQMwUn6HkUK4WjFxhTflteAd+/BYGTIXrmxS3ZN7Nsmfh1yIO5VP1Zuj96hWr9e/fnxMnTpCSksLjjz/OqFGjWL58Oa9M+Ad/qxfHXXUu4BcQRFKbJ7jrze84MuNlQkPXEBUVxebNMZyOPc+dtw/g2w1WMsF3Jv+XxMREnhn3PI899ADde/bm1v4DeWnC86xYthRfX186de5K5KRXee2VlwgJCeGGGjXZsW0rYx64j8CgIJZERXP3HbflGKwF8z/jzTdeQ1Xp1qMX4ydOAqBapXI8/vjjLFmyhKCgIBYuXEiVKlWK6hPMyXgOICLZGc/3OtVpCIy1j9cAXwGo6sHsCqr6i4icASoBRW6gzBSfoWTh6w+9XoF75kNSLEzvAuvegKw/ty/G4BnMmDGDLVu2EBMTw+TJkzl98hgxk4exuv95ht54gczGg+CxbTy77Dy3hHViz549DBgwgOPHj+PjI5QJ8schQn4e6XFxsSxbsoi1G7ey5ofNPPnMH2fLbu0/kKbNW/D29Jms+m5jTgR0gF9P/cJLE55n/uJlrPpuI9u3bmHZkkUAJCYm0rZtW3bs2EHHjh2ZPn16UX40Bcl4vgMYaB8PAEqLSAXnCiLSGvAHjhSlcNmYEZShZFKvOzy8AZY8CasmwsEV0P9dK76foWgpwEjHVUyePJkFCxbg56P0Kn+C4PfDeL51KlRvB90nEljVSnOxdu1avvzySwAiIiIoV65cThsiUCEkgAup6bk+o0yZsrmm6igI27duIbR9RypWrATA7XfexYYfvqN33374+/vTt29fAFq2bElUVNSfUd1XRGKc3k9T1Wl/pgHgaWCKiIwA1mLl9cv5JSci1wNzgOGqWjRxpC7BjKAMJZfg8lYq+YHvw9n98G4YrH0dMtKKWzJDERAdHc2aVVFseu8RYoZm8noXSCt1AxNPhMLQBdY04RXw9fUlKysLHx+hbJA/kpl+2b6p7FQdfW8bQNSKZQwZ2K9I5Pfz80Ps1CAOhyPv1PK5k5GdbdwulxqnK2Y8V9VfVHWgqjYHnrPP/QYgImWApcBzqrrhzwj2ZzAGylCyEYEmg+DhjVCvB6z+F0zrZCJQeDoZaZQ9uohP2h0mYMXTJPuWJeLTNFbXeIrp3+zhxx9/BCAuLg6Ajh07MnfuXACWLVvG+fPnAahSpQpnzpwhNjaW1NRUli/7mmB/B4G+F78680rV4UypUqVJsBMdOtO85S2s/34dsbHnyMzMZMH8zwlt1+Gyei4gJ+O5iPhjZTxf5FxBRCqKSLai44AZ9nl/YAEwW1Xnu1JIM8VnMACUuR4Gz4EDy6xNvR/0gFtGQpfnrZGWwTNIS4QtH8L6KTT//WcOZ4bw0LrynCpdicSqbahUuTLTpk1j4MCBZGVlUblyZaKiopgwYQJDhgyhUaNGhIWFUaNGDcAaxbzwwgu0bt2aatWq0aBBA0Ss4LP+Dh98BBISLjB8yCBSU1NR1ZxUHc4Mvvte/vHkozlOEtlUqXo9z0f+i9v79spxkugVcavLP6YCZjwPB14REcWa4htj334n0BGoYE//gZUNfXtRy2nczA2GS0m9AKsnwaapEFAGwsdBq/tNiJs/wTV3M08+D5umw4Z3ITkOaraz4jLW7XpZBt2CUKtWLWJiYqhYsWK+9TKzLHf01CJK5eGMSbdhRlAGw+UElLYW9lsMgxXjYPk/IOYD6Pmy5VxhcB/OHbZ+SGyfC2kJUL8XtB8LNYo+P1NuOHyE64L9SU7L5EJqOl7ye99tcOkaVAF2KtcQkTUiss3ekdzHPt9dRLaIyC77tYsr5TQYcqVKQxj6FQz5DDQLPr7DSi9/3GVrwoaCkJUFh1bCR3fAlJYQMxMa9IUHv4e7PysS43Ts2LErjp6cCfJ3UOGSmH6GwuOyEZS9U/ltnHYqi8gi553KwPPA56r6rog0BL4GagHngFvtTWCNseZJL/XRNxhcjwj8tRfU7QJbZlpefjN6WlNHXZ6DagWPDGAoJElxsPNz2Pw+xB6CUlUg/J/QcgSULrINrFeNw8eK6ZeUlkFCSgZmMFV4XDnFV5CdygqUsY/LAr8AqOo2pzp7gCARCVBVE47aUDz4+kOb0dB8KGyeDt/9z9rkW68ntHvcipp+FWsdhiuQlQXH1sG2ObB3EWSmWj8KBk6Hhv2tfnEzgv198Xf4EJ+STkamMVOFwZUGKredypeOvSOBb0TkUSAE6JZLO7cDW3MzTiIyChgF4O/vfn+oBi/EP9gySLeMhI3vwfp3YFYf60sz7FG4qR/4OIpbSs/nt+PWaGnbHCuGYmBZaDnc+oHgAaGpfB0+lA/2JzEtk8TUP7V/yeBEcTtJDAFmqeobIhIKzBGRxtm7kkWkEfBvoEduN9ubz6aB5cV3jWQ2GCxHio7PQNsxsGMu/DAF5o2A62paHn9N74ZSlYpbSs8i4Qzs+Qp2z4cTG61ztTpA5+etJJR+Qfnf72aICKUCfAmwR1OZRRV5tgThyhW9K+5UBu4HPgdQ1fVAIFARwA7tvgAYpqouifNkMBQa/2Bo9Td4dAvcOQfK/AWiXoD/u8kyWEe/taapDLmTcBa2zobZ/eGNv8KyZyA1Abq+AI9thxFLrI3UbmKcIiMjef311wF44YUXWLly5WV1oqOjc0IUAfj5Wtl7g/wujqx379zBym+Wu15gD8eVI6icncpYhuku4O5L6hwHugKzROQmLAN1VkSuwwqj8ayqfu9CGQ2GosHHAQ37WeXMftj6oeX6vGcBXFcDGt9ulSqNS/ZalSqcOwgHvrY2RZ/YBCiUq8XJJneyLDCExo0HEXpDaHFLekUmTpxY4Lo+IpQJ8iPA14ffU9LZvWsnO7ZtoVuPXi6U0PNx2QhKVTOA7J3K+7C89faIyEQRyQ5W9RTwgIjsAD7B2o2s9n03Ai+IyHa7VHaVrAZDkVK5gRUx/an91mJ+xfrw/WR4rz283QaiX4VftlNiNs0kn7eSRC59Gt5qAW+3hpWRkJFqbYIevY71A96l/t45PLR5Ml1nd2X9ifVF8ujZs2fTpEkTmjZtytChQ1m8eDFt2rShefPmdOvWjdOnTwPWyGjkyJGEh4dTp04dJk+enNPGpEmTqF+/Pu3bt+fAgQM550eMGMH8+Vakn+XLl9OgQQNatGiRE3QWYNOmTYSGhtK8eXPCwsI4dvQwpfyE117+Fwu//IKu7dvw1RfzSExM5Ikxo+nVuT3d2rdl+VIrqeaePXto3bo1zZo1o0mTJhw6dKhIPhePQVW9ogQHB6vB4LYknFPd9L7qjD6qE8qqTiij+lp91a/GqO5dpJp0vrglLDqS4vSnVR+oRk1QnRquGnmdpe9L16t+dIfqpumqv538wy0vr31ZHS86lEjU8aJDX177cqHF2L17t9arV0/Pnj2rqqqxsbEaFxenWVlZqqo6ffp0HTt2rKqqTpgwQUNDQzUlJUXPnj2r5cuX17S0NI2JidHGjRtrYmKixsfHa926dfW1115TVdXhw4frvHnzNDk5WatXr64HDx7UrKwsHTRokEZERKiqanx8vKanp6uqalRUlA4cOFBVVWfOnKmjH3xIf41P1l/jk/Wxsc/olGkz9Nf4ZD3w0ymtU/dG/fnseX3kkUf0o48+UlXV1NRUTUpKukzPvXv3XnYOSFQ3+F4ubCluJwmDoWQQUsFynmh1v7XucjjKSvGxd6HlqYZA1cZWiJ4aoVZxg709VyQj1YoE//MWOBkDJzfDuYPUAPDxheqtoOPfoU645emYh1t4eK1w/B3+pGWm4e/wJ7xWeKFFW716NYMGDcrZcFu+fHl27drF4MGDOXXqFGlpadSuXTunfkREBAEBAQQEBFC5cmVOnz7NunXrGDBgAMHBwQD063d5pPL9+/dTu3Zt6tWrB8C9997LtGlW8PD4+HiGDx/OoUOHEBHS0y+m7PB1WGtTvyenE716FSuWLeXdt/4HQGpqCidPHCc0NJRJkyZx8uRJBg4cmPOMkoIxUAbDtaZUJWh2t1Uy0611mGPfwU/fWw4DG9+z61WBqk0st+qqTaDSX62swMXhMJCeDOd/slKkn9kLp/dYr+cOgdopgoIrQPXW0GQwP2VVpWZofwgoVaDmQ28IZdWwVUQfiya8VrjL1qAeffRRxo4dS79+/YiOjiYyMjLnWkBAQM7xVaS3yJXx48fTuXNnFixYwLFjxwgPD//DdT/bSIkoH8z5hBvr1c+5FujnoHXzJrRp04alS5fSp08fpk6dSpcuJSewjjFQBkNx4vCDWu2sApbBOrXDMlq/7oRTO+HI6otGAIEy1aB8bauUqgqlKlvGrFRly0j4h1jFLwQcefyLq0J6EqQlWTHs0hIg8aw1uks8Y7l8J5yB336y9iFdOPXH+6+rYTl8NOhrhYS6vhmUr5PjAJK0b1+BjVM2oTeEFqlh6tKlCwMGDGDs2LFUqFCBuLg44uPjqVbNCkrz4YcfXrGNjh07MmLECMaNG0dGRgaLFy9m9OjRf6jToEEDjh07xpEjR6hbty6ffPJJzjXn582aNSvnfOnSpblw4QJguaP36dWLjz6Yyouvvo4i7NqxnVa3tOTo0aPUqVOHxx57jOPHj7Nz505joAwGQzHh8IPqt1glm/QUOLsPYo9YI5js1wPLLaOSX1AdR8DlUdg1yxoR5Xufv2X0rqthhXUqV8sq5WtbTh+BZfK+101o1KgRzz33HJ06dcLhcNC8eXMiIyMZNGgQ5cqVo0uXLjl5ofKiRYsWDB48mKZNm1K5cmVatWp1WZ3AwECmTZtGREQEwcHBdOjQIcf4/P3vf2f48OG89NJLRERE5NzTuXNnXn31VZo1a8a4ceMYP348TzzxBF3btSY9I5MbatZi/oKFfP7558yZMwc/Pz+qVq3KP//5z6L9kNwck27DYPBkMjMgKRYSTlsjnuQ4KydSWqI1Qkq9YBmkS/ELvjjSyi7BFa1RWEglK3JDIdzhr3m6DS9CVUlKyyQzSylj0m0YDAaPxeFrOVN4gkOFoUCICCEBvmR5yeChMJjY8AaDweCG+JTkDd02xkAZDAaX4C3LB+6Mt3/GxkAZDIYiJzAwkNjYWK//Ai1OVJXY2FgCAwOLWxSXYdagDAZDkVO9enVOnjzJ2bNni1sUryYwMJDq1asXtxguw3jxGQwGg5fhLV58ZorPYDAYDG6JMVAGg8FgcEuMgTIYDAaDW+I1a1AikgUkX+XtvkDhI0MWL0YH98Do4D54gx5Xq0OQqnr8AMRrDFRhEJEYVb3lyjXdF6ODe2B0cB+8QQ9v0KEweLyFNRgMBoN3YgyUwWAwGNwSY6AsphW3AEWA0cE9MDq4D96ghzfocNWYNSiDwWAwuCVmBGUwGAwGt8QYKIPBYDC4JV5poESkl4gcEJHDIvJsLtcDROQz+/pGEanldG2cff6AiPQsaJseosMxEdklIttFJMZddRCRCiKyRkQSRGTKJfe0tHU4LCKTRVybNMdFOkTbbW63S2U31aG7iGyxP+8tItLF6R5P6Yf8dPCUfmjtJOMOERlQ0DY9HlX1qgI4gCNAHcAf2AE0vKTOw8B79vFdwGf2cUO7fgBQ227HUZA23V0H+9oxoKIH9EMI0B54EJhyyT2bgLaAAMuA3h6oQzRwiwf0Q3PgL/ZxY+BnD+yH/HTwlH4IBnzt4+uBM1gbeK/p91JxFG8cQbUGDqvqUVVNAz4Fbrukzm3Ah/bxfKCr/QvwNuBTVU1V1R+Bw3Z7BWnT3XW41ly1DqqaqKrfASnOlUXkeqCMqm5Q6791NtDfk3QoBgqjwzZV/cU+vwcIsn/le1I/5KqDC2XNi8LokKSq2dEkAoFsz7Zr/b10zfFGA1UNOOH0/qR9Ltc6dsfHAxXyubcgbRYlrtABrD/sb+ypjlEukDtX+XKR47I6l+iQX5snr9BmUeIKHbKZaU/ZjHfx9FhR6XA7sFVVU/HcfnDWIRuP6AcRaSMie4BdwIP29Wv9vXTN8UYDZcib9qraAugNjBGRjsUtUAnlHlW9Gehgl6HFLE++iEgj4N/A6OKW5WrJQweP6QdV3aiqjYBWwDgR8d40uk54o4H6GbjB6X11+1yudUTEFygLxOZzb0HaLEpcoQOqmv16BliAa6f+CqNDfm06pw91537IE6d+uADMxY37QUSqY/2tDFPVI071PaYf8tDBo/ohG1XdByRgr6cVoE3PprgXwYq6YC0eHsVyEMheOGx0SZ0x/HEx8nP7uBF/dDA4irUQecU2PUCHEKC0XScE+AHo5Y46OF0fwZWdJPp4kg52mxXtYz+stYYH3VEH4Dq7/sBc2vWIfshLBw/rh9pcdJKoCfwCVCxIm55eil0AF/0x9AEOYnm4PGefmwj0s48DgXlYDgSbgDpO9z5n33cAJ8+k3Nr0JB2wPH122GWPB+hwDIjD+rV4Ets7CbgF2G23OQU7Goqn6ID142ALsNPuhzexvSzdTQfgeSAR2O5UKntSP+Slg4f1w1Bbxu3AVqB/fm16UzGhjgwGg8HglnjjGpTBYDAYvABjoAwGg8HglhgDZTAYDAa3xBgog8FgMLglxkAZDAaDwS0xBspQ4hCRhOKWITdEpJaI3F3cchgM7oIxUAbDVSIijqu4xzefy7UAY6AMBhtjoAwlGhF5RkQ2i8hOEXnR6fxXdlDdPc6Bde38Tm+IyA4g1H4/yc7Ts0FEquTyjEgRmSMi3wNz7JHSOhHZapcwu+qrQAc7eOmTIuIQkdec5PPYWHgGw9VgDJShxCIiPYB6WDHYmgEtnQLojlTVllgREx4TkezI2CHARlVtqlY6jRBgg6o2BdYCD+TxuIZAN1UdgpXPp7tagXsHA5PtOs8C61S1mar+F7gfiFfVVlhBQh8QkdpF9gEYDG5OftMNBoO308Mu2+z3pbAM1loso5SdufQG+3wskAl84dRGGrDEPt4CdM/jWYtUNdk+9gOmiEgzu736+cjXRETusN+XteX4sUDaGQwejjFQhpKMAK+o6tQ/nBQJB7oBoaqaJCLRWHHSAFJUNdOperpejBeWSd7/U4lOx08Cp4GmWLMYeSU1FOBRVV1RMHUMBu/CTPEZSjIrgJEiUgpARKqJSGWskcp52zg1wIraXZSUBU6pahZWINBsZ4sLQOlL5HtIRPxs+eqLSEgRy2IwuC1mBGUosajqNyJyE7DeTqaaANwLLAceFJF9WBHhNxTxo98BvhCRYfazskdXO4FM2wFjFlaE7VrAVjvb61lcm1rdYHArTDRzg8FgMLglZorPYDAYDG6JMVAGg8FgcEuMgTIYDAaDW2IMlMFgMBjcEmOgDAaDweCWGANlMBgMBrfEGCiDwWAwuCX/D7+3kiTDOegXAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3jb5dXw8e8tWd7bjlccx9l7swIBMlhhFUpbZil00FJKSycdD4W3dMLTp4sCBUqBtlAIG8oKhBAICWRPJ850bMe2vK09z/vHTwlOcGx5yJLs+3NduhxLv3Ecj6N7nVuJCJqmaZoWa0zRDkDTNE3TuqITlKZpmhaTdILSNE3TYpJOUJqmaVpM0glK0zRNi0k6QWmapmkxSScoTdM0LSbpBKVpPVBK3aWU+leErp2klPq7UqpKKWVTSm1WSi2NxL00Ld7oBKVp0ZUAVANnA1nA/wDPKKXKoxiTpsUEnaA0LUQpdbtSqjbUktmtlFqilLoA+ClwpVLKrpTaEjo2K9TyqQud80ullDn02g1KqdVKqfuUUu1KqV1KqSVd3VNEHCJyl4gcFJGgiLwKHADmDdbXrWmxKiHaAWhaLFBKTQK+BZwsIodDLRiziOxTSv0aGC8i13U65THACowH0oBXMVpCfwu9firwLJAPfBZ4Xik1RkRaeoijEJgI7BigL03T4pZuQWmaIQAkAVOVUpZQi2ZfVweGksiFwG2hFpAV+ANwVafDrMAfRcQnIk8Du4GLugtAKWUB/g08LiK7+v8laVp80y0oTQNEZK9S6jbgLmCaUupN4HsicriLw0cDFqBOKXXkORNGC+qIWjm2EnMVUHKi+yulTMA/AS9GS07Thj3dgtK0EBF5UkQWYCQgAX535KXjDq0GPEC+iGSHHpkiMq3TMSNVp+wFlAFdJTtCx/0dKASuEBHfAHw5mhb3dILSNIwxKKXUYqVUEuAGXEAw9HIDUB5q5SAidcBbwO+VUplKKZNSapxS6uxOlywAvq2UsiilPg9MAV47we0fCL1+iYi4Bv6r07T4pBOUphmSgN8CTUA9RoL5Sei1ZaGPzUqpjaF/Xw8kAjuBVowJEcWdrvcRMCF0vV8BnxOR5uNvqpQaDXwdmA3Uh2YK2pVS1w7g16ZpcUnpDQs1bWAppW4AvhrqLtQ0rY90C0rTNE2LSTpBaZqmaTFJd/FpmqZpMUm3oDRN07SYFHcLdU0mk6SkpEQ7DE3TtLjkdDpFROKicRJ3CSolJQWHwxHtMDRN0+KSUipu1trFRRbVNE3Thh+doDRN07SYpBOUpmmaFpN0gtI0TdNikk5QmqZpWkzSCUrTNE2LSTpBaZqmxYk11Wv4zfu/YU31mmiHMijibh2UpmnacLSmeg1LnliM1+8hMSGZd65/h/mj5kc7rIjSLShN07Q4sPLgu3j9bgII3oCXlQdXRjukiNMJStM0LQ4s9AuJAmZMJJoTWVi+MNohRVzcVTNPS0sTXepI07RhxVYPfz2VNRkFrJxxGQvHLO5z955SyikiaQMcYUToMShN07RYJgKv3AZ+N/OvfJL5+ROiHdGg0V18mqZpsWzr01D5Oiy+A4ZRcgKdoDRN02JXRx28/iMYdRqcdnO0oxl0OkFpmqbFIhF49bvg98Jl94PJHO2IBp1OUJqmabFo+3NG196SOyBvXLSjiQqdoDRN02KNo9no2hs5D079RrSjiRqdoDRN02LNmz8Bdwdcet+w7No7QicoTdO0WFL5ljFz78zvQ+HUaEcTVTpBaZqmxQqPzZgYMWIynPm9aEcTdXqhrqZpWqx4+/9BRy18ZTkkJEU7mqjTLShN07RYUPUhrHvYWO806uRoRxMTdILSNE2LNp8bXr4Vsstg8f9EO5qYoROUpmlatK26B5r3wiV/gsTo1nFVSj2qlLIqpbaf4PUspdQrSqktSqkdSqkbIxWLTlCapmnRVLcVPvgjzL4Wxi2OdjQAjwEXdPP6LcBOEZkFLAR+r5RKjEQgOkFpmqZFSzAAr3wHUnPhvF9GOxoARGQV0NLdIUCGUkoB6aFj/ZGIRc/i0zRNi5b1j8LhjXDF340kNTgSlFLrO33+kIg81Ivz7wNeBg4DGcCVIhIcyACP0AlK0zQtGjrqjGnlYxfB9CsG885+ETmpH+efD2wGFgPjgOVKqfdFpGNAoutEd/FpmqZFwxs/hoAXLvo9KBXtaHrjRuB5MewFDgCTI3EjnaA0TdMGW+VbsPNFOPuH8Vip/BCwBEApVQhMAvZH4kZKRCJx3YhJS0sTh8MR7TA0TdP6xuuE+0+FhBT4xgeQEJEJcCeklHKKyAnnsiulnsKYnZcPNAB3AhYAEXlQKVWCMdOvGFDAb0XkX5GIVY9BaZqmDab3fgdth+CG1wY9OYVDRK7u4fXDwHmDEYvu4tM0TRssDTtgzX0w5zooPyPa0cQ8naA0TdMGQzAIr9wGyVlw7t3RjiYu6C4+TdO0wbDxcaj5GC57cDDXPMU13YLSNE2LNLsV3r4Tys+EWVdFO5q4oROUpmlapL35U/C54OI/xNuap6jSCUrTNC2S9r8H25bBgu9B/oRoRxNXdILSNE2LlIAPXv8RZI+GBd+NdjRxR0+S0DRNi5SPH4bGXXDVU2BJjnY0cSdiLagwNr1aqJRqV0ptDj1+HqlYNE3TBp3dCit/A+PPgUlLox1NXIpkC+oxjLLsT3RzzPsicnEEY9A0TYuOt+8yJkZc8Ds9MaKPItaCCmPTK03TtKGp+mPY/G+Yfwvkj492NHEr2pMk5of2tX9dKTXtRAcppW5SSq1XSq33+yOycaOmadrACAbgtR9CRjGc9cNoRxPXojlJYiMwWkTsSqkLgReBLudghnZ7fAiMauaDF6KmaVovbXwC6jYbu+QmpUc7mrgWtRaUiHSIiD3079cAi1IqP1rxaJqm9ZuzBd75BYw+Y7B3yR2SopaglFJFShkjh0qpU0KxNEcrHk3TtH5791fgboOl9+iJEQMgYl18nTe9UkrVcNymV8DngJuVUn7ABVwl8bZ7oqZp2hH122D9o3Dy16BoerSjGRL0jrqapmn9JQL/WApNlXDrBkjJiXZEJ9TTjrqxRFeS0DRN669ty+DQGrj0LzGdnOJNtKeZa5qmxTePDd66A0rmwuzroh3NkKJbUJqmaf3x3j1gr4erngSTfs8/kPT/pqZpWl81VsLaB2DOdVA6L9rRxCSl1O/Cea4rOkFpmqb1hQi8cTtYUmHJXdGOZsD0VOg7dMzCUJHvHUqp93q45LldPBdW9VydoDRN0/pi139h3wpY9FNIHxHtaAbSY8AFJ3pRKZUN3A9cKiLTgM+f4LiblVLbgElKqa2dHgeAreEEoqeZa5qm9ZbPBX89BRLT4evvgzl+hvPDmWaulCoHXhWRTy3oUkp9EygRkf/p4RpZQA7wG+DHnV6yiUhYhcR1C0rTNK23Vv8J2g7BhffGVXIaIBOBHKXUSqXUBqXU9V0dJCLtInJQRK4GagAfIEC6UqosnBsNu/9ZTdO0fmmtgg/+YNTaK18Q7Wj6IkEptb7T5w+FCnKHfT4wD1gCpABrlFJrRaSyq4OVUt8C7gIagGDoaQFmhnMjTdM0LVxv/hSUCc69O9qR9JVfRE7qx/k1QLOIOACHUmoVMAvoMkEBtwGTRKTXtVZ1F5+maVq49r4Du1419nnKGhntaKLlJWCBUipBKZUKnApUdHN8NdDelxvpFpSmaVo4/F54/XbIHWfslDtE9VToW0QqlFJvYMzECwKPiMgJp6QD+4GVSqn/Ap4jT4rI//UUi05QWtwTEWweP20OHx1u42F3+3H5Arh9ATz+IL6AEAgGCQoojJ0QzCYTiQkmkswmkhPNpCWaSU9KICPZQnaqhZzURFISzdH+8rRY8dED0LwHrn0WEpKiHU3EhCY19HTMvcC9YV7yUOiRGHqETU8z1+KKiNBk91Lf7qahw02j3UOLw4vXH+z55D5ISzKTn55EYWYyhZnJlGQnk5qo39cNOx11cN9JUH4mXPOfaEfTL9GqZq6UShURZ2/O0b9pWkwTERrtHqpbnFS3uKhtc0UsGXXF4Qng8Dipav7k9yovPZFROamU5aUyKieVxAQ9lDvkLf85BHxwwa+jHUncUUrNB/4OpANlSqlZwNdF5Js9nasTlBZz/IEgVS1O9jc6ONjkwO7xRzukYzTbvTTbvWyubiPBpBiVm8r4gnTGF6STbNFdgkNO1Yew7RljYkTu2GhHE4/+CJwPvAwgIluUUmeFc6JOUFpMCASFg80OKutt7G9yDGorqT/8QeFAk4MDTQ5W7LIyOi+VKcWZjM1PI8GsW1ZxLxiA134EmaWw4HvRjiZuiUi1UqrzU4FwztMJSosqa4ebHYc72N1gw+UN62c2ZgWCwv5GB/sbHSRbzEwpzmBmaTa5ab0aF9ZiyfpHoWEbfP5xSEyNdjTxqlopdTogSikL8B26n5Z+lJ4koQ06rz/I7nobW2vbsHZ4ej4hjikFZbmpzC3LoTw/LnbZ1o5wNMNf5kLxTLj+ZeObOQQM9iQJpVQ+8CfgHIxJtG8B3wln4a5uQWmDpt3pY3NNGzsOt+PxxUcXXn+JQFWzMckiPz2Rk8pzmVSYgck0NP7YDWkrfgFeOyy9d8gkp2gQkSbg2r6cq1tQWsTVt7tZX9XCXqudOPtxi4jsVAsnl+cytThTJ6pYVbsRHl4Mp31zyM3ci0ILagxwK1BOp0aRiFza47k6QWmRUt3i5KMDLVS39Grpw6A5aNvE3vaPGZ91CuUZcwb9/jmpFk4fn8+EgnSUfoceO4JBePQ8oyjsreshOSvaEQ2oKCSoLRjTzLfxSbFYRKSnjQ51F5828KqaHazd38zhNne0QwHAEnBSYK+g0F5BrusgmZ56KlwH+Jl3H16Ed1EsS5rEjKSRtKaU0Zoymob0qdSnTyVoskQsrlanj/9uraMwM5kzJ+QzKlcPwseELU9BzTq47IEhl5yixC0if+7LiTpBaQOmptXJh3ubqW1zRTsUMt21TGhawZjWDxjZsQVTaFarw5KLLamI5SYLHoQg4AXeVTA34GJS41skB2wA+ExJ1GbOoTL/HPbmLsRjicwfq4YON89uqGF8QTpnTRhBVmrkkqLWA3c7vH0nlJ4CM6+KdjRDxZ+UUndiTI7oXItvY08n6i4+rd+sNjer9zZxsCm6XXnmoJcJTW8zzfoKZe3GdjeNqRM4kHM6hzNn05A+BWdiHmB07z2w4wb8QR8JJgs3T3vM6OYTIdXXTLFtG6PaN1De+iE57moCKoG9eYvYWHIN9Rmf2mR0wCSYFCeV53JyeY5eRxUNb/wE1j4AN62EktnRjuYojz/AwSYn+xvtTB+Z1a/WdhS6+H4DfBHYR6f9oERkcY/n6gSl9VWH28eHe5vZVd8R1ckPCQEXM+pf4KTD/yLd20hb8kh2FFxKxYil2JKLT3heWGNQIhQ4djHF+jrTrC+TFHBQmzGL1aNvpjZrXoS+ImMixeLJBYzO01PTB421Ah44A+ZeD5f8MdrRYPf42d9oZ1+jneoWF4Gg8Ut2yawSxhek9/m6UUhQe4GpIuLt9bk6QWm95fUHWXewhY1VrfiD0fv5UeJnZv3znHboYVL9bVRnzmNd6Zeoyj7V2FBugFn8DqZZX+Gk2n+S4bVyIOd03iv/Lq2p5QN+ryOmFGdy9sQRuqp6pInA45dA/Tb49iZIzY1KGK0OL3sb7eyz2qnvcHf5xi8OE9SLwE0iYu31uTpBaeESEXbWdbB6bxMOT3SrPpS1rmXhgf8jz3WA6sx5rB79Teoye9xBekCYA27m1D3DyTWPkRB0s670BtaV3kDAFJmKEamJZpZMKWB8QUZErq8BO16AZTfARb+Hk786qLe22tzstRpJqcnecyMjDhPUSozt3ddx7BiUnmauDYz6djfv7rZS3z74M/MCQcHjN/Z1Uq5WLjr8F07peBOrZSTP5X2DjSnzjX2eFJiUMh4mMCuFxRza8ynBRFKCmcQEE+YBWnuU6m3m7AN/YHLTmzSljuW1ib+iOW38gFy7K5OLMlg0uUAXpB1oXgfcd7LRarrpPTBF9v9XRKjvMJLSXqudNqevV+fHYYI6u6vnw5lmrhOU1i23L8AHe5rYfrg9IuNMIoLN7afF6aXD5cPu8WNz+49+dHr9+ALGjc8xbeDXlr+TSwf3By7lPv/leOn9jLdEs4m0JDNpSQmkJyUc/ZiVYiE7xUJmiqVXSay8dTXn7fkFSQEHK8d8j22Fl0es8kBGcgLnTS2iLE9PSR8w79wN7/8vfPlNKDstIrcQEQ63u9nTYGOv1Y7N3fcK/fGWoEL3HA1MEJG3Q9vEm0XE1uN5OkFpXRERdhzu4IO9TQNWxNXu8WPtcGO1eWh1eGlxeml1+o4O/oLxdz09lDAykhJITUog3eznevujnGd/kZqk8Twz8sdY0yZhUooEk8JkUpiUMYwQFCF45GNQ8AU+aX0ZjwAubwCHN4DD4w89AgQ6/R4ojESQnZpIbmoieRmJjEhPIi8t8YQz61K9zZy/5y7K29ZSkX8+yyfcQcAUmV1XlYK5ZTmcMT5/wFqDw1bzPrj/NJh2OXz2oQG9tIhQ0+o62lIaqG1j4i1BKaW+BtwE5IrIOKXUBOBBEVnS47k6QWnHa7J7WFFh7dd6Jl8gSF27m8NtLhpCScnZKdFlpVjISbWQm5ZITqrxyEqxkJpkxtSp9ZHlruGiXT+l0FHBhpJr+GD0twZ88ayI4PIFaHf5aHOGHi4vbU4frU7v0RacwphdNyI9iYLMZIqykinMSPokaUmQU2oe44xDD3A4YwavTL736LT2SCjITOKiGcVkp+pq6X325JVw8AO4dQNkFPX7csGgUNvmYo/VaClFYqw2DhPUZuAU4CMRmRN6bpuIzOjpXL1QVzvKHwjy8YEW1le1HtOqCYcvEKS21UVNm+toUgqK8Uc9Jy2RstxUCjKMP+wj0pPC2oW2rO0jLtr1Y0Dx8uR72Ze3sE9fV0+UUqQmJpCamEBxVsoxr4kI7S4fTXYvjXYPzXYP9R1uKq12AEwK8tOTKM4yEpZtxBdpSSnngj0/5+qtN/DC1D/RkhqZTe6sHR7+/dEhzplSyKQiPYGi1yrfhMo34Ny7+5WcgkGjpXQkKTnjfNuYCPCIiPdIOS+lVAIQ1h8Y3YLSAKNu3jsVDbSGOWArIrQ6fRxsdlDV7KS21UVABJOCwsxkRmanMDInheKsZJISej/oPLPuORbtv5eW1HJemvJ7OpJH9voakeT0+qlvd1PX7qa+w01Dh/toSys71cLZGbX8wv4LLCrAC9Puw5o+OaLxzBqVxdkTC3SXX7h8bqNrz2yBb6yGhN61QoNBobrVyZ4GY53SYCalOGxB3QO0AddjFI39JrBTRH7W47k6QQ1vvZkEISLUtbvZY7Wzv9FOR2igNzc1kfL8VEbnpVGclYylHxUQlAQ468CfmFv3FPtzzuD1ib/Em9D3X8bBEgwKTQ4PNa0ualpd1La6KA4e5t+JvyZbOfl19v/DXXwKJdkpEUsiRVnJXDSzmMxkXSqpR6v+F1bcDV98Acb1WNAA+CQpVYaSUrQ22IzDBGUCvgKch9Gp8ibwiISRfHSCGsb2NdpZUWHtdvA2KEJdm9vovmg0+tTNJkVZbirleamU56WRmTIwfxDNQS9LK+9gQvMKNhZfzaox30FUfE6pDgYFq82Do/EgP7LeTn6wmeu9t7PVNJWyvFTG5KUxOi+VtKSB7WVPTTRz4YxiXXi2O+01xrTy8Uvgyn91e2ggKBxqcbKnwca+RgduX/S77yKdoJRSjwIXA1YROWFdL6XUycAa4CoRebab4z4L/FdEer07qU5Qw5DLG+Dd3VZ21594lmez3UNFnY1d9R04vEZSKs9LZXxBOmPy0/rUbdedhICLS3b9iPK2tawc8102lVwzoNePplRvM5/b9nVSvU38OP1XvN1WjCP07rsoM5nxBemML0gna4ASvUkpzpyYz9yynAG53pCz7AbY/Trc8jHkjP7Uy/5AkKoWo/tuf5M95jbXHIQEdRZgB544UYJSSpmB5YAbeLSHBPUPYDGwCngaeENEwprSGLEE1VMWVsaI2Z+ACwEncEM41W11guqfygYb7+6ydtln7vIFqKy3sbOuA6vNg0lBeV4aEwszGJOfFtbEhr5I8ndw2c7bKLLtYPn4n7GzsMcF5nEn3VPPF7bdRGLAyTPTH2RXsJSDTU72Ndqx2ow3liMykhhfkM6EEenkpPV/Zt7UkkyWTC7QRWc7O7DKKGm08Kew8PajT3v9QQ42O9hrtXOgyYHXH1tJqbPB6OJTSpUDr3aToG4DfMDJoeNOmKBCx1uApcCVwAJguYj0WLIjkgmq2yyslLoQY8DsQuBU4E8icmpP19UJqm8cHj8rdlnZG5p9doSIcLjNzdaaNvY22gkKjEhPYkpxBpOKMkhNjOxEzyR/B1ds/yZ5zv28PumX7M0LbzwgHmW5avjCtq+BUjw18x/YkwoBaHf52Ge1sydUfw0gLy2R8QXpTCrKIKcf08hLspO5eGbJgHclxqWADx48E3wOuOVj3CSyv9HB3kY7VU2OqNaV7I0BSFBejM0Dj3hIRB467phyTpCglFIjgSeBRcCjhJGgQudZgAuAG4GzRCS/x3PCSVBKqecxdkR8XUTCfmvRwxf5N2CliDwV+nw3sFBE6rq7pk5QvVdR18HK3Y3H9J97/UF21XewtaadZoeXpAQTU4ozmVqcyYiMyCwwPV6S38Znd9xCvmMvr0y5l4M5ZwzKfaMpz7GXK7d9lfbkEp6Z/jC+hGPfyNrcPvY1OthjtR3d8LEoM5nJRRlMKEzv0xuGjOQEPjN75KB9X2PW2gfgjR+z/5yH2ZRyOjWtLoJxNsQB0W9BKaWWAb8XkbVKqcfoIUEppY60nBYCK4FngLfC6eYLN0Gdg5H1TgOWAf8Qkd1hnFfOib/IV4HfisgHoc/fAW4XkfVdHHsTxkpkEhMT53k8vR5rG5Zsbh8rdlnZ3/hJQm91etlS3UZFnQ1vIMiIjCRmlmYxqTCjX7PveivRb+ezO26lwLGLVybfw4HcMwft3tE2uvVDLtv5PQ7mzOflKfciquukY3P7qGyws6u+gya7F6VgdG4qk4syGTsirVffr8QEE0unFzF2ROzPiBxojTYPhw4dYMYLSzicPp0Xpv45YqWoBkMMJKgDGLPxAPIxhmhuEpEXT3CtpzDGnl7v7USJsN6OicjbwNtKqSzg6tC/q4GHgX+JSO+qHfZSqPn5EBgtqEjea6jYXtvOqj2NRwd469vdrK9qYV+jA7NSTChMZ2ZpFkWZyahB/mW1BJxctvM2ChwV/HfSb4dVcgKoyjmdd8f+gCX7f8fZB/7IyrE/6PK4jGQL80bnMG90Dk12D7vqbeyut/HGjnosZsWEggymj8wM63vo9Qd5ZUsdZ03MZ84QnzwRCAo1rU72NzrY3+Sgw+XjvD2/wBxw8+7YH8R1cooFIjLmyL87taC6TE6h469WShUC54Z+Tj8Od+uNsPsLlFJ5wHUYOyNuAv6NMdj1JYymW2/VAqM6fV4aek7rh3anj7crGjjU4kREONDsYGNVG7VtLpISTJxcnsOs0uyojUmYgj4u3nU7xbbtvDbpVxGrDhHrthZ/jmx3NfMOP4k1fTI7Cy7u9vj89CQWjE/ijHF51La5qKizscdqTGjJTU1kWkkmk4u7HzMMirBydyNtLh8LJ44Y9DcmkWT3+DnY5OBAk4NDLc5jJjkUd2xhmvW/fDzyS7SlfHrWnnasUItnIZCvlKoB7gSjKrOIPNiH630e+F+M7j0F/EUp9cOwxq3C7OJ7AZgE/BN4rPM4kVJqvYicdILzyjlxM/Ei4Ft8MknizyJySk+x6DGorgWDwqbqNtbub8btDVDZYGNdVSstDi8ZyQnMGZXNtJKssGfimU2KtKMFW82kJppJTjCTZDGTlGDCYjZhMSsSTCZMJmNqc+e/d0ExYgoEBX9Q8AeD+HwBSt79Dnn7X6LilN9wcNTluP0BnF6jgKvTG+h1iaV4psTPFdu/RbF9O/+Z8Xca0yf16nyvP0il1caO2g7qO9yYFIzNT2daSSZleanH1DQ83riCdJZOLxrUbt2BFAgKde0uqpqdHGhy0GjruudISYBrtlxPiq+Nx+Y+i9+c0uVx8SQOF+puAc490mpSSo0A3haRWT2eG2aCWiQi7/YyqKNZGGjguCwcmmZ+H8asDidwY1fjT8fTCerTrB1u3q6wUtfuorLexkcHW2hz+shLT+Sk0TlMKMg4YfWCzBQL+emJR4u2ZqdayEqxkJ6UMPDvsN+6Az78Myy+A876dLeWiOD2BbGHqozbPX463D5sbmPrjQ6X8e94HNg+kVRvM9dsuZ6AycKTs57Ak5DZp+s02z3sqOtgV50Nly9AelIC00oymV6SRXpy162qoqxkLp0VPzP8Wh1eqlqcHGpxUn1cK+lEZtYtY8n+e3h10m/Yk3/OIEQZeXGYoI4pDBuqLLElnGKx4SaoW4B/i0hb6PMc4GoRub/vYfeNTlCf8PgDrNnXzKZDbeyq7+CjA0Ziyk9P5NQxeYwbkXZMkkm2mCnJTqY4K4WizGQKMpMGb/O7NX+FN38KJ38NLry3z+MAwaBg8/hpd/qM6uOhquNtTuNjvEwV7qy4Yyuf3/51qrJP46Upv+/XdvWBoLC/0c6Owx1UtThRCsblG+ONpTkpn3rTkZli4bLZJeSlx94MP5vbR02r62hC6u0eSim+Vm7YcAXW9Ek8N+3+ITP2FIcJ6l6MHXWfCj11JbBVRG4/8Vmhc8NMUJtFZPZxz206Ujp9MOkEZaio62BVpZVNh9r56EAzrV0kpgSTojQ3hbLcNMpyU8lPT4zOuMOR7bSnfgY+94+I7VgqInS4/bQ5vbQ4jITV7PDS6vAO2F48kTL78NMsOvC/rBzzPTaVXD0g12xzetle28GOw+24/UFyUi3MGJnF1OJMkjq9MUmymLh4RknUN0Fsd/mobXVR2+aiptXZ651mj3fO3l8y1foq/5r9ZMQqykdDPCWoUE9ZKcaC3gWhp98XkRfCOj/MBLUNmHmkuF+ozMVWEZnWp6j7YbgnqOblK2yS5p4AACAASURBVKl98XVWFE7h36ZSGu2eYxJTksXM2Pw0JhSmU5YbueoPYavdAP+4EIpnw/UvgSU5KmF4/AFaHT6aHZ5OH720u2Kky1CESyu+z+i2tTw163Ga0iYM2KX9gSB7rHa21rRT3+EmwaSYVJTBzNIsCjKM74dJKc6eNILZo7IH7L7dCQQFq82oBl/X5qau3dWvXWaPV2jbwdVbb2RDyTW8P+a2AbtuLIinBBW6X1h7P3V5bpgJ6l5gNPC30FNfB6pF5Pt9uWl/DNcE1eH2sfPZN5j7lc9j8vnwmRP42vW/JX3hWUwqSmd0XhpTSzIZNyI9dga+22vh4cXGVgZfexfSelw4PugCQaE11OLq/GjrtFHhYEnxtfLFTVfjTsjk37OeIGAe+GRu7XCztbad3fU2/EGhKDOZ2aOyGV+QjtmkmFKcyeLJBQP6xiYYFJodXqw2N9YODw0dbhptnsh1x0qQq7feQLqnkcfmPvupxdDxLg4T1OPAfSKyrrfnhjs6ejtGUro59Ply4JHe3kzrPbcvwLqDLazcZWXkU69wks9HggRRwQDfVDX4Ty1jVmk2WakxtsWC1wH/udr4+MUXYjI5gTFbMT89ifzjxmCOdBce2Zre6DY0xrrsHn+PW5P0hcuSwxsT/x9X7PgWZx38E++O67GLvtcKMpM5JzOZBePzqajrYEtNO2/sqCd9bwIzSrNweQPUtbtYNKmA8vze/Q0TMcYHWx1emuxemu2eox8Hc2xwesNLFNkreG3i3UMuOcWpU4HrlFIHAQfGVHMRkZk9nRjuQt0g8EDooQ0CXyDI5uo23t/TyKrKJrbWtDEvbxLXJlgwBfyQmMhJX7qcxIkjoh3qpwWD8MLXoX4bXP00FE6NdkS9ppQiK8WY0VjOsX/kvP4gbS4v7U4fbUe3iffS7vL1O3kdyj6VDSXXMO/wk+zLPZtDOaf18yvpWrLFzJyyHGaPyuZgs5NN1a2s2dfMxwdamFyUgef91Zx2aBuJ5ywm7ewFpCSaMStFQASPL4jLF8DhMWZXtrt8Rx/RLrKa5GtnQdVfqcmcw+7886Mai3ZUn78R4XbxTQB+A0wFjvY7iMigjzwO9S6+QFDYXtvO2v3NfLS/hTX7m3H7AkwryeTMiSO4xFnFxIoNJCxeBPPnRzvcrq34Fay6B87/Ncy/JdrRDKpAULC5fXS4jCnynafJ290+HN5Aj3/EzUEP126+DkvQzROz/zNorYAmu4ct1W0kr/+Yfz71UywBP0GLhed+9xj10+YOSgz9tXjfb5lR/yL/mv0vmtPGRzuciIi3Lr7QPediTJIQYHU4O1dA+F18/8BYx/QHjAq2NwIxMtAxNIgIuxtsrNnXzPbadt6rbKTJ7mVkdgoLJ43g3KmFnDY2j2TLZPrxhiTydr1mJKfZ18Fp34x2NIPObFJkpyaS3U0Fco8/gMNjtECc3gBOrx+XL4DbF8DlDeL2pbJ+1t2ct/Z6FlXfx4pxPx6ULrL89CSWTClk9oYaEgN+zBLE7/NhffUtNmeOZWpxZvQn3XSjwL6LmfXPs6n4yiGbnOKRUurnwOeB50NP/UMptUxEftnTueEmqBQReUcppUSkCrhLKbUB+HnfQtY6O9jk4IO9Teyz2vlgbxN7rHYykhO4cHoRiycXsGhyQUyuU/mU5n1G117xbLjo90Nm3clAS0owk5RgJrfbPZ9KQd3CtDX3Me2c6wmUn4UvEDSqcoQ+BoNCUCAggogc07WolNFNqTCSplJgVp9U/jCbFCaljNcw3tYGgmIkSf8l8MyDBL0+ggkJbBs/h/cqG1mzr5lpJZnMHpU9YLsoDxgJsmj/PTgtOawtuyna0WjHuhaYJSJuAKXUb4HNwIAlKE9o9e8epdS3MGrmDb+yyAPM2uHm/T1N7G+0s66qlQ1VrSjgtDG5nDkxn3OmFDGpKCPaYYbH64CnrzPWOF35z6hNJx9SFv0Mdr8GL9+K+eYPMSdF9lfOYjbGprKXLoYVKwi++y57J89jVtZY8lpdbKpuZXNNG5ur2xhfkM7cshyKsmLj+zzV+l9KbNt4c8KdeBLi5Hdm+DiMMTTkDn2eRJh1V8MdgzoZqACygbuBTOBeEVnbl2j7YyiMQdncPj7c10xFXQcHmhys3N1Iu8vHxMJ0zpyQz/yx+SyYkD94VR76SwSe+ypsfw6uew7GL4l2RENH1YfGOrL5t8D5v4pKCFabm1e31NHu8mFz+9hS3c622na8gSAlWcnMHZ3DmPy0bmv/RVKSv4MbNn6OtuRSnp7xSL8qccSDeBuDUkq9iLFQdzlGY/1c4GOgBkBEvn3Cc3tKUKFFub8Tka73BBhk8ZygfIEgG6paWX+whVaHj/f2NLLXaicn1cKiSQXMKM3inCmFjMqN7or+Xlv7ILxx+wlr7Gn99Mp3YOM/4euroKjLHbgjzuUN8PKW2qObKHr9QXYcbmdTdRs2t5+sFAtzRmUztSRz0NfhGRMjXuDJWU/0uuBuPIrDBPWl7l4XkcdPeG6YLai1IhKZ+a69FK8Jak+DjVV7mmhzeNlS08aa/c0EBU4pz2VeeTYnl+dx+ri82FlkG66qNfD4xTDhPLjy32CKs/jjgbMF7jsZcsfCl9+M2v+xLxDktW11x2yAGQwKexvtbDzUSkOHh+QEEzNKswZtS5ci23au2vplNpZczaox3434/WJBvCWo/gg3QT0AjMTYTffoT6eIPH/CkyIk3hJUq8PLu7utVDU7qW93s2KXlUa7h9F5qcZiyLxUzptWREl2HG4D4GiGBxcY4003rYTkrGhHNHRtfhJevBku/QvMvT5qYQSCwhvb66lssB3zvIhwuN3NpkOtRzfFnFhkjFMdvwh6oCjxc82WL5Hia+PxOc8Mm0W58ZaglFIXYwwNjcaY93BkoW6PpfvDfYuTDDQDizs9J3wybVA7jj8Q5OODLaw/2IrT42f1vma21baTlmTmwhlFTChIZ+7o3PhsNYEx7vTSN8HZBF9ZrpNTpM26Gjb9C5b/HCZdBGl5UQnDbFIsnV6E2QQVdZ8kKaUUI7NTGJmdQqvTy+bqNnYe7qCizkZZbipzy7Ipy00d0GLFs+uWUeCo5NVJvx02ySlO/RH4LLBNwmkRdRJuJYkb+xLVcFXd4uTtigbanD72Ndp5d5cVpzfA7FHZzB+bR0FmEudNK2JkPLaajlh7P1S+AUvvgZLZPR+v9Y9SxtT9BxfA23fCZ+6LWigmk+L8aUWAoqKu41Ov56QmsmhSAfPH5rG1tp0t1W28uPkweWmJzCnLZlJRBgn97KZM81g5vepBDuSczp68xT2foEVTNbC9t8kJwkxQSql/YLSYjiEiX+7tDYcyty/AqspGdhzuwOHx815lI3usdvLTE7lkVglFWcnMGpXNgvH58dlqOqJ2Iyy/EyZfDKfoNSeDpmCKsfj5w7/AyV+BkkHf7eYopRTnTysE6DJJgTFl/ZTyXOaWZVNZb2djdStvV1j5cF8zs0qzmVGaRUofZ6ouPPAHTAR4d+wP9Xq72Pcj4DWl1HvA0a2PReT/ejox3C6+Vzv9Oxm4HGNuuxay12q0lGxuH7vqbayqbMQXEOaPy2NeWQ65aYmcOzUOZ+gdz90Oz94IGUXGeIj+4zC4zvqhMR71xk/hxtei+v+vlOK8qYUERdhdbzvhcQkmE1NLMplSnMGhFicbDxmThNYdbGFqcSZzyrK7rbxxvNGtHzKx+W1Wl32D9uTSgfhStMj6FWDHyB3hf6MJv4vvuc6fh7Zz/6A3Nxqq3L4AK3dbqaiz0eHysWKXlaoWJ8VZyZwzpZC89ERmlmaxYPyImC4TExYRY8pzWzXc+Dqk5kY7ouEnORMW/w+8ehvsfAmmXRbVcEwmxQXTiggEhb1We7fHKqUYnZfG6Lw0muweNh1qY8fhDrbWtjNuRBpzynIoyUrudpzKHHCzeP89tKSMZsPILw70l6NFRomI9Gl9RF/ngU4ACvp47pBxoMnB2zsbsLl9bK1pZ/W+JgAWThzBzNIsslITOW8otJqO2PCYsTvukp9D2anRjmb4mns9rHsElt8BEy+IetUOk0lx4YxiXt5Sy8EmZ1jn5Kcnce7UQk4fl8eWmja21bSzr9FBYWYSc8tyGD8iHZPp04nqlJrHyHbX8uy0+wmYevVmXIue15RS54nIW709Mdxp5jaOHYOqB35yfMtqMMTCNHNfIMiqyka21rTT4vDydkUDde1uRuemsnhyAVmplqHTajqiYSc8vAjK5sN1z+v1TtG2/z144lJYciec+b1oRwMYvxcvbqqlptXVp3N31nWw6VAb7S4f6UkJzBqVxfSSrKMVVbJdVXxx09XsyV/CGxPvHujw40akp5krpR4FLgasXbV8lFLXYuwRqAAbcLOIbOnmejYgDWP8yUcvppmHlaBiSbQTVEOHm9e31dHs8LLxUCtr97WQYFacPXEEk4syyE4dImNNnfk9xs64tnq4+UPIKIx2RBrAU9fAgffg1g3GmGAM8PgDPL+xlvp2d88HdyEowsEmB5uq26hpdZEQ2uV3TmkWXz34XQrsFTw+91mcidGZZh8LBiFBnYUxZvTECRLU6UCFiLQqpZYCd4lIRLpUwp3FdzmwQkTaQ59nAwtF5MVIBBWLRIT1Vcambk12D8t3Gq2mcSPSWDSpgPTkBGaPyuaMeJ+h15UVd0PDdmPzQZ2cYsd5d8NfT4WVv4FL/hTtaACjUvvlc0aybH01TXZvr883KcXYEemMHZFOo81jrKeq62Bi3SuUJa5jWeF3cVhy0VNzIkdEVimlyrt5/cNOn64FupypopSaLCK7QntBdXWdHveECreLb7OIzD7uuU0iMujzXKPRgrJ7/Ly5vZ6qZgdbatpZvbcJs0mxcNIIJhVmkJ+RxDlTCuOzGkRPDqyCxy+FeTfAJX+MdjTa8V77Iaz7O9zyMeTHzh5Ido+fZ9ZV0+7y9f9iDitf3XIVlcESPue5g9y0ZGaPymZyUQYJQ+3NYBgGoAXlBbZ1euohEXnouGPKgVd7mtyglPoBMFlEvtrFaw+JyE1KqXe7OFVEpMcFbOEmqK3H7x+vlNomIjN6PHmADXaCOtDk4K0d9dS3u1m+s4GaNhej81I5Z3IhWakWTirP4ZTy3KH5i+JqgwfOgIQk+Mb7kKhX68ccuxX+NBsmnAtfOGHNzahoc3p5Zn01Dk+gX9e5YPf/MLH5HR6f+U/W2grYdKiNRruHZIuJGSOzmFmaTfog1P2LFYNR6iicBKWUWgTcDywQkeY+B9SNcL+r65VS/wf8NfT5LcCGSAQUK4JBYfW+JtYfbGF7bQer9jSiUCyZUsC04kxKslM4Z2phxOqMxYTXfgC2OqOUkU5OsSm9wNiKY9U9xgLqkbGzNXt2aiKXzRnJsxtq8Pi63+b+RMpbVzOl6U3WjLqJ9vTxTEmHyUUZ1La52FzdxrqDxj5qEwozmDMqm8LM2NifaqhTSs0EHgGWRio5QfgJ6lbgDuBpjNl8yzGS1JDU4fbx+rY6KuvtvL2rgapmJ6U5KZw7pZD8jCTOGJ/PrNKsAa0rFnO2PQvblsHCn0LpvGhHo3Xn9FuNaefv/AKuj61h4YKMZC6dVcILG2t7vW29JeBkyb7f0pwyhnWln+zYoJSiNCeV0pxU2l2+o3X/dtfbKM5KZmZpFhMKMjB3MU1d6z+lVBlGHdYvikhlRO+lZ/Eda1+jnTe317O5uo33KhsJBIUF4/ONH/rCDBZOGkFGcoxtdz3Q2mvg/tNhxES48Q0wD5/uk7i15q/w5k/h+pdg7MJoR/Mp+xrtvLqljmAv/t6cvf/3zK37D0/PeITDmbO6PdbjD7DzcAdbatppd/lIsZiZMTKL6SMzh9zv6yDM4nsKWAjkAw3AnYAFQEQeVEo9AlwBVIVO8YvISX0OqLtYwxyDWg58XkTaQp/nAP8RkfMjEVR3IpWgAkHhg71NvF/ZyIpdVvY3OSjOSj660HbR5ALGjRgGu9wHg8b6mtqNcPMHxh5EWuzzueG+kyAtH772bkyWoNpe287ynQ1hHVto28HVW29kS9EVvDvu9rDvISIcanGypaadA00OlIKx+WnMLM1mVE7KkOj1iJftNk40e++IcGbxhfvWOP9IcgpduFUpNWQqSbS7jC69VZWNrNhtxRcwWk3zRucwb3QOp43NGzoLbnuy9q9w8H2jzp5OTvHDkgwLf2JsgVLxMkz9TLQj+pTpI7NwegOs3tvU7XGmoJ9z9/4Se+IIVo/u3UhC53JKHS4fW2vb2XHYqFKRk2phVmk2k4szSEroW5FarVd+H/qYDJwEbMFYpDsTWA/M7+kC4SaooFKqTEQOwdEZHvHVN3gCexpsvLzlMG/uqKeywU5BRhLnTS1kZmk2iyYXMCJjCE+COF79dmMcY/LFMEfXOYs7s66C1X+Elb+FyZfEZLWPU8bk4vD42VzddsJj5tX+kxHOvbw0+X/xJvS9pZCZYmHB+HxOG5PLHqudLTVtrKxsZPW+JiYXZTKrNIu8oTzJKcpEZBGAUup5YK6IbAt9Ph24K5xrhJugfgZ8ECqXroAzgbjeZ8EXCPLe7kZe2lzLO7usuH0B5o/N48wJ+Zw1cQTTSjKHRHdA2HxueP5rkJxtLPocTl/7UGEyw9m3w3NfMVpRUS4keyILJ43A6Q18aldegBznQU6rfoQ9eYvZn3f2gNwvwWxiSnEmU4ozaehws6XGWPy7rbadkqxkpo/MYnxB+tBbYB87Jh1JTgAisl0pNSWcE8OeJBHq0rsJ2ASkYNRpWtWHYPtlIMagGjrcvLiplhc311JRZyM/PZHzphWxcOIIzpwwgpTEYdj8f/NnsOY+uGYZTDwv2tFofRUMwP2ngSkBvrE6JltRYOw4/cJxdfuUBPjCtq+R66riiTlP40jMj9j9XT5jUsX22nbaXD4SE0xMLspgeklWzPeaxMsYVKf7PQU4gH+FnroWSBeRq3s6N9xSR18FvoNR0mIzcBqwhmO3gI95gaDw0YFmnl1fw1s7G3B4/ZxcnsPSGUWcP604vne47Y/9K43kdNJXdHKKd8e0ol6CaZdHO6IuJZhNXDKr5JiSSHMPP0mJbRuvT/hFRJMTQIrFzLzROcwty6a2zcX2wx3G1h817RRmJjG9JIuJhRnDZ+w5sm4EbsbIIQCrgAfCOTHcWXzbgJOBtSIyWyk1Gfi1iHy2b/H2XZ9bUGvWsH/Zq9zPKJ5NHEVOqoWl04v4zOyRnFSeO3zXTLhajSnliWnw9VWQOISK3A5XR1pRymwU943RVhSAze3j6XXVJLTs5brN13IwZz6vTL43Kl3Mbl+AijojUTU7vFjMikmFGUwbmUVhRlLMdPnHWwsqdM8UoExEdvfmvHDHoNwi4lZKoZRKChUAnNT7MKNkzRqCi5dQ5vFwtzmBhO/8mennnc+FM0rITRvGe8qIwKvfA4cVrlquk9NQESetKICMZAuXzSrC/8iX8JuTWTHux1Eb/0y2mJlTlsPsUdnUd7jZVtvOrnob2w93kJ+eyJTiTCYVZpA2jMoqDQSl1KXAvRi76Y5RSs0GfiEil/Z0brj/0zWhCuYvAsuVUq18skgr9q1cifJ5SZAgKhjgVlMtJaeOjpl3RFGzbRnseN7YoTWGSuRoA2Da5fDe72Dl72DKZ2K6FZW//e/QsZU3J90d8a69cCilKM5KoTgrhbMnBthdb2NnXQfv72nig71NjM5NZWpxJmPy04ZmDc6BdydwCrASQEQ2K6XGhHNiuFu+H3kLdleoMm0W8Ebv44yShQtRiYmI14spMZGRly/Vs9TaDsF/vw+jToUzvhvtaLSBFi+tqKY9sOKXMOkiyhfeQMWOemKpuE1SgpmZpdnMLM2m2e6hot7GrvoOXtteT1KCiYmFGUwtzqQwM3a6AGOQT0Taj/v/Ceu7PHxKHa1ZAytXwsKFML/H9WFDWzBgbKFRtxm+8QHkhvVmRos3R2f0WeDm1bH3piwYgEcvgKZKuOUjyChiQ1ULqyq7X8gbbUERqlucVNTZ2Ndoxx8UclItTCnOZHJRRsRLK8XbGJRS6u/AO8CPMUokfRuwiMg3ejo3ou1TpdQFSqndSqm9Sqkfd/H6DUqpRqXU5tDjU3uKDJj58+EnP9HJCeDDv0DVB7D0Hp2chjKTGc78Plh3QOWb0Y7m09b8FWo+hgvvPboj8LzRucwuy45yYN0zhapVXDC9iK+eOYYlUwpISTTz4b5mHl19kGXrq9lS04bT6492qLHiVmAaxpbvTwLtfDKjr1sRa0EppcxAJXAuUAOsA64WkZ2djrkBOElEvhXudaO95Xvcq9sCDy+BSUvhC0/E3rtqbWAFfPDnuUYC+MpbsfP9rt8ODy+C8efCVf8+Ji4R4ZWtdeyz2qMYYO+1u3zsbrBRWW+j2eFFKRiVk8rEwnTGj0gnyTIw6yvjsAX1eRFZ1tNzXYlkC+oUYK+I7BcRL/AfIPYKhA0nPhc8fxOk5ulqEcOF2QJnfNtoqVStjnY0Bp/b+DlMzoZL//ypn0OlFEunF1GcFV97O2WlWDilPJfrThvNtaeWcdLoHNpdPt6usPLw+wd4dethKhts+AJ92xsrjv0kzOc+JZLzJUcC1Z0+rwFO7eK4K5RSZ2G0tr4rItXHH6CUuolQaaXExGE8Lby/3r4LGnfBdc9Bam60o9EGy5zrjBl97/8eyhdEOxpYcbfR7XjNMqP6ehcsZhOfmT2S/6w7RJtzALaNH2T56Unkpycxf2weDR0edjfY2NNgY1+jgwSTojw/jfEj0inPTx2yhWuVUkuBC4GRSqk/d3opEwir/zPaE/pfAZ4SEY9S6uvA43RRnUJEHgIeAqOLb3BDHCL2vgMfPQinfgPGnxPtaLTBZEkxdt19+y44vAlK5kQvlv3vGVVLTv5qj1VLUhLNXDZ7JE+vr8bl7d+28dGilKIoK5mirGTOnJDP4TYXlQ129jXa2Wu1Y1aKUbkpjCtIZ2x+GqmJ0f6TPKAOY1Qtv5Rjd2C3AWFNHY7kGNR84K4je0YppX4CICK/OcHxZqBFRLK6u64eg+oDZwvcPx9SsuGmlcYfLG14cXfAH6bD2LPhyn9GJwZXKzxwBlhSe1W15HCbi+c21PR6R95YJiLUtbuPJqoOtx8FjMw2ktW4EWknnA0Yh2NQmYBDRAKhz81Akog4ezo3kul6HTAhtCCrFrgKuKbzAUqpYhGpC316KVARwXiGJxF45dvgbIZrl+nkNFwlZ8IpXzO6+Rorjd2SB9t/vw/2BvhK76qWlGSncMH0Iv67rS6m1kj1h1KKkuwUSrJTWDA+n0a7h31WB3sb7bxX2ch7lY0UZCQxJj+NMflpFMRQqaU+eAs4Bzgy6yUl9NzpPZ0YsQQlIn6l1LeANwEz8KiI7FBK/QJYLyIvA98OlcHwAy3ADZGKZ9ja/CRUvALn/gKKZ0Y7Gi2aTrvZmNq9+o9w2f2De++tz8D25/pctWRCYQZnuv2sqmyMQHDRpZSiICOZgoxk5o/Lo8XhZV+jnQNNDj460MJHB1pISzQfTVZuX9x1dyaLyNEpmSJiV0qF9Q5l+CzUHY6a9sDfzjbGHL70srEuRhveXr8d1j0C394M2aMG557N++BvZ0HRDPjSq2Du+/vid3dZu93scKhxev1UNTs50OSgqtmJNxAk0WzivR8tpDirb70hUejiWw3cemSLd6XUPOA+ERmwHXW1eONzw7IbISEJrnhYJyfNMP9bRoL68M/GAtlI83tg2Q3GdPcrHulXcgJjs8MOt4/9jcPjTWpqYsLRzRYDQaG2zUV6UgJFmXE1Bf82YJlS6jDGhrdFwJXhnKgrHQ5Vy++Ahm1w+YOQWRLtaLRYkT0KZl4FG58A+yB0l711B9RvhcsegKzSfl9OKcWFM4opirM1UgPBbFKU5abypdPL42o8SkTWAZMx9oT6BjBFRDZ0f5ZBJ6ihqOIV+PghOO0WmHh+tKPRYs2C24yWzUdh7RnXdxWvwMd/M34OJy0dsMtazCYunVVCZkpka94NV0qpR5VSVqXU9hO8rpRSfw6VsNuqlOp2UDE03nQ78B0R2Q6UK6UuDicWnaCGmrZD8NItxrjTOXdFOxotFuVPgKmXwscPg7s9MveI8M9hWlICl80uIXmAygdpx3gMuKCb15cCE0KPm+h5d9x/AF7gyJhTLfDLcALRCWoo8Xvg2S9DMAifexQSdNUN7QQWfA88HbDu7wN/bb/HGP8UiejPYV56EhfPLB6+u2FHiIiswphVfSKfAZ4Qw1ogWylV3M3x40TkHsAXur4TYyyqRzpBDSVv/Bhq1sFlf4XcsdGORotlJbNh3BJj2rm3x/WSvfP67VC7Hj4T+Z/DUbmpnDu1MKL30D6lqzJ2I7s53hva8l0AlFLjMCqb90gnqKFi4z9h/aNwxm0wVdfk1cJw5vfB2QSb/jVw19z4BGz4Byz4rtGNOAimFGdy+ri8QbnXEJGglFrf6XFThO93J8YGt6OUUv/G2BvqR+GcqKeZDwW1G4xV+mMXwuI7oh2NFi9Gn27sqPzhn+GkG42p4P1RuwH++4Oo/ByeOjaPdpePHYc7BvW+ccovIif14/xaoPMiutLQc10SkeVKqY3AaRhde98RkbB2pdQJKt6118J/roP0Arji0X6vM9GGEaWMVtSTX4Bty2D2NT2fcyKOJnj6+k9+DrtZd+fz+aipqcHtdvf9fl0oVZBX4McfiK/iA73ltFZR0dxz51dycjKlpaVYLAM+2/Fl4FtKqf9g7FDR3qlk3YmcDSzA6OazAC+EcyP91yyeeWzw5JXGxy+/AWm6m0PrpQnnQeF0+OAPxvooUx96/f0e+M+14GiEr7zZ489hTU0NGRkZlJcP/HqeoAitDu+QKix7vKwUS4+zF0WE5ub/3959h0dVZg8c/55MelA6FsQFfioE0EAQQiAJoYj0pghIEUEsKy6ruxZEiggqgq7iskIswYLmpQAAH/9JREFUqCy9CiggLVKkI6GjiAhYkA0YSSCkvb8/7k2IgZCEzDAz5HyeZ55MueV950JO3nvfe04ix48fp1q1olXNFpEZQCxQQUSOY52i87O3Own4AquMxiHgLPBwAdv7D3AbMMN+6zERaWmMebKgtmiA8laZGdYd+r/tg16z4cY67m6R8kYi1vWieQPgwJKiXzcyBhY9Bcc2WTP2ClHKIzU11SXBCaxy7GWC/TiVkk6Wl6VxcyYRoXz58pw8WfSbsY0xPQv43AAFBpdcmmPdnJs9SeITYG9hVtRJEt4oK8vKUH5oJbR/S+s7qeKp1RnKVoP1b1HkdOFrx8GuWVYS2Dr3FXo1V2ZCcPj4UCbYr3DzmK9hHpRt4hBwa67XVez3CqQBytsYA1/8A3ZOg9ghUL+fu1ukvJ3D18ou8fM38P3qwq+XMAvWjIGwnhD9T9e17wr4OXworZkmPMV1wH4RiReRNcA+4HoRWSQiiy63op7i8ybGwLIh1nTyqKeh6fPubpG6VoT1hLXjraq71ZsVfC3qwOew8AmoGg0d3rFOFXqYAD8H1xvDH6mFqi6uXGf4la6oIyhvkZkBiwZZ+dMa/RVajPDIXwrKS/kGWP+mft1lnbK7nMPx1vXPm+tBzxnWuh4qyN+XEH9Nh+RmJ40xX+V+YJV6yn6eLx1BeYP01AsXsZu+ALEvaHBSzlfnPtg0EVa9DDXbQmDpi5f59kuY3RfK325VaA64rli7fHnxXvY5+d6lWjdfz4gOtXNelwr0I9MYUtOzADj64488eF9Hwhs0ZNvmTdQNr0+PXn0Z99or/O/kSSZ+MIXw+g1ISUlh6HPPcGDfXjLSM/jnkKG0bteBoz/+yFOP9edsipWB49Xxb9EgIpIN69Yy/vXRlCtXnoP793FX3XpMfH/KRdeC/vvxR0z9+EPS09OpVq0678Z9RHBwMCd/O8FzTz/Fj0eOADD2rXdoEBHJ7BnTeO/dtxERatWuw9SpU536fV0Fs0XkU2AcEAi8AdzNhdx8+dIRlKc7cwI+7WSdUmkzDpoN0eCkXMPHB9q9Ccm/WTfc5p0wsWMqzOhhlYvv+xkEl3NPO6/A9YF++Dku/Lr74fD3PDFoMOu3JXDo22+ZP3cWi5avZsTo15jw5hsAvDN+LFExsSxbs555S5YxatiLpKSkUKFiRWYt/JwV6zYy+eOpDH3uwvW3PbsSeOX1cazd8g0/HvmBLZu+vqgtbTt2Ynn8BlZv2MLtNWoyferHAAx97h9ENolm9YYtrFi7kRo1a3Fg/z7eHvc6cxcvZfWGLbzy+njXflGuEYE1SeJrYCvwM9CkMCvqCMqTHdsCs/pYST27TYHaXdzdInWtq1zfmnyzZrQVgFqOhD9+tiZD7JlnZYl4YCoEXu+U3eUe6biSiFAmyI/TZ9MAuPUvVQmtbd2acUdoKNFNYxERQmvV4djRowDEr17F8qWf8967bwNw/nwqPx0/xo033sSLzz7Nnt27cDgcHD70Xc5+6oXfzc2VrbpXte8M49jRo0RE/vl38YF9+xg7eiRJSUmkJCfTrMU9AKxf+xXvTraS9zocDq4vXZrZM6fRoXNXypevAEDZct7zR0Eu6cA5IAhrBPWDMSarMCtqgPJExlgTIZY+bxV56zMfbrg6/5GVIuafVo6+zZNg82TAgMMfYl+0PvPS6sw+PtY9Uj4C/gEBud73wd/fei0+PmRk2JMqjOHDqTO47fY7/rSdca+NpkLFSqzesIWsrCz+UqlMzme5t+tw5NpWLoOfGMjH02dT+867mDltKl+vX+vMbnqircBnQAOgAjBJRO4zxnQraEU9xedp0lOtyRCfP2P9tfroGg1O6uoSgTZjod8XVkBq8wYMToDY5702OGVz+PgUutBhbIuWfDj5P9j3l7I7YScAZ/5I4oYbb8THx4c5M6eTmZlZpDakJCdT6cYbSU9PZ/7smTnvRzeN5ZMP4wDIzMzkj6QkomJiWbxwPqdOJQJw+tTlqmB4rAHGmOHGmHRjzC/GmE5Y6ZIKpAHKkyQdhyltrOzSMc/Cg7MgqKy7W6VKqqpNrBtwIx6D6292d2ucxs/hU6gaUk8/N4SM9AyaNW5ATEQ4Y8eMAqDfI48xe8Y0mjdpyKFvDxIcElKk/T83dDhtm8fQoVUzbrvjwuhs9NjxbFi3ltjIu2nVtDHfHtxPzdBaDP7n83Rp24rmTRoyYqhX3lqyXUR6i8hwABG5FThYmBXFeFk6kJCQEJOSkuLuZjjfD+usqbsZ56HLJAgtVEVkpbzO/v37CQ0NdXczOJeWyR+p6e5uRpEVJhdftkt91yJy1hhTtKhaDCLyHpAFNDfGhIpIWeBLY0yDgtbVa1DuZox1rn/5UCj/f9B9mjVLSinlUkH+DjKNIeW83sjrYhHGmHAR+QbAGHNaRApVZlkDlDuln4MlT0PCDKjZHjq/57TZUUqpgpUK8CUry3AuvWjXkVSRpIuIgwsVdStijagKpAHKXZKOw6zeVv6zZkOtXGZXUupAKVUs1wX6kmUM5zMK9TtTFd0ErPpPlURkDHA/8FJhVtQA5Q4/boTZfawZez1mWHftK6XcQkS4PsiP38+mkX6NFzt0B2PMNBHZDrTAqqjb2RizvzDraoC62hJmwWdPQplbod/nULGGu1ukVInnI0KZIH9OnU0j8xouduguxpgDwIGirqfnlK4WY6zaOQsehVsbwcBVGpyU8iAXbuTVVGKeQgPU1ZCZAYsHw+rRcOcD0Hue3t+klAc5cuQIderUwdfDih12adeKnTu2u7sZbqMBytXSU2FWL9jxiTURomucR5cnUMojbdwIr71m/XQxP4cVpIrrUmmOVNFogHKl88kw/QH4drmVJbrFMM1ErlRRbdwILVrAsGHWTycEqbfeeos6depQp04d3n7bSgabkZFBr169CA0N5cEe3fEz1k28o0e8RHTDejRr3ICRQ18A4H//O8mA3j24N7YJ98Y2yclaPu610Qx6tD8dWjVj0KP9adsihgP79+XsN3tElJKSwt+ffIzWzaJoGdWIZZ8vBuDcuXM89nAfohvU5eFeD5B67lyx++rNdJKEq6QmwbRucHyrlRkirIe7W6SUd4qPh7Q0yMy0fsbHQ2SBpYTytX37dqZMmcLmzZsxxhAREUHTpk05ePAgH374IU2aNKF///589P5kuvfqw9Ili1i/LQERIen33wEY9vw/efTJp4iIbMLxY0fp2bUj67Zaufq+PXCAz5avIigoiMkTJ7BowTxqhtbixK+/8Nuvv1I3vD6vvjycqJhY3p44maTff6dN82iiY5szdcoHBAUHs27rTvbt2c09MVfez2uBjqBc4ewp+KQj/LQd7p+iwUmp4oiNBX9/cDisn7Gxxdrc+vXr6dKlCyEhIZQqVYquXbuybt06qlSpQpMmVmmM3r17s379em6qWJ6goECeHvQ4ny9aSFBwMABr49fw4rPP0CIqgod6duPMmT9ISU4GoFXbdgQFBQHQsct9LPlsAQCLFsyjfSerZE786lW8+6/xtIiKoGv7e3NKeWz6ej33P9ATgFp17qRW7TuL1VdvpyMoZ0tNgqld4Lf90GM63HGvu1uklHeLjIRVq6yRU2xssUZPl5O38q2I4Ovry7atW1n8xXLmzZ/HR3GTmLdkGSYri89XfkVgYOBF2wm2gxjATTdXply5cuzbs5vP5s/ljX+9a32QTykPTyAirYF3AAfwgTHm9Tyf3wp8ApSxl3nBGPOFK9qiIyhnSkuBaQ/AiT3wwKcanJRylshIGDLEKcEpOjqahQsXcvbsWVJSUliwYAHR0dEcPXqUjfb1renTpxMVFUVycjJJSUnc17kDr78xnn17dgPQtHkLPpz8n5xt7tmVkO/+Ona9n4nvvMUff/xBrTrWiCi/Uh6NGkcxf84sAPbv28u+vbuL3d+isFMSTQTaALWAniJSK89iLwGzjTH1gB7Af3ARDVDOkn7OKod9fAvc9wHUaO3uFimlLiE8PJx+/frRsGFDIiIieOSRRyhbtiw1atRg4sSJhIaGcvr0aZ544gnOnDlD+/btCQsLo32r5ox+3SoHP/qNN0n4ZgfNGjcgumE9Pv3og3z316FTFxbOm0PHLvflvJdfKY+HBjxKSkoy0Q3qMm7MKO6qW8+1X8bFGgKHjDGHjTFpwEygU55lDJCdNLQ0Vgl3l9ByG86QmQ4ze8F3X+qECKUK4CnlNq5EljGcPptGhhtTIjmh3EYakHtoFmeMibM/ux9obYx5xH7dBysb+aBc698EfAmUBUKAlsYYl9ys5dIRlIi0FpGDInJIRF64xOcBIjLL/nyziFR1ZXtcwhhY8nf4zp5KrsFJqWuWjwhlg/wLVfDQg2UYY+7O9Ygr4vo9gY+NMbcAbYGpIuKSWOKyAFXIc5kDgNPGmNuAfwFjXdUel/lqrF0B9zloMMDdrVFKuZiPj1D22k2J9BNQJdfrW+z3chsAzAYwxmwEAoEKrmiMK0dQhTmX2QlrNgjAXKCF5J1K48l2TIX41yDsQWj2ortbo5S6Shw+PnaQcndLnG4rcLuIVLOLCvYAFuVZ5ihWZnJEJBQrQJ10RWNcGaAqA8dyvT5uv3fJZYwxGUASUD7vhkTkURHZJiLbPCZ9yKGVVn696s2g4wTNEKFUCePr8KFMsP819V/f/j08CFgO7MearbdXREaJSEd7sX8AA0UkAZgB9DMumszgFfdB2edI48CaJOHm5sDJgzDnYahUy5pO7ih+3i6llPfxc/hQJsif38+m4f5fTM5h39P0RZ73hud6vg9ocjXa4soRVGHOZeYsIyK+WFMWE13YpuI7dxpm9LQSvvacoSXalSrh/H2dk1xWXcyVAaow5zIXAQ/Zz+8HVrtqqOgUmRnWyOn3o9D9v1CmSsHrKKWuef6+DsoEWUFq7JhRrF2zOt9lP/nwfWbPmAbAzGlT+fWXC7cRPTPoCQ4eKFSx2RLBZaf4jDEZIpJ9LtMBfJR9LhPYZoxZBHyINUXxEHAKK4h5rhXD4fAa6PiuVXRQKaVsAX4OSgPPDx1+2eUeGjAw5/ms6VOpGVqLG2+6GYC3/v2eK5vodVx6DaoQ5zJTgW6ubIPT7JwOmyZCxOMQ3tfdrVHq2rD0BfjVyel8brwT2rx+2UU6d+7MsWPHSE1NZfDgwTz66KMsW7aMF198kczMTCpUqMCqVatITEykZ8+e/PTTT0RGRrJixQq2b99OcnIy7du3Z8+ePQCMHz+e5ORkRo4cycAB/Wna8l46dO7K6BEvsXzp5/j6+tK0WQtGjnmdca+NJiQkhCq3/oWEb3bw5MCHCQwKYsmKeB68vxMjXnmNuuH1WTB3Fu+8OQ5jDC1btWbYqDEAVChbmsGDB7NkyRKCgoL47LPPuOGGG5z7HXoITXVUGL/uhiVPQ9VoaDXG3a1RShXTRx99xPbt29m2bRsTJkzgxIkTDBw4kHnz5pGQkMCcOXMAePnll4mKimLv3r106dKFo0ePFrhth48Q5O/g1KlEli5ZxNrNO1jz9VaefvbPuQo6dO5KWL1wJr4/hVXrN+dkQAf49ZefGT3iJeYuXsqq9ZvZuWM7S5dYV0hSUlJo1KgRCQkJxMTE8P777zvxm/EsXjGLz61Sk2B2X6tE+/1TwKFfmVJOU8BIx1UmTJjAggVWGYxjx44RFxdHTEwM1apVA6BcuXIArF27lvnz5wPQrl07ypYtW6jtB/g6qFyxPAGBVqmOe+5twz2t2xa6fTt3bCcyKoYKFSoCcN8DPdj09XratO+Iv78/7du3B6B+/fqsWLGi0Nv1NjqCuhxj4LNBcPpHKziVqujuFimliik+Pp6VK1eyceNGEhISqFevHnXr1i3SNnx9fcnKysp5nZqaetEy14cEsm7DRtp36sKK5Uvp2bXjRctcCT8/v5zSIA6H45ouLa8B6nI2T4L9i6DlCPhLya5sqdS1IikpibJlyxIcHMyBAwfYtGkTqamprF27lh9++AGAU6dOARATE8P06dMBWLp0KadPnwbghhtu4LfffiMxMZHz58+zZMmSi/aTnJxMRmoKnTu0Z9Srb+SU6sitVKnrSLYLHeZWr/7dbNywjsTE/5GZmcmCubOJbBLttO/AW+j5qvwc2wJfvgQ12kLjv7m7NUopJ2ndujWTJk0iNDSUGjVq0KhRIypWrEhcXBxdu3YlKyuLSpUqsWLFCkaMGEHPnj2pXbs2jRs35tZbbwWsUczw4cNp2LAhlStXpmbNmhft58yZM3Tq1InU1FQys7IY+erFqUa7P9ib559+KmeSRLYbbryJl0a+wn3tW+dMkmjdroPLvhNPpeU2LiUlESZHg48DHltrXX9SSjmFN5fbqFq1Ktu2baNChaLnRk0+n0HK+eKfjnNCuY2zxpiQYjfkKtARVF5ZWTB/IKSchAFfanBSSjlFqQDr160zglRJoQEqr3VvwveroN1bcPNVr2aplPJgR44cKdb6GqSKRidJ5Hb4K4h/Fe7sBnf3d3drlFLXoFIBvoQE6NigMDRAZfvjF5g3AMrfBu3f1vIZSimXKRXgmzOaUvnTbwisJLDzBkBaCjy0BAJKubtFSqlrXPYoKllP9+VLAxTA6lfgxw3QJQ4qXTxdVCmlXCEkwBcROJOqQepS9BTfwWWw4W2o/zCEdXd3a5RSXmjkyJGMHz8egOHDh7Ny5cqLlomPj89JUZRbsL8v1wdaY4U9uxJY+eUy1zbWi5TsEdTpH2HBY3BTGLR2T04wpVTBNh7bSPyReGKrxhJZxbOzuowaNarI6wT5+yIi7Nm9i4RvttOyVWsXtMz7lNwRVFoKzOpt5dvr9gn4Bbq7RUqpS9h4bCMtPm3BsDXDaPFpCzYe21jsbX766afcddddhIWF0adPHxYvXkxERAT16tWjZcuWnDhxArBGRv379yc2Npbq1aszYcKEnG2MGTOGO+64g6ioKA4ePJjzfr9+/Zg7dy4Ay5Yto2bNmoSHh+cknQXYsmULkZGR1KtXj8aNG3Pw4EF8TCbjX3uFz+bPo0VUBAvnzSElJYW/P/kYrZtF0TKqEcs+XwzA3r17adiwIXXr1uWuu+7iu+++K/Z34olK5gjKGFj4V6uMxoOzoVw1d7dIKZWP+CPxpGWmkWkySctMI/5IfLFGUXv37mX06NF8/fXXVKhQgVOnTiEibNq0CRHhgw8+4I033uDNN98E4MCBA6xZs4YzZ85Qo0YNnnjiCXbt2sXMmTPZuXMnGRkZhIeHU79+/T/tJzU1lYEDB7J69Wpuu+02une/cAmhZs2arFu3Dl9fX1auXMmLL77IvHnzeGXUKDZv2crLr7+JAV59eThRMbG8PXEySb//Tpvm0bRvcy+TJk1i8ODB9OrVi7S0NDIzM6/4+/BkJTNAffUG7FsI97wCd7Ryd2uUUpcRWzUWf4c/aZlp+Dv8ia0aW6ztrV69mm7duuWkKypXrhy7d++me/fu/PLLL6SlpeWU3QCrzEZAQAABAQFUqlSJEydOsG7dOrp06UJwcDAAHTtenKn8wIEDVKtWjdtvvx2A3r17ExcXB1gJax966CG+++47RIT09PSc9Rw+Qtlgf06fSyN+9SqWL/2c9959G4Dz51M5dvQokZGRjBkzhuPHj9O1a9ecfVxrSt4pvm+mWTfjhvWExk+5uzVKqQJEVolkVd9VvNLsFVb1XeWSa1BPPfUUgwYNYvfu3UyePPlP5TMCAgJynjurvMWwYcNo1qwZe/bsYfHixReV6/Dz9aFcsD9g+HDqDFat38yq9ZvZvvc7aoaG8uCDD7Jo0SKCgoJo27Ytq1evLnabsolIaxE5KCKHROSFfJZ5QET2icheEZnutJ3nUbIC1P7FsGgQVG8GHd7Rm3GV8hKRVSIZEj3EKcGpefPmzJkzh8TERMAqrZGUlETlypUB+OSTTwrcRkxMDAsXLuTcuXOcOXOGxYsXX7RMzZo1OXLkCN9//z0AM2bMyPks9/4+/vjjnPevu+46zpw5A4Cvw4c2re/lo7j3yE7qvTthJwCHDx+mevXq/O1vf6NTp07s2rWrqF/DJYmIA5gItAFqAT1FpFaeZW4HhgBNjDG1gb87ZeeXUHIC1JH1MLc/VK4P3f8LvgEFr6OUuubUrl2boUOH0rRpU8LCwnjmmWcYOXIk3bp1o379+oXKVB4eHk737t0JCwujTZs2NGjQ4KJlAgMDiYuLo127doSHh1OpUqWcz5577jmGDBlCvXr1/jQia9asGfv27aNu3brMmjWLEcOH4zCZNG/cgJiIcMaOsWYIzp49mzp16lC3bl327NlD3759nfDNANAQOGSMOWyMSQNmAp3yLDMQmGiMOQ1gjPnNWTvPq+SU20g+CV8OhTZjNUO5Um7kzeU23CXLGJLOpZOWkeWMchtpQO7qiXHGmDj7s/uB1saYR+zXfYAIY8ygXOsvBL4FmgAOYKQxxiU3b5WcSRKlKkLXOHe3QimlisxHhDJBfvzhnIwTGcaYu4uxvi9wOxAL3AKsFZE7jTG/O6NxuZWcU3xKKeXFRITSQX74O1z6a/snoEqu17fY7+V2HFhkjEk3xvyANZpyyTRCDVBKqavO2y4teBIfn8JN7rrC73grcLuIVBMRf6AHsCjPMguxRk+ISAXgDuDwleysIBqglFJXVWBgIImJiRqkXMgYQ2JiIoGBRcuQY4zJAAYBy4H9wGxjzF4RGSUi2Td7LQcSRWQfsAZ41hiT6MTm5yg5kySUUh4hPT2d48ePX3Tvj3KuwMBAbrnlFvz8/P70voicNcaEuKlZRaIBSimlShBvClB6ik8ppZRH0gCllFLKI2mAUkop5ZG87hqUiGQB565wdV/gWqmtrH3xTNoXz6R9uSDIGOMVgxOvC1DFISLbinkHtcfQvngm7Ytn0r54J6+IokoppUoeDVBKKaU8UkkLUNdStljti2fSvngm7YsXKlHXoJRSSnmPkjaCUkop5SU0QCmllPJIXh2gRKS1iBwUkUMi8sIlPg8QkVn255tFpGquz4bY7x8UkXsLu01XcVFfjojIbhHZKSLbrk5PrrwvIlJeRNaISLKI/DvPOvXtvhwSkQkiUriaA57Zl3h7mzvtR6W82/WwvtwjItvt73+7iDTPtY63HZfL9cXbjkvDXG1NEJEuhd2m1zDGeOUDq9Tw90B1wB9IAGrlWeavwCT7eQ9glv28lr18AFDN3o6jMNv0lr7Ynx0BKnjRcQkBooDHgX/nWWcL0AgQYCnQxov7Eg/c7UXHpR5ws/28DvCTFx+Xy/XF245LMOBrP78J+A3rJl63/B5zxcObR1ANgUPGmMPGmDRgJtApzzKdgE/s53OBFvZfeJ2AmcaY88aqCHnI3l5htuktfXGXK+6LMSbFGLMe+FMdBhG5CbjeGLPJWP8bPwU6u7QXFqf3xY2K05dvjDE/2+/vBYLsv+q98bhcsi9Xoc35KU5fzhqrfhNAIJA9481dv8eczpsDVGXgWK7Xx+33LrmMfSCTgPKXWbcw23QFV/QFrH+wX9qnMh51QbsvpTh9udw2jxewTVdwRV+yTbFPzQy7SqfFnNWX+4AdxpjzeP9xyd2XbF51XEQkQkT2AruBx+3P3fV7zOm8OUCpgkUZY8KBNsCTIhLj7gYpAHoZY+4Eou1HHze3p1BEpDYwFnjM3W0prnz64nXHxRiz2RhTG2gADBGRopXQ9XDeHKB+Aqrken2L/d4llxERX6A0kHiZdQuzTVdwRV8wxmT//A1YwNU59Vecvlxum7cUsE1XcEVfch+XM8B0vOC4iMgtWP+G+hpjvs+1vNcdl3z64pXHJZsxZj+QjH1drRDb9A7uvgh2pQ+si4GHsSYGZF8IrJ1nmSf588XF2fbz2vx5YsFhrAuLBW7Ti/oSAlxnLxMCfA209uS+5Pq8HwVPkmjrjX2xt1nBfu6HdU3hcU/uC1DGXr7rJbbrVcclv7546XGpxoVJEn8BfgYqFGab3vJwewOKeXDbAt9izVgZar83CuhoPw8E5mBNHNgCVM+17lB7vYPkmnl0qW16Y1+wZvAk2I+9XtSXI8AprL8Gj2PPPgLuBvbY2/w3dhYUb+sL1h8L24Fd9nF5B3vWpaf2BXgJSAF25npU8sbjkl9fvPS49LHbuhPYAXS+3Da98aGpjpRSSnkkb74GpZRS6hqmAUoppZRH0gCllFLKI2mAUkop5ZE0QCmllPJIGqBUiSMiye5uw6WISFURedDd7VDKU2iAUuoKiYjjCtbxvczHVQENUErZNECpEk1EnhWRrSKyS0RezvX+QjvJ7t7ciXbt+k5vikgCEGm/HmPX49kkIjdcYh8jRWSqiGwAptojpXUissN+NLYXfR2ItpOVPi0iDhEZl6t9Xp8DT6mi0AClSiwRaQXcjpVzrS5QP1dC3f7GmPpYmRL+JiLZmbBDgM3GmDBjldMIATYZY8KAtcDAfHZXC2hpjOmJVbfnHmMl8u0OTLCXeQFYZ4ypa4z5FzAASDLGNMBKBjpQRKo57QtQysNd7nSDUte6VvbjG/t1KayAtRYrKGVXKK1iv58IZALzcm0jDVhiP98O3JPPvhYZY87Zz/2Af4tIXXt7d1ymfXeJyP3269J2O34oVO+U8nIaoFRJJsBrxpjJf3pTJBZoCUQaY86KSDxWPjSAVGNMZq7F082FfGGZ5P9/KiXX86eBE0AY1lmM/IoaCvCUMWZ54bqj1LVFT/Gpkmw50F9ESgGISGURqYQ1UjltB6eaWNm6nak08IsxJgsr4Wf2ZIszwHV52veEiPjZ7btDREKc3BalPJaOoFSJZYz5UkRCgY128dRkoDewDHhcRPZjZYjf5ORd/weYJyJ97X1lj652AZn2BIyPsTJqVwV22NVdT3J1Sqor5RE0m7lSSimPpKf4lFJKeSQNUEoppTySBiillFIeSQOUUkopj6QBSimllEfSAKWUUsojaYBSSinlkf4f/KAo9ZVG5NEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3hc1bW33z1VvfdmyXKVe28UgwHTuykJIZBQ028+knuT3PQE0gvJJQQIoXcMoTcbY4Pl3rstW723kTSj6fv744yEXCSNpBmNRtrv88wjzZy9z1ljj+Z39tqrCCklCoVCoVCMNHShNkChUCgUijOhBEqhUCgUIxIlUAqFQqEYkSiBUigUCsWIRAmUQqFQKEYkSqAUCoVCMSJRAqVQKBSKEYkSKIWiH4QQPxNCPBPE8z8jhKgRQrQJIY4IIe4I1rUUinBCCZRCEXoeAPKllHHAlcCvhBDzQmyTQhFylEApFD6EEP8thKgSQrQLIQ4LIVYIIS4GfgjcKIToEELs9o2NF0L8y7fyqRJC/EoIofcdu00I8ZkQ4u9CCIsQ4pAQYkVv15VS7pdSOrqe+h6FQX67CsWIRwmUQgEIISYD3wAWSCljgZVAqZTyPeB+4EUpZYyUcpZvyhOAG5gAzAEuAnq65hYBJUAK8FNgtRAiqY/rPySEsAGHgBrgnQC+PYUiLFECpVBoeAAzUCSEMEopS6WUJWcaKIRIBy4FviOltEop64E/Azf1GFYP/EVK6ZJSvggcBi7r7eJSyq8BscDZwGrA0dtYhWKsoARKoQCklMeA7wA/A+qFEC8IIbJ6GT4OMAI1QohWIUQr8E8grceYKnlyJeYyoLfzddngkVJ+CuQA9w7unSgUowclUAqFDynlc1LKs9AESAK/7Tp0ytAKtBVOipQywfeIk1JO6zEmWwghejzPA6r9NMWA2oNSKJRAKRSg7UEJIc4XQpgBO9AJeH2H64B8IYQOQEpZA3wA/FEIESeE0AkhCoUQ5/Y4ZRrwLSGEUQixCpjKGfaVhBBpQoibhBAxQgi9EGIlcDOwJmhvVqEIE5RAKRQaZuA3QCNQiyYwP/Ade9n3s0kIscP3+62ACTgAtACvAJk9zrcZmOg736+B66WUTWe4rkRz51X6zvMHtL2tNwLzthSK8EWohoUKRWARQtwG3OFzFyoUikGiVlAKhUKhGJEogVIoFArFiES5+BQKhUIxIlErKIVCoVCMSAyhNmCg6HQ6GRkZGWozFAqFIiyx2WxSShkWi5OwE6jIyEisVmuozVAoFIqwRAjRGWob/CVoKiqEeFwIUS+E2NfL8S8KIfYIIfYKITYKIWadaZxCoVAoxibBXOY9AVzcx/ETwLlSyhnAL4FHgmiLQqFQKPxgJC0ugiZQUsr1QHMfxzdKKVt8TzehFchUKBQKRWh5ghGyuBgpe1BfBd4NtREKhUIx1pFSrhdC5PdxfGOPp0FdXIRcoIQQ56EJVK9lYYQQdwF3AZhMpmGyTKFQKEYlBiHEth7PH5FSDnYVFNTFRUgFSggxE3gMuKSXQpoA+P7xHgGIjo5WmcUKhUIxeNxSyvlDPYk/i4uhErJYeCFEHlrn0C9JKY+Eyg6FQjE2Ka4o5oEND1BcURxqU8KOHouLq/paXAyVoK2ghBDPA8uBFCFEJfBTtC6kSCkfBn4CJAMP+fq6BUTVFQqFok/cDor3Ps+Kt+/G6XFj0htZc90LLJlyFZzUY1JxJoZzcRF2tfiio6OlStRVKBQDQkoo/RS2PgpHP+IBVzM/xoFHgF7CLzHzg6QimHkjLLwTopJCbXHQEELYpJTRfRzvXlygNes8aXEhhHgMuA4o800J2uJCCZRCoRjd1B2Ad+6Dss8gKhmKrqI4Lp0V63+O0+vCpDOwZv63WVJ3AE5sAHMsnPt9WPw10OlDbX3A6U+gRhJKoBQKxejE64VP/wTrHtBE57wfwZxbwKjV8iyuKGZd6TqW5y9nSe4SbU7dAVjzczjyHuQtgVVPQGxG6N5DEFACFUSUQCkUin6xt8Frd8Phd2D6dXDJ7yE62b+5UsLuF+Dt70JkEnzxJUifFlx7hxElUEFECZRCoegTWzM8cy3U7IGV98OiuwcX/FC9C56/CdwOuO1tSC8KvK0hIJwEKixKrisUCoVfWJvgics0V91Nz8LiewYfmZc1WxMmgxmeuhKaTwTWVkW/KIFSKBSjA6cVnrsBmo9rbrnJlwz9nMmFcOsb4HHBC18AR/vQz6nwGyVQCoUi/PG44ZWvQPUOuO4xGL88cOdOnQQ3PAkNh2H1XdoelWJYUAKlUCjCn67Iu0t/D1OvCPz5xy/X9rMOvwNbHg38+RVnRAmUQqEIbw68ARsfhAV3aI9gsehumLgSPvwx1B8K3nUU3SiBUigU4UtTCbz+Nciep61wgokQcOXfwBSthbB7PcG9nkIJlEKhCFM8blh9J+gNsOpJLdou2MSmw6V/gJpdsPWx4F9vjKMESqFQhCef/RmqtsNlf4KE3OG77rRroPB8WPsraK8dvuuOQZRAKRSK8KNmD6z7LUy7FqZfO7zXFkJbRbkd8OFPhvfaYwwlUAqFIrzwuOD1e7WK45f9MTQ2JBfCkq/BnhehZndobBgDKIFSKBThxeaHoW6f5toLZVuMZd+ByET48Kehs2GUowRKoVCED5Yq+PgBmHQxTLkstLZEJsA534PjH0PJ2tDaMkpRAqVQKMKH9/4HpBcu+e3I6H674A6Iz4V1v1EVJoKAEiiFQhEeHFsDB9+Ac+6DxPxQW6NhMMOyb0PFZq1jryKgKIFSKBQjH68HPvhfTZiWfjPU1pzMnFsgJh3W/z7Ulow6lEApFIqRz85noP4AXPDz4UnIHQjGSFjyDTjxCVRsDbU1owolUAqFYmTj6ICPfw05C6HoqlBbc2bmf0WL6Pv0z6G2ZFShBEqhUIxsNv4NOupg5a9HRmDEmTDHaCJ1+B1oKQ21NaMGJVAKhWLk0l6nVSqfdg3kLgy1NX2z4A7Q6VU7jgASNIESQjwuhKgXQuzr5fgUIUSxEMIhhLgvWHYoFIow5tM/ayWFzv9xqC3pn7gszQW542nNLakYMsFcQT0BXNzH8WbgW8AfgmiDQqEIV9qqYdvjMPtmrbRQOLDoHnBYYPfzobZkVBA0gZJSrkcTod6O10sptwKuYNmgUCjCmA1/BOnRqjWECzkLIGuu5uZTibtDJiz2oIQQdwkhtgkhtrnd7lCbo1Aogk1rBWx/UssxGilJuf4gBMy/HRoPQ8WWUFszKEbS9kxYCJSU8hEp5Xwp5XyDwRBqcxQKRbDZ8Afty/7sMNyennYtmGJg51OhtmSwPMEI2Z4JC4FSKBRjiJYyLTF37peHtxFhoDDHaFGH+14DR3uorRkwI2l7RgmUQqEYWWz8GyDgrP8KtSWDZ+6XwWWFfatDbcmZMHRtmfged4XaoN4Imr9MCPE8sBxIEUJUAj8FjABSyoeFEBnANiAO8AohvgMUSSnbgmWTQqEY4XTUw86nYdaNEJ8damsGT858SJ0CO56CeV8OtTWn4pZSzg+1Ef4QNIGSUt7cz/FaICdY11coFGHIpn9oeU/LvhNqS4aGEDD3Vnj/h1B/ENKmhtqisES5+BQKxcjAboGtj0HRlZAyMdTWDJ0ZN4DQw56XQm1J2KIESqFQjAy2/gscbXDWd0NtSWCISYXC82DvK2GVE+XbnikGJgshKoUQXxVC3COEuMd3PMO3bfNd4H99Y+KCYYuK2VYoFKHH1QmbHoLC8yFrdqitCRwzVsFrd2s5UXmLQm2NX4yk7Rm1glIoFKFn5zNgbRg9q6cuplwGhkjY+3KoLQlLlEApFIrQ4vVA8d+1MkH5Z4XamsBijoXJl8D+1eBRVd0GihIohUIRWo68p/VQWvKNkdvvaSjMWAW2Jji+LtSWhB1KoBQBobiimAc2PEBxRXGoTVGEG5v+AXE5MOXyUFsSHCZcABEJys03CFSQhGLgdLZqd72ln0LtXopbT7DCXokTiQkda8ZfwZKiq2HSJRCbHmprFSOZ2n1QugEu+Bnog/N15PVKqi2dVLV00tDhoK3TTafLg9crMegF0WYDSVEmMuIjyEuOIi7CGFgDDCZNfA++CW6n9lzhF0qgFP5Tt19rIHfgDfA4ICIesuayTjhx1lTiAZx4WVfxGUtKPga+AxMvgsX3wvjlo9N9oxgaW/6pBRHMDXy1hVqLnX1VFo7Wd2B3eXod12pzUdXSyd4qCwCZ8RFMz45nSkYsBn2AnExFV8KuZ+DEeph4QWDOOQZQAqXon456eP9HmovCFKNlyM+6GbLmgE7H8opiTE+twOlxYtKbWH7Lf8AcD/tfh+3/hqevhoJzYOX9kDEj1O9GMVKwNmlJrLNugqikgJ22vMnGpuNNVLV2Dmp+jcVOjcXOxpJGFhYkMzM7Hp1uiDdXBeeCKRYOvqEEagAIGUYJZADR0dHSarWG2oyxw56X4Z37wGWDJV+Hpd8645dJcUUx60rXsTx/OUtyl3x+wO3Q+vqsux/sbXDOfVoDOn2A3SiK8GPDH2HNL+BrmwJSCqjZ6uSTI/WUNtoCYNznpMSauWBqGpnxkUM70StfgeOfwH1HQKcPjHGDQAhhk1JGh8yAAaAESnFm3E6tjtjWRyF3EVz5d0idNPjzdbbAez/QWmFnzYUbngrPVgqKwOBxwV9map+pW/8zpFN5vZItpc1sOdGMxxuc7zOdECwsSGLx+CTEYF3V+1+Dl2+D294OaTj9cAuUEOK3Usr/7u+1M6Gi+BSn09kCT12pidPSb8Jt7wxNnAAiE+Gah2HVE9B0DB49Hyq2BsRcRRhy8A1or4ZF9w7pNK02Jy9uq6C4pClo4gTglZJNx5t4bWdVn/tZfTLhQjBEaMESY4sLz/DaJf5MVAKlOJmOenjiCqjaDtf9Cy76VWCjq6ZdA3d8BKYoeOIyOPhW4M6tCB82PQyJBVoQzSA5Vt/Os5vLqbXYA2hY35Q12XhxawWWzkEk3ZpjoHCFJlBeb+CNG2EIIe4VQuxFq+m3p8fjBLDHn3MogVJ8Tnsd/PsSaC6BL7wIM64PznVSJ8MdayFzJrx0q1ZMUzF2qNoOlVtg0d2gG/hXkJSSjSWNvLm7Bqd7+L/om61OXtpaQVOHY+CTp14BbVVQvTPwho08ngOuAN7w/ex6zJNS3uLPCZRAKTQ6W+GZ66CtBm5ZrRXtDCbRyfCl1yBvMay+UwvGUIwNNv9Ti2ib/cUBT3V7vLy7r5bNx3vtSD4sdDjcvLK9cuAiNflirQXHodHvOZBSWqSUpb7is5VoLeIlECOEyPPnHEqgFFol6edvgoZDcOPTMG5J/3MCgTkWvvgKjFsGr98DRz8anusqQkd7rdYGfc4XIWJgHRocbg+v76rmcG17kIwbGDanh9U7qrDYBuDui0yEcUvh6AfBM2yEIYT4BlAHfAi87Xv4pdBKoMY6UsIb34LyYrj2EZiwYnivb4qCm56DtCJ46UsqcGK0s+1x8Lph4V0DmmZ3eXh1exUVzYENIR8qHQ43r+2spNM5gMCJiRdB3T5orQieYSOL7wCTpZTTpJQzfI+Z/kxUAjXW2fg32PsSnP+/MP3a0NgQEQe3vAox6fDcDVrhUMXow+3QBGrSSkgu9Htap9PDy9srqWsbvmCIgdBic/Hm7mrcHj/3wyZdrP08+n7wjBpZVACWwUxUlSTGMsc+go9+CkVXw9n3+TXF4fbQ2OGk1eak0+nB5ZHoBJiNemIjDCRHm4iPNA48VyQmTROpR8+D578AX/1Ai3pSjB72var1fFp0t99TOp0eXtlRSWP7IAIShpGq1k7WHKpn5bSM/genTNQiGI98AAvuCL5xoec4sE4I8TbQ/R8ppfxTfxOVQI1V2qrh1Ts119rVD/VZJ6+pw8HhunZONFppaHf02706wqgnNymS8SkxFKZFYzb4mTWfXAjX/xuevR5evxdWPTmoKC/FCERKrWp56hQYf55fUxxuD6/trBrx4tTFgeo2MuIimJWb0PdAIbRV5PYnwGnT3Nyjm3Lfw+R7+I0SqLGI1wOr7wK3XUucNZ2eVC6lpKTByo7yFqpaBlbTzO7ycLSug6N1HRgPCSalxzInL5HUWHP/kyesgAt/CR/8SCuFc+73BnRtxQilfBPU7oHL/+xX0WCXx8t/dlWPWLdeb3xypIGM+AjS4yL6HjhpJWx+WKvkPmnl8BgXIqSUPwcQQkRJKQe0iRi021MhxONCiHohxL5ejgshxINCiGO+5K25wbJFcQqf/ln7w7j095q74RQqmm08t6WcN3dXD1icTsXlkeyvbuPZzWW8sbuaRn/Ccpd8XWvytu5+raWHIvzZ/A+tJ9LMm/od6vVK3tlbM+TPXijweCVv76nB4e4naGLcMq3w8pH3hsewECKEWCKEOAAc8j2fJYR4yJ+5wfSfPAFc3MfxS4CJvsddwD+CaIuii4qt8PH9MP260/JQbE437+6t4ZXtldS3BdatIiWU1Hfw7KZy1h6q67tcjBDanXZigeaGtDYF1BbFMNNaoVUMmfdlv9xZaw7Vc7whfOttWjpdfHyooe9BBrPWgubI+/TrMw9//gKsBJoApJS7gXP8mRg0gZJSrgf6yqa7CnhKamwCEoQQmcGyRwG47NreTlzWaa6WE41Wni4u41CQc0y8UrK7wsKTG0s5WtfHtcyxsOrfYGuE/3xtLPwRj162Pqr9XHBnv0M3H29iX9WgAr5GFAdr2vr+fIMWzddWpfVZG+VIKU+NqfcrLj+UO9DZaOGHXVT6XjsNIcRdQohtQohtbrd7WIwblXzyG2g6Clf8VWs2iOZO+fRoI//ZVYVtILkcQ8Tm9PDWnhre29eHOyRzllYL8Mh72ga7IvxwWrV2K1Mv77d6/aHaNjaWjJ7V8tpD9dicfXxfdeUclqwdHoNCR4UQYikghRBGIcR9wEF/JoZFiJSU8hEp5Xwp5XyDQcV1DIqqHfDZgzDnlu4/DIfbw392V7G1tDlkC5SDNe08u6mc+t42wxfeBZMvhY9+BvWHhtU2RQDY8yLYW2HRPX0Oq27t5MP9dcNk1PBgc3pYd7gPV19clhZFW7Jm+IwKDfcAX0dbgFQBs33P+yWUAlUF9LylyvG9pgg0bif85xsQnQoX/RrQMuBf2lYZ8OZug8HS6eLFrRXsrz6Da0cIbcVnitbKIXnUCjpskFKru5cxE/J6L5/VZnfx1p5q3EFslxEqDte2c7yho/cBhedDWbEWbj5KkVI2Sim/KKVMl1KmSSlvkVL6tVQOpUC9Adzqi+ZbDFiklDUhtGf08umfoH4/XPEXiEzQeuhsrRhR+SVur+SD/XWsP9LAaU00Y9K0PbPqnVoEoiI8OL5Oq++4+N5eQ8tdHi9v7q7G6hg+9/Jws/ZQfe9V1wvPA48DyjcOr1F9EOgIbCFEgRDiT0KI1UKIN7oe/tgSzDDz54FitF4glUKIrwoh7hFCdK3130HLMD4GPAp8LVi2jGkaj2n5RNOvh8mX0GJ18vK2StoG089mGNhe1sKbe2pwnVo2ZtrVWuThJ7+FGr9ayShCzeaHtVX79Ot6HfLB/rqAR4yONNrtbjaf6GXBkLcU9GY4NqL2oZ4gsBHYrwOlwN+AP/Z49EvQNnR8Jdb7Oi7x0w+pGCRSwrvf07p4rryfVpuTV7ZX0uEY2W6ykvoOVu+o5KrZ2UQYe1ShuPQPWl7U6/fCnR+DYUBJ6YrhpKlEC6E+9/taSPUZ2FrazJH+It1GCTvLW5mWFU9S9CmfWVOU1j1gBAVKSCnXCyHy+xjSHYENbBJCJAghMvvwgNmllA8OxpawCJJQDJKDb2of/PN+RLsxiVd3VI14ceqiutXOy9sqTrY3Kknbj6rbB+t/HzrjFP2z5RHQGWD+V854uKzJymfHGofZqNDh8UrWHa4/88HCFdBwUCs/NjwYuqKifY+BlZYfQAS2j78KIX7qS9id2/Xw50JKoEYrTiu89wNIn459zu28trNqxLr1eqOxQ+tcelJ77cmXwMwbtb2ougOhM07RO/Y22PksTLsGYk8vnmrpdPHO3toxl9pW1mSj5EwBE13NQUs+Hi5T3F1R0b7HI0G+3gzgTuA3fO7e+4M/E5VAjVbW/x7aKnFf/Dve2FtPU4cz1BYNCkuni5e3VZzcFG7l/Voi75vf0uoKKkYWO58BZ7sWHHEKbo+Xt/ZU911JZBTz6dFGPKdGK6ZPg+i0cAo3H2gE9ipgvJTyXCnleb6HXy27VVLRaKThCGz8O3LWzXzYMZ6qloH7+TtdHmotdhraHbTZXbTb3TjcHjxeiZRg1OswGXTEmA3ERxlJjDSSHhdBbIRh4K02+qHd7ubl7RVcPy+HhCgTRKfAxb+B1+6Crf+CRQP1UCiChtejBUfkLYHs0704aw/Vj/qgiL5otjrZW2Vhds+K50Joq6ijH4DXGw4V/N8AviGEeAFYRP8R2PuABKAXH2fvKIEabXQFRhij2DbxvzhU4584SSmpa3NQ0tDB8UYrzdbPV1yRRj1xkQbMBj0GnUAIrQis1hvKga3m87vhKJOe7IRIClKiyU+OJtLkZ6uNfmi3u3lleyWr5uUSH2WEmTdoSaBrfq65/fqpUqAYJg6/A61lcNEvTzu0r8rC/uq2EBg1sth8vImpmbEnt6GZsAL2vAC1uyFrTuiMozsCezmQIoSoBH4KGAGklA+jRWBfihaBbQNu7+eUCcAhIcRWTu4HdWW/tpyWczLCiY6OllZr+BaSDDr7X4OXb6P+7F/xnFzZr5/f6fZysLaNvZUWmqxOhIDshEjykqLIjI8gLTYCk6HvOzqn20uLzUmtxU5Nm53KZhtWpwcBZCdGUpQZx4S0GIz6od8ZxkUaWTU/h7gII7SUwUOLIf9s+MKLfrVxUASZxy+Btkr41i7Qff4FXN9m58WtFaMyGXcwLBqfxNLClM9f6KiHP0yE838M5/jXPHSwCCFsUsrTe+wE73rnnul1KeUn/c5VAjWKcLTD3xfiikzm0Sn/wuHp/Qvb5fGyq6KV7WUtONxe0mLNzMiOZ0JazMmh3YNASkl9u4PjDVYO17Vj6XRh0uuYnBHLnLwEEqOGFh6eGGVk1fxcos0GKP4/eP+HcP3jfebbKIaB6p3wyHKtWsnSb3S/bHd5eG5z+cnBLmMck0HH7cvyiTL1cGL94yyITIDb3grqtYdboHzXHAdMlFJ+JISIAvRSyn7dO8rFN5r45HfQXs37Ux7oVZyklBysbefTo410ujzkJ0exqCCZjPh+GqwNACEE6XFa07bF45OobrWzv8bCgZo29lZZGJ8SzdxxiWQnRA7q/C02F6t3VLJqfi4Ri+6Bva/AO9/XOrVGJQXsfSgGyKZ/aD2O5n6p+yUpJR8cqFPidApOt5ctJ5pZPjnt8xcLl8Omh7UI3DM0EQ1XhBB3oiX0JgGFaCHpDwMr+ps74nfjFH7ScBi56SHK8q7lqKnojENarE5e3VHFhwfqSIgycsP8HK6anR1QcToVIQTZiZFcVJTB7UvzWViQRLWlk1e2V/LazipqB9kxtbHDyWs7q3B4gSsfhM4WeP9HgTVe4T9tNbBvtVaM2FcpH7TKICX1fdSiG8PsrbTQbu8h3OPPA68LykZO2aMA8XVgGdAGIKU8CqT1OcOHEqjRgJTwzn14DFG8m3F61WgpJfuqLDy3pZzGDgcrpqSxal4OmfGDW8EMlmizgSXjk/nKsgLOnphCfbu2L/HWnmqa/Om0ewq1Fjtv7q7BnToNln0bdj8Hx8ImVHd0sfUx8Lph0d3dL1W22Pjs2OhpnxFo3F7J1tIeLfPG+coeDV8+1HDhkFJ2R10JIQyAX3tLSqBGA/tfgxPrWZ97D53GxJMOOd1e3t1Xy5pD9WTGR3DL4nFMz44PeCj4QDDqdczNS+S2pfksLkiiormTZ7eU88mRBhwDzI+paLbxzr5avOd8H5InwpvfAYe6Yx9WnDbY9rjWFiVpPABWh5t399biDbM97uFmX1UbbV2rKGMk5C2G46NOoD4RQvwQiBRCXAi8DLzpz0QlUOGOowPv+z+kMWYKe9KvPelQW6eLl7dXcKyhg6WFyVwzJ5sY88jZdjQb9Cwan8xtS/OZnhXPropWniwuY1+15fSK5n1QUt/Bh0ctyCv/BpYKWPOLIFqtOI2dz0Bnc3dghNcreXdfbdiU1QolHq9kW89VVOF5UH8A2mtDZ1Tg+R+gAdgL3I0Wpv6//kxUAhXmyE9+h669ho8KvocUn0ff1Vg6eWFrBW12N1fNymJBflJIV019EWnSc/6UNG5emEtClJE1B+t5aVsljQNw+x2obuMTeyEsvFOrA1e+KYgWK7rxuGDjg5C7WHNRARtLmqhoHr39jQLNvqq2z/eixp+n/Ty+LmT2BIGr0YrLrpJSXi+lfFT6eQeqBCqcaTiMLP4/9qVdSU3czO6Xy5qsrN5Rhcmg48b5uYxLDo+IoLTYCFbNy2FlUTqWThfPbymnuKQJt7eXXjqnsLO8lc3jvwHxOVqDRtfgAjAUA2Dfq9qq9az/AuBYfcfJ+yqKfvF4JdvKWrQnGTMhKnm0CdQVwBEhxNNCiMt9e1B+oQQqXJES+xv/D6cukk/zP885Od7QwZu7a7qj9E4r7z/CEUIwJTOOLy0ex6T0WLaUNvP85gqqWzv9mr+xwsHRRb+CpqOw/ndBtnaM4/VqRXvTimDSSlqsTt7fP6pcU8PG/ioLNqdbK3NUcK4WKDFK9u+klLcDE9D2nm4GSoQQj/kzVwlUmOLY9RIRFRvYOO7zwIij9e28vbeGlFgT183NOTkJMMyINOlZOS2Dq2Zn4fJ6eXl7JZ8cbji9keEZeNtWRMvE6+HTv0DN7mGwdoxy5D2tY+5Z/4XTI3lzT3XvnWOHASkldpeHFpuTGksnxxs6OFzbzqGaNg74Hkfr2ilrslLd2oml03V64dYQ4fJIdpS1ak/GL4eOWu3fdpQgpXQB7wIvANvR3H794lclCSHEauBfwLtSytB9AlGVJACktRHnX+fTbMrmxZmPIYWesiYrb+yuJj0ugqtmZ51c5yvMcbq9bCxpZHelhcQoIxcVZfSbuxXhtnDn3i9giE6Cu9ZpEVKKwCElPHYBWBuQ39zO258kg9QAACAASURBVPsbOFo3PNGTUkraHW7q2xw0tDtosTmxdLpotblw+nEDcypRJj3xkUZSYsykxJhIjTWTGmvGMMxFW00GHV89q4AIaxX8ZQasfACWBL7ReAhKHV0C3IhW328d8BLwgZSy3ygafwXqArSCgIvRlmn/llIeHrzJg0cJFDQ9fTsJx//Ds7OeoSl6AjWWTlbvqCIhysj1c3MwD7FU0UilotnGBwfqsDrdLBiXxMKCJPS63gM/8ls3cc3+b8KCO+AyvzpMK/zl8Lvw/E1wxV/ZlHgFxSXBy3eSUtLY4aSyxUZFSye1FjudvnQEISA+wkh8lJGESCNxkUaijHoijHoiTHpMeh1CgM4XIOTyeHG6vTg9XqwONx12N+0ONy02J40dzu4VoF4nyIyLIDsxknHJUWTERQxLkNFZE1NYkJ8ED86F5EL44ssBv0YIBOp54EW0Bc6AEh4HVItPCBGP5kP8EVpHxUeBZ3zLt2FhrAtUy973SXz1BjblfIXicffS1OHg5e2VRBj1rJqXo9Wn6weDTitFlBpnJinKpP1R+/6YdToBEtxeLw63F5vTQ4fD7btD1f6IQ9n40OH28MmRBg7WtJMWa+aionSSY87cUhzg3BN/YW71s3DzC1rVc8XQ8Xrhn2eD08qxG9by1v7GgG+XON1eypqslDRaKW+ydQtSfKSRrAStjFZ6bAQpMSYMAShCDJ+vzBraHVS1dFLV2kl9u/Z9GmXSMz4lmglpMeQmRXULXqCJNuv5yrICDO99D3Y9D/9dCobA7iOHqBZfOrDA93SLlNKv1ht+C5QQIhm4BfgSUA08C5wFzJBSLh+owYNlLAuU09aO42+LcGHgmdnP0uE28MLWctxeyQ3zc4mPNPY6N8KoZ2JaDBPSYshJjBzSH7Xd1yuq2tJJle+OdrirVB+r72DtoXqcHi9LC5OZk5twxjtcvdfJTXtuJ8nTiOFrGyEuc1jtHDBSgquT4tJ1rKvcyPL881iSv/ykyuAhZ9+r8MpXsFzyfzxtXYTLE5j/e4fbQ0m9lWMNHZQ32/B4JRFGHfnJ0eQmRpGTFKlVsR9G7C5Pdyfc0iYrLo8k2qxnSkYcRZlxQQlCWjE1jZntn8KLX4Tb3ob8swJ6/hCsoFahddBdBwjgbOB7UspX+p3rp4vvNWAy8DTwRM/mVEKIbVLK+YMzfeCMZYEqffZb5B99kpem/5Py2Dndteyun5vT655McoyJeeMSmZweG7A7zVNxebxUt3ZS2mSj9JReUsHE6nCz9lA9xxutZCdEclFROnFnEOkk2wlu3v1lXEmTiL77AzAGr/ag39iaterf1Tug4TC0lmvtQzrqKMbFCmw4AROwhiiWxGRDQh4k5kPmbMieB5mzwBQ1vHZ7XPDQYjzCwOMznmaojZq9UlLRbONgTTslDR24vZLYCAOFKTEUpkWTFR+prepHAG6vl9JGGwdq2ihtsiIl5CZGMicvkfzkqIC5ABOijNw2NxHxu/Fa+P6KHwfkvF2EQKB2Axd2rZqEEKnAR1LKWf3O9VOgzpNSjoj6G2NVoMq3v0femzeyK2MVa8d/jzWH6tlf3cbKaelMyYg7bXxshIFlE1KYkhE77Am6LVYnJQ0dHKvvoLbNHtRoWSklB2raWH+kEYBzJ6UyNfP091zYtI4rD32P2vyrSb/134jh7lrqtELpp1CyVns0Hvn8WHweJI6DhHEQl8kD1Zv4cck7eJDo0fHL/Av4QcJETcSaSrR+S6DVbSs4ByathCmXD8/qcOPf4YMfsWbOg+yJWjLo07TZXeyrsnCgug2r04PZoGNSeixTM2OHbb9nKFgdbg7UtLG7shWrw0NSlIk5eQlMzYzrc1/UXy6fmcnEN68F6YE71wbA4s8JgUDtlVLO6PFcB+zu+Vqvc/0UqK8Dz0opW33PE4GbpZQP9TPvYuCvgB54TEr5m1OOjwMeB1KBZuAWKWVlX+cciwJlaW1C948luISZNRHfQ/fpZp6NLEC/bOnJTc/QNo1n5SawrDCl30aDw0G73cXR+g6O1LZTYwle4mxbp4sPDtRR1dpJYWo0509JOy3MflHFYywt/ycHJ3+dgut/OeS+V/1ib9OCCfa9qtVX8zjBEAn5yzS3TdZcyJp9UvVvgOKKYlY8tQKnx4lJb2LNrWtYkttDDDrqoWo7nNgAR96F5uMgdDDhAq2a+ORLQR8EV1h7HfJvc6mOn81LE/804AaRUkrKm23sqbRwolH7G85PiWZqZiwFKdHDHjUXCDxeydH6dnaWt1Lf7iAuwsCigmSmZMQOaeWXER/BzdZnYP3v4fvHITKx/0l+EgKB+j0wE3je99KNwB4p5X/3O9dPgdolpZx9yms7pZS99iYWQuiBI8CFQCWwFU3UDvQY8zLwlpTySSHE+cDtUsovnfGEPsaaQHm9kvJ/fYm8qnf4KPb7LP/hz9G5nLgNRlb/7gnqps3tHhtl0nPJ9EzykofZ7eMnlk4XR+raOVTbTmP7wKuX94eUkp3lrWwsacJk0HHB1DTGp8b0HMBFx37BtPq32DLh22Rf/oNB96TqFadVyw/atxqOfggeB8RlQ9FVMPFCyFvql4uxuKKYdaXrWJ6//GRxOhUptdXYnhe1TfX2au16i++FuV+GiNNX14PF8+pdsO9VnprzAq2R4/ye53R72V9tYU+VhVabi0ijnmlZcczIjj+jSzYckVJS1myjuKSJ+nYHCVFGlo5PZkJazKBXg1/IrCL9lavhhqehqN/u6H4znAIltDefgxYg0bWZtkFK+Zpf8/0UqL3AzK76ST7x2SOlnNbHnCXAz6SUK33PfwAgpXygx5j9wMVSygrfG7FIKfv8ixprAnXk42eY9MnXKc69E+cGL8ue+isG6cWj01P85W+z9WatvUFanJkrZ2URO8ybyIOlscOhJVHWtgc8KrCxw8H7+2tp7HBSlBnHuZNSu1eTQnq4+MhPmdL4Pltzvozt7B+xpDB1aKtNj1tbIe15CQ69BS4bxKTDtGtg2rWQs0CrEBBsvB5NFIv/DqUbwBwHC+/SirgO8Q7ctvt1ol77cnf0qD90Oj3sqmxld0UrDreXzPgIZuZoXZvDcbXkD1JKjjdaKS5posnqJDshknMnpZIa23ukaW8UJBm5+v2zYOYNcPmfA2ZjqF18A8HfUgPvAS8KIf7pe36377W+yEYLRe+iElh0ypjdwLVobsBrgFghRLKUUjWRAeqqSsn97IfUxkxlc/btnIj/hIV6A8LrwWs0UjlrIQDjkqO4fGbWiHDp+UtKjJmUCWaWTUihurWTQ7VtHKnroNM5sHYbvZ37pgV5bDrexPayFipbbFxUlEF2YiRS6Hlv0s9w6qNZUPkkx98r4eWiHzNj6hSmZcX7v38gJVTt0FYu+1eDtQEiErQvk+nXa4VThzvyTqeHyRdrj6od8NlfYMMfYOujsPSbsOgeMMcO+LTVFcdJeuvb1EVPYXPuHf2Ob7O72Fneyr4qC26vpDA1mnnjEoe9/1goEEJQmBpDQUo0+6va2Hi8kee3lDMtO46lhSlEDsCtfKLZhSNnCebw7w+1QwixQEq5daAT/V1B6dBEqatF74doe0q9fpsIIa5HWx3d4Xv+JWCRlPIbPcZkAX8HCoD1wHXA9K69rh7j7kJrGYzJZJrncATePTTScLo81D98BRkt23hm1jN8ZkniwwN13CqruajhEJWzFlJTNIfxqdFcPjMrIBuzocbr1dwkh2vbKGmwBqRsTnVrZ3fL8Xl5iSwuTNLu3qVkVu3LnFP6IG5hZHv2LZSMu4mJ+XkUZcWdOWTfaYWyYjj8jubGa6vSAhUmXwwzbtBceIaB3ykHldq98PH9ms1RyVpU2Pyv+hX953R72Xq0gglv30iirZTnZz1Jc1RBr+ObOhxsL2/hcG07AJMzYpmXl9hnntpox+7ysPlEM7srW4kw6DlvcuqA3H4rO16jaPf98O3dWgRnAAjBCuoQMBEoBaxooeZSSjmzr3kwwETdARrVr4vvlPExwCEpZU5f5x0rLr5Db/2VKdt+wtrx32ND4jU8u6mc1Fgz187N7k4SzEuK4qrZWUELHw8lLo+XE41WDte2U9poHVKeldPtZcOxBvZVtZEcY2JlUUa3yyWhs5xzT/yZ8S2f4hF6quLm0BA9CRGXRWJMBIm6TmLsNRjq90LdfpBeMEZB4flaMMLUy08LcggGUsruaEghGPi+RuV2+PhXWgRhVAos+bpWYeMMe1Q2p5sD1W3sPV7Bit3fJceygzen/p7jSeec8dS1FjvbypopabBi0AmmZ8UzZ1zCsOcsjWQa2h18dLCO+nYH41OiOW9Kml+92ZI7S7l1xyq4/C8w//aA2BICgTrjhqWUsqzfuX6uoCYCDwBFQPcOr5RyfB9zDGhBEiuAKrQgiS9IKff3GJMCNEspvUKIXwMeKeVP+rJlLAhU5dHdpD9/IdVxs3l16l9ZvauGujY7X1w0rvvOPi3OzKp5uWHl1hssDreHE41WjtR1UDYEsTrRaOWjg3XYXR4W5CcxPz+xey8kxXqUyQ3vk99aTFJnGQavtkqXCGzGJFpjJ2BJnkNnxjzs2cuIiIzEbNBj1OvQ68RJK1gpJV6pRXh5vBK314vLI3F7vLi9EqfHi8ut/d5Vesft1Y67PF1zJF6p/e7tIU5ddJXv6bq2wfcwGfQY9QKTQYfZoMds1GE2dD30xNVvI2Xng0SVr8Nrjqd92i20TrqO1uhCWmxOai126ix2slq3seL4b4i3V/LBhJ9wKO3Sk67fFZG3rbSFytZOzAYds3ITmJ2TQKRpBCUVjyC8XsnOilaKjzeh1wmWT0rtPw1ESu7deQURBYvhhqcCYkeIKknMRQuSkMBnUsodfs3zU6A+BX4K/Bmtt8ftgK4/MRFCXAr8BS3M/HEp5a+FEL8Atkkp3/C5AR/wGb0e+Hp/tZpGu0DZ7Xba/+88YjqreHr283xWb+STIw2smJLG9GztTj3GbOCmhblhExARSLrE6mhdB2W+zP6B0On0sO5IPUfqOljedIwbrCW0LVpGTVGPgFTpxeyxgvTi0kfh1Y2+f+f09v0srHyC8c0b0OHBYs6kKaoQjzCQYjtOor0cizmLDyb8mMqEz/PwvVJyrL6DbWUtNLQ7iDbrmZuXyPSs+DFxsxQIWm1OPjxQR7XFzqT0GM6fktZnceeVx37BFMsGdN8/HpB9zRCsoH4CrAJW+166GnhZSvmrfuf6KVDbpZTzekZjdL02BLsHxWgXqJIXf0DhwYd4a/Jv2BJ1Ns9tLicnMZIrZ2UhfHfM18/LISvQ4dFhSFe9tqP1HZxoHNieldy4kXt/dQ9GjwuPwciLv/k3TTOG/eMccqKcTUxsWkN22y6SbCfQSQ+tETmUJi7jQNqluPXa58zt9XKopp1tZS1YOl0kRBmZNy6RKRmxozYiL5h4pWRbaQubTjQRYzawclpGrykPkxve49IjP4Y71kLO0D+jIRCow8AsKaXd9zwS2CWlnNzfXH+j+By+QImjQohvoLnsYvqZoxgg1XvXUXDwYfanXc6R5PNZu7MKnU6wYmp6txvgrIkpSpx8mAw6JqbHMjE9FrfHS1mzjaN17X4FWCws24vZ60InveB20fT2BxxJm8TEIeSthCM2UzK7M29gd+YNJ72eeWAnc9Y9xfHp83k/roBd5a1YnR7SYs1cOiODwtSYoBVMHQvohGBhQRJ5SVG8t7+WV7dXsrgwmQXjEk/7/JUlLMYj9Nh3vUp0AASqP4JQYKEabWuoK1PfjKYh/eKvQH0biAK+BfwSOA/4sp9zFX7gsLYS8/bXaDdnsK7g/3Gotp3Klk7On/z5Zur41Gjm5gUuo3w0YdDrKEyNoTA1BrfHS2mTlYM17ZxotJ6xKV3lrIV4jCZwufAaDOwtnMPafbXsGULeymgh88BOrvv+behcTubpDbx+069Jmj6XC4sSyUsKXM05hVYx4gsL81hzqI7ikiZqLXZWFqWf1DLHbkygLGEJ6ftewXvJL9Hpg7fH58tx/T96FFgQQrzRs8ACWuHXp3oUWHgArYh4b1iA/UKID9G2cy4EtgghHgSQUn6rt4n9CpTP4BullPcBHWj7T4oA0/zKd0m31/DyjH9i8Uay/mgpmfERTM/WoqyiTHouLEoPsZXhgUGvY0JaLBPSYul0ejhY28beSstJRWxriubw6m+fIGf3FipnLWTa1NlwSt7KkvHJYd2VeDC02JwkfrQW4XKil16MHjd3eSs4ODdwlQwUJ2My6Lh4WgaZ8RY2HG3g+a0VXDYj86SbpIOplzD+yKfsLX6XGWddHkxzFgLHpJTHAYQQLwBXAT0Fqgj4ru/3j4HX+znna75HF+v8Nabfvz4ppUcIEdh674qTaNrxHzJPvMrmnNupjpvNhgO1ON1ezp+S1n23eqbacor+iTRpm/hzchMoa7KxrayFimYboIlUV3CEDpiRE8/E9Bg2n2hmT2UrR+o6mJeXyOzchFEdACClpKq1k10VrZQ0WJmfOImbDUaEx400GmlduDTUJo56hBDMzk0gLdbMO/tqeHFbBRdMTesuBH086Rwc+mjMO/9NRdH55CYNqZyZQQixrcfzR6SUj/h+D3iBBSnlk4M21M9xO4UQb6B10+2OUJBSru59isIfvLZWIt6/j8aoQjbl3tndemD+uERSfAmOE9NjmJg+8AoAis8RQpCfEk1+SjSVLTY+O9ZIdevpxWsjjHrOnZTKjOx4PjvWSPHxJnZVtDJ/XCIzc+JHVc6Zy+PlcG07uypbaepwYjboWJCfyKyzLuG1eTndq8uTIhwVQSUrIZKbF+Tx7r5a3t9fR7PVyZLxybj1EezKvJFFlY9TXrsPkhYO5TLuIbZIug/4uxDiNrTo6yqgr6INl6NtDY1D05yuRN1+C0X6G8X37zO8LKWUX+l3coAZbVF8Dc/dTfKRl3hh5uNURxfx3JZyPF7JLYvyMOh1mI06bl2S71dSn2JgHK5tZ/2RBjoc7l7H1FrsFB9vorzZRrRJz+zcBGZkx5+0RxButNic7KuysL+6DYfbS0qMiVm5CUxOj8U4igQ4nPF4JR8f1lrqTEiL4aKidGK87dy+4zr0sWmY7l476ELAfUXxBaPAghDiGNqKa6/0R3B64Ne3npRS7TsFAduhNaQeeYFt2V+iLnYaeytaabY6uWJmZved+tLCFCVOQWJyRiz5KVGsP9LIvirLGcdkxEdwzZxsqlo62VLazGclTWwpbWZ6VjyzcxPCphq3w+3haF0HB2raqLHYEQIKU2OYnZNAVsLI77801tDrBCumpJEUbWLD0UbaOl1cOSuLtyb/hstansLkCVpT0K3ARCFEAdrK6CbgCz0H9CywAPwALaKvLyqAfQMVJxjYCuq0gWoFNQScVmx/WYjDq+Pp2c/S4THyZHEp6XERXD1by3lKizPzhYV56stjGChp6ODDA3X9FqttaHewo7yFI3XteKVWbmp6VhwFqSOvn1F36H19ByX1WrfaxCgjRVlxTM2II9rPGx+9ThAfaewudGp3e2i3uwNSK1HRP8cbOnhvfy1mg54rZ2XxlWX5TBiCy7+/PKhAF1gQQixAc/F9AnSPk1L+qV9b/RSo63o8jUDbGKvuKzwwWIwWgWp768fEbXuQl6Y/TFX8PD4+VM/eagtfXJjXXVzzhgW5ge9XpOiVdruLd/fWUtXa6dfY/dVt7K9uo8PhJtKoZ0JaDBPSYshOiAxZ8V67y0NFs41j9R2c8FXaMBt0TEyLoSgrzu9utUa9YEpGHJMzYsnq5f1YOl3UWuxUttgoa7JhCXDbFMXnNLQ7eGN3NUWl+/nfmDpm3nI1LBlcR+MQJOp+gBYBvhfovquRUv6837mDKRbrS9r9VEo57OE9o0GgvA1HkQ8t5nDKRbw/6ec0djh4bnM5M3PiWT45DdDcT5fOGIYW3oqT8Hgl6482sKu8tf/BaBUBKppt7K9u44SvTqDZoCM/JZrcxEhyE6OC6gZ0ur3UtdmpaLFR3myjvs2BBCKNegpTo5mQFkNOYpTfgqkTgpm58SwqSBpw1Ghjh4OjdR0crm2jxabEKtDE79rKF374VQweFzqzGd3aNYMSqRAI1D4p5fTBzB3s5sZEIG2Qc8c2UmJ9/buYdGY25H8TKSWfHGnAbNCxeHwyAAadYNmElH5OpAgGep3gvMlppMaYWXuo/oxJvj3RCcG45GjGJUfj8ngp961eypps3W0nYiMMpMdGkBprJjXWTGKUkZgIw4Bcgh6vpM3uotXmotXmpKHDQV2bozu3SwjIiItgYUESuUlRZMZHDLjSQ0qMiYumZZAe13/H3zPPN5MSY2ZJYTI1lk72V7VxuK5duQIDxKSDOzB1VT9xOWHdukGvooaZd4QQF0kpPxjoRL8ESgjRzsl7ULVAv/3kFafj2v8fYqvW83HB/8NmSqG00UplSyfLJ6US4fPxz85LOHM/IsWwMT07nsRoE2/trsbmZxNFY49qFlJKmqxOKls6qWrppKHDwbGGjpPGR5n0xJgNmPQ6jAYdRr0mKF6p5SY53F46XR7sTg82l+ekiuaRRj3pcWYmpsWQHhdBVkJEnwVH+2NmTjznTkoNWBh9ZnwkmfGRnDMptTuUvbF99PdxCyZd1U+E24UwmWD58lCb5C/3AvcJIRyAi0CHmY8kwtrF57Jj//Mc2onm2dlP4UHPc1vKcXskX1o8Dr1OEGHUc/uy/G6xUoQWS6eLN3ZV0dgx9Kgph9tDY4eTtk4XbXYX7XY3Vocbl0fidHtxerzdbTSEAJNeR6RRT6RJT5RJT0KkiYQoIwlRWsBCIIJnDDrB+VPTmJYV/J5WlS02dpa3UtLQcVr7EIV/ZB7YyYX1B0m+fGXY7EENBX9XUNcAa6WUFt/zBGC5lLK/EheKHtg3/oMIWzVvTXsIKQwcrmmjqcPJxdMyuvcIFhYkKnEaQcRHGrlhQS7v7q3lROPQbozMBj3ZCZEjJvAlNsLA5TOzyIgfnEtvoOQkRpGTGIXF5mJHRQsHqtuU+2+A1BTNoeXmy0hOG/m1uoUQU6SUh3y9oE7Dn55Q/kbx7ZJSzj7ltZ1SymFPMQ/bFZStGdefZ1EZM53Xi/6K2+vlqeIyIox6bl6QixCC2AgDty3NH1XVCkYLXl/wxE4/gydGOhnxEVwxKyukOXZ2l4c9lRZ2VbRgdfjnRh2r6IRAJ8DtlVwxK4sJQxCo4VpBCSEekVLeJYT4+AyHpZTy/P7O4e+n80zfmCp7dAB0rv0dEa52Noz7JgB7Ky20292s6FFvb2FBkhKnEYpOJ1g+OY3kaDMfH+4/eGIkMyUjlguL0kP+WYsw6llYkMTcvAQO1bazvazlpIK+Yx0hoCAlmlk5CeQkaqH+pU02zGFSF1JKeZfv53mDPYe/IrNNCPEntDLsAF8Htg/2omOOljJMOx5jf9rlNEVPwOH2sLW0hdzESMYlazcy8ZHGYdkHUAyNGTnxJMWYeHtPddjd9QsByyaksCA/KdSmnIRBr2N6djzTsuIoabCyvaz5jHUSxxLjkqM4a0IKaadEVBakhMXWUcDwV6C+CfwYeBEtmu9DNJFS+EHnh7/CiI7ivLsB2FHeSqfLc1Io+cKCpJAldyoGRnZCJDcvzOPtPTXUWMLji9Rs1HHJ9MwR/QUnhOhOdq5q7WR7WQvHx1hARWKUkXMmpTI+deTvMQ0H/tbiswL/E2RbRidNJUQceIUdWTfRYU7H7vKwq7yVCakx3fkmCVFGijIHV/hRERpiI4ysmp87oKTeUJEWZ+byGVnER4VP6kJXMEmL1cmO8hYO1rTh8oxepTIZdCwqSGJOXqK6Ue2Bv1F8HwKrpJStvueJwAtdFW8VvWNb81tMOiPbsrWGkzvLW3F6vCwa/7mbZUF+Ejr1oQw7upJ6cxOj+PBAHXbXyHP5BTq/abhJjDaxYmo6SwtT2FtlYU9lK+323qvPhxs6ISjKimNpYbLftRHDhd6i97rwJ4rP33+RlC5x8p24RQihKkn0R/NxIg6+wq6MG7CZUrTVU0UrE9Jiuns9xUeq1VO4MyEthvQ4Mx8drKO00RZqcwAtCXjF1PQhRXuNJCJNWkDF/HGJHK3vYHdlK1Ut/ddMHMmMT41m2YSU7u+CUcgffT8jgPlojQ4FMBPYBvSbyOWvQHmFEHlSynIAIUQ+Z6hurjgZ25rfYULPtpxbgR6rpwK1ehptxEYYuWZODvuqLKw/2oDDFbr8nknpsZw3JXVUdmDW6QSTM2KZnBFLY4eDvZUWDta2hfTfe6CMS45i8fhkskZIPlyw6IreE0KsBuZKKff6nk8HfubPOfz9BP8I+FQI8QmaAp4N3DVQg8cULaVEHHiZ3RnXYe25ekr9fPUUG2GgKEutnkYT07PjGZ8azYajjRysaRvWDf74SCPLJ4+dDfaUGDPnTUnj7IkpHGvo4EB1GxXNnXhHYFSFzhcAMj8/cdC1DsOYyV3iBCCl3CeEmOrPRH+DJN4TQsxHE6WdwOtAv+trIcTFaH3r9cBjUsrfnHI8D3gSSPCN+R8p5Tv+2DTSsa37K2Zga7Zv9VShrZ4W9lg9zRunNkRHI1EmAyunZTAnN4FPjzVS1hRct1+kSa+1as9JCNu9pqFg0OuYkhHHlIw4OhxujtS1c6yug2pLZ8gjAGPM2k3ojJx44iLCJ0glwOwRQjwGPON7/kVgjz8T/a0kcQfwbSAH2AUsBor7ygQWQuiBI8CFQCVap8abpZQHeox5BNgppfyHEKIIeEdKmd+XLWFRScLWjPuPRRxKvoAPJ/4Eu8vDvz8rJS8pistmai00okx6vnJWgWqxPQaosXSyrbSF4w3WgN7dx0YYtBb0OfFDKhQ7WulwuDnRYOV4YweVLZ3DVlYpwqhnfGo0k9NjyUuKGnEu/BC024hAKxh7ju+l9cA/pJT95mj46+L7NrAA2CSlPE8IMQW4v585C4FjUsrj00by5wAAIABJREFUPiNfAK4CDvQYI4EuH1c8UO2nPSMa28ZHiPJ0siNL65R8ptXT7NwEJU5jhMz4SK6YFUmb3cWB6jaO1LXTNMjiswadYFxKNEWZsYxPiRlxX34jiRizgRk58czIicfjldS22alq6aTG0kmtxe53lfr+MOgE6XER5CRGkpsURXZCpPp/6YGU0i6EeBhtAXJ4IHP9FSi77yIIIcy+AoCT+5mTjdaLvotKYNEpY34GfCCE+CYQDVxwphMJIe7Ct+dlMpn8NDlEuOzotz3KiYQlNEVPwOn2sruilcLUaFJjtb0nk0HHrNyEEBuqGG7iIv5/e/ceHlV1Ln78++Z+NVxCuCOoCCEQwi0QQAiggsoRoXir0lJqPdqi/mpPT6UKRnu8tOXUirZVbBWhahEtiJ7WiiAFFOWaAAkBEWMIdxIIuZLb+/tjJuMACRlIhsyQ9/M882Rmz95rrzUbZs3ae+33DWbYFW0ZdkVbTpRWkFtQyoET5RwrPkVhWeVZv/BFIDIkiNaRIbS/LJTOrcLp0jqCED8JdeNLAgPkrEC9ReWV5BdXUFBaQWGZI7p86akqyiqrqaiqoVoVVcdxCA4IICQogHBnipSYcEdU+XZRobSNCrVT9ecgIjcDvwVCgB4ikgQ8qao3N7Stpx1UnjOC+TJghYgcB7650Aq7uRNYoKr/KyIpwCIR6auqp/1PVdX5wHxwnOJrgv16TfnWxYSVH2PLlWkA7DhQyKmqGgZf/u3oqV/nGItY3sK1igihVUQIiV2+XVabcqNGlaAAITQo0L74vCg6LJjosGC647vRNS4Rj+M4o7YaQFXTRaSHJxt6OklisvNpmjMybQzwYQOb7Qe6ur3u4lzm7ofABOc+1jvPVcYCRzypl89RpfrTFzgS2ZPcmGSqa5StuSfo0ircldIgMEAYeHnrZq6o8UUhQQE2OjKXokpVLTwjf5lHA43z/t+gqv9W1eWq2tBJ9I1ATxHpISIhwB3A8jPWyQXGATinHYYBR8+3Tr6i8stVRBZ+yZZOd4EI2YdOUnyqisHdv+2QeneIbtYUB8YYc5Flish3gUAR6SkiLwCfebKh136uqWoVMBP4F7ATeFtVM0XkSec5SYCfAT8SkQzgLWC6+luKXzcln75MaVArdsdeh6qy+ZvjtIsKpVubCMBxLnuQjZ6MMS3LA0ACcAp4EyjEMfGuQV79Ke+8p+kfZyyb4/Y8CxjhzTpcLFqYx2XfrGBz57upDgjhqyPFHC+tZEJCB1e+px6xkbS9dMOaGGNMXW5S1UdxBHwAQERuBZY0tKGd8G4ix9e+gqBs7zAZVWXTNwXEhAfT0y0Wmo2ejDEt0CwPl53FLoY0hepKwre/QU7rFArDurD/eCmHT55iTK92rvshOsSE0aV1RDNX1BhjLg4RuQG4EegsIvPc3roM8CgkvY2gmkBh+nuEnzrKtg7fAWBTznHCgwNPi1JuoydjjD8QkQkisktE9ojIWXkARaSbiHwiIltFZJuI3FhPUQdwRC0vx5GBvfaxHPAoVZONoJpA1Rd/5mRoB75uPYJjxaf4pqCUlCvauuKiXRYezFUtJICnMcZ/OUPU/QG3EHUistw9RB3wGI5Jb64QdUD3M8tS1QwgQ0SWAiWqWu22D48uxtsIqpHKD39F2yPr2d7+FlQCSd93gqAAoV+XGNc6A7q1stAnxhh/4ApR57yVqDZEnbvzDVH3EeCeWyQc+NiTylgH1UgFny1AEbLibqK0oorsQ0X07hhNuDNSRGhwAAmWUsMY4zuCRGST28M9dVJdIeo6n7F9GnC3iOThGD090MD+wlS1uPaF87lHF+TtFF8jaE010buWkNsqmeLQDmz/Op/qGmVA12+vN/XtZJGmjTE+pUpVBzdie49C1LkpEZGBtSneRWQQHqRrAuugGuXQto/pWH6Qtd1+QlVNDdvyCrm8bQRtIh0BbQNESOpmQWGNMX7DGyHq/h+wREQO4Eh42wG43ZPKWAfVCFWbFlEeGMWeNqPZfbiY0opqBrhFKb8qLqolJykzxvgfV4g6HB3THcB3z1inNkTdAk9C1KnqRmeKptoMGLtUtdKTytg1qAt08kQ+HQ58xK5246kKCCU99wRtI0NcYY0ABl5uoydjjP/wRog6EYkAfgE8pKo7gO4iMtGT+tgI6gIdWf8WV9WcIjPuP9h/ooyjxacY1zvOFdaoU6swOsaEN1CKMcb4Fi+EqHsNx/1PKc7X+3GEOfqgoQ1tBHUBamqUqOx3yA/vweGoPmzNPUF4cCC9O0S71hnQzW7MNcYY4EpV/Q1QCaCqpTiuRTXIOqgLkPv1bjoUbiW73QROlFWy91gJ/TrHuG7MjQ4LshtzjTHGoUJEwnHmgBKRK3FENm+QneK7AMWbFwOwK/Z6MnILCRBIdLsxN6mr3ZhrjDFOj+NIcNtVRN7AcXpwuicbWgd1norKK4n75n0ORiVwNLgTWQe/pmdcNJHOJIQhQQH07RzTQCnGGNMyqOoKEdkCDMNxau8hVT3mybbWQZ2nr3ZuJalkN6t7/JRdh4qoqK45bfQU3zGasGC7MdeY+lRWVpKXl0d5eXlzV+WSFhYWRpcuXQgO9olbXUYDI3Gc5gsGlnqykXVQ50FV0W1LUIRdba8jI/0E7aJC6RgTBjgy5iZ1tckRxpxLXl4e0dHRdO/e3TXr1TQtVSU/P5+8vDx69OjRrHURkT8CV+GYkg7wnyJyrar+pKFtrYM6D/vyS+l+8J/sixnEl6VR5BefOG1quXsUCWNM3crLy61z8jIRoW3bthw9Wu/9sxfTWCC+9l4pEXkdyPRkQ5vFdx7ysj6ldfk+dsWOZ1veCUKDAujlPrXcRk/GeMQ6J+/zoc94D9DN7XVX57IGWQflofLKasJ3LaNagsiIHsWeo8X06XgZwc6p5W0iQ7i8rWXMNcaYM0QDO0VktYh8AmQBl4nIchFZfq4N7RSfh748VMSVRz/mm1bD2HREqVFOy/mU1LWVL/1iMcYYXzGn4VXqZh2Uhw7u/JR+FYf5tOt/smPPSbq1iaB1hON6U2hwAPEdLeeTMcbU4egZGXkRkVRVXd3Qhl7toERkAvA8EAj8WVWfPeP954AxzpcRQJyq+lyE1YKSClp/8yHVEshKHUjxqVLG9Grner9vpxhCguxsqTHn64n3M8k6cLJJy+zT6TIe/4+Eet/PyclhwoQJDBs2jM8++4whQ4bwgx/8gMcff5wjR47wxhtvkJycTElJCQ888AA7duygsrKStLQ0Jk2aRE5ODtOmTaOkpASAF198keHDh7N69WrS0tKIjY1lx44dDBo0iL/+9a9nnVl55ZVXmD9/PhUVFVx11VUsWrSIiIgIDh8+zH333cfevXsB+NOf/sTw4cNZuHAhc+fORURITExk0aJFTfp5XQRvi8hC4Lc4Ip//BhjMt7H56uW1b1W33PY3AH2AO535611U9aeqmqSqScALwN+9VZ/G2HmgkKvyPyEvZjCfH1Siw4LoHhsJOHI+9e/qc32qMeYc9uzZw89+9jOys7PJzs7mzTffZN26dcydO5enn34agKeeeoqxY8eyYcMGPvnkE37+859TUlJCXFwcK1asYMuWLSxevJgHH3zQVe7WrVv5/e9/T1ZWFnv37uXTTz89a99Tpkxh48aNZGRkEB8fz1/+8hcAHnzwQUaPHk1GRgZbtmwhISGBzMxM/ud//odVq1aRkZHB888/f3E+oKY1FMckic9wpPM4gIfBZr05gnLltgcQkdrc9ln1rH8njpAYPkVVOfzlZkaU72NN7O3kHSpj+JVtCXD+KrqiXSQx4T5xI5wxfudcIx1v6tGjB/369QMgISGBcePGISL069ePnJwcAD766COWL1/O3LlzAcf0+NzcXDp16sTMmTNJT08nMDCQ3bt3u8pNTk6mS5cuACQlJZGTk8PIkSNP2/eOHTt47LHHOHHiBMXFxYwfPx6AVatWsXDhQgACAwOJiYlh4cKF3HrrrcTGxgLQpk0b730o3lOJI4NuOI4R1NfnyL57Gm92UHXlth9a14oicjnQA1hVz/v3AvcChIRc3PuM9hWU0engChTh3dIkAkVI6PTt9aYkGz0Z43dCQ0NdzwMCAlyvAwICqKqqAhw/Tt9991169ep12rZpaWm0b9+ejIwMampqCAsLq7PcwMBAV1nupk+fzrJly+jfvz8LFixg9erVTdk0X7QReA8YgiPz7ksi8h1VvbWhDX3lwskdwDuqWl3Xm6o6X1UHq+rgoKCLO69j56GTXJW/irzoJD4/HETP9lFEhDjqEBsdStc2NrXcmEvR+PHjeeGFF6jNxbd161YACgsL6dixIwEBASxatIjq6jq/tupVVFREx44dqays5I033nAtHzduHH/6058AqK6uprCwkLFjx7JkyRLy8/MBKCgoaIqmXWw/VNU5qlqpqgdVdRJwzunltbzZQXmS277WHXwbBsNnVFbXcCxnB7Gle1kXPJyK6prTAsEOsNGTMZes2bNnU1lZSWJiIgkJCcyePRuAH//4x7z++uv079+f7OxsIiMjz6vcX/3qVwwdOpQRI0bQu3dv1/Lnn3+eTz75hH79+jFo0CCysrJISEjg0UcfZfTo0fTv35+HH364Sdt4kWwWkbtFZA6AiHQDdnmyoZwjU2+jiEgQsBtH7vr9OIZ531XVzDPW640jFHuPc6UNrhUZGam1s2e8LfvQSY798xlGfvNHbg6eT151G+4e1g0RITwkkHtG9nDlgDLGeGbnzp3Ex8c3dzVahLo+axEpVdXz61UbQUT+BNQAY1U1XkRaAx+p6pCGtvXat6uHue3BMXr6myed08WWfbCInsc+YV94PNuKoujb+TLXlNFEtwSFxhhj6jXUGRi2HEBVjwMeTSbw6gWdhnLbO1+nebMOF6rkVBUF+/fSvmQnCyKmExgg9HbejBsgcloUCWOMMfWqdN52VBssth2OEVWDbAhQj12Hi+he8G8A/lbYj6viogh35nnq2T6K6DCbWm6MMR6YhyP/U5yIPAWsA572ZEMLdVSPXYeKSClYy+GgzmSXd2Bqp9Pj7hljjGmYqr4hIptxzEcQ4BZV3enJttZB1eF4SQX5+fl0KdzMkoAJtI4IoVMrx70OHWLC6NQqvJlraIwx/kNVs4Hs893OTvHVIftQEZcXfkGQVrK8LJG+nWNckyNs9GSMMReHdVB1yD50kisK1lIskWzR3q5I5VGhQVzdPrqBrY0x/iYnJ4e+ffs2dzXOkpqayqZNm5q7Gs3GOqgzHCosp7CknO4Fn7K6uj/d41q5Jkf06xJDYIDlfDLmolu/Hp55xvHXT9QV5sgfiMgEEdklIntE5JE63n9ORNKdj90icsJbdbEO6gzZh07SoSiTyKrjfFQ1gL6dHaOnoAAh0aaWG3PxrV8P48bB7NmOv03QSf3ud7+jb9++9O3bl9///veAo0O56667iI+PZ+rUqZSWlgLwyCOP0KdPHxITE/mv//ovAI4ePcp3vvMdhgwZwpAhQ1xRy9PS0pg2bRojRoxg2rRpDBs2jMzMb2MT1I6ISkpKmDFjBsnJyQwYMID33nsPgLKyMu644w7i4+OZPHkyZWVljW7r+fC1LBQ2ScKNqvLl4WL6H19LFQGkhw7mFueEiKs7RLti8BljLqLVq6GiAqqrHX9Xr4aUBlMJ1Wvz5s289tprfPHFF6gqQ4cOZfTo0ezatYu//OUvjBgxghkzZvDHP/6RH/zgByxdupTs7GxEhBMnHIOFhx56iJ/+9KeMHDmS3Nxcxo8fz86djolpWVlZrFu3jvDwcJ577jnefvttnnjiCQ4ePMjBgwcZPHgwv/zlLxk7diyvvvoqJ06cIDk5mWuvvZaXX36ZiIgIdu7cybZt2xg4cGATfIDnxaeyUNgIys2+gjKKT1XR7dgaNtX04vIunV2TIwZ0s8kRxjSL1FQICYHAQMff1NRGFbdu3TomT55MZGQkUVFRTJkyhbVr19K1a1dGjHCkKbr77rtZt24dMTExhIWF8cMf/pC///3vREQ4gkN//PHHzJw5k6SkJG6++WZOnjxJcXExADfffDPh4Y4ftrfddhvvvPMOAG+//TZTp04FHKk8nn32WZKSkkhNTXWl8lizZg133303AImJiSQmJjaqrfUIEpFNbo973d6rKwtF57oKaSgLRZNU1FsF+6PsQye5rPwAHcr38mrNXcR3cJze69w6nLjosAa2NsZ4RUoKrFzpGDmlpjZq9HQuZ2a+FRGCgoLYsGEDK1eu5J133uHFF19k1apV1NTU8Pnnn5+WaqOWe/DYzp0707ZtW7Zt28bixYt56aWXgPpTeVwkVao6uAnKOWcWiqZgIyinquoa9hwt5vL8NQB82Wok4SGOyREDbfRkTPNKSYFZs5qkc7rmmmtYtmwZpaWllJSUsHTpUq655hpyc3NZ77y+9eabbzJy5EiKi4spLCzkxhtv5LnnniMjIwOA66+/nhdeeMFVZnp6er37u/322/nNb35DYWGha0RUXyqPUaNG8eabbwKOxIbbtm1rdHvPk09lobAOyiknv5RTlTV0Oryar2o60qqr47rgZeHBXNkuqplrZ4xpKgMHDmT69OkkJyczdOhQ7rnnHlq3bk2vXr34wx/+QHx8PMePH+f++++nqKiIiRMnkpiYyMiRI/nd734HwLx589i0aROJiYn06dPHNTKqy9SpU/nb3/7Gbbfd5lpWXyqP+++/n+LiYuLj45kzZw6DBg3y7odxto1ATxHpISIhODqhs3I3ObNQtAa8Oq3Sa+k2vMVb6Tb+b9tBcvYf5N4vruMNJlAwfA4iwqir2zHo8tZNvj9jWipLt3HxXEi6DRG5Efg9EAi8qqpPiciTwCZVXe5cJw0IU9WzpqE3JbsGBZyqqmbv0WLaH/mMYKrIaTOKGBFCggJOS+9ujDGXOl/KQmGn+ICvjpRQVaPEHfqEExpJwOXDAOjT8TLCnDfpGmOMubisgwJ2HT4JNVUkln3BxqBBREeEI2Jx94wxpjm1+A6qtKKK3PwyAg5soQ1FfNN2FAA9YiNpHelR0kdjjDFe0OI7qN2Hi6lRpf2hVVRqIKXdUgEY0NUmRhhjTHNq8R3UrkMnKa+sZmDZF+wMSaA6NIbYqBC6tY1o7qoZY0yL1qI7qMLSSg6cKCc/bzdXB+SRG+s4vZdkoydjzAWaM2cOH3/8cb3vv/TSSyxcuBCABQsWcODAAdd799xzD1lZ9YW9a3la9DTznYdOAtDh0L8BONJxLGHBgfTuaDmfjDEX5sknnzzn+/fdd5/r+YIFC+jbty+dOnUC4M9//rNX6+ZvWnQHlX3wJEeLTjGhcgMHQ7tSGN6VIZ1jCA5s0QNLYy6efz4Ch7Y3bZkd+sENz55zlVtuuYV9+/ZRXl7OQw89xL333suHH37IL3/5S6qrq4mNjWXlypXk5+dz5513sn//flJSUlixYgWbN2+muLiYiRMnsmPHDgDmzp1LcXExaWlpTJ8+nYkTJzJ16lQeeeQRli9fTlBQENdffz1z584lLS2NqKgounfvzqZNm7jrrrsIDw9n/fr13HDDDcydO5fBgwfz1ltv8fTTT6Oq3HTTTfz6178GICoqioceeogPPviA8PBw3nvvPdq3b9+0n6GP8Oo3cUOJr5zr3CYiWSKSKSJverM+7g4VlnO8tJK9eQcZFpDFN7GjCBChf1fL+WTMpe7VV19l8+bNbNq0iXnz5nH48GF+9KMf8e6775KRkcGSJUsAeOKJJxg5ciSZmZlMnjyZ3Nxcj/eRn5/P0qVLyczMZNu2bTz22GOnvT916lQGDx7MG2+8QXp6uisCOsCBAwf4xS9+wapVq0hPT2fjxo0sW7YMgJKSEoYNG0ZGRgajRo3ilVdeaYJPxDd5bQTllvjqOhwh2zeKyHJVzXJbpycwCxihqsdFJM5b9TnTzoMnqaquod3RzwgJrCY39hquiosiOiz4YlXBGNPASMdb5s2bx9KlSwHYt28f8+fPZ9SoUfTo0QOANm3aALBmzRr+/ndHPr6bbrqJ1q09vz7tnqpj4sSJTJw40eNtN27cSGpqKu3atQPgrrvuYs2aNdxyyy2EhIS4yho0aBArVqzwuFx/480RlCvxlapWALWJr9z9CPiDqh4HUNUjXqyPS3WNsutwEXuPlTCazZQERHPgsv4kWdRyYy55q1ev5uOPP2b9+vVkZGQwYMAAkpKSzquMoKAgampqXK/Ly8vrXGfDhg1MnTqVDz74gAkTJjS67gDBwcGu1CCBgYF+m1reE97soDxJfHU1cLWIfCoin4tI0xzBBnx9rISyimp27j/OmMB0ctsMJy4mis6twhve2Bjj1woLC2ndujURERFkZ2fz+eefU15ezpo1a/j6668BKCgoAE5Pf/HPf/6T48ePA9C+fXuOHDlCfn4+p06d4oMPPjhrP/Wl6nAXHR1NUVHRWcuTk5P597//zbFjx6iuruatt95i9OjRTfYZ+IvmniQRBPQEUnHkHVkjIv1U9YT7Ss6Mj/cChIQ0PrpD1sGTnCyvpM2J7bQNPckXba6xa0/GtBATJkzgpZdeIj4+nl69ejFs2DDatWvH/PnzmTJlCjU1NcTFxbFixQoef/xx7rzzThISEhg+fDjdunUDHKOYOXPmkJycTOfOnendu/dZ+ykqKmLSpEmUl5ejqq5UHe6mT5/Offfd55okUatjx448++yzjBkzxjVJYtKkM09AXfq8lm5DRFKANFUd73w9C0BVn3Fb5yXgC1V9zfl6JfCIqm6sr9zGptsorajiz2u/5rOvjnFN7h+5P+j/eH3kSqaN6U+Qzd4zxuv8Od1G7cy72NjY5q6KRy4k3YYv8eY3sieJr5bhGD0hIrE4Tvnt9WKd2HmwiKrqGrIOnGRCcAb7L0uiV/eu1jkZY4yP8dq3sqpWATOBfwE7gbdVNVNEnhSRm52r/QvIF5Es4BPg56qa7606AWQeKCTveBnR5Qe5Ur/h6zbX0K+Lnd4zxjQsJyfHb0ZPlwKvXoNqKPGVOs4vPux8eN2BE2XkF1eQefAkNwZvBqC65/U2tdwYY3xQizqv9U1+Kacqq9lzpJhbQjdzLOJKroof0NzVMsYYU4cW1UEpjvuf2tQcJ74qi/0dr6NrG4tabowxvqhFdVAAmQdOMiViKwEoIf1uae7qGGOMqUeL6qBy80s5UnSK/wjZzInwbvToM6S5q2SMuQSkpaUxd+5coP50G6tXr24w3FF6ejr/+Mc/zrlOS9KiOqh/7z5KGymhT3kGBd3GExbS3PcpG2M8sX7fep5Z+wzr961veOVm9uSTT3Lttdde0LbWQZ2uxXRQFWvX0eu1F/lZ5YcEUE30gCnNXSVjjAfW71vPuIXjmP3JbMYtHNckndTChQtJTEykf//+TJs2jffff5+hQ4cyYMAArr32Wg4fPgw4RkYzZswgNTWVK664gnnz5rnKeOqpp7j66qsZOXIku3btci2fPn0677zzDgAffvghvXv3ZuDAga6gswAbNmwgJSWFAQMGMHz4cHbt2kVFRQVz5sxh8eLFJCUlsXjxYkpKSpgxYwbJyckMGDCA9957D4DMzEySk5NJSkoiMTGRL7/8stGfiU9SVb96RERE6Hn77DOtCgvTSgnQ6u9HacmTV6rW1Jx/OcaYRsvKyjqv9Z9e87QGPhGopKGBTwTq02uebtT+d+zYoT179tSjR4+qqmp+fr4WFBRojfM74ZVXXtGHH35YVVUff/xxTUlJ0fLycj169Ki2adNGKyoqdNOmTdq3b18tKSnRwsJCvfLKK/W3v/2tqqp+//vf1yVLlmhZWZl26dJFd+/erTU1NXrrrbfqTTfdpKqqhYWFWllZqaqqK1as0ClTpqiq6muvvaY/+clPXHWdNWuWLlq0SFVVjx8/rj179tTi4mKdOXOm/vWvf1VV1VOnTmlpaWmdba3rswZK1Ae+yz15tIxzXKtXE1BZiUQperlQVX4FOKMBG2N8W2r3VEICQ6ioriAkMITU7qmNKm/VqlXceuutrhtu27Rpw/bt27n99ts5ePAgFRUVrrQb4EizERoaSmhoKHFxcRw+fJi1a9cyefJkIiIcs4Bvvvnms/aTnZ1Njx496NmzJwB333038+fPBxwBa7///e/z5ZdfIiJUVlbWWdePPvqI5cuXu65vlZeXk5ubS0pKCk899RR5eXlMmTLFtY9LTcs4xZeaioSEUNM/FBEh9Jp7mrtGxhgPpXRNYeX3VvKrMb9i5fdWktI1pcn38cADDzBz5ky2b9/Oyy+/fFr6jNDQUNfzpkpvMXv2bMaMGcOOHTt4//3360zXAY4zXO+++y7p6emkp6eTm5tLfHw83/3ud1m+fDnh4eHceOONrFq1qtF1quVLiWZbRgeVkgIff0xVagdOhl5F6ITbmrtGxpjzkNI1hVnXzGqSzmns2LEsWbKE/HxHVLWCggIKCwvp3NmRDej1119vsIxRo0axbNkyysrKKCoq4v333z9rnd69e5OTk8NXX30FwFtvveV6z31/CxYscC0/M/3G+PHjeeGFF1BnUO+tW7cCsHfvXq644goefPBBJk2axLZt287nI6iXW6LZG4A+wJ0i0ueMddwTzSYA/69Jdl6HltFBAfSIJCSwgFPDZjR3TYwxzSghIYFHH32U0aNH079/fx5++GHS0tK49dZbGTRokEex9gYOHMjtt99O//79ueGGGxgy5OxbVsLCwpg/fz433XQTAwcOJC7u24Th//3f/82sWbMYMGDAaSOyMWPGkJWV5ZokMXv2bCorK0lMTCQhIYHZs2cD8Pbbb9O3b1+SkpLYsWMH3/ve95rgkwF8LNGs19JteMsFp9s4upuCj35Nq0m/ISCqbdNXzBjjEX9Ot+Fv6km3UQFsd1s0X1XnO9+bCkxQ1Xucr6cBQ1V1ptv2y4DdwAggEEdapQ+9Uf+WMUkCoN3VhE6meUf6AAAG7UlEQVR9mYDQltNkY4ypQ5WqDm7E9h4lmm0KLecUHxBpnZMxxpzLfqCr2+suzmXu8oDlqlqpql/jGE15ZRphi+qgjDG+wd8uLfijC/yMfSrRrHVQxpiLKiwsjPz8fOukvEhVyc/PJyws7Hy386lEsy1nkoQxxidUVlaSl5dX770/pmmEhYXRpUsXgoNPT8gqIqWqGtlM1Tov1kEZY0wL4k8dlJ3iM8YY45OsgzLGGOOTrIMyxhjjk/zuGpSI1ABlF7h5END4SI++wdrim6wtvsna8q1wVfWLwYnfdVCNISKbGnkHtc+wtvgma4tvsrb4J7/oRY0xxrQ81kEZY4zxSS2tg5rf3BVoQtYW32Rt8U3WFj/Uoq5BGWOM8R8tbQRljDHGT1gHZYwxxif5dQclIhNEZJeI7BGRR+p4P1REFjvf/0JEuru9N8u5fJeIjPe0TG/xUltyRGS7iKSLyKaL05ILb4uItBWRT0SkWERePGObQc627BGReSIiftyW1c4y052PuDPL9bG2XCcim52f/2YRGeu2jb8dl3O1xd+OS7JbXTNEZLKnZfoNVfXLB45Uw18BVwAhQAbQ54x1fgy85Hx+B7DY+byPc/1QoIeznEBPyvSXtjjfywFi/ei4RAIjgfuAF8/YZgMwDBDgn8ANftyW1cBgPzouA4BOzud9gf1+fFzO1RZ/Oy4RQJDzeUfgCI6beJvle8wbD38eQSUDe1R1r6pWAH8DJp2xziTgdefzd4Bxzl94k4C/qeopdWSE3OMsz5My/aUtzeWC26KqJaq6DjgtD4OIdAQuU9XP1fG/cSFwi1db4dDkbWlGjWnLVlU94FyeCYQ7f9X743Gpsy0Xoc71aUxbStWRvwkgDKid8dZc32NNzp87qM7APrfXec5lda7jPJCFQNtzbOtJmd7gjbaA4x/sR85TGfd6od51aUxbzlVmXgNleoM32lLrNeepmdkX6bRYU7XlO8AWVT2F/x8X97bU8qvjIiJDRSQT2A7c53y/ub7Hmpw/d1CmYSNVdSBwA/ATERnV3BUyANylqv2Aa5yPac1cH4+ISALwa+A/m7sujVVPW/zuuKjqF6qaAAwBZonI+aXQ9XH+3EHtB7q6ve7iXFbnOiISBMQA+efY1pMyvcEbbUFVa/8eAZZycU79NaYt5yqzSwNleoM32uJ+XIqAN/GD4yIiXXD8G/qeqn7ltr7fHZd62uKXx6WWqu4EinFeV/OgTP/Q3BfBLvSB42LgXhwTA2ovBCacsc5POP3i4tvO5wmcPrFgL44Liw2W6UdtiQSinetEAp8BE3y5LW7vT6fhSRI3+mNbnGXGOp8H47imcJ8vtwVo5Vx/Sh3l+tVxqa8tfnpcevDtJInLgQNArCdl+suj2SvQyIN7I7Abx4yVR53LngRudj4PA5bgmDiwAbjCbdtHndvtwm3mUV1l+mNbcMzgyXA+Mv2oLTlAAY5fg3k4Zx8Bg4EdzjJfxBkFxd/aguPHwmZgm/O4PI9z1qWvtgV4DCgB0t0ecf54XOpri58el2nOuqYDW4BbzlWmPz4s1JExxhif5M/XoIwxxlzCrIMyxhjjk6yDMsYY45OsgzLGGOOTrIMyxhjjk6yDMi2OiBQ3dx3qIiLdReS7zV0PY3yFdVDGXCARCbyAbYLO8XZ3wDooY5ysgzItmoj8XEQ2isg2EXnCbfkyZ5DdTPdAu878Tv8rIhlAivP1U858PJ+LSPs69pEmIotE5FNgkXOktFZEtjgfw52rPgtc4wxW+lMRCRSR37rVz+9j4BlzPqyDMi2WiFwP9MQRcy0JGOQWUHeGqg7CESnhQRGpjYQdCXyhqv3VkU4jEvhcVfsDa4Af1bO7PsC1qnonjrw916kjkO/twDznOo8Aa1U1SVWfA34IFKrqEBzBQH8kIj2a7AMwxsed63SDMZe6652Prc7XUTg6rDU4OqXaDKVdncvzgWrgXbcyKoAPnM83A9fVs6/lqlrmfB4MvCgiSc7yrj5H/RJFZKrzdYyzHl971Dpj/Jx1UKYlE+AZVX35tIUiqcC1QIqqlorIahzx0ADKVbXabfVK/TZeWDX1/58qcXv+U+Aw0B/HWYz6khoK8ICq/suz5hhzabFTfKYl+xcwQ0SiAESks4jE4RipHHd2Tr1xROtuSjHAQVWtwRHws3ayRREQfUb97heRYGf9rhaRyCauizE+y0ZQpsVS1Y9EJB5Y70yeWgzcDXwI3CciO3FEiP+8iXf9R+BdEfmec1+1o6ttQLVzAsYCHBG1uwNbnNldj3JxUqob4xMsmrkxxhifZKf4jDHG+CTroIwxxvgk66CMMcb4JOugjDHG+CTroIwxxvgk66CMMcb4JOugjDHG+KT/DyZaWyqyjzZLAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3xc5ZX3v2e6erVsWXLHNrYx2GAMhrAYCHVTSbIL2RTSSLIJ6fsm2WUDS0KS3U0h2VRII40UkvCSdwmEUBKKARsb44K7LavY6n00/bx/PHfGo2JpJGskWXq+n8/9zMy997n3mZE9vznlOUdUFYvFYrFYphquyZ6AxWKxWCxDYQXKYrFYLFMSK1AWi8VimZJYgbJYLBbLlMQKlMVisVimJFagLBaLxTIlsQJlsVgslimJFSiLZQRE5HYR+fkE3GepiIQm4l4Wy+mAFSiLZerwbWDzZE/CYpkqWIGyWBxE5NMiUi8i3SKyV0SuEJFrgH8F/lFEekRku3NukYj8UESOOWO+ICJu59hNIvKMiHxLRDpFZI+IXDHCvW8AOoDHsv0+LZbTBStQFgsgIsuBDwPnq2oBcDVwRFUfBr4I/FpV81X1HGfIT4AYcAawFrgKeG/aJS8ADgLlwG3A70Wk9CT3LgTuAD4x3u/LYjmdsQJlsRjigB9YKSJeVT2iqgeHOlFEZgPXAR9T1V5VbQK+DtyQdloTcJeqRlX118Be4O9Pcu/PAz9U1brxejMWy3TAM9kTsFimAqp6QEQ+BtwOrBKRR4BPqGrDEKcvALzAMRFJ7nMBtWnn1Gv/Ssw1wNyBFxKRNcCrMVaYxWJJw1pQFouDqv5SVV+FESAF/jN5aMCptUAYKFfVYmcrVNVVaedUSZp6AfOBocRuI7AQOCoix4FPAW8Ska2n/IYsltMcK1AWCyYGJSKXi4gfCAF9QMI53AgsFBEXgKoeA/4MfFVECkXEJSJLROTStEtWAB8REa+IvAVYATw0xK3vBpYAa5zte8D/YmJgFsuMxgqUxWLwA18GWoDjGIH5rHPst85ja5pl8w7AB+wG2oH7gcq06z0PLHWudyfwZlVtHXhTVQ2q6vHkBvQAIVVtHs83Z7GcjohtWGixjC8ichPwXsddaLFYxoi1oCwWi8UyJbECZbFYLJYpiXXxWSwWi2VKYi0oi8VisUxJps1CXZfLpTk5OZM9DYvFYpl0gsGgquppb4BMG4HKycmht7d3sqdhsVgsk46I9E32HMaD015hLRaLxTI9sQJlsVgslimJFSiLxWKxTEmsQFksFotlSpJVgRKRa5zOpAdE5DNDHF8gIo+JyMsi8qSIVKcdi4vIS872YDbnabFYLJapR9YW6jrtr/cBVwJ1wGbgRlXdnXbOb4H/p6r3isjlwLtU9e3OsR5Vzc/0fnl5eWqz+CwWiwVEJKiqeZM9j1MlmxbUeuCAqh5S1QjwK+D1A85ZCTzuPH9iiOOWCWZT7Sa+9NSX2FS7abKnYrFYssjp4OHK5jqoKvp3GK0DLhhwznbgeuAbwBuBAhEpc9oSBERkCxADvqyqD2RxrjOXUCe0H4HeZjbVPc8VT99BJB7D5/by2HXfZcPS6yC/Avr13rNYLKczjofr26R5uETkwXQPF/AV4KdpHq4vAW93jvWp6ppsz3OyF+p+CviW057gb0A9EHeOLVDVehFZDDwuIjtU9WD6YBG5GbgZwOfzTdysT2faDsOBv8ChJ+HYdug88RviScJEiBAXiMTCPPngB9mAH3JKYfYqqD4fFl8K8y4Eb2Dy3oPFYjlVUh4uABFJerjSBWol8Ann+RPAhBsJ2RSoemBe2utqZ18KVW3AWFCISD7wJlXtcI7VO4+HRORJYC1wcMD4uzEdScnLy7NVb09GqBN23A8v/QLqXzT7iubDvAtg3buh7AzIr2BjZw2+B28iEo/ic3vYuPFO8ORB0y44vhOe+QY8/TXwBGDpVbD6zebRa0tMWSxTDI/jgUpyt/N9meS08HBlU6A2A0tFZBFGmG4A3pp+goiUA22qmsB0L/2Rs78ECKpq2DnnYuC/sjjX6UlfOzz3XXjuexDuhIpVcNUXYNm1ULZkkNtuAxfyWPF8njzyJBsXbmTDvA39rxfuhppnYf+jsPsBeOVB8BfCOTfC+vdB+dIJfHMWi2UYYqq67hSvcUoervEgq+02ROQ64C7ADfxIVe8UkTuALar6oIi8GePXVMwH8CFHlC4Cvg8kMIkcd6nqD4e7l83iSyMRhxd/DI/dYaynM18Dl3wC5p47frGkeAyOPAXb74Odv4dEFJZcDhd/FBZdamNWFsskMlIWn4hsAG5X1aud158FUNUvneT8fGCPqlYPcewnmGzs+8dj7v2uPV36QVmBcmg9CL+/Geq3wKK/g6u/CHNWZ/eePU3w4r2w+QfQc9zEqC79P0awrFBZLBNOBgLlwSwDugJjGW0G3qqqu9LOSXm4ROROIK6qnxvCw7UJeP2ABIvxeR9WoKYRO+6HP34U3F649r9g9VsmViCiIdj2M3j669BVD9Xr4co7YMGGkcdaLJZxI5N1UBPp4Rrz+7ACNQ1IJODxO4wwzLsQ3vxDKBpkiU8csTBs+zn87b+h+xiseC28+j9M3MtisWSd6bJQ1wrU6U48Cg/8M+z4DZx3E1z3VXAPn/sSiSU43hmisTtEW2+EnlCMUCxOPKEI4HW7yPG5KQh4KMn1UZ7vZ3ZhAJ9nlOu6I72w6dvw9F0QD8O698Cln4a8sjG/XYvFMjJWoKYYM1Kg4jH43XtMRt3lt8IlnzqpSy8SS7CvsZt9jd3UtfcRT4zu7+4SoaLQz/zSXBaV51FZFEAydR92N8KTX4Kt94KvwMSn1t8MHrt2zWLJBlagphgzTqASCXjgg/Dyr+CqO+GiDw95WjAS48Wadl6u6yQSS4zb7fP9HpbNKWBFZQEVBRku2m3aA3++FQ48CqWLTcr78utsIoXFMs5YgZpizDiBevQ2eOYuuOxWuPRfBh2OJ5QXa9rZfKRtXIVpKCoK/ZxdVcyZlQV43Rm4Aff/BR75V2jZCwsvgWu+lP1MQ4tlBmEFaooxowRq+6/hDzebKhCv+fqgw41dIR7ZdZzWnsiETsvvdbG6qog184opCHiHPzkeM2u1nviiWVB87tvh8n83df8sFsspYQVqijFjBKphG/zwapi3Ht7+B5NSnsbWo+08vb9l1DGm8cTtEpbPKeD8haWU5o0QZ+prh7/+N7zwffDkmAXFF/6zrfVnsZwCVqCmGDNCoCK98L1LIBaC9z/VLxsunlD+8kojuxu6JnGC/RGBpRUFrF9UyqwC//AntxyAR/8d9j4ExfPN+qmVb7DxKYtlDFiBmmLMCIF68COw9afwzj/CoktSu6PxBH/c3kBNa3BUl+sNx+joi9IdihKNK4mE4nW7CPhc5Ps8lOT5MospjYAInFGRzwWLykYWqkNPwiP/Bo07Yf4GE5+au/aU52CxzCSsQE0xpr1A7f0T3HcDXPwxuPI/Uruj8QQPbKunrr1vxEvEE0pNay/7m3qo7+ijOxQbcUxxjpe5xTnMK8lhXmkuef6x1xdOCtWFi8sozx9GqBJxU5Hi8S9AbzOc81a44nNQWDnme1ssMwkrUFOMaS1Q4R749gUQKISb/5paPxRPKP/3pfoRLadQNM722g6213XSF40T8LioLs1lblGA0jwfBQEvPo8Ll0A0rvRF43T3RWntjdDSE6auvY+wkwk4tzjAsooCzqjIH7NYicCy2QVcuLhs+BhVqAue+io89x1weczaqQ0fsokUFssIWIGaYkxrgfrzrfDs/8C7H4H5F6Z2/2nHMfYc7z7psERCeamug+cPtRGJJ1hUnsdZVYUsKM3D7co8tqOqNPeEOdxsrK/W3ggugcWz8jm7qojqkpzMF+2mIQJnzinggkVllAwnVG2HjTW16/fg9sG574CLbjGxKovFMggrUFOMaStQjbtMYsTaf4LX/U9q93OHWtl0sPWkw1p7wjyyu5Hm7jALynK5eEn5yPGfDGntCbP7WBe7G7oIxRIU53pZO6+YlZWFeMYQs3KJsHxOPucvLKVsONdf60FTb3D7rwCFVW+E899rGi/aZAqLJYUVqCnGtBWon74Bjr0Et2yF3FIADjX38OD2Bk72p9tzvIvHXmnC53GxcdkszqjIH5OFMxKxeIIDTT28VNdBY1eYXJ+bNfOKObu6CL/HPerrJbP+zl9YQkXhMGnmnXXw7LdMh+Bwl2nEuO5dcNabUp+RxZJNNtVuOnljzymAFagpxrQUqINPwM/eYHo6bfgQAF2hKL947iihqGlsWbl7G9XbX6DunPU0rFjDswdb2VLTztziANedVXlKSQ2ZoqrUd/Sx5Ug7NW1BfG4XZ1cXcd6CEgLe0QsVwIKyXNYtKGV+We7JT4r0mhYjm38Ax182carFlxmhWn4t5BSP8R1ZxoOp/iU+auJR6Kxj0+HHueJPHyISj+Jz+3jsH37HhmXXTfbs+mEFKpOLi1yD6WfvBn6gql8ecHwBps37LKANeJuq1jnH3gnc6pz6BVW9d7h7TTuBSiTgnssg2Aa3bAGPH1Xlt1vqqO8wGXuVu7fxpk/fhDsaIe718ZkPfo3f+edzVlUhG5dVjCrONF40dYXYUtPO/qYefG4Xa+YXc+68YvxjFKpZBX7WzCvmzDkFJ3cfqsLxHbDzftPdt7MWxAVV60zTxMUbYe4a8OaM+X2NF9PuSxtMVZDeJtNaJdwN8Sibjm/nir/+G5F4DJ/bw2NX/DcbKs8FXx7kzYLc8qm/GLujFo48bbajz0L7EdAEXyLMvxMmLuBW+Dx+Pps3D6rOhaVXmfYyk5zIYwVqpAuLuDEdG68E6jAdG29M77ooIr/FtAq+V0QuB96lqm8XkVJgC7AO0yzrReA8VW0/2f2mnUDt/B3c/2544/fhnBsA2HKkjaf2t6ROOf++73PRvXfhSiSIuVx87VVvY/ON72fD4rKsuPRGQ0tPmOcPtXGguQe/x8W580tYM6949C07HHJ8blZWFrK6qmj4hIpEwnQT3v9nOPg41G8FFMQNFSuNUFWshNJFULIIShaMn3Al4hDtMwupo0HTwDHWZ/ZF+9h0fBtXPPHZE1/al97BhoqzweU1FUH8+RAoBn8hBIomv9p7IgF9bUZ4uo+bx65j/V93HzfipP3rPQ75Jc6A+KK/0HyRlyw0f4vSRaaIcPkys881th81Y6bj6AlBOvI0dNSY/TklsOBi8++mZAGb+lq44vHPEElE8bk8PHbeLWwIB6HmGSNiLi+sfD286mOTVmPSCtRIF86g572I7AKuUdVaMd+onapaKCI3AhtV9f3Oed8HnlTV+052v2klUIkEfPci8/yDz4DLTVtvhF88V0MsrYRR0oKSaISoy8Odn/gfyl69MaNbeFzCrAI/pXk+8v0evB4XqhCOxekOxWgPRmjtiYy6ZFK6y/HYyrU0dYd47lAbh1t6CXhdnLeghHOqi09pAXBVSQ4rKws5oyJ/ZBdisA1qnjUlopJbX1v/c3z5kFMKuSVGGNw+4y5MbvGo6WcVC5943k98nOfx4WsfZvSlnY4nxywtyCkxwpVTkrYV938eSNsXKBr6yz2RcIQzCJEe89n0NBmB6Wl2rKDj/cUnER18ndxyKKiEgjlmbVryef4cMwe3j00tu7nif99v3GAuD49d8y02lC41Flawxaxv622Brgbzpd5+xMQT09/7rOVGFGavhIoV5nlB5fgkxKiapJva58y/jyNPGYGCE4K08BJY+CpzX1f/f69DWsKq0PSKWcO37efmva55q6kxOcFr+KxAjXRh0y74GlV9r/P67cAFqvrhtHN+CTyvqt8QkeuB3wHlwLuAgKp+wTnv34E+Vf3KgHvcDNwM4PP5zguHw1l5LxPOnofgVzfC9ffA2f9gXHsv1lE/xGLcrif+Rs4zT9GybgNzrr5sWMvJJcIZFfmcWVnA/NLcEUUiFk9wvCvE0dYgB5t7aBmh+OxAl+Pv/vMnHFtpqkAc7wrx3KFWalqD5HjdrFtYwuqqolMSKrdLWFCWyxkV+SwuzyfHl8EvblUItprU9fbD5ldysM1sfW0Q6jQilIid2Nw+s3n8xtJx+417ypNjrC9vDngC4M09yX7zfFPrPq740wed2IWXx17zAzbMWmlcZPGwWe8W7jJzCHWYdWChDujrcB7bzfO+diMwJ0XMPMVlnovLWDixERZzB4qMyKSLTupxriNCszO27EblzlQ1f4O2Q9C8B5p2O9sr0NOYNsdiY2GVLTHWVuliY33llUFumfmxkf5/IBoyf++eRmg9AM17zXVrXzBCCRkJ0qjp6zBr+J7/nvn7X/dVWP3mCcs2tQI10oUzE6i5wLeARZie928CzgLeSwYClc60saBU4QevNr8wb9kKbg876zt5dHfjoFOPtgV5YFs9i2fl8ferK08qTiKwam4RFywupXCkKuPD0NIT5pVjXbxyrIvecHzQ8XSXY8Ll5tl3fpTNN76/3zkNHX08d6iV2vY+crxuzltghGqsrr8kIlBZFGB+aR7zSnOYUxgYU8p7thm3GFQsYoSsr/3ElhKxdmPtoUaYkv/HffngyzVC6sszX+h5s4ybLW+WEeCpSG8rNL8CjbuhaZexfFoPQnfD4HNdHuNiA0CNuzUdcRtRqz4f5l9gliiULz91QToZrQfhDx+Auhdg9Vvgtd80f4MsM10EKpspXvXAvLTX1c6+FKraAFwPICL5wJtUtUNE6oGNA8Y+mcW5Th2OPGViKH//NXB7CEXjPHOgZdBpXX1R/rTzGCV5Pq5aOeek4lSe7+OqVXOYPVzadoaU5/u5ZOksLlpSzv6mbrYd7eB454kvgLpz1hP3+iAaJe71UnfO+kHXmFucw/XnVlPf0ccLh9t4+kALL9a0s3Z+MedUjz1GpQoNHSEaOkI8d8i4MCsKTav6ioIA5fm+castOFZUlXVzL2DtnPXEE0p3KEpCMVFWMMaOgGCsQ5cIHpcMLbQeH+TPMtt0J68M8l5lrJt0IkHjGuyoMVZS0gpOxEl9qIFiyCs3bsmk1TWRQly2BN79MDz1NXjiTmMd/uMvTOzTMiLZtKA8mCSJKzDCtBl4q6ruSjunHGhT1YSI3AnEVfVzTpLEi8C5zqlbMUkSA4IHJ5g2FtQv3gINL8HHdoA3wF/3NbO1pn9uSCKh3L+1jtaeCDesn0dJ7tAul7Oqirhs+aysWhJ17UE2H2njSIsptzQwBjUSxzr7eP5wGzWtQQIeF2vnl3B2ddGY09OHQ8R0Ai7M8VIY8JDn95Drc+P3uAl4XXjdLjxuF24R0hMgEwoJVeIJJZZQYvEE0bgSjSeIxhNEYgnCzmNyi8YTRJx9sYQSdR7HOm+v24XHJXjdLrweF363C5/H2dwu/F7zmNzn97jwud14Pc4YtwuvW/C4zONkJ9HMSPY/Cve/x8QHb/gFLLgoa7fKxIKayCzrsZLtNPPrgLswH8CPVPVOEbkD2KKqDzpuwC9hfu78DfiQqoadse8G/tW51J2q+uPh7jUtBKr1IPzPebDxM7DxM3QGo9y76cigRIUXDrex6VAr16yaw/I5BYMuIwJ/t2wW584vmaCJmyaJzx1q5VDz2P4Gx7tCvHDYJFN4XMKKykLWzisePmPPMmbcLsHtMhZa0lpzuwSXy4izS9IfBZfLPBcR3CK4ndfJMcnr9BNSRzC9bnFE043fEc+pLpDReIJgOE5vJEYoGiccSxCLK3Hn+9It5j3l+typHz0ZLetoOQD3/SO015jKMGtuzMr8RxKoic6yHvP7sAt1pxCP/JsJqn58FxTMGbLWXmNXiN9sqeWMinyuPWtwZpBLhKtWzWZFZeFEzbofxzr72HSwddStP5K09ITZdrSDvce7iauysCyXNfOKmV+aO+W/1CyZIQJ+j5scr4uA102Oz03A6ybX5ybHeZ3jdZPr86Ren2qMMh1VpyByKEZ3KEpXKEZXn3nsDkXpDsXoiwyOsQ6H2yWU5PmoLAxQXZrDgtK8kyft9LXDb94Bh/8Gl3wSLrt13GNgGQjUhGZZj5XslxmwZEak16SnrngdFMyhqTvE3sb+4hRPKI++0kiOz81lywcvBBSBK1dOnjgBVBaZGFNtW5BnDrRwrDM08qA0yvP9XLlyNhctKWNHfScv13XywEsNFAY8rKwsZMXcwlNK9LBMPqqmwr6phjJEGvsQuF1Cjte4Yv0ed8ql6XG78LiNBecSQTA/6ROadMeqccHG4oSiCYKRGMFIfNw7TscTSkt3mJbuMDvqO3GJUF2Sw5mVBSybXdA/9plTAm/7PfzvJ02mX8t+s95xfJMnPCKyJe313ap6d9rrKqA27XUdcMGAa2zH5Ah8A3gjUCAiZScZWzVeE0/HCtRUYcdvTVbW+psBeO5Q26Bae9trO2jtifCasyuHjNFcsnQWK+dOnjilM680lxvWz+dgcw/PHmgZMUV9IHl+DxcuLmPdghIONvey61gnzx1u47nDbcwvzWVpRT6LZ+WR6zu1f8KjjZlZJod4QukJx+g5TVaSJFQ52hbkaFuQv+1rYXVVEWvnF58oPeb2wmu/YVLm/3yrqX5yw33juV4qpqrrTvEanwK+JSI3YUIw9cDoTMtTxArUVOHFn5iip/MvpKk7xMGm/utcukJRNh1qZVF5HovLB1vuydp3U40ls/JZXJ7H7mNdPHeoja6+zH4xJ/G4XSyfU8DyOQV09UXZfayLPce7eWxPE4/vMYt2l8zKZ35pLiW53lG5AYdbt2WxjBehaJzNR9p4qbad1dXFrF9Yatx/InDRh02m3/3vgXsuh9feBcuunohpnRZZ1lagpgKNu02Fg2u+DCK8cHhwsuLf9jUDsHHZrEFfwnOLA2wcwuU3VRARVs0t4sw5heyo7+SFw61DrqMaicIcLxcuLuOCRaW09EQ40NTDgaYe/up8Nnl+N/NLcqkqyWF2YYDSXB+uYQLX1dtfwB2N4EokIBqlevsLVqAsWSMaV7bWtLOzvpMLFpWydn6JSaxYfi285xH47bvgl/8A8zfAyjdAUTVUngPF80a++OjZDCwVkUUYYboBeGv6CelZ1sBnMRl9AI8AXxSR5C/iq5zj444VqKnA9l+aBYar30Jbr/niTaeho4+Dzb1cuLiUwpz+8Zccn5vrVldOSmHY0eJ2CWvmFbNqbiHbazvYUtM+6mA0GMGbVeBnVoGfDUvK6OyLUuu4Uw639vKKk1iSLOdUnu+nONdLSa6P4lyvKe3kdmW0bms0JBJqUsvjaanmydTz+NCPUSdGEhlwbsLx7yb/qoJZIOUSUqniXif+4nWZbLlkskEyVpNMNMj3e8j1u3FlYF1al2f2icQSPLW/hR31nfzdslksmZVvavZ98FnY8kN44R54+NPm5Nd/G9a+bdznoKoxEfkwRmySWda70rOsMVbSl0QklWXtjG0Tkc9jRA7gjuGWAJ0KNotvsonH4GsrYN56uOEXPLq7kZ31nanDyTJHXX1R3nnRwkELTV97zlzOqMif6FmPC5FYgu11HWytaSc4BqEaClWlIxilsTtEY1eYxq4Qbb2RVMv6JD63+UK/4Phe1h15mZ1L17J/yVl4nXVQqf8VCoqSUFLrnpJroGJxI0jRtPVOmZBMw05fx5T+eFbNbs46sJXdy85l76KzktMAnOB/2hqsWEJT9++LxglFEqlU6HREIM8Rq4KAecwPeCjK8VKU46Uw4GXBvu3W5TkJLCzP5dJlFZQml1SomjqIPY2ma/QYepzZShKW8eHgY6ZI55q30huOsedYV7/DB5p7ONYZ4ooVFYPEaeXcwtNWnAB8HhfnLyzlnOpidtR3su1oO92h2CldU8Sk+5bk+ThzjtmnqoSiCTr6IrQHo/SGTSZXMBJjt38VL1WvMF/4bX3EEgniCTUWCydKp7lEUlZL0nIJeN1mjc8AgUl/7h14zO0a1u1YuXsbb/rWR8csEqpKNK6EonH6omYdT28oTk84Rnc4Sk8oRktPmMMtvYME9SMvPIxEIrg0gUYj+J7+G/WVZ1KYYwTNpvlnhyMtQY621nBWVSEXLC4j3+8xyRITXGB2KmIFarJ56ZemDMvSq9h+pKPfl0Y8oTx7oJWyPB8r5/TPzsv3e7h02fQoc+PzmCrna+YVs+d4F1uPdtDSPX7pWiJi1tb4cqgsmvyeUMNxqnExEcHnMYtIB7qD01FVQrEEXX1ROp2tPrye2NP3QSxK1OXh54FFbN1aBxj3bEHAQ1HAS0GOh8KAsboKnee5PrcVsFMgocrLdZ3sbujiTKetzJyiKd4vawKwAjWZhHtg38Nw7juI4WZHXWe/w3uPd9PRF+W1Z1cO+tW9cfmsrJQDmkzcLpNMsWpuEbVtQV6q7eBQc28qHjMTGO+42MkQMeuKcrzuE3UaF17BAwvvpXr7C9SsPp/Vi89ifl+Urr4YnX1RukJma2oK0xft75J1u4TCgKmoUOD3kOszca88nyknlSwrNZm1EAfG11RNZYhEAuJOKSsgVUFD0ippTFSMN5ZQdtZ3srO+k7Ori7hixewJue9UxQrUZLLvYVNtedX17Gvs6ReHSaiy+Ugbswr8LBqQVr6oPI+lsweXOJpOzCvNZV5pLj3hGLvqO9l9rIuO4OhS1E9Hjq1cy+/+8yeTlqhwbOXa1D2LgeKT1HmMxhOp6gtdKfEyz5u7w/RF4gz1s8LjElMn0Cl9lKob6DElklwuU0op+eh29V98qxjrT9WEalILchMJ4vHkc1MvMf35qppd3PPTz+KNR4m6Pbztxjt5ce6KjD8XtzNvv8eVSkQpCHgoCJikm6IcL2X541uMOBqfOT/MToYVqMlk1x9Mv515F7B9S12/Q/sajfU0sI2G2yXTxrWXCfl+DxcsLuOCxWU0dPSx93g3+5u6x5SmfrqQLhJTFa/bRVm+n7L8oSuDJ1Tpi8QJRkwcLFnXri8adyo7JFIVHrpDUcIxE/tLpFk0mZDManS7JFVRwuPUA/S4TJzQ4xKuaHwFXzyKWxOQiHF95wE8F19sahKmCSLiCKEjfsn5JOcajiUIxeJ0hqLUdfQRGZB8U5TjpSzPx+zCAHOLA1O27cvpghWoySLUZaobr3s3TQUylYgAACAASURBVD2Rfm0rVJXNR9opy/OxZFZ/62nNDC6gOrc4h7nFOWxcPouGzhCHmns40tI76ioVluzjEiHPbyrGzxqua/BJUNVUFfmEaqqMkaQeGVXMK8d9BYm//AyJRlGvF/fll3Hh4rJRz2sgyQ7UHcEorT1hWnsjtPSEOdRiMopdArMLAywsz2NJeR6leT4bqxsFVqAmi71/Ml1Uz7qeHfX9Y08Hmnto641wzar+fZ5yfG7WLxp9yul0Q0SoKs6hqjiHS5bOoicco7YtSH17H8c6+2jtjQwqEzVVcbuEgFM0NZDm8kqtcXK7UpXH07/WEgqxRCKVch6OJYzFEo0TdLIUT2dM1XRwMz5f5tlynfo9bvz5bsrz/f0yakPROA2dfTR0hKhtC7LpYCubDrZSlOPljFn5rKgsOKn1aTmBFajJYtcfoLCayJxz2fP0kX6Hth3toCjHy9LZ/VPIz19YOu0SI8aDfL+HFZWFqSK5kViC5p4wzd1h2nrDtPVG6QhG6AnHsi5cHpcMqs6d6yQIJCtzpz/3e7Lz94zFE3SFTHJDezBCW0+E1t4wLT2RQW6pmcJEuk4DXjeLy/NZXG7+D/eEYxxu7uVgSw/batt58Wg7swv9rKos4szKgklNHpnKWIGaDCK9cPBxWPdu9jX19vvCON4Z4lhniL9bWt5v5X9BwMM51UWTMdvTDp/HlbKw0kkWHE2ugzJ9fkxcIRpX4okE8QT9sgZdab2PUr2Okk0CnUB/wOvCn1ZpeyrgcbsozfNRmudjESfcxKpKezBKY1eI410hjneGaOoKz6hMyckg3+9hdXURq6uL6A3H2NvYze5jXTy+t4lnD7awurqIc6rTislOI0TkP1X10yPtG4rp92mcDhx8wrj3ll/L7gELc7fVtuNzu1g1t78YrV9UaoOtp4jbJanKCTMVEUkJV9LijMYTHO8MUdfeR117kOOdoTF3/7WMTJ7fw7nzS1g7r5iGzhDbjraz+Ug7W2s6WF1dxPkLS065Sv8U40pgoBhdO8S+QWT1U8igpfB84F5MRqsb+IyqPiQiC4FXgL3Oqc+p6geyOdcJZd+fwF9Ex6x11B88UUC4OxTlQFMP51QX92vQVpjjHSRYFst44XW7Umn9UEYsnuBYp4md1LYHaewKj3v/JEv/WGp7MMKLNe1sr+tgV0Mna+eVcG79HvjjLti4ETZsmOzpjhoR+SDwz8BiEXk57VAB8Ewm18iaQDkthb9NWkthEXkwvaUwpqf9b1T1uyKyEngIWOgcO6iqa7I1v0kjkYB9j8DSV7O7qa/foZfrOlGFc+YV99t//sKS06IYrGV64OknWCam19DRR217kLr2PusSzAIluT5evWI2580vYdOhVmLPPMP6X91KIhHD5ffBY4+djiL1S+BPwJeAz6Tt7860uGw2Laj1wAFVPQQgIr8CXg+kC5QCyRo+RUBDFuczNah/EXqb0WXXsufYiY65sUSCXQ1dLJ6V188Fle83nWQtlsnC53GxsDyPhc6C8aRgJbPUGrtCMzbxYrwpyfNx3epKVrxYiy8exaUJiETgySdPO4FS1U6gE7jRMVhmYzQnX0TyVfXoSNfIpkBl0lL4duDPInILkAe8Ou3YIhHZBnQBt6rqUwNvICI3AzcD+HynydqgvQ+BuDle8So601q6H2rupS8aZ3VVf1fe2vnFNvZkmVIMFCxVpbU3QmNXiObuZPZkZMJS3d0uMZmRPpOqH/C6U0V7k63gkw6IhJpkmajTFiUUjZ9YUByOTZnYW8f6i+D3d0M0Cj6fcfOdpjhtPW4HGoHkLxkFzh5p7GRH4m4EfqKqXxWRDcDPROQs4BgwX1VbReQ84AERWaWq/TIKVPVu4G4w7TYmevJjYt/DsOAiXunoLzo76jspDHiY77hVAPxeF6tt5p5liiMilOebvlvp9EXidPRF6OyL0h2K0ROKmWoSkWTmpFnHFXcqN4BZ2Op2naga7/O4zDoxjzslQrkD6vuN59KLYCRGt5Oe39kXpSNo0vQ7gpEJrV5ybOVaNt/zWy6s3XHaxqDS+BiwXFVbRzswmwI1Ykth4D3ANQCquklEAkC5qjYBYWf/iyJyEFgGbMnifLNPew007SZx1Z3sbzzRlLA9GKGuvY8NS8r6LcxdXVU0ZdKWLZbRcrpUkE/HiJ/nRAHdNMKxOB3BKG29EUe0oqnHbLg4O9asg7e9ZtyvOwnUYlx9oyabAjViS2HgKHAF8BMRWQEEgGYRmYVpNRwXkcXAUuBQFuc6MRx8DIBjs15F8MiJX2O7GroQgVVpsSaXyKBkCYvFMnn4PW5mF7qHFK9gxJQ76uyLplqYdIdidIXM4wzPgjwEPCki/4tjeACo6tdGGpg1gcqwpfAngXtE5OMYn+RNqqoi8nfAHSISxfgsP5CtlsITysEnoLCa3ZE5mNCa8YfvbuhicXlev0V6Z1TkUxiYuet1LJbTiaTlNbd4sLWoahaId4VidDpWV2tvhKau0Ck36DxNOOpsPmfLmKzGoFT1IUzqePq+z6U93w1cPMS43wG/y+bcJpxEHA7/FT3ztRxoPtGa/kirSY4YuM5pzXxrPVks0wERoSDgpSDgHVTdpDsUpaY1yIGmHmpag9MyfV9V/wNARHJVNTiasTY9bKJo2AahTlpmX0wordnbnmPd5HjdLEhLjphV4B/0D9lisUw/CgJezqoq4g1rq7jp4oWcXV3Ur8RZNhGRa0Rkr4gcEJHPDHF8vog8ISLbRORlEbnO2b9QRPpE5CVn+94I99kgIruBPc7rc0TkO5nMcbKz+GYOBx8HhN2BteDkR4SicQ639LK6uqhfx9xzqq31ZLHMNIpyvFyxYjarq4t4ZOfxrN5rggsp3AVcDTwIoKrbnTDOiFgLaqI4+DhaeQ57uk64YPc39RBX5cw5J7rj+jwuls+Z3t1yLRbLyakoCHDD+vksHtALbpxJFVJQ1QiQLKSQzrgVUlDV2gG7MsrZtwI1EYS6oG4z3VWX9Fu8uOd4FyW5XioKTqwfWVFZ0K8On8VimXl43S6WzT6lH6oeEdmStt084PhQhRSqBpxzO/A2EanDWE+3pB1b5Lj+/ioil4wwl1oRuQhQEfGKyKcwtVZHfhOZnGQ5RY48DYkYh4vWg9M4t6svSkNHaNDap7Oq7MJci8VyysRUdd0pXuOUCimk8QFM0fAqzJKjPwMfymQCVqAmgkNPgieHbbo8tWvPcVPm6My0X0mzCwNUFAxeY2GxWCzjzIQVUlDVFuCfxjJJK1ATQc0zROauoz18wlLae7ybucUBCtMKw66aa4vCWiyWCWHCCik497gFk2CR0hxVfd1Ik7QClW2CbdC4i6Y1H0vtau0J0xaMsHHerNQ+j0tscoTFYpkQJriQwgPAD4E/cqJYbEZYgco2RzcByr7AicK9+5tMnvkZs/JT+5ZU5I9r0UuLxWIZjgkspBBS1W+OZY5WoLLNkWdQt59drqWpXQeaeqgqzulX2sj2fLJYLNOUb4jIbZjkiPRafFtHGmgFKtvUPE2wYi0xMankbb2mDtely0649/L87n5tNiwWi2UasRp4O3A5/ftBXT7SQCtQ2STUCcd30HDmB1K79jeZ7L0zKk6495bPKexXScJisVimEW8BFjsLgkeFXRGaTY4+B5rgFd+J+NOBph4qiwLkp7n3VtjkCIvFMn3ZCYypfpu1oLLJkadRl5eanFWAaUzY0hPh75aWp04pzfNRMUR/GYvFYpkmFAN7RGQz/WNQNs18Uql5hu6ys4m5jQAdSGbv9XPvWevJYrFMa24b68CsuvjGWs7dOfZZZ9xeEbk6m/PMCtE+OLaduoITBX8Pt/RSUeCnIK0R4fJTq7dlsVgsUxpV/StwBPA6zzcDI2bwQRYFKq2c+7XASuBGp2R7Osly7msxK5m/44xd6bxehSm18R3neqcPDdsgEWO/37zlYCTGsc4Qi8tPVCiuKPRTkjeqBpMWi8VyWiEi7wPuB77v7KrCLN4dkWxaUKdSzv31wK9UNayqh4EDzvVOH2qfB6ChwCRIHG4xXXQXpy3OtdaTxWKZAXwIs+C3C0BV9wMVmQzMpkCdSjn3TMZObWo305u/kJDXJK8cbukl3++hPP+ExbS0wgqUxWKZ9oTTU8xFxIMxTkZkstPMk+Xcq4HrMOXcM56TiNyc7HcSi8WyNslRowq1z1NfsBqAWDxBTWuQxeV5qdYaswsDFOV6h7uKxWKxTAf+KiL/CuSIyJXAbzF1+UYkmwKVaTn334Ap546pllue4VhU9W5VXaeq6zyeKZSQ2H4Ygi0czT0LgNr2PmIJ7dchc9ns/JONtlgslunEZ4BmYAfwfoy37NZMBmZToFLl3EXEh0l6eHDAOcly7qSXc3fOu0FE/E6p9qXAC1mc6/hSuxmAY44FdbilF69bqCrJSZ2SnmpusVgs05g3AD9V1beo6ptV9R5VnVwXn6rGgGQ591cw2Xq7ROQOEUku0Pok8D4R2Q7ch1POXVV3YSyr3cDDwIdUNaMe9lOC2ueJevJozV2MqnK4pZcFpXl4XObjnlXgpzjXZu9ZLJYZwWuBfSLyMxF5jRODyois+sXGWs7dOXYncGc255cttO4FGgvOQsVNS3eYnnCMRWnp5dZ6slgsMwVVfZeIeDFLjm4Evi0ij6rqe0caO9lJEtOPcA807qIu37j3alpNevmCshPVyq1AWSyWmYSqRoE/YZYbvYhx+41IRgIlIr8Xkb8fTYbdjKVhK6IJjhWYBIma1iDl+b5U76fiXC/l+f7JnKHFYrFMGCJyrYj8BNgPvAn4ATAnk7GZCs53MP3q94vIl0Vk+VgmOiNo2AbA8fxVRGIJGjr7WFB2wr23ZJa1niwWy4ziHZjKEctV9SZVfcjJURiRjARKVf+iqv8EnIupqfQXEXlWRJK+RYuD1m+lM1BFyFtMXXuQhMKCtGaES6x7z2KxzCBU9UZgE3ClkySRURUJGEUMSkTKgJuA9wLbgG9gBOvRUc12mhOv30pj3grAuPe8bmFusUkvz/W5mVtkW2tYLJaZg4i8BbNM6C3APwDPi8ibMxmbaQzqD8BTQC7wWlV9nar+WlVvAaxJkKS3FU/nUY7nmwKxNW1BqktycTvdchelVZKwWCyWyWQCu03cCpyvqu9U1Xdg6qr+eyZzzDTN/Juq+sRQB1R1XYbXmP4cM/GnxvwVdAQjdPZFWTvvRCPJ9EoSFovFMlmkdZu4ElPrdLOIPOgs/UmS7DbxXafDxEPAwgHdJuZiQj7Lhlmr6lLVprTXrWRoHGXq4lspIqlvWhEpEZF/znDsjEHrTYuTpvwzqWkNAifSyz0uYX6pFSiLxTIlmMhuEw+LyCMicpOI3AT8LwPWx56MTAXqfarakZq1ajvwvgzHzhgiR1+kLWcBEU8+NW1BinK8qYoR1aU5+Dw2S99isUwInmQhbWe7ecDxCek2ISam8U1ML6izne1uVf10Rm8ik5MAt4hIsn6SYx7aWj0DkGPbaMxfSzyh1LUHWTGnMHVsUbkN1VkslgkjNg7hl2S3ia+KyAZMt4mzRnMBVVUReUhVVwO/H+0EMv1J/zDwaxG5QkSuwNTNe3i0N5vWdB3DF2ykMX8lxztDROPK/LTqEemljiwWi2WSyXq3iTS2isj5Y5lkpgL1aeAJ4IPO9hjwf8Zyw2lLQzJBYiW17UEEqHbSy8vyfRTl2OViFotlyjCR3SYuAJ4TkYNONuAOEXk5k0lm5OJT1QTwXWezDEGoZgs+XDTlLadufwuzCvz4vW4AFpZZ68lisUwdVDUmIsluE27gR8luE8AWVX0Q023iHhH5OCZh4iYnzLNLRJLdJmKM3G1ipDT0k5KRQInIUuBLwEqMigKgqovHeuPpRrRuK925i+nDx7HOPtbOL0kds+49i8Uy1ZiobhOqWiMi5wKvwgjdM6q6NZOxmbr4foyxnmLAZcBPgZ9nOHb6o4q/aTtN+WfS0NFHQmGe05zQ53GlKklYLBbLTENEPgfcC5RhYlg/FpGMOupmmsWXo6qPOZl8NcDtIvIi8LmRBs4Iuo/jC7fRlHcmde19uISUKM0rPVFJwmKxWGYg/wSco6ohABH5MvAS8IWRBmZqQYWdVhv7ReTDIvJGMihxlEEpja+LyEvOtk9EOtKOxdOODQzeTSki9dsBaM5bRm17kDmFAbxu89EusvEni8Uys2kgLTQE+Bk+6y9FphbURzF1+D4CfB7j5nvncAMyKaWhqh9PO/8WYG3aJfpUdU2G85tUemq2UQrU+xfT1NXE+YtKU8fSU80tFotlBtKJSax4FBODuhJ4QUS+CaCqHznZwBEFyhGaf1TVTwE9wLsynFSqlIZznWQpjd0nOf9G4LYMrz2lSDS8TEegikPdbpQT8afSPJtebrFYZjx/cLYkT2Y6cESBUtW4iLxqDJMaqhzGBUOdKCILgEXA42m7AyKyBZOY8WVVfWCIcTcDNwP4fJNX2MLfuovjecuobe/D7RLmOC01FljryWKxzHBU9d6xjs3UxbfNiQP9FuhNu/GoS1echBuA+wfk0i9Q1XoRWQw8LiI7VPVg+iBVvRu4GyAvL0/HaS6jIhHqJr/3KM1l11DXEGRucQCPy8SfFtj4k8VimeGIyGswoaEFGM0RTBWkwmEHkrlABTAl0i9P26cMX1tpNOUwbgA+lL5DVeudx0Mi8iQmPnVw8NDJpePIS5Si1PuX0NITYcOSMsBUL68usenlFotlxnMXcD2wI1nPNVMyrSSRadwpnVQpDYww3QC8deBJInImUIJpCZzcVwIEVTUsIuWYxWL/NYY5ZJ3g0ZcoBV6OzQcSVDnp5ZXFOalMPovFYpnB1AI7RytOkHkliR9jLKZ+qOq7TzYmw1IaYITrVwMmvwL4vogkMKnwXx7QSGvKoMdeJuQpZFdPAW5XF7ML/YCNP1ksFovD/wEeEpG/AuHkTlX92kgDM3Xx/b+05wHgjZxoXnVSRiql4by+fYhxzwKrM5zbpBJo3U1T3jLqO0PMLvSn4k/zS61AWSwWC6YkUg9GO0aVzZapi+936a9F5D7g6dHcaDrSFwpT0rOfIxXX09QUZt0CU38vx+emosA/ybOzWCyWKcFcVR1VH6kkYw2SLAUqxjh22tB69BU8iTD7ZCGqpOJP80pyMY0kLRaLZcbzkIhcNZaBmcaguukfgzqO6RE1owkeNQV5t0XnIZBa/2TdexaLxZLig8CnRCQMRBnvNHNVLTi1+U1P9PgOYuJlS085swrc+D2m/5MVKIvFYjGcin5kakG9EXhcVTud18XAxqGqO8wUVJWc1t205i6mtj3O6ipTO7cwx0tRri1vZLFYZjYicqaq7nF6QQ0ik55QmWbx3aaqqVpKqtohIrcBM1agOoJRynr280re+cQTmoo/WevJYrFYAPgEphTdV4c4pvQv/DAkmQrUUMkUmY6dljQ3NrAs2speNcUy5hab+NO8Uls9wmKxWFT1ZufxsrFeI9Msvi0i8jURWeJsXwNeHOtNpwO99TsA2B6eS0mul1yf0et5JdaCslgslvEgU4G6BYgAvwZ+BYQYUDtvphE/ZgpbbOqZneqeW5bvI88/ow1Li8VymnA6NJTNNIuvFxj0BmYq8YTib9tLnzuf2lARV6Wtf7JYLJapzunSUDbTLL5HgbeoaofzugRTP+/qbE5uqtLaE6Y0eJBaz0JAUhaUjT9ZLJbThKw3lD1Z9l6S8cziK0+Kk3PhdhGZsZUkjnf2saz3INvcryLH66Yw4EEEqoqtBWWxWE4Lst5QlhPZewFgHbAds0j3bGALsGGkSWYqUAkRma+qR50JL2SI6uYzhfbGowTi3bwcr6KyKICIUJbvJ8fnnuypWSwWC4DHEZAkdzsNXsfCWBvKXgYgIr8HzlXVHc7rs4DbM3oTGU7w34CnnXLpAlyC02p9JhI9tguAl8KVVFaZ9HLbnNBisUwhYqq6bpjjE9lQdnlSnJwxO0VkxfDTN2SUxaeqD2NMtL3AfcAngb5Mxk43ovEEvta9AOzTaiqLkgkSVqAsFstpQ6qhrIj4MCI0KBvvZA1lRcTvPE82lB2uX9/LIvIDEdnobPcAL2cyyUyTJN4LfBSjsi8BFzoTHnEl8HSjuTtMWfAAba5SOqWAikI/IlBtM/gsFstpwgQ3lH0XpmDsR53XfwO+m8k8M3XxfRQ4H3hOVS9zVPWLIw0SkWuAb2A+gB+o6pcHHP86kFxlnAtUqGqxc+ydwK3OsS+o6r0ZzjWrNHWHmRM8yAHmMSvfj9ftoizfT8Br408Wi+X0YaIayqpqSES+BzykqntHM8dMF+qGVDUEICJ+Vd0DLB9uQFqe/bXASuBGEVk5YOIfV9U1Tj79/wC/d8aWYlIaL8CkQ97mpLZPOo2dQcqCh9gZrUq117DxJ4vFYhkaEXkdxvP2sPN6TaaLezMVqDqngvkDwKMi8n+BmhHGpPLsVTWCqUDx+mHOvxET3wK4GnhUVdtUtR14FLgmw7lmlWDjQbyJMK8kqqlMClSxFSiLxWI5Cbdh9KADQFVfwqStj0imlSTe6Dy9XUSeAIpw1HAYTiXPfqixVUOMuxknm9DnG1Wr+zERjSfwtOwBYF+imrVOgkSVtaAsFovlZERVtXNAl/GMlimNunCcqv51tGMyYKg8+0zmcjdwN0BeXl7W12U1d4cp7TWZlHWeBVwa8FCW70sVirVYLBbLIHaJyFsBt4gsBT4CPJvJwExdfGNhtHn296W9Hs3YCaOxK0RZ8CB1VFBUVIyIMLfIWk8Wi8UyDLcAq4Aw8EugkxMZfcOSTYEac549JvXxKiffvgS4ytk3qTQ5FtQr8RPxJ+ves1gslmH5e1X9N1U939luBV6XycCsCZSqxoBknv0rwG+SefZOVkeSQXn2qtoGfB4jcpuBO5x9k0pzZw+lfTX9FuhagbJYLJZh+WyG+waR1eDJWPPsnf0/An6UtcmNklg8gbYcxEOMA1pNZaGfwhwvhQHvZE/NYrFYphwici1wHVAlIt9MO1SIKTI7Ija6nyHNPWGKew8D0JKziPluF1VOm3eLxWKxDKIBU7X8dfTvwN4NfHzIEQOwApUhzd1hSoOHAAgVLgZsew2LxWI5Gaq6HdguIn8AepNZ2k4RB38m18hmksS0oqkrTH7PIeq0nOKiYgDmWgvKYrFYRuLPQHqwPgf4SyYDrUBlSGN3iJLewxxIVDG70PR+Ks3L/uJgi8ViOc0JqGpP8oXzPCP3kxWoDIgnlLbuELMjtRyiipI8X6pRocVisViGpTe9/buInEeG7ZpsDCoDWnvD5PYdw0+YJv8C/CJU2fp7FovFkgkfA34rIg2YhrdzgH/MZKAVqAxo6jqRwdeVv5hZwFwrUBaLxTIiqrrZKciQ7ICxV1WjmYy1Lr4MaO4J4+/YD0Ck5Aw8LmF2oU2QsFgslpEQkVzg08BHVXUnsFBEXpPJWCtQGdDcFaag5xCtWkBByWxmFwZwu2z8yWKxWDLgx0AE2OC8rge+kMlAK1AjoKo094Qp76vhMFUUBDzWvWexWCyZs0RV/wuIAqhqEBOLGhErUCPQ2RclEo1TFT9Kg3c+IkKlXf9ksVgsmRIRkRycHlAisgRT2XxEbJLECDR1h/GGWymmh7Zc0wTSttiwWCyWjLkN0+B2noj8ArgYuCmTgdaCGoHm7jCuFpMg0Vu4mJJcLzk+9yTPymKxWE4NEblGRPaKyAER+cwQx78uIi852z4R6Ug79k4R2e9s7xzuPqr6KHA9RpTuA9ap6pOZzNFaUCPQ3B0mp+sAAPGSZVTa+JPFMiLRaJS6ujpCodBkT2VaEwgEqK6uxusdXVcFpx7et4ErgTpgs4g8qKq7k+eo6sfTzr8FWOs8L8VYReswbrsXnbHtw9zyUuBVzvle4A+ZzNMK1Ag0dYeY1XuYIH7iBVXWvWexZEBdXR0FBQUsXLjQVlzJEqpKa2srdXV1LFq0aLTD1wMHVPUQgIj8Cng9sPsk59+IESWAq4FHkz36RORR4Br6d0VPISLfAc5IO/5+EXm1qn5opElm1cU3kgnpnPMPIrJbRHaJyC/T9sfTzMtBnXgngmAkRm84zpxIDbWueSDCnCKbIGGxjEQoFKKsrMyKUxYREcrKyk5mpXpEZEvadvOA41VAbdrrOmffUPdZACwCHh/tWIfLgatV9ceq+mNMj6jLhzn/xJvI5KSxkIkJKSJLMZ0VL1bVdhGpSLtEn6quydb8MqGpK0xfNM4CreOQfy0+j4vyfFsg1mLJBCtO2WeYzzimquvG6TY3APcn22WMgQPAfKDGeT3P2Tci2bSgUiakqkaApAmZzvuAbyd9l6ralMX5jJrmnjCd7W3MlTY68xfZArEWi2W6UI8RiiTVzr6huIH+7rvRjAUoAF4RkSdF5AmMG7FQRB4cyTuWzRjUUGbgBQPOWQYgIs8AbuB2VX3YORYQkS2Y1sBfVtUHsjjXIWnuDuPtMEIfLj7DuvcsFst0YTOwVEQWYcTlBuCtA09yauiVAJvSdj8CfFFESpzXV2E8YSfjc2Od5GQnSXiApcBGjAr/TURWq2oHsEBV60VkMfC4iOxQ1YPpgx2/6s0APt/4u96au8PkdyeLxC5hrU2QsFgs0wBVjYnIhzFi4wZ+pKq7ROQOYIuqJi2bG4BfqaqmjW0Tkc9jRA7gjmTCxEloTg/tAIjIxkxSzbMpUJmYgXXA805l28Misg8jWJtVtR5AVQ+JyJOYFMd+AqWqdwN3A+Tl5SnjSDSeoD0YoTx0mBhuunKqqbQWlMUyav7jj7vY3dA1rtdcObeQ21676qTHjxw5wjXXXMOFF17Is88+y/nnn8+73vUubrvtNpqamvjFL37B+vXr6e3t5ZZbbmHnzp1Eo1Fuv/12Xv/613PkyBHe/va309vbC8C3vvUtLrroIp588kluv/12ysvL2blzJ+eddx4///nPB7n+77nnHu6+G0V3JgAAHkVJREFU+24ikQhnnHEGP/vZz8jNzaWxsZEPfOADHDp0CIDvfve7XHTRRfz0pz/lK1/5CiLC2Wefzc9+9rNx/byGQlUfAh4asO9zA17ffpKxPwJ+lOGtfiMiPwX+GwgA/4VJUd8w7CiyG4NKmZAi4sMo8UB/4wMY6wkRKce4/A6JSImI+NP2X8zJ0x+zQktPmL5InHnxOho9VRTm5RDw2gW6FsvpwoEDB/jkJz/Jnj172LNnD7/85S95+umn+cpXvsIXv/hFAO68804uv/xyXnjhBZ544gn+5V/+hd7eXioqKnj00UfZunUrv/71r/nIRz6Suu62bdu466672L17N4cOHeKZZ54ZdO/rr7+ezZs3s337dlasWMEPf/hDAD7ykY9w6aWXsn37drZu3cqqVavYtWsXX/jCF3j88cfZvn073/jGNybmA5o4LsAkSTyL0YUGzHf6iGTNgsrQhHwEuEpEdgNx4F9UtVXk/7d359FVVWfjx78PCSQELGUQRKACNkgIZGAIRFDCUAZhMQkqAkqpWq20/srqACoYdam05dUWtUVsHbCKTILoslYEU6QNQqgJECYVeRmFECDkBjKQPL8/zkneS0hCSHLJvcnzWeus3HvO2fvsfU9yn+xz9tlbbgZeEZEinCA6v3QT0dcysvPIyM7jh3KEk6HhXGeX94ypkopaOr7UqVMnevToAUBkZCRDhgxBROjRowcHDhwA4JNPPmHt2rUsWLAAcLrHHzx4kOuvv56ZM2eSmppKUFAQ+/btK8k3Li6O9u3bAxATE8OBAwcYMGDARcfeuXMnjz/+OGfOnMHj8TB8+HAANmzYwJIlSwAICgqiWbNmLFmyhEmTJtGqVSsAWrRo4bsPpXYU4Myg2xinBfWtqhZVJqFP70FdrgnpXtec5S7e+/wH6OHLsl1ORnYemWc93CDH+eKa4XZ5z5gAExISUvK6QYMGJe8bNGjAhQsXAOdh11WrVnHTTTddlDYxMZE2bdqQlpZGUVERoaGhZeYbFBRUkpe36dOns2bNGqKjo3njjTdISkqqyaoFmq3A+0AfoBWwSERuV9VJl0toY/GV46Qnj4ZZ3xIsRZxt2tkClDF10PDhw3nxxRcp7gPw5ZdfApCVlUXbtm1p0KABb731FoWFV/YIUHZ2Nm3btqWgoIC33367ZP2QIUP4y1/+AkBhYSFZWVkMHjyYFStWkJmZCcCpUxX1NwhIP1HVeapaoKrHVHUsl97uKZMFqDKoKic9+TTLOQA407y3ahpScSJjTMCZO3cuBQUFREVFERkZydy5cwH42c9+xptvvkl0dDR79uyhSZMmV5Tv008/Td++fenfvz9du3YtWf+nP/2Jzz77jB49etCrVy927dpFZGQkjz32GAMHDiQ6OppZs2ZVkHNA2iYiU0VkHoCI/ADYW5mE4tV7MKA1adJEi3vcVNfpnHwWb9yPbPofftNwOe8N38KE+Jsun9AYA8Du3buJiIio7WLUC2V91iJyTlWvLKr6iIj8BSgCBqtqhPv81Ceq2udyaa0FVYYMj9tBosFRTgW3pmXLOnfT0hhjrpa+7sCwuQDuyEGVenDVAlQZMrLzOJGdy41ylDNhHbnue3b/yRhjqqjAHZu1eEbda3FaVJdlAaoMJz15ZJzN5YdylKwmnSxAGWNM1S3Emf+ptYg8A2wCnq1Mwtoe6sgvnTibh2Yfo4nk4rmmE83CrmwyMGOMMQ5VfVtEtgFDAAHGqeruyqS1AFXK+fxCTp/Lp2Xu/0IjaHBtl9oukjHGBDRV3QPsudJ0domvlIzsPDI9+XSWowCEXNetlktkjDH1kwWoUjI8uSUdJHIbNKHldR0un8gYExAOHDhA9+7da7sYl0hISCAlJaW2i+F3LECVkpGdz4nsPMKDjnE6rCNtbAQJY66O5GR47jnnZwApa6gjUzMsQJWS4clzAlSDo3iu6URYI7tNZ4zPJSfDkCEwd67zs4aC1PPPP0/37t3p3r07f/zjHwEnoEyZMoWIiAgmTpzIuXPnAJg9ezbdunUjKiqKX/3qVwBkZGRw++2306dPH/r06VMycnliYiLTpk2jf//+TJs2jX79+pGenl5y3OIWUU5ODjNmzCAuLo7Y2Fjef/99AM6fP89dd91FREQE48eP5/z58zVS37rGvn29XCgsIiM7l1zPGVqHZJLZIry2i2RM/ZCUBPn5UFjo/ExKgvjLThdUoW3btvH666/zxRdfoKr07duXgQMHsnfvXv72t7/Rv39/ZsyYwZ///Gd+/OMfs3r1avbs2YOIcObMGQAeeeQRfvnLXzJgwAAOHjzI8OHD2b3b6YC2a9cuNm3aROPGjXnhhRdYvnw5Tz75JMeOHePYsWP07t2bRx99lMGDB/Paa69x5swZ4uLiGDp0KK+88gphYWHs3r2b7du307Nnz2p+gHWTtaC8nMrJJyM7j44cAyC4tQ1vZMxVkZAAjRpBUJDzMyGh2llu2rSJ8ePH06RJE5o2bcqECRP4/PPP6dChA/37O9MRTZ06lU2bNtGsWTNCQ0P5yU9+wnvvvUdYWBgAn376KTNnziQmJoYxY8Zw9uxZPB4PAGPGjKFxY2canjvuuIOVK1cCsHz5ciZOnAg403nMnz+fmJgYEhISSqbz2LhxI1OnTgUgKiqKqKioate3LrIWlJcT7hxQN7o9+Jpcb2OJGXNVxMfD+vVOyykhodqtp4qUnv1WRAgODmbLli2sX7+elStX8tJLL7FhwwaKiorYvHnzRdNtFPMeQLZdu3a0bNmS7du3s2zZMhYtWgSUP52HqRxrQXnJ8ORx0pNPeNBRigiiRQf7pTLmqomPhzlzaiw43XLLLaxZs4Zz586Rk5PD6tWrueWWWzh48CDJ7j2ud955hwEDBuDxeMjKyuK2227jhRdeIC0tDYBhw4bx4osvluSZmppa7vHuvPNOfv/735OVlVXSIipvOo9bb72Vd955B3AmN9y+fXuN1Lmu8WmAEpERIrJXRL4Wkdnl7HOHiOwSkXQRecdr/b0i8pW73OvLchbLyM7jZHYeEcHfcTasA6GhNouuMYGqZ8+eTJ8+nbi4OPr27ct9991H8+bNuemmm3j55ZeJiIjg9OnTPPTQQ2RnZzN69GiioqIYMGAAzz//PAALFy4kJSWFqKgounXrVtIyKsvEiRN59913ueOOO0rWlTedx0MPPYTH4yEiIoJ58+bRq1cv334YAcpn0224gwPuA34EHMaZVXGy99TtIhIOLMcZhv20iLRW1RMi0gJIAXrjDDC4DejljoJbppqYbuPlz75i4fqv+STkN4S0Due6n75XrfyMqa9suo2rp6rTbYjICOBPQBDwV1WdX8Y+dwCJON/Daap6t7u+ENjh7nZQVcdUtx5l8eU9qDjga1XdDyAi7wJjgV1e+9wPvFwceFT1hLt+OLBOVU+5adcBI4Clvips1vkCTnryuXChgOuDj3Gy5W2+OpQxxtQqtwHxMl4NCBFZW0YDYg7Qv7gB4ZXFeVWN8XU5fXmJrx1wyOv9YXedty5AFxH5t4hsdiN6ZdMiIg+ISIqIpFT3YbmM7FxOZufRQU7QkAIaXdf18omMMSYwlTQgVDUfKG5AeCuvAXHV1HYniWAgHEgAJgOvisj3K5tYVReram9V7R0cXL3G4Ilsp4NEcQ++pu3t8oQxJmAFF//z7i4PlNpenQYEQKib72YRGeeD8gO+vcR3BPAeyK69u87bYeALVS0AvhWRfTgB6whO0PJOm+SzkgInPc4zULc1Og5ASBvrwWeMCVgXVLV3NfPwbkC0BzaKSA9VPQPcoKpHRKQzsEFEdqjqN9U83iV82YLaCoSLSCcRaQTcBawttc8a3EAkIq1wIvZ+4J/AMBFp7s5fP8xd5zMZ2XlkePKIaPgduSGtoHFzXx7OGGNqU2UbEGtVtUBVv8Xp9BYOoKpH3J/7cRoPsb4opM8ClKpeAGbiBJbdwHJVTReRp0SkuMfHP4FMEdkFfAb8WlUz3c4RT+MEua3AU8UdJnwht6CQk9l5ZJ0voDNHyf/+jb46lDHG+IMqNyDchkOI1/r+XNz5rcb49B6Uqn6kql1U9UZVfcZdN09V17qvVVVnqWo3Ve2hqu96pX1NVX/oLq/7spwZ2Xlk5uQBSvvCQ0grm6TQGFOxefPm8emnn5a7fdGiRSxZsgSAN954g6NHj5Zsu++++9i1yyff6ZVSnQYEEAGkiEiau36+d++/muSz56Cutuo8B7Xtf0/z0oavSNv7Df8NfZC8oc8SMuDhGi6hMfWHPQd1sYSEBBYsWEDv3tW9LXSpqj4HFQhsLD6cLuYZnjy6BjuDxIZcZx0kjKkx/5gN3+24/H5X4roeMPKS50ovMW7cOA4dOkRubi6PPPIIDzzwAB9//DGPPvoohYWFtGrVivXr15OZmcnkyZM5cuQI8fHxrFu3jm3btuHxeBg9ejQ7d+4EYMGCBXg8HhITE5k+fTqjR49m4sSJzJ49m7Vr1xIcHMywYcNYsGABiYmJNG3alI4dO5KSksKUKVNo3LgxycnJjBw5siRgLV26lGeffRZVZdSoUfzud78DoGnTpjzyyCN8+OGHNG7cmPfff582bdrU7Ofo52q7m7lfyMzJ52R2PlGhbjd/u8RnTJ3w2muvsW3bNlJSUli4cCHHjx/n/vvvZ9WqVaSlpbFixQoAnnzySQYMGEB6ejrjx4/n4MGDlT5GZmYmq1evJj09ne3bt/P4449ftH3ixIn07t2bt99+m9TU1JIR0AGOHj3Kb3/7WzZs2EBqaipbt25lzZo1AOTk5NCvXz/S0tK49dZbefXVV2vgEwks1oLCmQcqMyePiGuOUaihBH2vfW0XyZi6oxItHV9ZuHAhq1evBuDQoUMsXryYW2+9lU6dOgHQokULADZu3Mh77zlDm40aNYrmzSvfi9d7qo7Ro0czevToSqfdunUrCQkJXHvttQBMmTKFjRs3Mm7cOBo1alSSV69evVi3bl2l860rrAWFMw9UQaHSWY5S0PxGaGAfizGBLikpiU8//ZTk5GTS0tKIjY0lJubKRucJDg6mqKio5H1ubm6Z+2zZsoWJEyfy4YcfMmLEiEv2qYqGDRuWTA0SFBRUL6eWt29i4Lss55eu3YVDNLDLe8bUCVlZWTRv3pywsDD27NnD5s2byc3NZePGjXz77bcAnDrlPL3iPf3FP/7xD06fdsalbtOmDSdOnCAzM5O8vDw+/PDDS45T3lQd3q655hqys7MvWR8XF8e//vUvTp48SWFhIUuXLmXgwIE19hkEOrvEB3x3NpfGkkfzgu/AxuAzpk4YMWIEixYtIiIigptuuol+/fpx7bXXsnjxYiZMmEBRURGtW7dm3bp1PPHEE0yePJnIyEhuvvlmfvCDHwBOK2bevHnExcXRrl07una99PshOzubsWPHkpubi6qWTNXhbfr06Tz44IMlnSSKtW3blvnz5zNo0KCSThJjx5YeEq/+sm7mwPAX/kWr7N28XfRbuGMJdLNfEGOqI9C7mRf3vGvVqlVtF+Wy6nI3c7vEBxzLyiUm9DvnzbWB+0dljDF1Sb2/xHfmXD5ncy/Q9ZqjFDVoSIMWnWq7SMaYWnbgwIHaLoLBWlDsOnYWgE5FBylsfiMENazlEhljjAELUGSu+xc/S17ODef20aCNXd4zxhh/Ub8v8SUnM/yRKYykgOBBTSG/aW2XyBhjjKt+t6CSkmhYeIHglu77A5c+p2CMMaZ21O8AlZCANGpEURv3vlPfUbVbHmOMX0tMTGTBggVA+dNtJCUlXXa4o9TUVD766COflLEuqd8BKj4e1q8nY2gcKsEweEJtl8iYeiv5UDLPff4cyYeSL7+zH3jqqacYOnRoldJagKocnwYoERkhIntF5GsRmV3G9ukikiEiqe5yn9e2Qq/1pWd6rDnx8RR0/B6FLbtAUP2+JWdMbUk+lMyQJUOY+9lchiwZUmNBasmSJURFRREdHc20adP44IMP6Nu3L7GxsQwdOpTjx48DTstoxowZJCQk0LlzZxYuXFiSxzPPPEOXLl0YMGAAe/fuLVk/ffp0Vq5cCcDHH39M165d6dmzZ8mgswBbtmwhPj6e2NhYbr75Zvbu3Ut+fj7z5s1j2bJlxMTEsGzZMnJycpgxYwZxcXHExsby/vvvA5Cenk5cXBwxMTFERUXx1Vdf1cjnEjBU1ScLEAR8A3QGGgFpQLdS+0wHXionvedKjhcWFqZVlT0/QouWT69yemPMxXbt2nVF+z+78VkNejJISUSDngzSZzc+W+0y7Ny5U8PDwzUjI0NVVTMzM/XUqVNaVFSkqqqvvvqqzpo1S1VVn3jiCY2Pj9fc3FzNyMjQFi1aaH5+vqakpGj37t01JydHs7Ky9MYbb9Q//OEPqqp677336ooVK/T8+fPavn173bdvnxYVFemkSZN01KhRqqqalZWlBQUFqqq6bt06nTBhgqqqvv766/rwww+XlHXOnDn61ltvqarq6dOnNTw8XD0ej86cOVP//ve/q6pqXl6enjt37pJ6lvVZAznqo+/2q7n4sskQB3ytqvsBRORdYCw+mru+yvJzaHr+CLS2LubG1JaEjgk0CmpEfmE+jYIakdAxodp5btiwgUmTJpUMV9SiRQt27NjBnXfeybFjx8jPzy+ZdgOcaTZCQkIICQmhdevWHD9+nM8//5zx48cTFhYGwJgxYy45zp49e+jUqRPh4eEATJ06lcWLFwPOgLX33nsvX331FSJCQUFBmWX95JNPWLt2bcn9rdzcXA4ePEh8fDzPPPMMhw8fZsKECSXHqC98eYmvHXDI6/1hd11pt4vIdhFZKSIdvNaHikiKiGwWkXFlHUBEHnD3SanyUPQZbpP9Whsk1pjaEt8hnvX3rOfpQU+z/p71xHeI98lxfv7znzNz5kx27NjBK6+8ctH0GSEhISWva2p6i7lz5zJo0CB27tzJBx98UOZ0HeBcyVq1ahWpqamkpqZy8OBBIiIiuPvuu1m7di2NGzfmtttuY8OGDdUuUyCp7U4SHwAdVTUKWAe86bXtBlXtDdwN/FFEbiydWFUXq2pvVe0dHFzFxmDGHuenBShjalV8h3jm3DKnxoLT4MGDWbFiBZmZmYAztUZWVhbt2jn/J7/55psVJQecaTjWrFnD+fPnyc7O5oMPPrhkn65du3LgwAG++eYbAJYuXVqyzft4b7zxRsn60tNvDB8+nBdffLH49gZffvklAPv376dz58784he/YOzYsWzfvv1KPoIKXa6PgLvPHSKyS0TSReQdr/X3ishX7nJvjRWqFF8GqCOAd4uovbuuhKpmqmqe+/avQC+vbUfcn/uBJCDWJ6XM2IMGNYIWnX2SvTGmdkRGRvLYY48xcOBAoqOjmTVrFomJiUyaNIlevXpVaqTynj17cueddxIdHc3IkSPp06fPJfuEhoayePFiRo0aRc+ePWndunXJtt/85jfMmTOH2NjYi1pkgwYNYteuXSWdJObOnUtBQQFRUVFERkYyd+5cAJYvX0737t2JiYlh586d3HPPPTXwyYCIBAEvAyOBbsBkEelWap9wYA7QX1Ujgf/nrm8BPAH0xbmV84SIVH4K4ispZ3HErvGMRYKBfcAQnMC0FbhbVdO99mmrqsfc1+OB36pqP7ey51Q1T0RaAcnAWFUt9/5VlafbSF8NR7+EHz115WmNMWUK9Ok2AklVptsQkXggUVWHu+/nAKjqc177/B7Yp6p/LZV2MpCgqj91378CJKnqUmqYzzpJqOoFEZkJ/BOnR99rqpouIk8BKaq6FviFiIwBLgCncHr1AUQAr4hIEU4rb35FwalaIsc7izHG1B9l9RHoW2qfLgAi8m+c7/BEVf24nLRl9S+oNp8++KOqHwEflVo3z+v1HJwmZOl0/wF6+LJsxhhThwWLSIrX+8WquvhK8wDCgQScWzQbReSqfi/bk6nGGJ9QVUSktotRp1Vwi+aC28msPJftI4DTMvpCVQuAb0VkH07AOoITtLzTJlW+1JVX2734jDF1UGhoKJmZmRV9gZpqUlUyMzMJDQ2tSvKtQLiIdBKRRsBdQOkRe9bgBiK3L0AXYD/ObZthItLc7S8wzF1X46wFZYypce3bt+fw4cNkZGTUdlHqtNDQUNq3b3/F6SrZR6A4EO0CCoFfq2omgIg8jRPkAJ5S1VM1UJ1L+KwX39VW5V58xhhTx1yuF1+gsEt8xhhj/JIFKGOMMX7JApQxxhi/VGfuQbkP9Z6vYvJgnIeFA5nVwT9YHfxHXahHVevQWFUDvgFSZwJUdYhIymWeGfB7Vgf/YHXwH3WhHnWhDtUR8BHWGGNM3WQByhhjjF+yAOW40jGq/JHVwT9YHfxHXahHXahDldk9KGOMMX7JWlDGGGP8kgUoY4wxfqlOBigRGSEie0XkaxGZXcb2EBFZ5m7/QkQ6em2b467fKyLDK5tngNThgIjsEJHUUnPF+FUdRKSliHwmIh4RealUml5uHb4WkYXi4/kcfFSHJDfPVHdpXTpfP6nDj0Rkm/t5bxORwV5pAuU8VFSHQDkPcV5lTBNn9vFK5RnwVLVOLTgj834DdAYaAWlAt1L7/AxY5L6+C1jmvu7m7h8CdHLzCapMnv5eB3fbAaBVAJyHJsAA4EHgpVJptgD9AAH+AYwMwDokAb0D4DzEAte7r7sDRwLwPFRUh0A5D2FAsPu6LXAC5wHeq/q9VBtLXWxBxQFfq+p+Vc0H3gXGltpnLPCm+3olMMT9D3As8K6q5qnqt8DXbn6VydPf63C1VbkOqpqjqpuAXO+dRaQt8D1V3azOX+sSYFwg1aEWVKcOX6rqUXd9OtDY/S8/kM5DmXXwYVnLU506nFPV4tEkQoHinm1X+3vpqquLAaodcMjr/WF3XZn7uCc+C2hZQdrK5FmTfFEHcH6xP3EvdTzgg3KXWb4yynHJPqXqUFGehy+TZ03yRR2Kve5espnr48tjNVWH24H/qmoegXsevOtQLCDOg4j0FZF0YAfwoLv9an8vXXV1MUCZ8g1Q1Z7ASOBhEbm1tgtUT01R1R7ALe4yrZbLUyERiQR+B/y0tstSVeXUIWDOg6p+oaqRQB9gjohUaRrdQFMXA9QRoIPX+/buujL3EZFgoBmQWUHayuRZk3xRB1S1+OcJYDW+vfRXnTpUlKf39KH+fB7K5XUesoF38OPzICLtcX5X7lHVb7z2D5jzUE4dAuo8FFPV3YAH935aJfIMbLV9E6ymF5ybh/txOggU3ziMLLXPw1x8M3K5+zqSizsY7Me5EXnZPAOgDk2Aa9x9mgD/AUb4Yx28tk/n8p0kbgukOrh5tnJfN8S51/CgP9YB+L67/4Qy8g2I81BeHQLsPHTi/zpJ3AAcBVpVJs9AX2q9AD76ZbgN2IfTw+Uxd91TwBj3dSiwAqcDwRags1fax9x0e/HqmVRWnoFUB5yePmnukh4AdTgAnML5b/Ewbu8koDew083zJdzRUAKlDjj/HGwDtrvn4U+4vSz9rQ7A40AOkOq1tA6k81BeHQLsPExzy5gK/BcYV1GedWmxoY6MMcb4pbp4D8oYY0wdYAHKGGOMX7IAZYwxxi9ZgDLGGOOXLEAZY4zxSxagTL0jIp7aLkNZRKSjiNxd2+Uwxl9YgDKmikQkqAppgivY3BGwAGWMywKUqddE5NcislVEtovIk17r17iD6qZ7D6zrzu/0PyKSBsS7759x5+nZLCJtyjhGooi8JSL/Bt5yW0qfi8h/3eVmd9f5wC3u4KW/FJEgEfmDV/kCdiw8Y6rCApSpt0RkGBCOMwZbDNDLawDdGaraC2fEhF+ISPHI2E2AL1Q1Wp3pNJoAm1U1GtgI3F/O4boBQ1V1Ms58Pj9SZ+DeO4GF7j6zgc9VNUZVXwB+AmSpah+cQULvF5FONfYBGOPnKrrcYExdN8xdvnTfN8UJWBtxglLxzKUd3PWZQCGwyiuPfOBD9/U24EflHGutqp53XzcEXhKRGDe/LhWUL0pEJrrvm7nl+LZStTMmwFmAMvWZAM+p6isXrRRJAIYC8ap6TkSScMZJA8hV1UKv3Qv0/8YLK6T8v6kcr9e/BI4D0ThXMcqb1FCAn6vqPytXHWPqFrvEZ+qzfwIzRKQpgIi0E5HWOC2V025w6oozandNagYcU9UinIFAiztbZAPXlCrfQyLS0C1fFxFpUsNlMcZvWQvK1Fuq+omIRADJ7mSqHmAq8DHwoIjsxhkRfnMNH/rPwCoRucc9VnHrajtQ6HbAeANnhO2OwH/d2V4z8O3U6sb4FRvN3BhjjF+yS3zGGGP8kgUoY4wxfskClDHGGL9kAcoYY4xfsgBljDHGL1mAMsYY45csQBljjPFL/x9V/FTPNvH+eQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9d5xcV3n//36mz872ptVqi7pkyU22LFdww9imgyHYlGAIGAImlOQXSvjGhBI7jQAhBAyhhYDBgBNDjMFgG4MLlmxJtlWtvk3b+85OfX5/nDu7M7sr7exqZ+t5v173NTP33nPvGZX7zHPO53weUVUsFovFYplvuOa6AxaLxWKxTIQNUBaLxWKZl9gAZbFYLJZ5iQ1QFovFYpmX2ABlsVgslnmJDVAWi8VimZfYAGWxWCyWeYkNUBbLJIjIp0Xk+zm8/qMiMiwiA852IFf3slgWEjZAWSzzg9tVNd/ZNsx1ZyyW+YANUBaLg4h8TESaRKRfRA6IyLUicgPwSeDNTnaz2zm3SET+U0RanDafExG3c+xWEXlcRL4iIr0isl9Erp3L72axLERsgLJYABHZANwOXKSqBcD1wDFVfRD4e+BHTnZzntPkO0AcWAtsAV4OvDvtkhcDh4Fy4A7gZyJSepou3CkiHU5gu2rmvpnFsnCxAcpiMSQAP7BJRLyqekxVD090oogsA14BfFhVB1W1DfhX4Oa009qAL6pqTFV/BBwAXnmKe38MWA2sAO4Gfi4ia2bkW1ksCxgboCwWQFUPAR8GPg20icg9IlJ9itPrAS/QIiI9ItIDfB2oTDunSTOdmI8DE15PVf+oqv2qGlHV7wKPYwKgxbKksQHKYnFQ1R+o6hWYAKTAP6QOjTm1AYgA5apa7GyFqro57ZwVIiJpn+uA5my7AsikZ1ksixwboCwWzByUiFwjIn5gGAgDSedwK7BSRFwAqtoC/Br4FxEpFBGXiKwRkSvTLlkJ/IWIeEXkTcBZwAMT3LdYRK4XkYCIeETkrcBLgQdz9mUtlgWCDVAWi8EP3AV0ACcxAeYTzrF7nddOEXnWef+ngA/YC3QDPwGWp13vj8A653qfB96oqp0T3NcLfA5od879IPA6VT04M1/LYlm4iC1YaLHMLCJyK/BuZ7jQYrFME5tBWSwWi2VeYgOUxWKxWOYldojPYrFYLPMSm0FZLBaLZV7iyeXFHR+zLwFu4JuqeteY4/XAt4AKoAt4m6o2OscSwPPOqSdU9TWnu5fL5dJgMDjD38BisVgWHkNDQ6qqp01AZvP5PF1yNsTnGGceBK4DGoHtwC2qujftnHuBX6jqd0XkGuCdqvp259iAquZne79QKKSDg4Mz+h0sFotlISIiQ6oaOs3xWX0+T5dcDvFtAw6p6hFVjQL3AK8dc84m4GHn/SMTHLdYLBbLzLMgns+5DFArMJYwKRqdfensBt7gvH89UCAiZc7ngIjsEJGnROR1E91ARG5zztkRj8dnsu8Wi8WykPGkno3OdtuY4zl/Ps8EOZ2DyoK/Ar7iLGx8DGjCuEoD1Ktqk4isBh4WkefHukur6t0Y92dCoZCVI1osFoshrqpbz/AaZ/R8nglyGaCagNq0zzXOvhFUtRknQotIPnCTqvY4x5qc1yMi8iim5s6M/wFYLBbLEmRBPJ9zOcS3HVgnIqtExIeplXN/+gkiUp4y4MT4nn3L2V/imHYiIuXA5RjPM4vFYrGcOQvi+ZyzAKWqcUyF0l8B+4Afq+oeEfmMiKQkiVcBB0TkILAMY6oJxvl5h1Ne+xHgrnR1icVisVimz0J5Pi8aJwkrM5+cJxue5NFjj3LVyqu4tPbSue6OxWLJEZPJzBcKcy2SsOSSRBy6j8HASZ5seJJrH/0U0WQcn9vDb6/5Ry5ddRWEKiF/GbisqYjFYplf2AC1mEjE4Mjv4NBv4NgfoOMAJKIAPEqEKFESAtF4lEd//TEuxW/aeYJQsR4qNsKys6HuUlh+Hnh8c/hlLBbLUscGqMVA/0n449dg53/DYBt4AibIrL0GyjdAUQ1X9Z3A93+3EU3E8Hm8XHX9v0FoGQy0QucRaN9vgtpzPzLX9ARgxYWw5mpY93KoOhfEViG3WCyzh52DWsjEwvDYP8GTXzWZ0vob4II/hdVXgTcw7vSs5qAG2uDEU2Y7/gdo2W3251fBuutg/fWw+mrw59zlxGKxTJPFMgdlA9RCpXEH3Pc+6HwRzn4jXPM3ULp65u8z0GaGDA/+Cg4/ApFecPtg1Uthw40mKBbVzPx9LRbLtLEBap6xpALUzu/Dzz8MBVXw2q+YjGk2SMRMZnXgl3DgAeg+avZXnQMbXmGC1fLzreDCYpljbICaZyyZAPXInfC7u0xQetN3IFgy5Uskkoqq4nYJMt15JVXoOGiC1cEHoeGPoEkzFLjhBlh/I6y+Ery2BIrFMtvYADXPWBIB6nf/BI98Ds5/G7z6i+D2nvb0eCJJQ3eYxu4h2vsjdA/FGIrEiSdH/879Xhf5fg9FQS+lIR+VBQGqigIUBU9/7XEMdsKLv4aDv4RDv4XogFEHrrwC6i4xW/UF4Mubzje3WCxTwAaoecaiD1BPfwMe+Cs47y3w2n8/7TDayd5hdjf2cKhtgGg8Oa3bFQa91JXmsao8j7rSED7PFIbt4hGjCDzwSzj6O5NpAbg8Zjhw2Wao3AzLNkHFWZBfaRWCFssMYgPUPGNRB6ijv4fvvdao6G7+AbjcE57W3h/hD4faOdYxNKO397iEurI81i8rYHVFCL9n4vufkqEuaHgaGp6CpmehbS8MtqfdIAjFtVBcZ7bCaghVQF65eQ2Vm81faAOZxZIFNkDNMxZtgOprhq9dAXll8O7fQqBw3CmJpPLk4U6eOd5NMsd/n163sKo8n43LC1hZFsLtmmbAGGiHtj3QfgB6TkDPcehpMO/DXRO3cfucoFXmvJaPvma8r4DCFRNK7S2WpYANUPOMRRmgVOH7N8GJJ+G9j0H5unGn9IZj/OK5Ztr6IrPevTyfm/VVBWxaXsiywhkMBrFhGOqAwdTW7nxuN3NdQ+n7O81810QUVENJPZSsNFvFRjPEWLLylFmoxbIYsAFqnrEoA9T2/4T/+yi84p9h23vGHW7pDXP/rmaGookJGs8u5fk+Ni4vZENVAYWBKQoszpT0gDbUYbKzVFbWfQy6j0NfE+D8W/fmQeVZJljVbDMCjtLVdvjQsmiwAWqesegCVF8L/NuFULsN3n7fuIdnQ9cQ9+9uzkoEoaq09Udo7gnT3h9hIBInHDNBze0S8nyOii/Px/LiAGUh37Tl5yJQXRxkY1UBayvzyfPNEzetWNgMJ7a+AK17zGvLbhjuNcdDFVB7MdRfBmuuMdmWDVizhnXan1lsgJpnLLoA9bPbYM//wO1PmyGpNJp6wtz3bCOxxOn/7gYjcZ5r7GVvSx8DkTgAIZ+bwqCXoNeNCMQTykA0Tu9QbER+7ve4qC/LY01FPivLpqjgS8MlwoqSIGsr81lVHpq6dD3XJJPGUPfEU2Yd14mnRhcfFyw3gWrNNWbNWah8Lnu6+EgmTFY72MGTx3/PtQ//NdGE47R/41e5dPXLjEOJHYqdFjZAzTMWVYA68RR863p4yV/Btf8v41DXYJQfbW9g2MmAlu/dSc3up2k8bxstm7YAEI0n2X6si50NPSSSSn1ZHusrC6gryyPfP3FGo6r0hmO09A7T2B3maMcg4VgCj0tYV5nP5uoiqosD01/YixkGrC8LUVeaR3VxcNqBL6f0nDCWTocfhiOPwnAPIFB9Pqx9mdlWbAX3PMkMFwLxCDTvNP+uW3ZB+0HoPAQJM296JxH+HxESAm6Fz+LnE/jNUOyys6HmIqNgrb/cOuxniQ1Q2Vxc5AbgS4Ab+Kaq3jXmeD2mjHAF0AW8TVUbnWPvAD7lnPo5Vf3u6e61aAKUKnzzWjPE98Ed4Bv9NzYcS/DDp0/QMxQDTHC66WO34o5FSXh9/PQfvsPTVRv49d5WBiJxNlYVsG1VKSV5U/9PnVSlpWeYA639HDjZTzSRpDjo5bzaYjYtLzzj4OJ2CZUFfpYXB6kqDLCs0E9R0HtGAXDGSSageRcc/q1ZfNz4tHHLCBQZw9y1L4O11xpZvGWUoa7RjPTEUyY4OcGI4nozfFqxHsrWQv4ynhxo5tpf3k40GcPn8vDba+7iUn8JtO2Dk89B0zMQHwZfAZxzE1x4K1RvmdOvON+xAWqyC4u4gYPAdUAjsB24Jb00sIjcC/xCVb8rItcA71TVt4tIKbAD2IqZ2X4GuFBVu091v0UToA7+Cn7wJ/DqL8OF7xjZrarcv7uZI+2j3/GiH36dy777RVzJJEmXmx+95j18YsOrKMnzct2mZSwvmrrN0EQZWSyR5FDbAM819nKybxi/x8XZK4o4r6aIghkURPg8LkpDPkpDPkryfBQFvRQGPRQEvOR53bimK2mfKcLdTr2th0zA6m8x+ys3m0C19mVGcOHxz20/ZxNVk3WeeApOPGFe2/ebYy6vyTzrLoHaS8wcX37FhJc57RxUdBCOPgZ774c990E8bK535V+bIdj59KNmnmAD1GQXFrkU+LSqXu98/gSAqt6Zds4e4AZVbRDz07lXVQtF5BbgKlV9r3Pe14FHVfWHp7rfoghQqnD3VeZB+MFnMqyMnjnezWMH2zNOT2VQrliMmNvDW978OYYu3MbVGyqnleFMlJGlglSKlt4wO08YlwoRWLesgAvqiqksCIxcY2yAmwlcIgR9LoI+D0Gvm6DXjd/jwu914XO78HlceN0u/M6rxy34POaYN+34jKFqFhwf+o3Zjj8JyRh4Q8aDcPXVUHuRGaKaxJJqwaAKvY1w8nkjMjn5HDQ+A/3N5ri/0AShuktMPbIVF8y8F2O4B3bfA0/8G/Q1mvvdcKepXWYZYbEEqFwOpK8AGtI+NwIXjzlnN/AGzDDg64ECESk7RdsVY28gIrcBtwH4fItgbPrAL80Y/Wu/mvFQ6xiI8MShjnGnt2zawo/v/Dbhh37LA2Ub8F5xOS9fVTrtYbKa3U/jjkVxJZMQi1Gz++lxQWZ5UZDl5wTpC8fY2dDDnuZeDpzsp6YkyE3DJ7jpzj8/bYCbLklVBiMJBiPTl9S7xAStVGALeNwEfWbL87oJ+T3O5qbA7yXoO80EvYixbFq2GS7/EEQG4Njv4cWHTIZ14AFznidgij2uuBAqN0L5erPNJ9GFqpknCnenyfU7zTqz3kZHqu9sI2vOxEjz6y81wajuUiPdz7WoIVgMl7wPtr4Tdv23MU/+xrWw5W3wsk/Prz9Xyxkz1zO9fwV8RURuBR4DmoCsn0CqejdwN5gMKhcdnFUe/5IZoz/3zSO7kknl13taMwxeU6gq35NqDpz7Oq5cX8H5tcVZ3cYlQshvMpCkQjiWIBxN0HjeNhJeH8RiJLxeGs/bdsprFAa9XLm+gktWlfJCcx+7GnqIPfoIEo3i0iR6igA3lyRVGY4ljMAkPPn5XrdQGPRSGPBSFPRSlOelOOil2Bl+zHDR8Oeb+lgbbhwd9mp6xmyNO+CZ75ihqRSBIqMULKgyr6EKk4H4QqOb2wuIM4Qlo0NZiagpfZKImsCSep9w3scjZosNGXn9yOup3g8xskZsLJ7g6ELnlS+B8rUm4FZumnLRykRSCccSRGIJ4kk1rvqASxjJfvN8nuzcSTx+2PouUwvtd/9gKkofeABe+QXY/Lop9csyf8llgGoCatM+1zj7RlDVZkwGhYjkAzepao+INAFXjWn7aA77Ovc0PmO86m64K0MhtrOhh9a+4QmbPH64kwMn+7lsTdmkwak4z8vGqkJWlYeoKPCPewgMxxK0X1jDgRX3kXj4EfZvvICWsyYPLn6vmwvrSzi/tpi4Xkn8iR9BIkbM5eHXlRsJxhIEvAtTKhxLKJ0DUToHouOOuUQoCnooSZszS82fBbxux8GiHs5+g2mQTEJvA3S8aMxzu46YOayBVmOsO9A2KiQ4U1xeo4DzBp0t7X3+svH7vHnGFipQnGkZlVcOeaVZz/FE40l6wlF6h2L0hs3WNxyjfzjOQCROJJadcXHI76Y4aP4sKwv9VBUFqMj3TzwyECiE6z9vMqj73gf3vgP2vRFe8U+m75ZTMpsitmn3MYdzUB6MSOJaTGDaDrxFVfeknVMOdKlqUkQ+DyRU9W8dkcQzwAXOqc9iRBKnMGlbBHNQP3mXGR766F7wFwAwEInz3SeOTbgY92BrP7984STnrCjimo2Vp7xsSZ6Xy9eWs7Yyf0pDf33DMfY19/FCcx994VjW7ar2PEvBHx/ngdINPFCwCo9L2FxdyHm1xdNSEy5E8nxuSvJ8FOd5KQn5KMnzUhQ0Wddp5wbjUYgNGlFAdNBkQ6jJyEZeMZ6Ebp+RXLvHbt6cigai8SR9wzF6hmL0hqN0D8boCcfoGYrSPxzP2X0DXjf1ZXmsKg+d2rA4EYPffwEe+0eTkd70n7Dy8pz1aT4z2RzUbIvYpv09ciwzfwXwRUyE/paqfl5EPgPsUNX7ReSNwJ2YL/kY8AFVjTht3wV80rnU51X126e714IOUL2N8MVz4ZI/N78GHR584ST7WvrGnd4xEOFH2xuoLPDzhgtqJhwSEYFtK0u5eHXZ9A1dMcOIh9sH2HGsm5beiTO5U9HeH2FnQzcHTvaTVKguDrC5uoh1lfkzK1hYQOT53BQFvRQEvBQEPOQHPBT4PeT5PYSc+bApu8XPAKpKJJ5kKJpgMBJnKJpgIGIyn4HhOH3DMfrCsXlhq+VxCasqQmyuLmJlWd74H14tu+Hed5pF11d9El7y0SW34DeLADWrIrZpfw+7UHce8MidZhz9Q7vNsBDQ1jfMD54+wdi/nngyyT1PNxCOJXjLtjpCEyy89XtdvPKc5dSXzayI50TnEE8e6aC5Z2qBajASZ29LH3ua++gNx/C5XaytzGdtZT61pUE8tkR8Bh6XEPC6CXhd+D1uo0ZMUyd6XILbJbhFcLkE8/sj/SGtqEJSzbxPUpVYIkkiaV5jCSUaTxJNJInEEgzHk0RiyZw74eeCwqCX82uL2FxdlDmUHOmHX3wEnr8XVl0JN33T1B1bIohIFHg+bdfdzpx96vgbMcHn3c7ntwMXq+rtaef8APijqn5JRN4A/BQoB94JBFT1c855/w8Iq+o/z/T3mGuRhCWZgJ3fhzVXjwQngD8c6hgXnACeOtJF52CU15xXPWFwyvd7eP0FKyjPn/m1OHVledSV1XGkfYDHD3fS0Z/dnEnI7+GilaVsrS+huWeYPS29HGobYG9LHz63i5XlZuimpuTUThdLiXhSnexlrnsy/+kLx3jsYAdPHenivJpiLqgvNv6P/gJ4wzdg1Uvhgf8P/uNyuOkbxrZqaRBX1a1neI0zErHNBPZpMNccfsSs57j+cyO7GrqGON45vuhgc0+YZ453c3a1ETuMJeR3c9OFNZSGcjvXs7rCeOvtae7jycOdIz5/kyGON9+KkiDxjUkau8Icah/gSPsgB1uNfLkkz8uKkiDLCgJUFvgpzfflNMPK1boty+ySsvfa1dDNebXFbK0vNcsELvhTY011763wvdfBFR+Bqz+5eNamTZ8FIWKzQ3xzzY//1Ki4PrpvxIHgxzsaaOrO1EEnksoPnz5BNJHkbRfXj5ts93lcvOnCGipnsi5TFkTjSXYc7+LZ492TmteeiqQqHf0RGrrDNHYP0dwzTDRhhCEuwUi8g14Kg16KAl7y/G4CHvfIMJjH7XKGu4y6ziWCqpJUc+1EMjXkpSRUSSbNsRX7d/Gev3sP7niMhMfLVz75NY6sO3dkWCyRVETMEFpqOC316nObtVR+jxmGy3aebykFxLn8rj6Pi631JVxQX2LmO6OD8ODH4dnvGW+/m745zoR5MZHFHNSsitimi82g5pKhLtj/AGy7bSQ4NXQNjQtOAM819tA5GOVV5y4fF5xE4PrNVbMenMA8CC5bU845K4p4/FAH+0/2Tzg0eTpcIlQWBqgsDHBhfcmIcW17f4S2/gjdQ1H6wvGMwDUTvP/J3+CKxXA767biDz/CL8ITW/FMRmreKM/nJj9twW/I7yHf56Eg4GHjsRe46RPvyslC5rkmqUo4mqA/EmcwEqdm/y5ef9f78cRjxD1ePvuRL3N4zbkjPyK8bhcBr2vEFaQw6J1R4Uw0nuSJw50819jLJavL2FxdiOs1/2YcPn7+YfjaS+DVX4Szb5qxey4kVDUuIrcDv2JUxLYnXcSGyZLuFJEREZvTtktEPosJagCfyUVwAhug5pa9/2vscc67eWTX9mPj/54HI3GeOtJFfVkeqycY2rtoZSlrK6e2aHKmKQh4ueHs5ZxXW8xjB9unLKRIR0QozvNRnOdj3bKCkf0ppVk4mmA4nmA4lmQ4liCecDKjtOxIJJVN4QgJMjMhlwie4NUkn/oRiXicpMdD6OUv4y1n1Y20cYugmMXSqczLvGIEBvEEkViSSNy8D8cSDEUT9A0bV/hUza0U73/ywZGFzMlolMTDj/B80WoKAx4Kg0bVNx8FI4mkMhg1ar50Zd/Ieycopa8lf/+Tv8Mdd4J/PEbhU4/zpIwzg8kgpXAsDfmoLPBTWRigPOTDcwaBayAS5zf7WtnV0M0V6ypYdfYbjKvHT//MLO048KCxSlqCDhSq+gDwwJh9f5v2/ifAT07R9luYNVI5xQaoueSFn0LZOlPZFWjrH55w7unJI50kksqV6yvGSWqriwNcurpsVrqbDcuLgrz5ojoOtvbzhxc76J3CGqrJEEmp22ZIMlx5GT/7x++ODENFN21hevnTxMSTSYYiRq7dPxxngCuIP/kjiMeIub38rGgtz+xvy2gT8ru5tPVFLm14noMbL6R50/kU+I0cPd9vfAjP5IGdTirgpwLMYDRB9d6drNm7g+315/L08g0MDJv9Y/G4ZKRPNcXBkfep7LGk5Dr0qR+TiMdQr5fa19/I7WetNT8iVInFjavEcFpQ7w2b9VWH2wfY02yWV7gEqgoD1JbmUVuSR1VRYFrLJjoGovzPzibqSvN4yfplVL7zl/DYP8Pv/8V4KV7/9+aH4nwxno0MwH+/Ca7+hBF6LFHsHNRc0X8S/mUjXPkx848QePCFFva19Gec1jUY5ftPHef82mJeuj7z8enzuHjrxXUUz9MFsImk8lxjD08f7ZoX62fmA+nzMk1nnc9gJE5fOD7ygF6xbxd//9WP4IkbA+C33vx5nl1xVsY10mXoAY8br8fMwbldoxswEgySSUiokZZH4gki8aR5H0uSSPv/f0HTPv77nr/Bm4gTd3v56G3/zPEN540Envy0QOn3uCZd+D3dOShVpX84Tmv/MK19ERq6hmhzFKM+j4vV5SHWVuZTX5o3rWAtAhurCrl0TRlF/Yfg5x8y5UFqLzZ+fvWXTfmaM87/3m7Uve960JjvThFrFms5M/bcB+jIGPhAJD6iZEvnqSOdeNzC1pUl445dtqZs3gYnMDWfttSVsLm6iF0NPTxzvHuk0OJSpWXTlpGHtQucBbteVmBcvy/64yF8iRguTeJKJvgLdxMPXXz9iF1QykswNbwZjiWIROIkHG+71AZkiEbcjlFuwOOmKGAcLfzpc2Y+Dzc0PYQ/GXfuHect4aNsP+vlM/Jdp4KI44EY9LKu0gzxDscSNHaHOdJhVJ/7T/bjdQurK/LZvLyQmpJg1k4pqrCvpY+Drf2cs6KMi976C/L3/BAevRO+fSOsvc4YAK+8Ym4yql0/hJ3/BS/5y2kFp8WEDVBzxQs/NUN7FesBI4JIjDGEbesb5sW2AbatKjVrO9KoKgpkbQ471/g8LratKuW82iJ2N/Sy80S3zahOwVjD3pNbLqE835+TdW1j6dh6KYl7v56VWfBsE/C6RxZ3J5JKY/cQh9oGONg2wIGT/RQGPGxaXsim6sJT1igbm9Elksquhh5eaOrl7BU3cuFtr6Nw97eNafN3X2VKpWx5O2x6LRQun50veuBBuP92Y8x71ScnP3+RY4f45oKeBvji2XDtHfCSj5JIKv/5hyPjSkncv7uZlp4wt16+MsP+RgRu2VbHsjlQ7c0E8USSvS3GAX0iI9alzlzKsxeaDD6eSHK4fZA9Lb00dIURgTUV+ZxfW0x1UWAkq8qm1plLhPXL8tlSHaDq+C/g6btNzSsEaraauaD6y00135k2ok0mjSP7rz9lfri+4+fGCHea2CE+y/Q5+KB5Pes1ABxuHxgXnDoGIhztGOTS1WXjvNk2LS9csMEJwON2cW5NMefWFNPQNcQLTb0cbh+Y9jqqucQlgtvFyIMwpfQ7k9990x0amwnm8t7TweN2saGqgA1VBfSFYzzX1MsLTcappLLAz/m1xaxblp9VrbOkKvtP9rP/ZD+VhS/l7Fe+mo2eZvwHfm5qfP3hi0ZUAZBfZepfla2FohVQWAOF1WYLVZhyKdkMD8aG4cD/wRNfgeZnYcMr4A13k/Dm09g5OON2ZQsNG6DmggMPGPVe+VoAnm/sHXfKM8e78bqFc2uKMvb7PC4uW7t4JLG1pXnUluYRiSc43DbIi239NHQNzWmw8ntdFAbMHEhKQRfymXVNQa8bv1PN1+d2TViGXlWN313CmSeKJhiMGqVc33CcPqcURe9QbMI6X5bpURj0csXaci5eVcq+lj52N/Ty672t/OFQB/0VG7nY44N4dsOXbX0RHu5r43cuL3Wlb2Ptje9jZaGS3/asqSjctt9UVH7+xzA8/v8vbj/klTlbqXn15YG4TeAa6oS+ZnOtRBSK6+D1X4dz30z7QJSHdjVQGvLZADXXHVhyDPfB0d+bqqBA71CMhu5MaXlfOMaB1n7Ory0eJ6neUlu8KP3q/B43m6rNHEI8kaSpJ0xDV5jmnjBt/cMzGrBEjGdhyqEiVYCwOM98PlMZu4jg8xhRwun+rlSVvnCcrqEoXYMRU3tqMErXYHTCEitzid/roiDgpdBR8eX5POT5jOTf70mZ2LpIxeukGpl9LKFmjVjUyMn705zRByLxM8o0T4XXydDPWVHEia4hdp7o4XvRava9+XO8uvsgkStewkCWWWIiqRztGORoh5k+KM9fTU352VSvCVJVGKAoz2sk4X3NxrKsr9kEn5Gty7y27DbFITVhVNH0hRUAACAASURBVBp5paY218XvNYuHV19NVzjOM/va2NvcR1I155ZlC4HF96Sb7xx+2CzO3fAKAPa09I77T/rsiW4EE4zSCXjdXFA/Xs232PC4XdSXhUZ+PSaTSk84RtdglN5wlL7hOEMRo2aLJZLEk4qqWZ3rFsHjFseCyEUgVcrdcXMwm/eMSpDMFCJCUZ6p1Jvuraiq9A3H6Ro0gatrMEb3YJSecPSMSt6fvi/jg3YqYM9E0J6IaDxJ91CU9v4I7QMR2vqGae+PzNiPEREZ+XfUMRBh54lC/u7kWSS6lTXPNbOlriRjniobOgaidAxE2UUPYAJ3echPaaiI4rxyCqsvoiBg1oIFve5TumMkk8pANE7nQJSW3jDHdzRycorlbJYCNkDNNgd+CcFSqNmGqrK3ObPeUySeYG9LH+uXFYxTI11QNz6jWgq4XDJSrXYpICIjgWGsKXA0nqQ3HKN/OOYssE0QjsUZjpk1TrG4Ene8BM21cIK2Kdnh9xh7oTyfY8Pk91AY8JIfyLLU+gzi87hYVhjImE9NJpX2gQjNPWGaesI0dYdnRPFZnu/nuk3LuGxNGbsbe3i+sZfD7YMsK/RzQV0JayvyJxyunYxIzGT7TT3j7cnArFnzelx4XII4HpGprHKR6NNyig1Qs0kiDi/+CtbfAG4PjV1D46qQ7m/pJ5ZQzqsZnz2dX7cwZOWW3OHzuKgo8FNRkHvZ+VzgcslI0NpSZ3wZOwainOga4kTXIE3d4TPKsEJ+D5etKeeilaXsbelj54kefvnCSQoDHs6vLWZzddHpqx5PkXhSidslFdPGBqjZpGkHhLth/fUA7B1TLVdVea6xl2WFfqqKMlV659UWzUmlVYtlLhGRkYB8YX0J8USSxu4wRzsGOdIxSN80rbS8bhfnOfNURzsGefZ4N4+92MFTR7s4p7qI82qLTrmeyjJ75DRAicgNwJcwbrnfVNW7xhyvA74LFDvnfFxVHxCRlcA+4IBz6lOq+r5c9nVWOPwIiAtWX0UskeRQW6ZzRGN3mK6hKNdtWpax3+sWttQu/rkni2UyPG4XK8tDrCwPcTXQ3h/hcPsAh9oGaM+ygGY6LhHWVOSzpiKfk73DPHuim2dPdLOzoZt1ywq4oK6YyoK5WdJRvGsH/Px5uOoquPTSOenDXJOzACUibuDfgeuARmC7iNyvqnvTTvsU8GNV/Q8R2YRx1l3pHDusqufnqn9zwuGHzSK/YAlHW/vHKbV2N/YQ8LpYP8aZfHN1kSm+ZrFYMkhlV5esLqN3KMaLbf0cbB2gtW/qgoOqogCvOGc5feEYOxt62NPcy4GT/dSUBDl3RRGrykMzZtQ7Gcv37uSij98KsRj4fPDb3y7JIJXLDGobcEhVjwCIyD3Aa4H0AKVAarl0EdCcw/7MLeEeaHoGXvJRAA6czDSFHYjEOdIxyAV1JRn/CURgi517slgmpSjPy9aVpWxdWUrPUJSDrQPsP9k3ZbeSwqCXK9dXcMmqUl5oNo4nD7xwEp/bxZrKEBuWFVBTkpdTUUn5jichGjUOE9EoPPqoDVAzzAqgIe1zI3DxmHM+DfxaRD4IhICXpR1bJSI7gT7gU6r6+7E3EJHbgNsAfL55rvA69nuzBmL11UTiCY51ZNoy7W/pQxU2V2fam6yuyJ/XhrAWy3ykOM/HtlWlbFtVSlvfMHtb+jhwsn9KikC/182F9SVsqSumsTvMgZP9HGofYF9LPz63i9rSIPWlIWpKghTneackVx9LPJmkpWeY411DHO8cpI4aLnd58EsCl89nhvkWKCLyD6r6scn2TcRciyRuAb6jqv8iIpcC/yUiZwMtQJ2qdorIhcD/iMhmVc1QFajq3cDdYLz4ZrvzU+LwI+ANQc1FHO0YzHAQUFX2tvSxvChAyZhgNHYtlMVimRqpas0vXVfBkY5B9jT3cqxjaESKPxkuEepK86grzePqZAUnOoc42jnI8c4hDrebH5o+j4tlznBjYdBLUcBLyO/Bl3IcEaPoSyRNHaz+4Tj9wzE6B806sI6BCEk19a+WFwUJXfkSfn/lPby8ff9imIO6DhgbjG6cYN84chmgmoDatM81zr50/gy4AUBVnxSRAFCuqm1AxNn/jIgcBtYDO3LY39xy5BFY9RLw+HixtSPjUGtfhO6hGNduzBRClOX7qC3Nm81eWiyLFpdLRhzR+4ZjvOD49k1l8bPH5WJ1RT6rK/JRVbqHYjT3hmntG6atL8Luxt5xVQlOh9/jorLQP7JouKYkb0TmnlxeD2e/fsrfc74gIn8OvB9YLSLPpR0qAB7P5hq5DFDbgXUisgoTmG4G3jLmnBPAtcB3ROQsIAC0i0gF0KWqCRFZDawDjuSwr7ml+xh0HYFt7yWWSHK8M3N4b29LHx6XsG5Zpjji3BqbPVksuaAw4OWyNeVcvKqMF9v62XWih5YpODmku76XbtrC2dXGM1NVGYwm6AvHGIzEiSaM3VNSFY/L2EEZ2ygPBX4vAe/khR8XMD8AfgncCXw8bX+/qnZlc4GcBShVjYvI7cCvMBLyb6nqHhH5DLBDVe8H/hL4hoh8BCOYuFVVVUReCnxGRGJAEnhftl9oXnLsD+Z19ZUc6xjMWGgYTyQ50NrP2sr8jHVOXrewsapgtntqsSwp3C5hY1UhG6sKaekN8+zxHg61DZx2+O90pTtEZKT68FJHVXuBXuAWR9W9DBNz8kUkX1VPTHaNnP4pquoDGOl4+r6/TXu/F7h8gnY/BX6ay77NKsefMG7GFRs5vOdkxqEjHYNE40nOWp4pjli/rGBJ2hpZLHPF8qIgrzw3SG84xs4T3exp7pvQtDeb0h2WUZxE5dNAKybhAJOQnDtZ29kR9S91jj8OdZeSVDjakelcfuBkPyG/m9qSYMb+s1dkltmwWCyzQ1HQy1UbKvmzK1ZxxbrycdlQqupx0uWed5WHp4KI3CAiB0TkkIh8fILjdSLyiIjsFJHnROQVzv6VIhIWkV3O9rVJbvVhYIOqblbVc5xt0uAEc6/iW/z0Npk5qG3vpaknzHBsdEI2EktwvHOIc2qKMsahS0M+qouDE1zMYrHMFgGvm4tWlnJBXQkHW/vZeaKH1r5hWjZt4af/8J0FVXl4LLNspNCAGeqbMjZA5ZrjT5jX+ss43J5pbXS4Y5CEKuuXjXWOmH6pZ4vFMrO4XcJZyws5a7mZp3qusZcX3RcsyMCUxmwaKRwBHhWR/8NRZwOo6hcma2gDVK45/jj4C6HqHI4ezZwTPNjaT0HAQ1VauQGXCBuX2wBlscxHlhcFWV4U5KoNFRxqG+Bgaz8NXeEpSctnCY+IpC/LudtZN5oi50YKaZxwNp+zZf8lpnKyZRocfwLqLqErnKBnaNR5ORxL0NA1xJa6kozhvbqyoFUAWSzzHL/HzebqIjZXFxGJJ2joCtPQPcTJ3mE6ByYvuujzuCjJ81EaGi0OmapU7HYJyaTiOjP5eVxVt57JBThDI4UUqvp3ACKSp6pDE51zKuyTMJcMtEPHATj/lpGS0SkOtw2QVMYZw26sstmTxbKQ8HvcIwuAwayFShWTHI4lSKgimBIfQZ+bfL9nPih0Z81IwQlu/wnkA3Uich7wXlV9/2SdtAEqlzQ8ZV7rLuNYe2aAOtjWT1HQm1F4zudxsaYiM2BZLJaFhYhQEPDO93pSs2mk8EXgeuB+AFXd7ax1nRQrM88ljdvB7SNaeW5GSejhWILG7jDrKvMzhvdWl4dmtJqnxWKxTISqxoGUkcI+jFpvj4h8RkRe45z2l8B7RGQ38EMcIwXgpcBzIrIL+AlZGCmoasOYXVn5S9kMKpc07oCqc2nsT2RMoh7rHESVcdnSBuscYbFYZolZNFJoEJHLABURL/AhTFCcFPtzPVck4tD0LNRcxPHOzHnBw+2DhHxulhWODu8FvG7qy0Kz3UuLxWLJNe8DPoBRDjYB5zufJ8VmULmibQ/Ew1CzNcMcNu6YxW6oKsgY3ltbmZ/TAmgWi8UyF6hqB/DW6bS1ASpXNG4HoK9iC90nR+XlDd1hYgllTXnm8N7YxboWi8WyGHCEGB/EuFCMxBxVfc2p2qSwASpXNO6AUCXHY2VA28juI+0DeN1CTemolVHQ56a2xNZ9slgsi5L/wcjMf86oWWxW2ACVKxq3Q81FnOgeVe+pKkc6BllZFsLjGp3+W1ORj8sO71kslsXJsKp+eToNbYDKBUNd0HkIPf+tNHSPCiRO9g0zFE2wuiJTDLGu0g7vWSyWRcuXROQO4NdkevE9O1lDG6ByQdMzAPSUnUe4aVTuf6R9EBFYlabW83tdtqy7xWJZzJwDvB24hsx6UNdM1jCnMvPp1htxjn3CaXdARK7PZT9nnMbtIC6O+dZn7D7eOUR1URB/ms3J6vKQVe9ZLJbFzJuA1ap6pape7WyTBifIYYBKqzdyI7AJU/Z305jTUvVGtmCsNr7qtN3kfN6M8YL6qnO9hUHTM1BxFsf7R/94ByNx2gci1JdlZkvW2shisSxyXgCKp9Mwl0N8Z1Jv5LXAPaoaAY6KyCHnek/msL8zgyo070LXX59hb5RarLsybXjP4xK7ONdisSx2ioH9IrKdzDmoOZWZn0m9kRXAU2Parhh7AxG5DbgNwOebUpmR3NHXDEMd9JVsIhodVVQe6zTuEeX5o/2sK8uz3nsWi2Wxc8d0G8710zFVb6QGeAWm3kjWfVLVu1V1q6pu9Xjmid6jZRcATcGNI7uSSeVE1xD1ZaEx5rB2eM9isSxuVPV3wDHA67zfDkyq4IPcBqhs6438GEy9EYyde3mWbecnLbtBXByWlSO7TvYNE4knWZk2/yTCOLm5xWKxLDZE5D0Y1/OvO7tWYBbvTkouA9RIvRER8WFED/ePOSdVb4T0eiPOeTeLiN+xyVgHPJ3Dvs4czbvQ8g2cGBjddbxzCIEMOfmywgAhWznXYrEsfj6AcUXvA1DVF4HKbBrm7AmpqnERSdUbcQPfStUbAXao6v2YeiPfEJGPYAQTqXoje0TkxxhBRRz4gKpmVT9kzmnZxXDtS4nGM+efqooCGVU0V5fb7MlisSwJIqoaTU1viIgH87yflJz+hJ9uvRHn2OeBz+eyfzNO/0kYaKWj4KyRXUPROG39ES5dXZZx6io7vGexWJYGvxORTwJBEbkOeD/Gl29S5loksbhoNgKJE/51I7sauozUvC5teK8g4KGyIDC7fbNYLJa54eOYqZvngfdikpZPZdPQToLMJC27AGEfq0Z2NXQP4fO4qEwrTrjSrn2yWCxLh9cB31PVb0y1oc2gZpKW3SRK19KfHA1GDV1D1BQHcaXJy1fa+SeLxbJ0eDVwUET+S0Re5cxBZYUNUDNJ8y76SzaPfOwNx+gbjmeo99wuyRjus1gslsWMqr4TWAvci1n7elhEvplNWxugZorBTuhvpjU0ahDb0GXsjWpLRosTrigOWvcIi8Uy58ymmbeqxoBfAvcAz2CG/SYlqyeliPxMRF45FZeHJUfrCwAc82TOP4V8bkpDo/ZGK8tt9mSxWOaW2TTzFpEbReQ7wIvATcA3gaps+pltwPkq8BbgRRG5S0Q2ZNlu6dC6B4BjbhOgVJWGrjA1pXkZ9kbWHNZiscwDRsy8VTWKyWxeO+acSc28VfUokDLzPhV/inGO2KCqt6rqA6oaz6aTWQUoVf2Nqr4VuADjqfQbEXlCRN4pIt5srrHoadtDPFjOkM+sd+ocjBKOJTKG9woCHsrz/ae6gsViscwWE5l5jzXk/jTwNhFpxEjDPziFtiOo6i2YShTXOSKJrFwkYApzUCJSBtwKvBvYCXwJE7AeyvYai5rWPfQXjSaWI/NPaYIImz1ZLJZZwiMiO9K226ZxjTMy804hIm/CWNW9CfgT4I8i8sZs2mYl9xOR+4ANwH8Br1bVFufQj0Rkx1Q7vOhIJqBtH211bx7Z1dAdpijopTAwmmCuLLPzTxaLZVaIq+rW0xzP1sz7BjBm3iIyXTPvTwEXqWobgIhUAL/BGMielmyj4ZdVdZOq3pkWnHA6fro/hKVB1xGID9PgWQmY8hpN3WFqS0eH91wiGdmUxWKxzCGzaebtSgUnh06yjD3ZLpjaJCI7VbXH6WwJcIuqfjXL9osbR8HXGlwLQNtAhGgiSU1xunu5P8Ms1mKxWOaKWTbzflBEfgX80Pn8ZsZ4tJ6KbAPUe1T139O+XLdT48MGKIDWvai46MwzCr7mbuO/tyJNIFFnh/csFss8YjbMvMVImL8MXARc4ey+W1Xvy6aP2QYot4iIEz1TGvp5UmN9HtC6h8H8VSRcRqHX1GPmn/LT6j1ZgYTFYllqqKqKyAOqeg7ws6m2z3YO6kGMIOJaEbkWk6o9ONWbLVpaX6AtzwzvqSpNPWFWFI9mTz6Pi6pC615usViWJM+KyEXTaZhtBvUxjE36nzufH8KsBrYM90HPcZrrXgmY9U+ReDJjeK+mJIjbJae6gsVisSxmLsaspzoGDAKCSa7OnaxhVgFKVZPAfzibJZ22fQB0hEwG1dTjzD+lZVBWvWexWJYwk3r1nYpsvfjWichPRGSviBxJbVm0m8yM8F9FZJezHRSRnrRjibRjY+WP84c2Y3HUETJFCpu7w+T7PRQGRmO/dS+3WCxLFVU9DpRhLJJeA5Q5+yYl2yG+bwN3AP8KXA28k0mCW5oZ4XUYK4ztInK/owxJdfwjaed/ENiSdomwqp6fZf/mjtY9RD0F9PuWjcw/1ZSM+u+F/G5rb2SxWJYsIvK3GBeJlEji2yJyr6p+brK22Yokgqr6W0BU9biqfhp45SRtsjEjTOcWRnXyC4e2fXTlrQYResMxBqOJzOG9Eps9WSyWJc1bMU4Sd6jqHcAlwNuzaZhtgIo4HkwvisjtIvJ6IH+SNlkbCopIPbAKeDhtd8DxkHpKRCasHSIit6W8puLxrMxxZ5xk+wHag2b908j8U4mdf7JYLBaHZowLRQo/p7dGGiHbIb4PAXnAXwCfxQzzvWMKHZyMm4GfjFmNXK+qTSKyGnhYRJ5X1cPpjVT1buBugFAopDPYn+wY7MA11EHnstEAFfS6Kckb9d+zAcpisSxxejHuEw9hHCmuA54WkS8DqOpfnKrhpAHKmUt6s6r+FTCAmX/KhqkYCt4MfCB9h6o2Oa9HRORRzPzU4fFN55D2AwB0BlcD0NQdpro4MDL/VBT0UhS01UgsFsuS5j5nS/Fotg0nDVCqmhCRKyY7bwJGzAgxgelmTNHDDERkI1CCqReS2lcCDKlqRETKMXYb/ziNPuSW9v0AdOWton84Rt9wnPNri0cO2+zJYrEsdVT1u9Ntm+0Q305H6n0vZqFV6santK7I0owQTOC6J2Wj5HAW8HURSWLmye5KV//NF7R9PzF3iAFfJc2tAwBUZ6x/Cp6qqcVisSwJRORVmKmhekzMSS3ULTxtQ7IPUAGMRfo1afuUSbyVJjMjdD5/eoJ2TwDnZNm3OSN2ch+dwZUgQktvGI9LqEiTlNdYBZ/FYrF8EXgD8PyYRGRSsnWSyHbeaUkhHQfoyt8GQEvvMFWFAVyOpVFpyJdhFmuxWCxLlAbghakGJ8i+ou63MRlTBqr6rqnecNEQ7sY71EZnxWpiiSQdAxEurC8ZOWyH9ywWiwWAvwYeEJHfAZHUTlX9wmQNs/2J/4u09wHg9Rht+9Kl/SBgBBJtfRGSClVFo1J/O7xnsVgsgKkbNYCJHVMq05TtEN9P0z+LyA+BP0zlRouNZNt+XEBn3iqaT5oFussLR7OmdDcJi8ViWcJUq+rZ02mYrZPEWNYBldNsuyiItOwh5vLT51/Oyd5hivO8BH2mpHtZvo+QnX+yWCwWMMN7L59Ow2znoPrJnIM6iakRtWRJtO6nL7gKRWjpHWZl+eiQXk2JzZ4sFovF4c+BvxKRCBBjpmXmqlpwZv1bfHi6XqQrdB694RjhWILlRenDe3b+yWKxWODM4ke29aBeLyJFaZ+LT2XguiSI9BMYaqYzbxUtvcMALM8QSNgMymKxLG0clyBE5IKJtmyuke1EyR2qOuKlpKo9InIH8D9T7/bCR9sPIhgPvpb2YXxuF6UhI04pDdn5J4vFMv8RkRuAL2Gcfr6pqneNOZ6q/wfGLLxSVYudYwngeefYCVV9zQS3+ChwG/AvExxTMo0fJiTbJ+lEmdaSfQoPNe0lBHQH62npDVNVFMDlGMRa9Z7FYpnvzEZBWVW9zXm9+nTnnY5sVXw7ROQLIrLG2b4APDPdmy50wq0HSeKi3bOczoFoxvqnFXZ4z2KxzH8WREHZbAPUB4Eo8CPMFxlmTHmMpYR2HqYvsJzmgQQKVNv5J4vFMr/wpIq5OtttY47nvKDsTJCtim8Q+HiuOrHQ8PQcpSdQS0uvWaBbVWgCVFHQS0HA1n+yWCxzTlxVt87QtaZVUHYmyHYd1EPAm1S1x/lcgimRcf1Md2jeo0po4DjHKl9JS+8wZSEffq9ZoGuH9ywWywIh5wVlJ1Pqqeqzk3UyW6FDeSo4ORfuFpEl6SQx0NVMfmKQnkAtJxuGWVuZP3LMCiQsFssCYTYKyqbUewFgK7Abs0j3XGAHcOlkncx2DiopInVpHVzJBO7mS4HeRlPmvVGWE4knR4b3wM4/WSyWhYGqxoFUQdl9wI9TBWVFJF0yfqqCsjtEZDfwCKcoKKuqVzsKvhbgAlXdqqoXYrKtU2VrGWSbQf0N8AfHLl2Al2D07aflDHX27wA+5Rz73JmUDZ5JhluNi/nB+DIAljkBKuR3U5w3JaNei8VimTNmsaDsBlVNrZlCVV8QkbOyaZitSOJBEdmKCUo7MQt0w6drcyY6exEpBe7ApIUKPOO07c6mv7kk2XGYhLjZM1SMxzUwskDX2htZLBbLhDwnIt8Evu98fivwXDYNsxVJvBv4EGYibRdwCWZM8nQrgUd09s41Ujr7camgwy2YoARwPfCQqnY5bR8CbmAOdPhj8fQcoc+/gpb+GBUFftxOBd3q4sAkLS0Wi2VJ8k6MYeyHnM+PAf+RTcNsh/g+BFwEPKWqVzsTZ38/SZuJdPYXT3TiBDr7rDT6jrb/NgCfL/fDa5F4gvzB43QHamlri3DuihF7Qqvgs1gslglQ1WER+RrwgKoemErbbEUSw6o6DCAiflXdD2yYYj9Px0Q6+0lR1budibetHk/unZc6+iMUhRtp8VSTSOrI/JPf66Ii35/z+1ssFstCwxFd7AIedD6fLyL3Z9M22wDVKCLFmLmnh0Tkf4Hjk7SZqs4+ffhuKm1nje7WBnzJMEeTVcBoifflRQHE8eKzWCwWSwZ3YKZ8egBUdRdmxGxSshVJvN55+2kReQQowomGp2HaOnuM9PHvHb09wMuBT2TT11wyfNIo+PbHKgh4XRQGzB+fFUhYLBbLKYmpau+YH/FZLVOa8riYqv4uy/PiIpLS2buBb6V09sAOVU2leON09qraJSKfxQQ5gM+kBBNzSaLjEAC7h8pYVjiaNVmBhMVisZySPSLyFsAtIuuAvwCeyKZhTidupquzd/Z/C/hWzjo3RZJJxdNzhLh42TtYxIWVJii5XZKxWNdisVgsGXwQs5Y2AvwAk7R8NpuGS7am01TpHopSOHSCTu9yEmHXSFBaVujH4852Ks9isViWHK9U1b/BBCkARORNwL2TNbRP1izpGIhSMtxAk6saMIEJoNr671ksFsvpmEg/kJWmwGZQWdLeF2bNcCOPes6mMOAhz2f+6GyAslgslvGIyI3AK4AVIvLltEOFQDyba9gAlSWDHSfwJCPsi1aMrH8SgeoiG6AsFotlApoxruWvIbMCez/wkQlbjMEGqCyJtxkF375o5UiAKsnzEfS557JbFovFMi9R1d3AbhG5DxhMGTE4Pq1ZORvYOagsCEcT+PuPAXAsWTUikLDDexaLxTIpvwbSH5ZB4DfZNLQBKgs6BiIUh08QxcdJSqkoSAkkrLzcYrFYJiGgqgOpD877rNwNbIDKgvaBiFHwSRUloQA+j/ljs/NPFovFMimD6eXfReRCJinXlMLOQWVBR3+E+nADO5PLqCw22VOez01JyBYotFgslkn4MHCviDRjCt5WAW/OpqENUFnQ2R+maLiRQ4nNVBY4BrF2/slisVgmRVW3O56rqQoYB1Q1lk1bO8Q3CcmkEu06gUdjHNMqKlPzT0V2/slisVgmQ0TygI8BH1LVF4CVIvKqbNraADUJPeEY+YMnADimVWkCCZtBWSwWSxZ8G4gClzqfm4DPZdPQBqhJSCn4AHoCtXjdLjwuGcmkLBaLxXJa1qjqPwIxAFUdwsxFTYoNUJPQMRChJNzAkPqhYDkAldYg1mKxLHBE5AYROSAih0Tk4xMc/1cR2eVsB0WkJ+3YO0TkRWd7xyS3iopIEKcGlIiswTibT4oVSUxCx0CUs4aOc1yXUVmYqqBrh/csFsvCxXFz+HfgOqAR2C4i96vq3tQ5qvqRtPM/CGxx3pdiquRuxQSdZ5y23ae43R2YAre1IvLfwOXArdn006YBk9DRH6FwqIGjWjUSoOwCXYvFssDZBhxS1SOqGgXuAV57mvNvAX7ovL8eeEhVu5yg9BBww6kaqupDwBswQemHwFZVfTSbTuY0gxKRG4AvYSrqflNV75rgnD8BPo2JxLtV9S3O/gTwvHPaCVV9TS77OhHReJL+cJiyWDPHdAsV+WbeyWZQFsvpicViNDY2Mjw8PNddWdQEAgFqamrwer1jD3lEZEfa57tV9e60zyuAhrTPjcDFE91DROqBVcDDp2m7YpKuXglcgXnOe4H7JjkfyGGAyiaFdMr/fgK4XFW7RaQy7RJhVT0/V/3Lho6BCAXhk3hI0O5dQaHHRVHQS8hvR0YtltPR2NhIQUEBK1euRCSr+XDLFFFVOjs7aWxsZNWqVWMPx1V16wzd6mbgJymz16kiIl8F1jKagb1XRF6mqh+YrG0un7QjKSSAiKRSyL1p57wH+PfU5dYsNAAAIABJREFU2KWqtuWwP1OmcyBK8bBR8PWF6inEDu9ZLNkwPDxsg1OOERHKyspob2+fTvMmoDbtc42zbyJuBtKDSRNw1Zi2j57mXtcAZ6lqSiTxXWBPNp3M5RxUNmngemC9iDwuIk85Q4IpAiKyw9n/uhz285R0DETI6z8OQKRwJWCH9yyWbLHBKfecwZ/xdmCdiKwSER8mCN0/wfU3AiXAk2m7fwW8XERKRKQEeLmz71QcAurSPtc6+yZlrseqPMA6TDSuAR4TkXNUtQeoV9UmEVkNPCwiz6vq4fTGInIbcBuAzzfzvnjtAxGW9R9jQAMEiozEfLl1kLBYLAscVY2LyO2YwOIGvqWqe0TkM8AOVU0Fq5uBe1LZj9O2S0Q+iwlyAJ9R1a7T3K4A2CciT2PmoLYBO0Tkfud6p9QX5DJAZZNCNgJ/dHyZjorIQUzA2q6qTQCqekREHsVIHDMClDPpdzdAKBRSZpj/v717D6/pyh8//v5IkLjU0IhxHUyVCBG3EJQUg7a+lGrVqFZNdXSmre/0mZkvWppqtZ2OaTuqU7Q1qtMLqpQ+nU5dmqJoywgVl1LNz7VEEEnIRfL5/bF30iOSiCRHzonP63n2k7Mva+21ziafrL3XXis5LYsbzx90RpC4zhnFPKSWvaBrjPF/qvoJ8EmBbdMKrMcWkXY+ML+Ep5p2+UMK581bfCVpQi7HvZcpIiE4t/wOuE3H6h7be3LxsyuvS83IJiM7h/pZhzlSpSHVAqvQ4LogqlSx2xbGGHMFklT1C88FEI/PRfJaC6qETci8e5m7gBzgT6qaLCI9gLkikosTRJ/37P13NSSnZVEl9wINck/wRVBvwAaINaY0nlqZwK6jZ8s1z7aNruPJ/wkvcn9iYiKDBg2ie/fubNy4ka5du3L//ffz5JNPcuLECd555x2ioqJIT0/nkUceYefOnWRnZxMbG8vQoUNJTExkzJgxpKenAzB79mx69OhBXFwcsbGxhISEsHPnTjp37sy//vWvS54Fvf7668ybN4+srCxuuOEG3n77bWrUqMHx48eZMGECBw4cAOC1116jR48eLFy4kJkzZyIiRERE8Pbbb5fr91XBFovIQuCvQBDwAs5LvtHFpsLLz6Au14R072s+5i6ex2wE2nuzbJdzMi2TamkHCZRcUms4z/d+bgHKGL+xf/9+lixZwvz58+natSvvvvsuGzZsYMWKFTz77LMsX76cGTNm0LdvX+bPn8+ZM2eIioqif//+hIaGsmrVKoKCgti3bx+jRo1iyxbntaJt27aRkJBAo0aN6NmzJ19++SW9evW66NzDhw9n/PjxADzxxBO8+eabPPLIIzz66KP06dOHZcuWkZOTQ1paGgkJCTzzzDNs3LiRkJAQTp0q7nGOX+oG/AXYiPM8Km80icuq6E4SPutkWiZVTjt/5WTVcd4xsB58xly54lo63tSiRQvat3f+zg0PD6dfv36ICO3btycxMRGAzz77jBUrVjBz5kzA6R5/8OBBGjVqxMMPP0x8fDwBAQF89913+flGRUXRpEkTACIjI0lMTLwkQO3cuZMnnniCM2fOkJaWxsCBAwFYu3YtCxcuBCAgIIA6deqwcOFC7rzzTkJCQgCoV6+e976UipGNM4NuME4L6gdVzS1JQgtQRTiZlkXw2UQAcuu1pG6NqgRXC6jYQhljSqx69Z86NFWpUiV/vUqVKly4cAFwXnZdunQprVu3vihtbGwsDRo0YPv27eTm5hIUFFRovgEBAfl5eRo7dizLly+nQ4cOLFiwgLi4uPKsmr/5BvgI6AqEAHNE5A5VvfNyCW0svkLk5iqn0rOoc/4gqdQgN+h6fm6tJ2MqnYEDB/LKK6+Q14t627ZtAKSkpNCwYUOqVKnC22+/TU7OlQ2ikJqaSsOGDcnOzuadd97J396vXz9ee+01AHJyckhJSaFv374sWbKE5ORkgMp4i+83qjpNVbNV9ZiqDqWQd64KYwGqEKfOZZGTq9TPPsLRgEYgYiNIGFMJTZ06lezsbCIiIggPD2fq1KkA/O53v+Ott96iQ4cO7Nmzh5o1a15Rvk8//TTdunWjZ8+etGnTJn/73//+dz7//HPat29P586d2bVrF+Hh4Tz++OP06dOHDh068NhjjxWTs1/aKiL3iMg0ABFpBuwtSULxeP/Kr9WsWVPzetyU1d4fU1m69TBjvvofDtVsx1edXmB092aE1rYgZUxJ7N69m7CwsIouxjWhsO9aRM6p6pVFVS8RkdeAXKCvqoa5o098pqpdL5fWWlCFOJmWyamzqTSSk6TWbOa8oFvTXtA1xphS6OYODJsB4I69WqKhfyxAFeJkWiZVzvw/AkTJuK45obWr2wu6xhhTOtnu7BZ5g8XWx2lRXZYFqEIkpWYSnJoIwLlaza17uTHGlN4snPmfQkVkBrABeLYkCa2beQEZ2TmkZlygznlnmo3TQU3pai/oGmNMqajqOyKyFegHCHC7qu4uSVoLUAUkp2eRnZNL4+wjpFatTWbVOjaCuTHGlIGq7gH2XGk6u8VXQFJqJslpWTSXH0mq3pTrbAZdY4ypEBagCkhOyyQpNZPmVX4ktUYzaz0ZU4kkJibSrl27ii7GJWJiYvLH+jM/sQBVQFJqJmdTU2gsyaTV/IUNEGvM1bJpEzz3nPPTjxQ21JEpHxagPKgqyelZVD/rdJA4E9yMn19nAcoYr9u0Cfr1g6lTnZ/lFKRefPFF2rVrR7t27Xj55ZcBJ6CMHj2asLAwRowYwblz5wCYNGkSbdu2JSIigj/+8Y8AJCUlcccdd9C1a1e6du3Kl19+CThj9Y0ZM4aePXsyZswYunfvTkJCQv5581pE6enpjBs3jqioKDp27MhHH30EwPnz57n77rsJCwtj2LBhnD9/vlzqW9nYwxUPKeedSQrrnD8IVeFsjWaE1rYXdI3xurg4yMqCnBznZ1wcRF92uqBibd26lX/+85989dVXqCrdunWjT58+7N27lzfffJOePXsybtw4/vGPf3D//fezbNky9uzZg4hw5swZACZOnMgf/vAHevXqxcGDBxk4cCC7dzsd0Hbt2sWGDRsIDg7mpZdeYvHixTz11FMcO3aMY8eO0aVLF6ZMmVLodB5z586lRo0a7N69mx07dtCpU6cyfoGVk7WgPJxMy+TMuWyacQyAgJAbCAywr8gYr4uJgWrVICDA+RkTU+YsN2zYwLBhw6hZsya1atVi+PDhrF+/nqZNm9KzpzMd0T333MOGDRuoU6cOQUFB/OY3v+HDDz+kRo0aAKxevZqHH36YyMhIhgwZwtmzZ0lLSwNgyJAhBAc770jeddddfPDBBwAsXryYESNGAM50Hs8//zyRkZHExMTkT+exbt067rnnHgAiIiKIiIgoc30rI2tBeTiR6nSQCJcfSQusS313fhZjjJdFR8OaNU7LKSamzK2n4hSc/VZECAwM5Ouvv2bNmjV88MEHzJ49m7Vr15Kbm8vmzZsvmm4jj+cAso0bN+b6669nx44dLFq0iDlz5gBFT+dhSsarzQMRGSQie0Vkv4hMKuKYu0Rkl4gkiMi7HtvvE5F97nKfN8uZ52RaFklpmbSo8iNngpvRwJ4/GXP1REfD5MnlFpxuuukmli9fzrlz50hPT2fZsmXcdNNNHDx4kE3uM653332XXr16kZaWRkpKCrfeeisvvfQS27dvB2DAgAG88sor+XnGx8cXeb6RI0fywgsvkJKSkt8iKmo6j969e/Puu86vu507d7Jjx45yqXNl47UA5Y699CpwC9AWGCUibQsc0wqYDPRU1XDgf93t9YAncaYKjgKedEfA9aoktwXVsspxUoKbWg8+Y/xYp06dGDt2LFFRUXTr1o0HHniAunXr0rp1a1599VXCwsI4ffo0Dz30EKmpqQwePJiIiAh69erFiy++CMCsWbPYsmULERERtG3bNr9lVJgRI0bw/vvvc9ddd+VvK2o6j4ceeoi0tDTCwsKYNm0anTt39u6XUYgyNiByRCTeXUo0t1Opyuit6TZEJBqIVdWB7vpkAFV9zuOYF4DvVPWNAmlHATGq+lt3fS4Qp6rvFXW+sk63kZGdwz8+388763ezNeA+Nrf4Pd3unXHJ7QBjzOXZdBtXT2mm23AbEN8BvwIO48x6O0pVd3kc0wpYjDNNxmkRCVXVE+6+NFWtVf61uZg3b/E1Bg55rB92t3m6EbhRRL4Ukc0iMugK0iIiD4rIFhHZUtZ3EZJSM0nPzKHBhSPOhnq/tOBkjKmsooD9qnpAVbOA94GhBY4ZD7zqTo9BXnC6miq6i1og0AqIAUYBr4vIz0qaWFXnqWoXVe0SGFi2/h4n0zJJSsukufwIQFCDVmXKzxhjKlBg3h/v7vJggf1laUAABLn5bhaR271QfsC7vfiOAE091pu42zwdBr5S1WzgBxH5DidgHcEJWp5p47xWUn56/tTRDVC1G1uvG2OM37qgql3KmIdnA6IJsE5E2qvqGeAXqnpERFoCa0XkW1X9voznu4Q3W1DfAK1EpIWIVAPuBgo+TFuOG4hEJAQnYh8A/gMMEJG6bueIAe42r8nrYt666nHSqtUn9Pp63jydMcZUpJI2IFaoaraq/oDzzKoVgKoecX8ewGk8dPRGIb0WoFT1AvAwTmDZDSxW1QQRmS4iQ9zD/gMki8gu4HPgT6qarKqngKdxgtw3wHR3m1fk5Cqn0p0u5jcEHOdsjV9QO6iqt05njDEVrdQNCLfhUN1je09gF17g1Rd1VfUT4JMC26Z5fFbgMXcpmHY+MN+b5cuTnJ7JuawLpJzPplmNoyT/bODVOK0xxlQIVb0gInkNiABgfl4DAtiiqiv46U7WLiAHtwEhIj2AuSKSi9PIed6z9195quhOEj7hxNlMTqZm8TNSqZ17FkKsg4QxpnjTpk1j9erVRe6fM2cOCxcuBGDBggUcPXo0f98DDzzArl1e+Z1eYqr6iareqKq/VNUZ7rZpbnBCHY+paltVba+q77vbN7rrHdyfb3qrjDbUEW4HibRMWrgdJIIbWAcJY0zxpk+fXuz+CRMm5H9esGAB7dq1o1GjRgC88cYbRSUzHixA8VMPvoiqxwGo08ReMDSm3Px7Evz4bfnm+fP2cMvzlz3s9ttv59ChQ2RkZDBx4kQefPBBPv30U6ZMmUJOTg4hISGsWbOG5ORkRo0axZEjR4iOjmbVqlVs3bqVtLQ0Bg8ezM6dOwGYOXMmaWlpxMbGMnbsWAYPHsyIESOYNGkSK1asIDAwkAEDBjBz5kxiY2OpVasWzZs3Z8uWLYwePZrg4GA2bdrELbfcwsyZM+nSpQvvvfcezz77LKrKbbfdxl/+8hcAatWqxcSJE/n4448JDg7mo48+okGDBuX7Pfo4u8UHZF7IISktk7bVTpArAQSFtqzoIhljysH8+fPZunUrW7ZsYdasWRw/fpzx48ezdOlStm/fzpIlSwB46qmn6NWrFwkJCQwbNoyDBw+W+BzJycksW7aMhIQEduzYwRNPPHHR/hEjRtClSxfeeecd4uPj80dABzh69Cj/93//x9q1a4mPj+ebb75h+fLlAKSnp9O9e3e2b99O7969ef3118vhG/Ev1oICLuTmkpyWyQ3X/ci56k2oFWA9+IwpNyVo6XjLrFmzWLZsGQCHDh1i3rx59O7dmxYtWgBQr57zOsm6dev48MMPAbjtttuoW7fkQ396TtUxePBgBg8eXOK033zzDTExMdSvXx+A0aNHs27dOm6//XaqVauWn1fnzp1ZtWpVifOtLKwFBSSlZpGr0EyPcqHuLyu6OMaYchAXF8fq1avZtGkT27dvp2PHjkRGRl5RHoGBgeTm5uavZ2RkFHrM119/zYgRI/j4448ZNGjQJceURtWqVfOHWwsICLgmp5a3AAUcSzmPkEto9hHEevAZUymkpKRQt25datSowZ49e9i8eTMZGRmsW7eOH374AYBTp5zXKz2nv/j3v//N6dOnAWjQoAEnTpwgOTmZzMxMPv7440vOU9RUHZ5q165NamrqJdujoqL44osvOHnyJDk5Obz33nv06dOn3L4Df2e3+IAfUzJoUuU01TQTfm49+IypDAYNGsScOXMICwujdevWdO/enfr16zNv3jyGDx9Obm4uoaGhrFq1iieffJJRo0YRHh5Ojx49aNasGeC0YqZNm0ZUVBSNGzemTZs2l5wnNTWVoUOHkpGRgarmT9XhaezYsUyYMCG/k0Sehg0b8vzzz3PzzTfnd5IYOrTgmK3XLq9Nt3G1lWW6jZi/fk5E1jZmZT8F962EFr3LuXTGXFv8fbqNvJ53IX4wq3ZpptvwF9f8LT5V5VhKBmHV3JHkr7+hYgtkjDEGsFt8HDp1nswLudxQ5Tg5AcEE1G5Y0UUyxlSwxMTEii6CwVpQ7DqWAkBTPcqFui3BJik0xhifcM0HqNOrv+D3mxfTJH0fVepbDz5jjPEV1/Ytvk2buHPS/YhmERBTC7JrV3SJjDHGuK7tFlRcHIEXsgm43l1PvPQ9BWOMMRXj2g5QMTFQrRq5DdyhjbrdVqHFMcb4ttjYWGbOnAkUPd1GXFzcZYc7io+P55NPPin2GOPlACUig0Rkr4jsF5FJhewfKyJJIhLvLg947Mvx2F5wpsfyER0Na9aQ1D8KlUDoO9wrpzHGXN6mQ5t4bv1zbDq06fIH+4Dp06fTv3//UqW1AFUyXgtQIhIAvArcArQFRolI20IOXaSqke7iOUnKeY/tQwpJVz6io8lufh0517eCgGv7kZwxFWXToU30W9iPqZ9Ppd/CfuUWpBYuXEhERAQdOnRgzJgxrFy5km7dutGxY0f69+/P8ePOFDuxsbGMGzeOmJgYWrZsyaxZs/LzmDFjBjfeeCO9evVi7969+dvHjh3LBx98AMCnn35KmzZt6NSpU/6gswBff/010dHRdOzYkR49erB3716ysrKYNm0aixYtIjIykkWLFpGens64ceOIioqiY8eOfPTRRwAkJCQQFRVFZGQkERER7Nu3r1y+F3/hzd/IUcB+VT0AICLvA0Px0tz1ZfGztO+p0rJ7RRfDmGtWXGIcWTlZ5GgOWTlZxCXGEd00ukx5JiQk8Mwzz7Bx40ZCQkI4deoUIsLmzZsREd544w1eeOEF/va3vwGwZ88ePv/8c1JTU2ndujUPPfQQO3bs4P333yc+Pp4LFy7QqVMnOnfufNF5MjIyGD9+PGvXruWGG25g5MiR+fvatGnD+vXrCQwMZPXq1UyZMoWlS5cyffp0tmzZwuzZswGYMmUKffv2Zf78+Zw5c4aoqCj69+/PnDlzmDhxIqNHjyYrK4ucnJwyfSf+xpsBqjFwyGP9MNCtkOPuEJHewHfAH1Q1L02QiGwBLuDMeb/cK6XMSqfW+aMQ6r/Dshjj72Kax1AtoBpZOVlUC6hGTPOYMue5du1a7rzzzvzhiurVq8e3337LyJEjOXbsGFlZWfnTboAzzUb16tWpXr06oaGhHD9+nPXr1zNs2DBq1KgBwJAhl97M2bNnDy1atKBVK+c1lXvuuYd58+YBzoC19913H/v27UNEyM7OLrSsn332GStWrMh/vpWRkcHBgweJjo5mxowZHD58mOHDh+ef41pR0Z0kVgLNVTUCWAW85bHvF6raBfg18LKIXDIPhog8KCJbRGRLqYeiT3Kb7PUvHQTSGHN1RDeNZs29a3j65qdZc++aMreeivLII4/w8MMP8+233zJ37tyLps+oXr16/ufymt5i6tSp3HzzzezcuZOVK1cWOl0HOEOuLV26lPj4eOLj4zl48CBhYWH8+te/ZsWKFQQHB3Prrbeydu3aMpfJn3gzQB0BmnqsN3G35VPVZFXNdFffADp77Dvi/jwAxAEdC55AVeepahdV7RIYWMrGYNIe56e1oIypUNFNo5l80+RyC059+/ZlyZIlJCcnA87UGikpKTRu3BiAt956q7jkgDMNx/Llyzl//jypqamsXLnykmPatGlDYmIi33//PQDvvfde/j7P8y1YsCB/e8HpNwYOHMgrr7xC3uDd27ZtA+DAgQO0bNmSRx99lKFDh7Jjx44r+QqKdblObO4xd4nILhFJEJF3PbbfJyL73OW+citUAd4MUN8ArUSkhYhUA+4GLuqNJyKeA98NAXa72+uKSHX3cwjQE289u0ragwZUg7otLn+sMcZvhIeH8/jjj9OnTx86dOjAY489RmxsLHfeeSedO3cu0UjlnTp1YuTIkXTo0IFbbrmFrl27XnJMUFAQ8+bN47bbbqNTp06Ehobm7/vzn//M5MmT6dix40Utsptvvpldu3bld5KYOnUq2dnZREREEB4eztSpUwFYvHgx7dq1IzIykp07d3LvvfeWwzdTsk5sItIKmAz0VNVw4H/d7fWAJ3Ee2UQBT4pIyacgvpJyenO6DRG5FXgZCADmq+oMEZkObFHVFSLyHE5gugCcAh5S1T0i0gOYC+TiBNGXVfXN4s5V6uk2EpbB0W3wq+lXntYYUyh/n27Dn5Rmug0RiQZiVXWguz4ZQFWf8zjmBeC7Ar2rEZFRQIyq/tZdnwvEqep7lDOv9qtW1U+ATwpsm+bxeTJOhC6YbiPQ3ptlyxc+zFmMMebaUZJObDcCiMiXOI2MWFX9tIi0jb1RSHvxxxhjKp9Atxd0nnmqOu9K8wBaATE4fQjWicjVaTh4FMAYY8qdqiI2fY1XFfOI5oLbC7ool+3EhtMy+kpVs4EfROQ7nIB1BCdoeaaNK3mpS66iu5kbYyqhoKAgkpOTi/sFaspIVUlOTiYoKKg0yS/biQ1YjhuI3M5qNwIHgP8AA9zObHWBAe62cmctKGNMuWvSpAmHDx8mKSmpootSqQUFBdGkSZMrTqeqF0TkYZzAkteJLcGzExs/BaJdQA7wJ1VNBhCRp3GCHMB0VT1VDtW5hFd78V1Npe7FZ4wxlczlevH5C7vFZ4wxxidZgDLGGOOTLEAZY4zxSZXmGZSI5ALnS5k8EGc0C39mdfANVgffURnqUdo6BKuq3zdAKk2AKgsR2XKZdwZ8ntXBN1gdfEdlqEdlqENZ+H2ENcYYUzlZgDLGGOOTLEA5rnSMKl9kdfANVgffURnqURnqUGr2DMoYY4xPshaUMcYYn2QByhhjjE+qlAFKRAaJyF4R2S8ikwrZX11EFrn7vxKR5h77Jrvb94rIwJLm6Sd1SBSRb0UkvsBcMT5VBxG5XkQ+F5E0EZldIE1ntw77RWSWeHk+By/VIc7NM95dQgvm6yN1+JWIbHW/760i0tcjjb9ch+Lq4C/XIcqjjNtFZFhJ8/R7qlqpFpyReb8HWgLVgO1A2wLH/A6Y436+G1jkfm7rHl8daOHmE1CSPH29Du6+RCDED65DTaAXMAGYXSDN10B3QIB/A7f4YR3igC5+cB06Ao3cz+2AI354HYqrg79chxpAoPu5IXAC5wXeq/p7qSKWytiCigL2q+oBVc0C3geGFjhmKPCW+/kDoJ/7F+BQ4H1VzVTVH4D9bn4lydPX63C1lboOqpquqhuADM+DRaQhcJ2qblbnf+tC4HZ/qkMFKEsdtqnqUXd7AhDs/pXvT9eh0Dp4saxFKUsdzqlq3mgSQUBez7ar/XvpqquMAaoxcMhj/bC7rdBj3AufAlxfTNqS5FmevFEHcP5hf+be6njQC+UutHyFlOOSYwrUobg8D18mz/LkjTrk+ad7y2aql2+PlVcd7gD+q6qZ+O918KxDHr+4DiLSTUQSgG+BCe7+q/176aqrjAHKFK2XqnYCbgF+LyK9K7pA16jRqtoeuMldxlRweYolIuHAX4DfVnRZSquIOvjNdVDVr1Q1HOgKTBaRUk2j628qY4A6AjT1WG/ibiv0GBEJBOoAycWkLUme5ckbdUBV836eAJbh3Vt/ZalDcXl6Th/qy9ehSB7XIRV4Fx++DiLSBOffyr2q+r3H8X5zHYqog19dhzyquhtIw32eVoI8/VtFPwQr7wXn4eEBnA4CeQ8Owwsc83sufhi52P0czsUdDA7gPIi8bJ5+UIeaQG33mJrARmCQL9bBY/9YLt9J4lZ/qoObZ4j7uSrOs4YJvlgH4Gfu8cMLydcvrkNRdfCz69CCnzpJ/AI4CoSUJE9/Xyq8AF76x3Ar8B1OD5fH3W3TgSHu5yBgCU4Hgq+Blh5pH3fT7cWjZ1JhefpTHXB6+mx3lwQ/qEMicArnr8XDuL2TgC7ATjfP2bijofhLHXD+ONgK7HCvw99xe1n6Wh2AJ4B0IN5jCfWn61BUHfzsOoxxyxgP/Be4vbg8K9NiQx0ZY4zxSZXxGZQxxphKwAKUMcYYn2QByhhjjE+yAGWMMcYnWYAyxhjjkyxAmWuOiKRVdBkKIyLNReTXFV0OY3yFBShjSklEAkqRJrCY3c0BC1DGuCxAmWuaiPxJRL4RkR0i8pTH9uXuoLoJngPruvM7/U1EtgPR7voMd56ezSLSoJBzxIrI2yLyJfC221JaLyL/dZce7qHPAze5g5f+QUQCROSvHuXz27HwjCkNC1DmmiUiA4BWOGOwRQKdPQbQHaeqnXFGTHhURPJGxq4JfKWqHdSZTqMmsFlVOwDrgPFFnK4t0F9VR+HM5/MrdQbuHQnMco+ZBKxX1UhVfQn4DZCiql1xBgkdLyItyu0LMMbHFXe7wZjKboC7bHPXa+EErHU4QSlv5tKm7vZkIAdY6pFHFvCx+3kr8KsizrVCVc+7n6sCs0Uk0s3vxmLKFyEiI9z1Om45fihR7YzxcxagzLVMgOdUde5FG0VigP5AtKqeE5E4nHHSADJUNcfj8Gz9abywHIr+P5Xu8fkPwHGgA85djKImNRTgEVX9T8mqY0zlYrf4zLXsP8A4EakFICKNRSQUp6Vy2g1ObXBG7S5PdYBjqpqLMxBoXmeLVKB2gfI9JCJV3fLdKCI1y7ksxvgsa0GZa5aqfiYiYcAmdzLVNOAe4FNggogx5DbiAAAAaklEQVTsxhkRfnM5n/ofwFIRudc9V17rageQ43bAWIAzwnZz4L/ubK9JeHdqdWN8io1mbowxxifZLT5jjDE+yQKUMcYYn2QByhhjjE+yAGWMMcYnWYAyxhjjkyxAGWOM8UkWoIwxxvik/w/tXJZuxrUsBgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9d3icV5n3/7mna0a92JYlWe6OHYc4iZ3gECCQDYQWOiTsssAuZOGlbwN2eUkWNgvsb6kL7EuAUBY2dNgAgRCSGAJpdlzi2I67ZfVeZzT9/v1xHo1GisrI1kiydD7XNdfMU87zHEn285373E1UFYvFYrFYFhqu+Z6AxWKxWCwTYQXKYrFYLAsSK1AWi8ViWZBYgbJYLBbLgsQKlMVisVgWJFagLBaLxbIgsQJlsVgslgWJFSiLZRpE5DYR+W6e73GTiBwRkbCInBSR5+bzfhbLhYBnvidgsSx1ROR64NPAG4HHger5nZHFsjCwFpTF4iAiHxKRZhEZFJGjInKdiNwA/BPwRhEZEpEDzrklIvINEWl1xvyriLidY28VkT+JyJdEpF9EnhaR66a49b8AH1fVR1U1rarNqtqc/5/YYlnYWIGyWAAR2QS8B9ihqkXAi4Ezqvob4N+AH6hqoape6gz5FpAE1gOXAS8C3p51yauAk0AlcCvwUxEpn+C+bmA7UCUiJ0SkyRG2gnz8nBbLhYQVKIvFkAL8wBYR8arqGVU9OdGJIrIceCnwAVUNq2oH8DngpqzTOoDPq2pCVX8AHAVeNsHllgNe4HXAc4FtGMH76Cz9XBbLBYsVKIsFUNUTwAeA24AOEfm+iKyc5PR6jKi0ikifiPQBXwWWZZ3TrGMrMTcAE11v2Hn/T1VtVdUu4LMYAbRYljRWoCwWB1X9H1W9BiNAiglcwPmcTSMQAypVtdR5FavqxVnn1IiIZG2vAlomuGcv0DTuHrbFgMWCFSiLBTA+KBF5oYj4gSjGskk7h9uB1SLiAlDVVuC3wGdEpFhEXCKyTkSen3XJZcD7RMQrIq8HNgP3THL7bwLvFZFlIlIGfBD45az/kBbLBYYVKIvF4Ac+BXQBbRiB+Yhz7EfOe7eI7HU+/yXgAw4DvcCPGRse/hiwwbne7cDrVLV7knt/AtgNHAOOAPucMRbLkkZsw0KLZXYRkbcCb3eWCy0WyzliLSiLxWKxLEjyKlAicoOT8HhCRD48wfF6EblfRJ4UkV0iUpt1LCUi+53X3fmcp8VisSw1LoTnc96W+JwExGPA9Zgopd3Azap6OOucHwG/VNVvi8gLgbep6pudY0OqWpiXyVksFssS5kJ5PufTgroSOKGqp1Q1DnwfeOW4c7YADzifH5zguMVisVhmnwvi+ZzPYrE1mHyREZow5V+yOQC8BvgC8GqgSEQqnGingIjswZST+ZSq/nyqm7lcLi0osNVhLBaLJRKJqKpOZYDM6fP5XJnvauZ/D3zJiXr6A9CMKTkDUK+qzSKyFnhARA6OLz0jIrcAtwD4fD7C4fDczdxisVgWKCKScARkhDtU9Y4ZXua8ns+zQT4Fqhmoy9qudfZlUNUWjEIjIoXAa1W1zznW7LyfEpFdmPpkJ8eNvwO4AyAUCtl4eYvFYjEkVXX7FMfz/nyeDfLpg9oNbBCRNSLiwxTSHBPtISKVI9n5mKTIO539ZU5GPyJSCTwHkxBpsVgslvPngng+502gVDWJaV9wLyY7/oeqekhEPi4iNzqnXQscFZFjmKrOI9nzm4E9Tu+dBzFrnFagLBaLZRa4UJ7Pi6aSRCgUUuuDslgsFhCRiKqG5nse54utJGGxWCyWBYkVKIvFYrEsSKxAWWbEI42P8MmHPskjjY/M91QsFssiZ77zoCwLFVWIDcBgOwy1QXSARzqe5Lo//AvxdBKf28P913+WnatfAKV14C+a7xlbLJZFhhUoC0QHoPkJaD0AnUeh6yh0HoP44JjTdhEjTpyUQDwZZ9ev/46d+M3BQClUbYIVz4LqS2HVs6FiPYxpKmuxWCy5Y6P4liKRHji1C07/Hhofh44jZLqMF1UboancZCyjwhVQtBwCJTzSeZjrfvFXxFMJfC4P97/o8+wMVkHfWfPqOAJtByE+ZK5VXANrng/rr4ONL7ZWlsUyRyyWKD4rUEuFvrPw1E/g6XugeQ9oGvwlULsd6q6E2h1QczkUlE15mUcaH2HXmV1cu/padtbtfOYJ6TR0n4AzDxkBPP0HGO4Ftx/W/xlseSVc9DLw20L1Fku+sAK1wLACNQGpBBz+X9j9DTj7sNm38jLY8CIjFisvB3eeV3nTKWh8DA7fbeYy2AK+Qtj6GrjszUYY7TKgxTKrWIFaYFiByiIZhz13wsNfhIFmKF8H226Gra+D8jU5XSKdVlLOvw23CC7XLIhIOm3Eat934dBPIRGBqotg+1/BtjfZJUCLZZawArXAsALl8PSv4N5/gt4zUP8cuPp9xmJyPTOjIJpI0dYfpWMwRk84Rv9wgsFokmgiRSI19t+F1y0EvG4K/R6KC7yUBX1UFvpYVhSgJOid+Txjg3DoZ/DEt0yAhr/YWFRXviNnEbVYLBNjBWqBseQFKtID9/wDPPVjWLYFrv+ECU4Yt3zWNRTjePsQZ7rDtA9EmY0/f9Dnprq0gLqyAuorQpSHfDO7QNMeePS/4PDPzZLgppfCs98Fq6+xy38WyzlgBWqBsaQFqmUffP/PYagDnv+PcM0HwT1q1SRTaZ5uG+TJpn7aB6J5n05JgZe1VSHWLyukprQAyVVkBlqMv2zPnTDcY0LWd74HLn41eGYoehbLEsYK1AJjyQrUwR/D/74bQlXwxu/Cym2ZQ6m0cqCpjz1negjHUlNcJH+E/G42LC9i84piVpQEchuUGIYnfwCPfMXkZBVVm6W/K94GwfL8TthiWQRYgVpgLEmB2vsduPt9sGonvOE7UFiVOXSmK8yDRzvoiyRyvlxalWRKSasiAj63K3frJwfKQz62rCxmc3Uxhf4cogfTaTh5PzzyZTj1IHiDJpji2f8HKtbN2rwslsWGFagFxpITqD3fhF9+wISLv/G74C0AIJ5Ms+toB4daBqYcHkumaOwZprV/mPaBGAPRBEOx5BiflAABr5uSAi9lIS8VIT8rSwMsKwrgPo+oPpcIqyuDbK0pYU1FKLcIwfZDxqI6+EMTPr/pJbDz3SYQxPqpLJYxWIFaYCwpgTryC/jBm0103hu+A16zdNY1FOOXB1roncRqWnFoL4WP/onfVl3EPUVrSKUVt0uoKvRTGvRSFPDg97hxiSnFF02mGI6n6BtO0BuOE46bZUKPS6guDbC2spC1lSGKC84his+hKODh4pUlbK0ppiiQw3UG22H312HPNyDSbcoq7XwPbHmV9VNZLA5WoBYYS0agmp6Ab70MVmyFt/wC9uyHXbto2XYVPwusIp5MP2OIqpL808O879/ehSeVIOH2ctv7vkDqqmezvMSPZ4IQ9IkIx5K09A/T0hflbHeEnkgcgKoiPxetKGLT8iJCuSzdTYBLhDVVIS6tLWFVeXD6pcWMn+rL0HUMilbCVbfAFW+dthqGxbLYsQKVy8VFbgC+ALiBr6vqp8Ydr8f0ua8CeoC/UNUm59hbgI86p/6rqn57qnstCYGK9MD/uwZcHnj7/XDwBFx3HRqPk/R4+cmnv0XrlsvGDOkcjPHg0Q5e/Zvv8LcPfRePpkm53Dzylvez++a/Oa/p9EbinOoMc7xjkPaBGCKwuiLElupi1lbmuHQ3AaVBL5fUlHDxyhIKfO6pT874qb5k6gt6g7Dtz+HKW6Bq4znd32K50FksApW3Ojci4ga+DFwPNAG7ReTucb3r/wP4jqp+W0ReCHwSeLOIlAO3AtsxVUyfcMb25mu+Cx5V+Pm7INwJf32fCYjY9XU0HkdSKdwKtQcezwiUqrL3bB8Pn+zC73GTfO7z0Md+SDqRIO310nTplRPepvrwPmoPPE7TpVc+Q+zGUxb0cUW9jyvqy+geinGkbZCn2wY43RWm0O/hWbUlbM1FZMbRF0nw0PEuHjnZzfplhWytKaGuPDjxyS4XbLjevNqeMvlUe78Nu79myihtexNc/BooKJ3RHBYb09ZQtFgWIHmzoERkJ3Cbqr7Y2f4IgKp+MuucQ8ANqtooZk2nX1WLReRm4FpV/RvnvK8Cu1T1rsnut+gtqEf/C37zYXjJv8NVxvJp/NXvWPHaV+BOJEh5Ry2oWDLFr59qo6E7wrqqENddtJwCn3ta8ak+vI/XfuituBNxUl7fhBbZdCx/ai+Fj/6RX1Vs4t7itbhdwsblhWyrLWVZcY5h5hNQFvRycU1JbhGAQx1m+W/f96DziClUu/nlRqjWX5cJKFl0JGMw3AfRPvOeCEMqafp47fpn4imnj9cL/52d1ZeBJ2AqeIQqzbKoa2ZfJCwLF2tBTU8N0Ji13QRcNe6cA8BrMMuArwaKRKRikrE1428gIrcAtwD4fIvYQd5zCn53G2x8iVm6App6I/w8UE/Vp781RnT6hxPcfaCFvkicF2yq4pKakow/p3XLZWMEx+91UVcWZHlxgJICL8v/cBeeZAJJp5Fkgmc3HuTA86+htT/KcHz6PKrqw/t47UfehjsR5yVeH3fe9jV+GVrNkdYBjrQOUlNawLa6UtZWhXDNMPKuN5Lgj8e7ePhEN6srg2x2lhE97gn8Z4XL4Or3muCJ1v1GqJ76sanm7g0Za2vzK4xYXUj+qsQw9DZA72noOW3KWfU67/1NprbhBDyjj9dvPzTaxyuDmByz0DIoq4fSeihbbT5XbjLlp6yAWeaY+W5Y+PfAl0TkrcAfgGYg54xSVb0DuAOMBZWPCc47qvDLD4LLCy//LIjQP5zgl0+2kkzrGNHpjcT5yd4mkinlVdtqJlwWE4E1lSGeVVtKfXlwrJ/opS+Cz3wa4nHE52P1a1/G6m01qCqdgzFOdoY50TFI11B8wqnWHngcdyKOK52GRIKLj+0jcvOVPGddBYdaB9jf2MevDrZSHPBwaV0pF68sxu+Z2UMvrcqpzjCnOsP4PC42LCtk04oi6sqCz/R5iZjq7Ssvgxs+aVqAHL4bnv6lKaskLnNs7bXmVbtjfq0rVQh3jYrOeBEabB17vq8Iyleb/l3rr4dgmWkcWeC8+0Lg9nJt5yF8v3on8XQCn9vDtS/5MpRvhGQUov0mGjLcBZEuEyXZ1wBn/jS2YaWnwNxn+cXmVXMFVG/LRJBaLPlgXpf4xp1fCDytqrV2iS+L/XfBz98JL/0PuPIdJFNpfrCnkY6B2JjTesNGnNIKr7m8hsrC8d+QobasgOdvrJp6qe2RR2DXLrj2Wtg5sa+iYyDKUy39HGkdHBM1OLpEOHbJcYR0WjnZNcT+s3209EfxuV1sWVnMpbUllAbPzwIu8LlZV1XIuqoQq8qDE1tWmYmkTKPGUw+awIqmPaApELepY1jjiFrVRaYrcKhq9nKtogPQ3wh9jU6jxwZHhJzXSLPHEYpWGuulbDWUrRn7OVg+5bxUlVRaSSs83PgwD539Pc+rfz5X1109fYV6VdPHq/c0dDwNHYdNLlrHYRhqN+e4vLDiEiPstTug/mooecZCh2UeyGWJby6D2M6VfAqUBzgGXIexjHYDb1LVQ1nnVAI9qpoWkduBlKp+zAmSeAK43Dl1L3CFqvZMdr9FKVCxQfjiZeaB9Fe/BZeL+4+082RT/5jThqJJfrCnkVRaee3lNVSMEyefx8XzN1axtaZkdqeXTHG4ZYB9Z/voHza5V7kGWbQPRNnX2Mfx9kHSCmsrQ1y2qnRmtfsmwesW6sqDrK4IUV8RnF78ogPQ8CcjVC37oGWveTiP4CsywlC0AoKVxmcTLDc+HLfX+LhcbuMDSsXNeyJiLJOMddJtluGifWPv7fabv2+28Ixsl9ZnLBRVJRxPMRRNMhRLEo4lCceTDMdTDCdSRBNpookU8WSaeCpNIpkmmZ76/7bbJXjcgs/twu91E/C4KPC5CfrcBH0eCv0eigIeigMmRy4j+oPtpgJ90+Pmd9a81/i7wLR2WfNcWPM8WP28MdVNLHPHdALlBLEdIyuIDbg5O4hNRH4E/DIriO1tqjoSxLaHrCA2zPN51oPY8h1m/lLg8xiFvlNVbxeRjwN7VPVuEXkdJnJPMUt871bVmDP2r4B/ci51u6p+c6p7LUqBevDf4Pefhrc/ALVXcKJjiF8caBlzSiyZ4sdPNDEwnOR1V9RSVTRWnMpDPl5x6cqZVxifAem0crR9kN1neuieZPlvMoZiSZ5s6uNgcz/RRJqqQj/bVpWycXlhzvlZ01EU8FBbFqSmtIDq0gAVId/UIqhqrJuu49Bz0nQI7jkN4Q4Id5tIylRs8vEjBEohWOEIWgUUr4SSOiitM+JTUmesM5eLdFoZjCUZGE7QP5xgIJpgYDjJYDTBQNQIUmoawcknIlDo91AW9FEW8lIe8lMR8lFZ6KfArdBxyCwLnv6DEfuYU8mkajOse4Hx99VfY5cE54gcBGpOg9jO+eewiboLlIFW+M/LYeOL4fXfIhJP8t+PNBDJClZIq3L3gRbO9kR45aUrqa8Y+++xtqyAV1y6koB3bpzbqsrxjiEePdU9Y6Eaqbi+r7GPnnCcoM/Ns2pKuKS2hKBvdl2lPo+LqkI/VUV+Kgp9zkPXR8jnzs16UzUWUrbFpGnw+I1F5PE71tXovBOpdMb6GS8+A04frvQF+n+x0O+hqsj8PpcX+1lW6KG45zCc+QOc+j00PGwE3VNgrKv118OGP4PytfM99UWLiMSBg1m77nB89iPHX4cRn7c7228GrlLV92Sd8z/AY6r6BRF5DfAToBJ4GxBQ1X91zvu/wLCq/sds/xzzHSRhmYxdnzQ15677GAAPPt05RpwAdp/uoaE7wgs2VT1DnNZUhnj5s6qn9sXMMiLCxuVFbFhWyNNtgzx6qjvnYrUet4utNSVcvLKYsz0R9jX28ejpHnY39LJpeRHb6kqfYR2eK/Fkmua+YZr7hsfs97qFQr+HwoCXQr+bgNe8/B4XXrcLj1twi2TcPqpeUuohmSogmVYSqTSxRJpoIkw0OUAkbkpFheNJYolnVvhYLAzFjPCe7hr9ghjyl7Ki5I1UP+8tVBekWdH3BJ6T98OJ++D4b+HXGIFa7+Swrb5m8Yb/zw9JVd1+ntc4ryC22cAK1EKk7yzs/x5s/2soX8upziGOtQ+OOaWhO8yjp3u4aEURl4zzLdVXBOdcnLIRETZXF7NxeRGHWvp57FQPQ7FkzmPrK0LUV4ToCcfZ39jHkdYBDrcOsKI4wEUriti4vGjGyb+TMd5n1htJTFrL0JI74ViKkx1DnOwwQR9u11qqKjezcv0/sFraqO78E77T95uK/I9/1Vic9VfDuuvMcmDVRbYIcH5pBuqytmudfRlUtQWTBjQSxPZaVe0TkWbg2nFjd+VjknaJbyHyq7+DJ74N7z9AorCa7zzSwMDw6EMzEk/y3UfPEvS5eeOOOrxZQrS8OMDrrqjF55kfcZqIRCrN/sY+dp/pOSdLIppIcahlgCNtA3QPxXE5JZUuWlHE6srQmJ9/JsxGYvK53DPXSh25kE4r0eRokEQsmSaZTpNKKcm0ieJLphVVRUQQzHNfRHA5LVV8joXo85hX0OeelVYrU/2sIlAR8rGqyMW64QMs7/gj3tMPmv5fAMU1xne17jqTAmD7gM2IHHxQcxrEdq5YC2qhMdgGe//blOgpqWHPye4x4gSw62gnsWSK11xeM+bhXBTw8MptKxeUOAF43S52rC7nkpoS9pzpZX9jL4lU7l+MAl43V9SXcUV9GZ2DMZ5uG+Bo2yCnusK4XcKq8iBrK0OsqQzNqFjt+Lyt7FJR+WAmgphKK2Fn6Szzio5+DseSRJPpCYsDzwYelxD0uQn5PQR9booCXkoLvJQEzXtRwDtly5XpflZV6BqK0zUEe9kEvk1UXPEu1vl6WT/wOBXtf8Rz5Bew77tOvtrlsO6FRrRWXm6DLc4TVU2KyHuAexkNYjuUHcSGsZI+KSKZIDZnbI+IfAIjagAfz4c4gRWohccjX4J0Ap7zfgajCZ5oGPt3P94+yPGOIXauqxiT6+RxCa+4dOU5VxOfCwJeN9dsqGTbqlIeP93NU80DM45MM874Kp6zvpLm3mFOdYY52TWU8X9UFvqoLQtSW1ZATWnBlAEiTZdeScrrAydva7L6hLNFtiBqIkHVE4+wu3qTE7VngiUGnM8TLYl6XEJhwIR/V5cUEPC6CHjdFHjd+L0u8+5x43ELHpeYMHKXC7fLWEuKCaxBIY2xvuIpI3IJ5z2WTBOJp4jEk4Rjxn/WE47T0B0ZE7YuAsUBLxUhHxWFJpqvstBPaYEXl0vOSfy7h+J0E+JxXgAVL6Cq7lYu0hOs6XuU0taHcD/0H/CHfzeBKDWXmyXBVVdD3ZUQKJ7lv9biR1XvAe4Zt+9jWZ9/DPx4krF3YnKk8opd4ltIRAfgs5th4w3wum9w76E2Dmc1HhxZ2isKeHjj9roxiZbXbV7Gs2ovrIKo/cMJHj/dw+GWgfOKYFNVuobinO4K09gbobU/mhG+sqCXZUUBlhX7WVbkpyzoI5gVrTfbS24jJFPpTN7SYMxE7a08so/bv/xBPMkECbeHP7/pdvbWbM6MKfR7KC7wUBIwFkpRwJMRpEK/B79ndjscT8Rkvw9VJRJP0RcxYfD9wwl6I3G6w3F6I/FMo0u3S6gI+Xhe93H+7csfxJ1Mkp4gaftcWOGLsjn+FHWD+yjt3IO7/UlIJ42FVbUZVm4z1S1WboPlW8E3SYHhC4XWJ00i9Dn8zRdLLT4rUAuJx+6AX/8DvOMBukq28t1HG8Z0uP3dkXaOtA7wpitXjUnG3bC8kJc/a+U8THh26I8kePxMD0daZ25RTUQynaa9P0ZTb4SOwRgdg7ExFonXLZQUeCkp8FLo91DgM1ZIgc9YIG7H+nCLeU+rkk4rKVXSaXP9aCJNLJkyy2yJNMMJY21klt8m8LUFfW6u7jjO1Y0HObFlO+0XX0ZxgZfigGfMklm+RHM6ztUnl0yn6Q0n6BqK0TUUo3MoRnt/jK1nD/HsswfZs/pSWrZsY0VxgOrSADUlBfhnIfWhzJtgc+ooqwb3U973FL7OJ5FwpzkoLlNDcNlF5r1ygynVVLH+wogWPPIL+OFb4IZPmT5nM8QK1ALjghcoVfjSDrNU8Y4HuPtASyYCCqBtIMoPdjdy+apSnrthNDu/0O/hzTvr5yzXKZ8MRBM80dDLoeb+GfmociEST9I5GKM3ywLojyQYiifP24/jdgkBr4uQU30h5B95d2esn+ICb07BHPMRuDHCjru+ytXf/jyudJq0y83D59EzTFXpjSRoG4jS1h+lfSBK11CMke8fVYV+akoLqCkrYGVpgHUnDp63KHtdUO/tZ03yOCvCRynpO4yn5zjS12Dy1AAQkyhdttokS5fWO8VxV5nPhctNC5f55NDP4CfvMJbgm38G/qIZX2KxCNTCdVgsNU7tgu7j8Oqv0jEQHSNOqsquox0EfW6uXDM2mum6zcsWhTiB8Wm8YNMynr2mgieb+jjQ1Ec4NjtpF0Gfh/oKD/UVzzyWSivDCZOzFB+JghupY5cGl4DLsahcLuPf8XtcmRyp2Qznn+vAjWxm0ycnIpSHfJSHfGypNv6hRCpN+0CUpl6Tg/ZUSz/7m/q4vPkIf/f9j+JNmft+7/Y76bt05ik8iTSciJVwgu0Q2A4rwF/nYnkBrKKVFfEGyiINBAdO4uo/a/KxRuoKjuD2j1b6yJSfWu2UoKo/J7HImXQKHvoMPHg71D0b3vSD/N7vAsAK1ELh8TtMnbctr+LRw2MDIw63DtA+EONFW5aPqf590Yoi1lYVzvVM806Bz81VayvYvrqc4x2DPNnY/4yk2tnE7ZKMpTPfnItI+Dwu/E6IuM89mlRsAiRGQspH/RiqpoBsWk0IejKVJplSYlc9m19/7r+p2vsoDVt3zLowet0uJ4DF+IZSaaV9IMoVx36JJ5XArSZ4pPMX9/L9SBU1ZQXUlRkr61yricQSac4m4CzLqT7cQu2BHpq33UB0+5UmuMOfZnm6k7JEC0XDzbj7G50Cvg3QvMdUe88mWDkqXOVrTe3BinXm8/mEwjfuhns/Ak274ZI3wI3/aSMVsUt8C4OBFvjcxfCcD9B51Yf53mOjvqdkKs23H2mg0O/hDdtrM07ygNfNW66un/UyQAuV7qEYh1pMeHmuSb8XKtWH91H35ON0b99JdPtVFAZGlg1NEdeQz/GbOb6zqcK9z5VkyvjVIvHUaLh7dLRMU/9wYtb+DiPLmq5EgpTHw+1/+5/sKl9PS99wZqm3IuQzkZllBdSWBmecqJ3L0qkIFAW8lAW9lAV9lAS9VLgilMeaCUWacPWdyWqFcsZUpSfr+VlQNipYFeuNaFWsM/vGRxmm06bGY8Of4OCPoeGPRvxe8mnY+trzTlJeLEt8VqAWAg99Fu7/F3jvXn7dEuTpttGqEXvP9vLQ8S5ee3lN5psnXJhRe7OBqtLYM8yx9kFOdQ3N2hLgfBDyu51gDV8maKO4wPirCn2eqdthLADiyTR9kTg9kTg94TjdQ3G6hmL0DyeY6WNlosCQVFrpGDRLgk29w7T0DWdC3SsLfdSWBqktnz6dAM7fv+YSMRGWBV5Kg+ZvVupPUx5roSjcgKf3lFNY+KRpMDrQPPYCwUrwF4LbB4moKTycjJpj5evg8r+EHW8HfyHhWJKn2waIJ5Wd6yZYk86BxSJQS+Pr90JGFfb/D6zaSX9wFcfaz2QOxZIpdp/pYVV5cIw4LSv2P6O80VJBRFhVEWRVRRDVZbQNRE14eU+Etv7Ygiu4Wuj3ZJJby0K+rGRX34JLqJ4pPo+LZcWBZ/QXiyfTdA3FaB+I0jFo3nvC8SlFa3y3ZzBLr9UlBVSXFLBj9eiSoBGsCAcdHxaYoIvasoJM/tv4KMHz9a+lVemLJOiLJGjozj7iBzYS8m+mZIWX4tVeE5npSVAabaI4cpbAwBm8Aw24EsMmx9HtNxXul20mVX05g0Xr6IkkaGuK0tTTS0v/MKqwudrmdlkLar5p3A3f+DO48T/5feFL2Nsw2lLl0VPdPHa6h5t21GSy3r8AACAASURBVLE86yHw+u21YwTLYogn07T1R2ntH6ZjMEbnYIyB6My/zc8Er1soCngz365HX8YqutBFaLaIJVO098do6R+mtX+Ylr7oeUdPZtIJ+iI09Q6PyX9bVjQiWEFWlgbwe9zzFr4/gtcteN0uXCIoSiKlU/4ONlcXc8PWFed0L2tBWWaH/d8Db5DYpht56vGuzO5YIsW+s32sqwqNEad1ywqtOE2Cz+PKWFcjJFJpeiPx0QoN0SSReIpYMkUskSaRTjvReubBJlmReh6XOAEIo/6ekfI/Ib+bIr931orWLnb8HveYv42q0jkYo6nPLN819w4TTcxsudbjclHj+KWuWmP8Zm0Do0uCBxr72Xu2D8GsOtSW1lF7/UZWlhaQv+5ok5NIKYnUhbskPR9YgZpPElF46qew+UYOd4/9NnWgqZ94Ks1Va0bXoF0iXLO+cj5mesHidbtMJYkiGxG1kBCRzPLg5avKUFU6BmM09kQ42xMZEyCRK55xUYLJVJrW/tElwX2NvTxxthcRWF4UyCwJVpcUWEt3gWIFaj45eT/E+tFLXs+BxtFW4CPVv+srgmN6IG1ZWZzXzrgWy3whIiwvDrC8OMD21eUkU6ZnV0N3hIbuMF0zbIAJRrDqyoPUlQeBChIZwTJLgnvP9rLHWVIfXxKrqsg/JqXDMj/kVaBE5AbgC5hquV9X1U+NO74K+DZQ6pzzYVW9R0RWA0cAp/Y+j6rqO/M513nh0M+goJzGkh30nhlNGDzcMsBwIsWO+tG8Co9LuGqtbTlgWRp43K5MXzCoYjCaoKE7wumuMGd7Iufkv/K6XawqD7Kq3FhY8WSa1v5h2vpNMEdz3zBHs/qulQa9LCv0ZxKOy0M+SoO+vIT1T0Tp/j3wi4Nw7bWwc+ec3HOhkTeBEhE38GXgeqAJ2C0id6vq4azTPgr8UFX/S0S2YCrrrnaOnVTVbfma37yTGIajv4atr+XJttHgjlRaeeJsL9UlAWrKRmuGba0poTjgnY+ZWizzTlHAy9aaErbWlJBKK829w5zuDnO6c+icG0z6PNkiaAjHkk79xigdAzHaB2Mcy6rq4hIoDfood/KkigMeJz3AFPf1zFKZpOrD+9jx4bdCIgE+H9x//5IUqXxaUFcCJ1T1FICIfB94JZAtUAqMxFKWAC15nM/C4vh9EB9ieNMrOdk4KlDHOwYZjCa5dtNovT23S9i+umw+ZmmxLDjcrtFUg+dvrKI3HOdU1xCnOsO09EXPK9Ug5Pewxu9hTeWoaCVSaXrDTq6X894VjnG6K0xq3L1GajCGfKaPVtDppzWSXO0fV/Vjsur0tQceR+IJU/4oHoddu6xAzTI1QGPWdhNw1bhzbgN+KyLvBULAn2UdWyMi+4AB4KOq+tD4G4jILcAtAD7fBeabOfQzCFZyyHsJaR31Px1o7Kc06GVN1re6LdXFFFnryWKZkLKQjytC5VxRX040keJMd5jTnWHOdEdmHBk4EV73xPleqspQLMnA8EiFjQT90QSRWIqBqCmUG4lPff9MmSq3K1NF3+MWTgTXssPtwSvg8vnMMt8SZL6DJG4GvqWqnxGRncB/i8hWoBVYpardInIF8HMRuVhVB7IHq+odwB1g8qDmevLnTDwCx34Dl97EU62j1lPbQJS2gSjP31iV+WblEmHHaut7slhyIeB1c9GKYi5aUUw6rTT3DRvB6grTfQ6BFlMhIk7fLi81TNzCI+0UIh5pAjnSFHLse4pESkmm005tRGV39Sbe/df/H//ob2XjG1+xJK0nyK9ANQN1Wdu1zr5s/hq4AUBVHxGRAFCpqh1AzNn/hIicBDYCe/I437nj1C5IROiqezG9HaPr5wca+/C6hc3VoxWMNy4vpCRorSeLZaa4XJKJ4nvuhir6IwlOd4c50xWmqTcy6y1dJptDyGnBYqpO5M7mV25l4zkm6i4kROTTqvqh6fZNRD6D/3cDG0RkjYj4gJuAu8edcxa4DkBENgMBoFNEqpwgC0RkLbABOJXHuc4tx34N/mIOuC7O7IrEkxxvH2JLdfGY8NYr6q3vyWKZDUqCXrbVlfKqy2p45/PX8ZrLa7iivoyqIv+Ma7NWH97Hjru+SvXhffmZ7OLi+gn2vSSXgXmzoFQ1KSLvAe7FhJDfqaqHROTjwB5VvRv4O+BrIvJBTMDEW1VVReR5wMdFJAGkgXeqas8kt7qwSKfh2L2k176Qo92xzO6nmgdIqXJpVgHYuvLgM9a9LRbL+TM2jN18QRxJ6G3uHaZ7itqB89lU8kJCRN4F/B9grYg8mXWoCPhTLtfIqw9KVe/BhI5n7/tY1ufDwHMmGPcT4Cf5nNu80boPhtppr76WWMzkcqRVeaqln7ryAsqyEnEvX7X0qpVbLPNB0Odh4/IiNi43y+vRRIqWPpMj1TYQpX0glgm4mM+mkhcY/wP8Gvgk8OGs/YO5GhzzHSSx9Dj6GxAX+wNXOl42aOyJMBhNjiljVBb0jgl1tVgsc0fA62ZtVeGYhqAD0QRdgzGigy9C7/oK6USClOf8Og/PJ/kupKCq/UA/cLPjslmO0ZxCESlU1bPTzdEK1Fxz7Neka6/i+KCPkWZnh1sGCHhcrK0aFaRL60onzZGwWCxzT3HAa5LlX/NieOAB2LUL17XX8uodVzLoFCIeiiUJx5JEEimG4yZ6bzhuChQPJ1J5raw/E+aykILj6rkNaMe4bMA8/J413VgrUHNJXyO0HaTjyn/KtAUYTqQ42Rlma01xJgvd53GxZaXtBWOxLFh27syEfvsBf6GbysKpo/TSaSUcTzIYNR2Je8NxOp2+WfPQeHMuCyl8ANikqt3TnjkOK1BzyfF7AXgytBOclIyjbYOkVLl45WgDwotWFNlClRbLIsPlGs2bWlk6Nm+qJxzndFeYEx2DtPRFZ+N2HhHJTsu5w8kbHSHvhRSyaMQs9c0YK1BzyYkHSJes4kjc5DaoKoda+jPVk0dYiq3cLZalzEgx2ivqy+gNx9nf2He+3aGTqrr9PKd1XoUUsjgF7BKRX5HxvIOqfna6CViBmitSSTjzEL1rXp5ZhO0YjNE1FB9Td6+6JDBGrCwWy9KiLOTjBRctyzTRzBNzWUjhrPPyOa+csQI1VzQ/AbEBjheOfql5um0Qtwiblo9WjthaUzLRaIvFssRw5betR6aQAkaYbgLeNO6ckUIK3xpfSAHoUdVULoUUVPVfAEQkqKqRmUzStpGcK049iCIc8FwKmNyn4+2D1FcECXiNv8nncbFpRdFUV7FYLJbzRlWTwEghhSOYaL1DIvJxEbnROe3vgHeIyAHgLpxCCsDzgCdFZD/wY6YppCAiO0XkMPC0s32piHwll3laC2quOPkg0apLibhNUExz7zDheGqMIG1aXoTXbb8zWCyW/DOHhRQ+D7wYp9Sdqh5wqgVNi30azgXRfmjaTWP5aJDM0fZBvG4Zk4x7cY0NLbdYLIsPVW0ctyunuHprQc0FZ/4ImuIp/+UAJNNpTnQMsa6qMGMxVRT6qC6ZuGS/xWKxXMA0isjVgIqIF3g/ZllxWqwFNRecfJC0J0hj6BIAznZHiCXTmbpfYJoSWiwWyyLkncC7MblXzcA2Z3tarAU1F5zaRXfVDtIu09fpaNsgAa+LVeVBAETgIitQFotlEaKqXcCfn8tYK1D5ZrAduo9zcv3LAUik0pzqCrO5uhi3E0a6qjxIod/+KSwWy+LDCWV/L6aOX+ZBp6o3TjZmBPtUzDdnHwbgVNCElzd0R0imlQ3LRqskX7TCWk8Wi2XR8nPgG8AvGC0WmxNWoPLNmT+R8gTpKNwEwMnOIQIeFzVOLS6vW1ifJVYWi8WyyIiq6hfPZaAVqHzT8Cc6Sreh4iGVVk51hVlXFcpkia+tKsTnsbEqFotl0fIFEbkV+C1ja/HtnW5gXp+MInKDiBwVkRMi8uEJjq8SkQdFZJ+IPCkiL8069hFn3FEReXE+55k3Ij3QcZhTIdM2pak3QjyZZn1WE7TsSD6LxWJZhFwCvAP4FPAZ5/UfuQzMmwV1Pg2xnM83ARcDK4HfichGVZ3zpinnRYPxPzUVm3bQJzqH8LolE73n97ps11yLxbLYeT2wVlXjMx2YTwsq0xDLmdhIQ6xsJmuI9Urg+6oaU9XTwAnnehcWDQ+TcvlpL9xCWpVTnWFWV4TwOMm566oKM5F8FovFskh5CtM2fsbk0wd1Pg2xaoBHx42tGX8DEbkFuAXA55tRFfc5QRv+SFvxJaRcPtr6honEU6zLWt7bZJf3LBbL4qcUeFpEdjPWB7Xgw8wna4iVE06HyDsAQqFQXpunzJhoP7Qd5GztXwNmec8twupKs7wX8LozS30Wi8WyiLn1XAfmU6DOuSFWjmMXNo27EU3TUmzyn053hqktK8i0cs+O5LNYLJbFiqr+XkTqgQ2q+jsRCQLuXMbm0weVaYglIj5M0MPd484ZaYhFdkMs57ybRMTvZCFvAB7P41xnn6bHUVy0Fm6lNxKnbzgxJiDCRu9ZLJalgIi8A9M36qvOrhpM8u605M2CUtWkiIw0xHIDd440xAL2qOrdmIZYXxORD2ICJkYaYh0SkR8Ch4Ek8O4LLYIvffZxukPrSHhCnGnpBWC1I1B+r4s6u7xnsViWBu/GBLk9BqCqx0VkWS4D8+qDOteGWM6x24Hb8zm/vJFOQ/MeWsuuB+B0d5jyoI+SAlMsdm2ljd6zWCxLhpiqxkXMM09EPBiDZFpsCYN80Pk0rvggrcWXEE+mae4dzgRHAKxfZnOfLBbLkuH3IvJPQIGIXA/8CFOXb1qsQOWDJuMuaym6hLM9EdJKxv/kdQv1FVagLBbLkuHDmNiCg8DfYFbVPprLwPkOM1+UJBseI+EpoS+wijNnOvB5XJluuasqQpkuuhaLxbIEeBXwHVX92kwH2idlHkidfZzWoktQ4ExXmPryYMbntK7KWk8Wi2VJ8QrgmIj8t4i83PFB5YQVqNkm0oO/7wStRZfQORgjHE9lovdcIqyttK01LBbL/DNXxbxV9W3Aeozv6WbgpIh8PZc52iW+2ab5CQBaiy6hoScCQL0TUl5dGqDAl1N+msViseSNuS7mraoJEfk1JnqvALPs9/bp5pmTBSUiPxWRl4mItbimIX7mMdK4aCu6mLM9ESoLfYScdu52ec9isSwQ5qyYt4i8RES+BRwHXgt8HViRyyRzFZyvAG8CjovIp0RkU47jlhzxs3voDq4lQoDWvuiYent2ec9iscwRHhHZk/W6ZdzxiYp5jy/IfRvwFyLShLGe3juDsdn8JaZyxCZVfauq3qOqyZx+iFxOUtXfYcy4Eswa4u9EpBH4GvBdVU3kcp1Fjyq+jgOcKXkOzX3DpFQzAlUW9FIWWngV1y0Wy6Ikqarbz/Ma51XMewRVvVlElgPXO8m6j6tqRy5jc16yE5EK4K2YdcN9wBeAy4H7ZjrhRUt/E75YD+2FmznbE8EtwspSE16+pspaTxaLZcGQazHvH4Ip5o2plTrjYt4i8npMLdXXA28AHhOR1+UyyVx9UD8DHgKCwCtU9UZV/YGqvhewT16H2Nk9ALQXbuFsT4Tq0kAm52mt7ZxrsVgWDnNZzPujwA5VfYuq/iXGX/V/c5lkrlF8X1TVByc6MAtm5KIhfHoPHnHT4FlN91ALV6+rAMDncWUsKYvFYplv5riYt2vckl43ORpHuQrUFhHZp6p9ACJSBtysql/JcfzSoHUfXcH1nOkzf6sR/9OqrERdi8ViWQjMYTHv34jIvcBdzvYbx993MnL1Qb1jRJycyfUC78hx7NJAlVD3QToc/1PA62JZkR9gTB8oi8ViWSqIiYr4IqYX1LOc1x2q+qFcxudqQblFRBzzbiTJy4akZRHrOoU/MUBbaDNnWyPUlQUZKS+/2gqUxWJZgqiqisg9qnoJ8NOZjs/VgvoN8AMRuU5ErsOYar+Z6c0WM/0njI/wmHs94Xgqs7xXWeSn0G8LdlgsliXLXhHZcS4Dc31yfghTJv1dzvZ9mGxgi0Oi8QmS4mVvtBroy3TMXWNba1gslqXNVZiE3zNAGBCMcfWs6QbmmqibBv7LeeWMiNyAyZdyA19X1U+NO/454AXOZhBYpqqlzrEUpn8IwFlVvXEm955rvO0H6AptoKE/SVHAk+meW19hW7tbLJYlzZTFZKciJ4ESkQ3AJ4EtmFh4AFR17RRjpi1GqKofzDr/vcBlWZcYVtVtOf4c80o6laKk7xBHKm+guWWY1Y4o2fByi8Wy1FHVBhG5HLgGE67+J1Xdm8vYXH1Q38RYT0mMxfMd4LvTjMmlGGE2NzMahnhB0dP0NP5UmFPeDQwnUtSUGVGqLSuw4eUWi2VJIyIfA74NVGAqUXxTRHLqqJurQBWo6v2AqGqDqt4GvGyaMTkXFBSRemAN8EDW7oBT5PBREXnVJONuGSmGmEzmVHswLwyeNi029ifrAagtMxaUbe1usVgs/DmmksStqnor8GzgzbkMzDVIIua02jjuZB83M7sljm4CfjwuG7leVZtFZC3wgIgcVNWT2YNU9Q7gDoBQKKSzOJ8ZkWo9SErc7A4vo9Cfojhgfq315db/ZLFYljwtGNdQ1Nn2M0XtvmxytaDejwlieB9wBfAXwFumGTOTgoI3MW55T1WbnfdTwC7G+qcWFP6uQ/QUrOFMX5LasgJEhOICW73cYrFYgH5MeaRvicg3gaeAPhH5ooh8caqB01pQTrDDG1X174Eh4G05TipTjBAjTDdhekqNv/5FQBnwSNa+MiCiqjERqcSU2/j3HO87pwxGE5QNHOV44XaGe1LUOv6nVdZ6slgsFoCfOa8RduU6cFqBUtWUiFwz0xnlWIwQjHB9f6RKhcNm4KsiksZYeZ8a14p4wdDR2sS6RBdPY/xPNU7Ung0vt1gsFlDVb5/r2Fx9UPtE5G7gR5hEq5EbT1m6YrpihM72bROMexi4JMe5zSvhs/sB2BurpdBv8p9EoK7MCpTFYrGIyMuBTwD1GM0ZSdQtnnIguQtUAFMi/YVZ+5RzqK202Ei3mlziPw5WU1th/E9VRX4KfO55npnFYrEsCD4PvAY4OG6lbFpyrSSRq99pSZFKK4Huw/R7l9EaDbLFWd6z1pPFYrFkaASemqk4Qe6VJL6JsZjGoKp/NdMbLia6hmJUho9x2mMKaoz4n2yAhMVisWT4R+AeEfk9EBvZqaqfnW5grkt8v8z6HABejYltX9K0dfdxSeQM9wWuoMDrpjToxe0SW97IYrFYRrkdEwEeYIZtmnJd4vtJ9raI3AX8cSY3WoyEmw7iIsUT0VqqSwKICCuKA/g8uaaXWSwWy6JnpapuPZeB5/ok3QAsO8exi4Z061MA7InVUF1qaujWllvryWKxWLK4R0RedC4Dc/VBDTLWB9WG6RG1ZIkmUoR6jxCTAA26nB0lNkDCYrFYJuBdwN+LSAxIMNth5qpadH7zW3y0D0SpCh/jtGcNLnGzrMiPxyVUlwSmH2yxWCxLhPPRj5yW+ETk1SJSkrVdOlmF8aVCW98wVeFjHEqtYlmxH4/bRXVpAR639T9ZLJaFj4jcICJHReSEiHx4guOfE5H9zuuYiPRlHUtlHbt7/FjnnIuc98sneuUyx1yj+G5V1UwtJVXtE5FbgZ/nOH7R0d92Cn8qzL5ELdWVjv+pzPqfLBbLwmeOGsr+LXAL8JkJjiljCz9MSK4CNZFZkOvYRUm6/RAAh9N1mbByK1AWi+UCIdNQFkBERhrKTlbz9Gbg1pncQFVvcd5fcK6TzHU9ao+IfFZE1jmvzwJPnOtNL3QGowkK+48DcFxNiLnXbULMLRaL5QIg7w1lZ4NcBeq9QBz4AaZ1exR4d74mtdBpH4hSETlJu1TiLigh6POwosT6nywWy4LBM9Jt3Hndch7Xmqyh7HZMC6XPi8i685rtJOQaxRcGnuFEW6q0D8TYED7J0+laqsuN1VRjq0dYLJaFQ9IRkMmYaUPZMQZJdkNZEdmF8U+dfObQ8yPXKL77RKQ0a7tMRO6d7clcKHT0DVE23MDhVC0rS6z/yWKxXHBkGsqKiA8jQs+IxpusoayI+J3PIw1ln+G7mix6Lx9RfJWqmgkxVNVeEVmylSSiHSfxapzj6VpWlhbgtvlPFovlAmKOGsqORO8FgO3AAUyS7rOAPcDO6eaZq0ClRWSVqp4FEJHVTFDdfDwicgPwBcwv4Ouq+qlxxz8HjER4BIFlqlrqHHsL8FHn2L+eT1fG2aQ/Mhogcdq1imuCXlYUB6z/yWKxXFDku6HsSPSeiPwUuFxVDzrbW4FnXHcichWofwb+6JRLF+C5mPj2STmfOHsRKceENG7HCOETztjeHOebN9oHo1RGTpJGGCxah4itXm6xWCxTsGlEnABU9SkR2ZzLwJy+9qvqbzBicRS4C/g7YHiaYZk4e1WNY6L/XjnF+Tc71wZ4MXCfqvY4onQfcEMuc803HQMxysInaEgvo6zEFNeosf4ni8VimYwnReTrInKt8/oa8GQuA3MtFvt24P2YSI/9wLMxTrOpMoEnirO/apLrj4+zzzlGf65pH4iyYegk+7WO5SV+RLD+J4vFYpmct2EKxr7f2f4D8F+5DMx1ie/9wA7gUVV9gRPZ8W8zneUUTBRnPy1ObP8tAD7fjPpgnTNd/YNUxhs5ppexojhAZaGfgNc9J/e2WCyWCw1VjYrI/wPuUdWjMxmbq2c/qqpRABHxq+rTwKZpxsw0zv6urO2cxqrqHaq6XVW3ezz5r7zUH0kQHDiFmzSNnnqCPo/Nf7JYLJYpEJEbMStvv3G2t01WYHY8uQpUk5MH9XPgPhH5X6BhmjHnHGePCX18kRNvXwa8yNk3r3QMmgoSAH2h9YD1P1ksFss03IqJSegDUNX9GJfOtORaSeLVzsfbRORBoARHDacYc85x9qraIyKfwIgcwMdVtSeXueaTjsEYJQPHSaibeNlaABvBZ7FYLFOTUNV+EcneN22aEpxDRXJV/f0Mzj2nOHtn/53AnTOdXz7pGIyybvAEp7SaqpIiigu8FPqXdFF3i8VimY5DIvImwC0iG4D3AQ/nMtBml86AjoEYy6KnOK61LCvyU1Nqo/csFotlGt4LXAzEgP8B+hmN6JsSK1A5MhhNEB8eYkWqjSbvajxul13es1gslul5mar+s6rucF4fBW7MZaAVqBzpGIxRHj4FQHfQVJavLrECZbFYLNPwkRz3PQPrQMmRjoEYBX3HABgu3UCpx0Vl4dzkXlksFsuFhoi8BHgpUCMiX8w6VAwkc7mGFagc6RyKUTBwiph6cFesobokwLioFIvFYrGM0oKpWn4jYzuwDwIfnHDEOKxA5UjHQJStkdM0sIKSUIFd3rNYLJYpUNUDwAER+RkQHqkU5BQS9+dyDeuDyoFoIsVgNEl1opFmd51TwdxG8FksFksO/BbI/kZfAPwul4FWoHKgYyCGJuPUaBvdgXpEYIUtEGuxWCy5EFDVoZEN53Mwl4FWoHKgcygKvafwSJrBojVUhHz4PbZArMViseRAOLvFu4hcwfTtmgDrg8qJzsEYvl5Tgy9Wuo4663+yWCyWXPkA8CMRacE0vF0BvDGXgVagcqBzMEZR+DQAidJ1dnnPYrFYckRVdztFwUc6YBxV1UQuY+0S3zQkU2l6wgkqow20U0HSU2gbFFosFkuOiEgQ+BDwflV9ClgtIi/PZawVqGnoDsdJpNLUJBtp89bh97ooD9kEXYvFYsmRbwJxYKez3Qz8ay4DrUBNQ+dgjJ6hGOukhZ6C1awotgm6FovFMgPWqeq/AwkAVY1gfFHTYgVqGjoGo8T6mimSYcLFa63/yWKxLApE5AYROSoiJ0TkwxMc/5yI7Hdex0SkL+vYW0TkuPN6yzS3iotIAU4PKBFZh6lsPi02SGIaugbjFPSbIrHDxWtZUWwFymKxXNg41Ry+DFwPNAG7ReRuVT08co6qfjDr/PcClzmfyzFdcrdjROcJZ2zvJLe7FdPgtk5Evgc8B3hrLvO0FtQUqCqdQzFKnAi+3uAaa0FZLJbFwJXACVU9papx4PvAK6c4/2bgLufzi4H7VLXHEaX7gBsmG6iq9wGvwYjSXcB2Vd2VyyTzakGJyA3AFzAt37+uqp+a4Jw3ALdhlPiAqr7J2Z8CDjqnnVXVnPqHzCb9wwmi8RTL4mcZ9hTgKVlJ0GeNTotlOhKJBE1NTUSj0fmeyqImEAhQW1uL1+sdf8gjInuytu9Q1TuytmuAxqztJuCqie4hIvXAGuCBKcbWTDPV5wPXYJ7zXuBn05wP5FGgcjEhnfa/HwGeo6q9IrIs6xLDqrotX/PLha6hGN3hODtood23ihW2QaHFkhNNTU0UFRWxevVqG1SUJ1SV7u5umpqaWLNmzfjDSVXdPku3ugn48Uix15kiIl8B1jNqgf2NiPyZqr57urH5XOLLxYR8B/DlkbVLVe3I43xmTMdgjI7BKOtcLfQF17Dc+p8slpyIRqNUVFRYccojIkJFRcW5WqnNQF3Wdq2zbyJuYlRcZjoW4IXAi1X1m6r6TUyPqBfmMsl8ClQuZuBGYKOI/ElEHnWWBEcIiMgeZ/+r8jjPSekcjDE40EeNdDNUZP1PFstMsOKUf87jd7wb2CAia0TEhxGhuye4/kVAGfBI1u57gReJSJmIlAEvcvZNxglgVdZ2nbNvWubboeIBNgDXYlT4DyJyiar2AfWq2iwia4EHROSgqp7MHiwitwC3APh8s5882zUUp2DABEj0BdewrCinFiYWi8WyoFHVpIi8ByMsbuBOVT0kIh8H9qjqiFjdBHxfVTVrbI+IfAIjcgAfV9WeKW5XBBwRkccxPqgrgT0icrdzvUnjC/IpULmYgU3AY05dptMicgwjWLtVtRlAVU+JyC5MiOMYgXKcfncAhEIhZRaJJlL0heOUD58BD2jlBrxuG/RosVgWB6p6D3DPuH0fG7d92yRj7wTuS7hmNgAAHr1JREFUzPFWH5v+lInJ5xM3FxPy5xjrCRGpxCz5nXJMR3/W/ucAh5lDuoZi9ETirKb5/2/v3sOjqq7Gj38XCRACSsEA5WILKEgIJOEWCKBEUECh3AQtCopUfbFFfcvTi6hA1ILa8tMWsSpWRPAKKIg+VkUwRQQUKAET7mJ+XAUSIGYCuZCs949zEoeQhJBkyEyyPs9znsycOWefvWdg1uxz9tmLPGoR2qzdpTy8McZUF8dV9T/eCyBej0vksx5UGbuQBecytwN5wB9VNU1EegMvi0g+ThB92nv036VwPCOb1IxsesthTtZpQdNGl1/KwxtTbTz+YTLbD/9YqWV2bHE5M34VUeLrKSkpDB48mF69erFu3Tp69OjB3XffzYwZMzh27BhvvvkmMTExZGZm8sADD5CUlERubi7x8fEMHz6clJQUxo8fT2ZmJgBz586ld+/eJCQkEB8fT1hYGElJSXTr1o033njjvGtBr7zyCvPmzSMnJ4err76aRYsWERoaytGjR5k0aRL79jk3/7/44ov07t2bhQsXMnv2bESEyMhIFi1aVKnvVxVbLCILgb8BIcBfcW7yjS11L3x8DepCXUj3vOYUd/HeZh3Q2Zd1u5BUTw7HPdlcLUdIr9+GZpfb9SdjAsnevXtZsmQJ8+fPp0ePHrz11lusXbuWFStWMGvWLJYvX87MmTPp378/8+fP59SpU8TExHDDDTfQtGlTVq5cSUhICHv27GHs2LFs2uTcVrRlyxaSk5Np0aIFffr04auvvqJv377nHHvUqFHce++9ADz22GO8+uqrPPDAAzz44IP069ePZcuWkZeXh8fjITk5mb/85S+sW7eOsLAwTpwo7XJOQOoJPAOsw7keVTCbxAVV9SAJv5XqySYt4zRtah3h2/rX07qBBShjyqO0no4vtWnThs6dnd+5ERERDBgwABGhc+fOpKSkAPDZZ5+xYsUKZs+eDTjD4/fv30+LFi2YPHkyiYmJBAUFsXv37sJyY2JiaNWqFQDR0dGkpKScF6CSkpJ47LHHOHXqFB6Ph0GDBgGwevVqFi5cCEBQUBANGzZk4cKFjBkzhrCwMAAaN27suzelauTiZNCth9OD+l5V88uyowWoYqgqqRlZ1PUcok7QWc42upqgWjZk1phAUrfuTz8qa9WqVfi8Vq1anD17FnD+r7/33ntcc8015+wbHx9Ps2bN2Lp1K/n5+YSEhBRbblBQUGFZ3iZMmMDy5cuJiopiwYIFJCQkVGbTAs1G4AOgBxAGvCQit6jqmAvtaMPSinHqdC6nzpylZd5BAIKbdajiGhljfGHQoEE8//zzFIyi3rJlCwDp6ek0b96cWrVqsWjRIvLyLm4ShYyMDJo3b05ubi5vvvlm4foBAwbw4osvApCXl0d6ejr9+/dnyZIlpKWlAVTHU3y/UdXpqpqrqkdUdTjF3HNVHAtQxTjuyeZ4RjZXizMqPrS5BShjqqNp06aRm5tLZGQkERERTJs2DYDf/va3vP7660RFRbFz507q169/UeU++eST9OzZkz59+tChw0/fH//4xz/44osv6Ny5M926dWP79u1ERETw6KOP0q9fP6KiopgyZUopJQekzSIyTkSmA4jIL4BdZdlRvO6/Cmj169fXghE3FbVubypzv9jLsP//FL8K2crph3bRxG7SNabMduzYQXh4eFVXo0Yo7r0WkdOqenFR1UdE5EUgH+ivquHu7BOfqWqPC+1r16CKUdCDah98hFP129DcUrwbY0x59VTVriKyBcCdGLxMX6p2iq8YBUPMr5LDnLm8LbVsgIQxxpRXrpvdoiCjbhOcHtUFWYAqIis3jzRPNnI6jYaagYa1r+oqGWNMIJuDk/+pqYjMBNYCs8qyo53iKyItM4dUt/cEUNtG8BljTLmp6psishkYAAgwQlV3lGVfC1BFOFMc5XBVrSMANGhlF3qNMaYiVHUnsPNi97NTfEWkZmRz3JNN+6DDnK1Vl0bNr6rqKhljTI1kAaqIVE82qZ5swoN/IKN+a4KCgqq6SsaYSpKSkkKnTp2quhrniYuLK5zrz/zEApQXVS0MUG05RPbPrPdkzCWzfj089ZTzN4AUN9WRqRwWoLykn8nlWEY2tfKyaZp/FGwEnzGXxvr1MGAATJvm/K2kIPXss8/SqVMnOnXqxN///nfACSh33HEH4eHhjB49mtOnTwPw8MMP07FjRyIjI/nDH/4AwPHjx7nlllvo0aMHPXr04KuvvgKcufrGjx9Pnz59GD9+PL169SI5ObnwuAU9oszMTCZOnEhMTAxdunThgw8+AODMmTP8+te/Jjw8nJEjR3LmzJlKaW91Y4MkvKR6nBxQreUHaqHUtSmOjLk0EhIgJwfy8py/CQkQe8F0QaXavHkzr732Gl9//TWqSs+ePenXrx+7du3i1VdfpU+fPkycOJF//vOf3H333SxbtoydO3ciIpw6dQqAhx56iN///vf07duX/fv3M2jQIHbscAagbd++nbVr11KvXj2ee+45Fi9ezOOPP86RI0c4cuQI3bt355FHHik2ncfLL79MaGgoO3bsYNu2bXTt2rWCb2D1ZD0oL8cz3BxQtZwh5g1adqziGhlTQ8TFQZ06EBTk/I2Lq3CRa9euZeTIkdSvX58GDRowatQovvzyS6688kr69HHSEY0bN461a9fSsGFDQkJC+M1vfsP7779PaGgoAJ9//jmTJ08mOjqaYcOG8eOPP+LxeAAYNmwY9erVA+DWW29l6dKlACxevJjRo0cDTjqPp59+mujoaOLi4grTeaxZs4Zx48YBEBkZSWRkZIXbWx1ZD8pLqjvFUf86R1EVajexNO/GXBKxsbBqldNziourcO+pNEWz34oIwcHBfPPNN6xatYqlS5cyd+5cVq9eTX5+Phs2bDgn3UYB7wlkW7ZsyRVXXMG2bdt49913eemll4CS03mYsvFpD0pEBovILhHZKyIPl7DNrSKyXUSSReQtr/V3icged7nLl/UskOrJJi0zh2uCf+BMaAuoE3opDmuMAScoTZ1aacHp2muvZfny5Zw+fZrMzEyWLVvGtddey/79+1nvXuN666236Nu3Lx6Ph/T0dG6++Waee+45tm7dCsDAgQN5/vnnC8tMTEws8Xi33XYbf/3rX0lPTy/sEZWUzuO6667jrbecr7ukpCS2bdtWKW2ubnwWoNy5l14AbgI6AmNFpGORbdoBU4E+qhoB/K+7vjEwAydVcAwww50B12dyzuZzLCOLjKyztOEQuY2u9uXhjDE+1rVrVyZMmEBMTAw9e/bknnvuoVGjRlxzzTW88MILhIeHc/LkSe6//34yMjIYOnQokZGR9O3bl2effRaAOXPmsGnTJiIjI+nYsWNhz6g4o0eP5p133uHWW28tXFdSOo/7778fj8dDeHg406dPp1u3br59M4pRwQ5EnogkukuZcjuVq46+SrchIrFAvKoOcp9PBVDVp7y2+SuwW1X/VWTfsUCcqv6P+/xlIEFV3y7peBVNt3Ek/QzPfrabpZv3s7PePWRHjefyEbPLXZ4xNZml27h0ypNuw+1A7AZuBA7iZL0dq6rbvbZpByzGSZNxUkSaquox9zWPqjao/Nacy5en+FoCB7yeH3TXeWsPtBeRr0Rkg4gMvoh9EZH7RGSTiGyq6L0IqRk5pHlyaM4J6moWdX9uI/iMMdVWDLBXVfepag7wDjC8yDb3Ai+o6kmAguB0KVX1KL5goB0QB4wFXhGRn5V1Z1Wdp6rdVbV7cHDFxnukZmaTmpnNNcHOHHwWoIwxASy44Me7u9xX5PWKdCAAQtxyN4jICB/UH/DtKL5DwJVez1u567wdBL5W1VzgexHZjROwDuEELe99E3xWU5w5+NI8OcTVPQZ52E26xphAdlZVu1ewDO8ORCtgjYh0VtVTwC9V9ZCItAVWi8i3qvpdBY93Hl/2oDYC7USkjZs98ddA0Ytpy3EDkYiE4UTsfcCnwEARaeQOjhjorvOZ4xnZpHmcHlRunYZQv4kvD2eMMVWprB2IFaqaq6rf41yzagegqofcv/twOg9dfFFJnwUoVT0LTMYJLDuAxaqaLCJPiMgwd7NPgTQR2Q58AfxRVdNU9QTwJE6Q2wg84a7ziYysXNIyc8g6m08bDjsj+MSy6Bpjqq1ydyDcjkNdr/V9gO34gE9v1FXVj4GPi6yb7vVYgSnuUnTf+cB8X9avQKonhzRPNgAt8w4gYQMvxWGNMaZKqOpZESnoQAQB8ws6EMAmVV3BT2eytuNc+PijqqaJSG/gZRHJx+nkPO09+q8yVfUgCb+Q6nGuP13GaRqeTaPuz+2ub2NM6aZPn87nn39e4usvvfQSCxcuBGDBggUcPny48LV77rmH7dt98p1eZqr6saq2V9WrVHWmu266G5xQxxRV7aiqnVX1HXf9Ovd5lPv3VV/V0aY6whkgkZqZTUSdHwCo1cQClDGmdE888USpr0+aNKnw8YIFC+jUqRMtWrQA4F//+ldJuxkvFqCAE6ede6CuDTkKOYAFKGMqz78fhh++rdwyf94Zbnr6gpuNGDGCAwcOkJWVxUMPPcR9993HJ598wiOPPEJeXh5hYWGsWrWKtLQ0xo4dy6FDh4iNjWXlypVs3rwZj8fD0KFDSUpKAmD27Nl4PB7i4+OZMGECQ4cOZfTo0Tz88MOsWLGC4OBgBg4cyOzZs4mPj6dBgwa0bt2aTZs2cccdd1CvXj3Wr1/PTTfdxOzZs+nevTtvv/02s2bNQlUZMmQIzzzzDAANGjTgoYce4qOPPqJevXp88MEHNGvWrHLfRz9np/iAs3n5pGXm0CH4B/Jr1YGf/bKqq2SMqQTz589n8+bNbNq0iTlz5nD06FHuvfde3nvvPbZu3cqSJUsAePzxx+nbty/JycmMHDmS/fv3l/kYaWlpLFu2jOTkZLZt28Zjjz12zuujR4+me/fuvPnmmyQmJhbOgA5w+PBh/vznP7N69WoSExPZuHEjy5cvByAzM5NevXqxdetWrrvuOl555ZVKeEcCi/WggBOZOeTlK205xNmftaFOkL0txlSaMvR0fGXOnDksW7YMgAMHDjBv3jyuu+462rRpA0Djxo0BWLNmDe+//z4AQ4YMoVGjsk/96Z2qY+jQoQwdOrTM+27cuJG4uDiaNHFua7njjjtYs2YNI0aMoE6dOoVldevWjZUrV5a53OrCelDA0R/dEXxnDyBN7AZdY6qDhIQEPv/8c9avX8/WrVvp0qUL0dHRF1VGcHAw+fn5hc+zsrKK3eabb75h9OjRfPTRRwwePPi8bcqjdu3ahalBgoKCamRqeQtQwNEfs6jNWa7IOUztZjbFkTHVQXp6Oo0aNSI0NJSdO3eyYcMGsrKyWLNmDd9//z0AJ044t1d6p7/497//zcmTJwFo1qwZx44dIy0tjezsbD766KPzjlNSqg5vl112GRkZGeetj4mJ4T//+Q+pqank5eXx9ttv069fv0p7DwKdncvC6UF1DkmlFnk2xZEx1cTgwYN56aWXCA8P55prrqFXr140adKEefPmMWrUKPLz82natCkrV65kxowZjB07loiICHr37s0vfvELwOnFTJ8+nZiYGFq2bEmHDuf/gM3IyGD48OFkZWWhqoWpOrxNmDCBSZMmFQ6SKNC8eXOefvpprr/++sJBEsOHF52ztebyWbqNS60i6Ta6PbmSX9XeSHzWM3Dff6DFxZ0GMMacK9DTbRSMvAsLC6vqqlxQedJtBIoaf4ovKzePE24WXQDCLM27Mcb4gxp/im/vMQ8KXMUhzl7WkuA6Af+jwxhTQSkpKVVdBYP1oNj5g3Ph0pmDz64/GWOMv6jxASoz4Usmb1hMszMpBDW1EXzGGOMvavYpvvXrGffYRKibS1Bcfcio2W+HMcb4k5rdg0pIICg3l6Ar3Od70qq0OsYYY35SswNUXBzUqUN+E7fn1OdXVVodY4x/i4+PZ/bs2UDJ6TYSEhIuON1RYmIiH3/8canbmJoeoGJjYdUq0q7rQn5Qfeh3U1XXyJgaa/2B9Tz15VOsP7D+whv7gSeeeIIbbrihXPtagCobnwYoERksIrtEZK+IPFzM6xNE5LiIJLrLPV6v5XmtL5qKuPLExpLXMhT9eUdL825MFVl/YD0DFg5g2hfTGLBwQKUFqYULFxIZGUlUVBTjx4/nww8/pGfPnnTp0oUbbriBo0ePAk7PaOLEicTFxdG2bVvmzJlTWMbMmTNp3749ffv2ZdeuXYXrJ0yYwNKlSwH45JNP6NChA127di2cdBbgm2++ITY2li5dutC7d2927dpFTk4O06dP59133yU6Opp3332XzMxMJk6cSExMDF26dOGDDz4AIDk5mZiYGKKjo4mMjGTPnj2V8r4EDFX1yYKTRvg7oC1QB9gKdCyyzQRgbgn7ey7meKGhoVpep2e1VV3223Lvb4w51/bt2y9q+1lrZmnQ40FKPBr0eJDOWjOrwnVISkrSdu3a6fHjx1VVNS0tTU+cOKH5+fmqqvrKK6/olClTVFV1xowZGhsbq1lZWXr8+HFt3Lix5uTk6KZNm7RTp06amZmp6enpetVVV+nf/vY3VVW96667dMmSJXrmzBlt1aqV7t69W/Pz83XMmDE6ZMgQVVVNT0/X3NxcVVVduXKljho1SlVVX3vtNf3d735XWNepU6fqokWLVFX15MmT2q5dO/V4PDp58mR94403VFU1OztbT58+fV47i3uvgUz10Xf7pVx8OWwtBtirqvsAROQdYDhQtXmOizpzinrZqWCzmBtTZeJax1EnqA45eTnUCapDXOu4Cpe5evVqxowZUzhdUePGjfn222+57bbbOHLkCDk5OYVpN8BJs1G3bl3q1q1L06ZNOXr0KF9++SUjR44kNDQUgGHDhp13nJ07d9KmTRvatXNmoRk3bhzz5s0DnAlr77rrLvbs2YOIkJubW2xdP/vsM1asWFF4fSsrK4v9+/cTGxvLzJkzOXjwIKNGjSo8Rk3hy1N8LYEDXs8PuuuKukVEtonIUhG50mt9iIhsEpENIjKiuAOIyH3uNpvKPRV9qttltpt0jakysVfGsurOVTx5/ZOsunMVsVfG+uQ4DzzwAJMnT+bbb7/l5ZdfPid9Rt26dQsfV1Z6i2nTpnH99deTlJTEhx9+WGy6DnDOZL333nskJiaSmJjI/v37CQ8P5/bbb2fFihXUq1ePm2++mdWrV1e4ToGkqgdJfAi0VtVIYCXwutdrv1TV7sDtwN9F5KqiO6vqPFXtrqrdg4PL2RlMdc8pW4AypkrFXhnL1GunVlpw6t+/P0uWLCEtzbl95MSJE6Snp9OypfM7+fXXXy9td8BJw7F8+XLOnDlDRkYGH3744XnbdOjQgZSUFL777jsA3n777cLXvI+3YMGCwvVF028MGjSI559/vuDyBlu2bAFg3759tG3blgcffJDhw4ezbdu2i3kLAp4vA9QhwLtH1MpdV0hV01Q12336L6Cb12uH3L/7gASgi09qmbobDbI078ZUNxERETz66KP069ePqKgopkyZQnx8PGPGjKFbt25lmqm8a9eu3HbbbURFRXHTTTfRo0eP87YJCQlh3rx5DBkyhK5du9K0adPC1/70pz8xdepUunTpck6P7Prrr2f79u2FgySmTZtGbm4ukZGRREREMG3aNAAWL15Mp06diI6OJikpiTvvvLMS3hnHhQaxudvcKiLbRSRZRN7yWn+XiOxxl7sqrVJFj18QsSu9YJFgYDcwACcwbQRuV9Vkr22aq+oR9/FI4M+q2ktEGgGnVTVbRMKA9cBwVS3x+lW5020kL4fDW+DGxy9+X2NMsQI93UYgKU+6DREJwvl+vhHn8stGYKz3d6yItAMWA/1V9aSINFXVYyLSGNgEdAcU2Ax0U9WTldw03w2SUNWzIjIZ+BRnRN98VU0WkSeATaq6AnhQRIYBZ4ETOKP6AMKBl0UkH6eX93RpwalCIkY4izHG1BxlGcR2L/BCQeBR1WPu+kHASlU94e67EhgMvE0l8+nkc6r6MfBxkXXTvR5PBaYWs986oLMv62aMMdVYsIhs8no+T1XneT0vbhBbzyJltAcQka9wOhnxqvpJCfsWNwCuwmx2VGOMT6gqYje/+1Qpl2jOuoPMKiIYaAfE4YwhWCMil7TjUNWj+Iwx1VBISAhpaWmlfYGaClJV0tLSCAkJKc/uFxzEhtMzWqGquar6Pc41q3Zl3LdS+GyQxKVW7kESxphKl5uby8GDB0u878dUjpCQEFq1akXt2rXPWV+GQRJlGcQ2GGfgxF3uYLUtQDQ/DYzo6m76X5xBEicqr2UOO8VnjKl0tWvXPmeWBuNfyjiI7VNgoIhsB/KAP6pqGoCIPIkT1ACe8EVwAutBGWNMtXOhHlSgsGtQxhhj/JIFKGOMMX6p2pzic2/qPVPO3YNxbhYOZNYG/2Bt8B/VoR3lbUM9VQ34Dki1CVAVISKbKuGegSplbfAP1gb/UR3aUR3aUBEBH2GNMcZUTxagjDHG+CULUI55F97E71kb/IO1wX9Uh3ZUhzaUm12DMsYY45esB2WMMcYvWYAyxhjjl6plgLpQKmMRqSsi77qvfy0irb1em+qu3yUig8paZoC0IUVEvhWRxCK5YvyqDSJyhYh8ISIeEZlbZJ9ubhv2isgc8XE+Bx+1IcEtM9FdmhYt10/acKOIbHbf780i0t9rn0D5HEprQ6B8DjFeddwqTvbxMpUZ8FS1Wi04Ex9+B7QF6gBbgY5Ftvkt8JL7+NfAu+7jju72dYE2bjlBZSnT39vgvpYChAXA51Af6AtMAuYW2ecboBcgwL+BmwKwDQlA9wD4HLoALdzHnYBDAfg5lNaGQPkcQoFg93Fz4BjODbyX9HupKpbq2IMqTGWsqjlAQSpjb8OB193HS4EB7i/A4cA7qpqtTv6TvW55ZSnT39twqZW7DaqaqaprgXNyNYhIc+ByVd2gzv/WhcCIQGpDFahIG7ao6mF3fTJQz/2VH0ifQ7Ft8GFdS1KRNpxW1YLZJEJw0l2UtcyAVh0DVFnSERdu437w6cAVpex7yVIcF61fKce72DaA8w/7M/dUx30+qHex9SumHudtU6QNpZV58AJlViZftKHAa+4pm2k+Pj1WWW24BfivqmYTuJ+DdxsKBMTnICI9RSQZ+BaY5L5+qb+XLrnqGKBMyfqqalfgJuB3InJdVVeohrpDVTsD17rL+CquT6lEJAJ4Bvifqq5LeZXQhoD5HFT1a1WNAHoAU0WkXGl0A011DFBlSUdcuI04mSUbAmml7HvJUhwXrV8px7vYNqCqBX+PAcvw7am/irShtDJbXaDMyuSLNnh/DhnAW/jx5yAirXD+rdypqt95bR8wn0MJbQioz6GAqu4APLjX08pQZmCr6otglb3gXDzchzNAoODCYUSRbX7HuRcjF7uPIzh3gME+nAuRFywzANpQH7jM3aY+sA4Y7I9t8Hp9AhceJHFzILXBLTPMfVwb51rDJH9sA/Azd/tRxZQbEJ9DSW0IsM+hDT8NkvglcBgIK0uZgb5UeQV89I/hZmA3zgiXR911TwDD3MchwBKcAQTfAG299n3U3W8XXiOTiiszkNqAM9Jnq7skB0AbUoATOL8WD+KOTgK6A0lumXNxZ0MJlDbg/DjYDGxzP4d/4I6y9Lc2AI8BmUCi19I0kD6HktoQYJ/DeLeOicB/gRGllVmdFpvqyBhjjF+qjtegjDHGVAMWoIwxxvglC1DGGGP8kgUoY4wxfskClDHGGL9kAcrUOCLiqeo6FEdEWovI7VVdD2P8hQUoY8pJRILKsU9wKS+3BixAGeOyAGVqNBH5o4hsFJFtIvK41/rl7qS6yd4T67r5nf6fiGwFYt3nM908PRtEpFkxx4gXkUUi8hWwyO0pfSki/3WX3u6mTwPXupOX/l5EgkTkb171C9i58IwpDwtQpsYSkYFAO5w52KKBbl4T6E5U1W44MyY8KCIFM2PXB75W1Sh10mnUBzaoahSwBri3hMN1BG5Q1bE4+XxuVGfi3tuAOe42DwNfqmq0qj4H/AZIV9UeOJOE3isibSrtDTDGz5V2usGY6m6gu2xxnzfACVhrcIJSQebSK931aUAe8J5XGTnAR+7jzcCNJRxrhaqecR/XBuaKSLRbXvtS6hcpIqPd5w3denxfptYZE+AsQJmaTICnVPXlc1aKxAE3ALGqelpEEnDmSQPIUtU8r81z9af5wvIo+f9Uptfj3wNHgSicsxglJTUU4AFV/bRszTGmerFTfKYm+xSYKCINAESkpYg0xempnHSDUwecWbsrU0PgiKrm40wEWjDYIgO4rEj97heR2m792otI/UquizF+y3pQpsZS1c9EJBxY7yZT9QDjgE+ASSKyA2dG+A2VfOh/Au+JyJ3usQp6V9uAPHcAxgKcGbZbA/91s70ex7ep1Y3xKzabuTHGGL9kp/iMMcb4JQtQxhhj/JIFKGOMMX7JApQxxhi/ZAHKGGOMX7IAZYwxxi9ZgDLGGOOX/g+JgGGOTygFRgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3ycV5X3v2e6epclS+69x4kT4hQSEhJCWbIQYBM6LAR2qbssC+zybrIsobwblrKUJbAJIRB6ecOSDYQkJiQxsR2XuBe5qdrqZaTp5/3jPiPNqFhjWyPJ8v1+Ps9n5in3ee5I9vx0zj1FVBWLxWKxWKYbrqmegMVisVgso2EFymKxWCzTEitQFovFYpmWWIGyWCwWy7TECpTFYrFYpiVWoCwWi8UyLbECZbFYLJZpiRUoi2UcRORuEflBFu/fN2yLi8h/Zut5FsuFgmeqJ2CxXOyoan7yvYjkAy3Az6ZuRhbL9MBaUBaLg4h8QkQaRaRXRA6KyI0icgvwT8BfOdbNLufaIhH5bxFpdsZ8VkTczrl3isizIvJ1EekWkQMicmOG07gNOA38KSsf0mK5gLAWlMUCiMgy4IPA5araJCLzAbeq1onI54DFqvrWlCHfwwjJYiAP+B+gHvi2c/4lwM+BcuD1wC9FZIGqdowzlXcA31dbg8xisRaUxeIQB/zAShHxqupxVa0b7UIRmQW8CvioqgZV9TTwZeD2lMtOA19R1aiq/gQ4CLz6TBMQkXnAdcCD5/9xLJYLH2tBWSyAqh4RkY8CdwOrROR3wN+ratMol88DvECziCSPuTAWVJLGYVbQCWD2ONN4G/CMqh47h49gscw4rAVlsTio6sOqeg1GgBT4YvLUsEvrgTBQrqrFzlaoqqtSrqmRFPUC5gKjiV0qb8daTxbLIFagLBbMGpSI3CAifiAEDAAJ5/QpYL6IuABUtRn4PfAlESkUEZeILBKR61JuWQl8WES8IvJGYAXw6BmefxVQg43es1gGsQJlsRj8wBeANkyYdyXwKedcUjTaRWS78/7tgA/YB3RiAiKqU+73PLDEud89wBtUtf0Mz38H8EtV7T3/j2KxzAzEBgtZLBOLiLwTeI/jLrRYLOeItaAsFovFMi2xAmWxWCyWaYl18VksFotlWmItKIvFYrFMS2ZMoq7L5dKcnJypnobFYrFMOf39/aqqF7wBMmMEKicnh2AwONXTsFgslilHRAameg4TwQWvsBaLxWKZmViBslgsFsu0xAqUxWKxWKYlVqAsFovFMi2xAmWxWCyWaYkVKIvFYrFMS6xAzVA212/m83/6PJvrN0/1VCwWi+WcmDF5UBagpxk6j7H5xNPc+PRdROIxfG4vT7zqW2xc9lrIK5vqGVosFkvGWIG6kFGFE8/Brofh6B+h23Qc30SYCBHiApFYmE2P/A0b+SjklEL5UqhaAzWXma1sMbisIW2xWKYfM6ZYbF5enl5UlSSOPAGP3wWndoOvABbfAHOvgvLFbA6e4sb/eQ+ReBSfy8MT13+Wje4caDsErYeg5UWI9Jn7+Ath9iVQeznUXmFeraVlsVzQiEi/quZN9TzOFytQFxoDnfCbj8K+X0PxPHjpx2H168GX/m9xc/1mNh3fxPXzr2fjnI3p90jEjVg1vgCN26FxG7TsAY2b86ULjVjNudwIVuUqcFtj22K5ULACNc24KATq9H744Zugtwmu/xRc9SHw+Cfm3pEgNO2Ahq1QvxUatkCw1Zzz5kHNpY6VdTnMuQLyyifmuRaLZcKxAjXNmPECVb8FfvgG8ATg9h9B7WXZfZ4qdJ0YEquGrdCyGxIxc75kwZBY1V4Os1ZbK8timSZYgZpmzGiBOrUXHngl5JbB2/8fFM894+WRWIL6zn6augZo6wvTMxBjIBonFk8A4HW7CHjd5Pk9FAY8lOb5KM/3U1noJ9d3BpGJ9EPzTsfKckSr75Q5582F2euNWM1eD+VLjKvQa1ugWCyTjRWoacaMFajuRvjODSAu+OvfnVGcGrsG2FXfRd3pPmKJc/u9FuV4mV2cQ21JDnNKcynK8Y59sSp0nTRClRStlheHrCyAwlooWwgFs6FgFuRXmdfcMvDlm82fb9bQPAEQN7jc5vOKnNNnsFgudqxATTNmpEDFo/C918CpPfCeP0DlilEva+0N8/ShVk529E/4FEpyvcwvz2NBeR61Jbm4XeOIRnQAWg9Aex10HIX2I+a1t8VsiWjmDxeXsyVFy21C4tP2PUPH3D7wF0Cg0Lz6CyGnGAqqoaDKea2Gwhrw+M7vB2OxTGOsQE0zZqRA/f7/wHNfgzfcD6tvG3E6kVD+fKydrcc6SUzC79HncTG/LI9FlXnML8sj4HWf3Q1UTRRib4t5jQQh0gvhPvM+FjKRhImEedWEiTjUuPM6bD8RSz8WC5vw+VAPhHsh3GOeEwulz0NcJgKyfInJAytbbHLDZq0GX+7E/cAslinCCtQ0Y8YJ1InN8MAtsOHd8Jovjzg9EInzPy820dCZeePMqr3bmbXjeY6suIxjS9ficbnwe1zk+Ny4ztKd5nYJtSU5LKrIZ2FFHgWBM7gCpxJVCHUZUexpgt5m6DwB7Yeh7Yix8GLOz1BcUL7M5IVVrzOh9tVrwT1NP5vFMgZWoKYZM0qgYmH4r2sh2g9/+2ezRpNC90CUX25voKs/SvW+HdTu2kLDuitoXrl+xK1O94Y42hqkaOc2vvrdf8AbjxF1e3jL7fewvca4DN0uoTjXS0W+nxpn/akox4tkKFoiUFkQYGFFHgvL86go8Gc8dspJJKCnwUQoNu2E5l0mECQ1+KN2A8zdaLbay0f8PiyW6cZMEaisxgWLyC3AVwE38F1V/cKw8/OA+4EKoAN4q6o2OOfeAXzaufSzqvpgNuc6rXj2q9B2EN78s5Hi1B/lZy/U0xuKUb1vB7d94p24oxHiXh+/+OL3aF65HlXl0Kk+tp/s5HRvGIB/PLoTXzyGWxNIIs47IsepXPUyQrE4PQNROoIRTnb0c6ClF4DiHC+LK/NZUpk/ruCowqmeEKd6QmyuayfP72ZeWR7zynKZU5JLnn8ah5+7XCbwpHguLH/10PGeJqh/Hk7+GU5uhqf/3bgTxW2sqnlXO9tGyCmZuvlbLDOYrH1ziIgb+AZwE9AAbBWRR1R1X8pl9wLfV9UHReQG4PPA20SkFLgL2AAo8IIztjNb85029LbAM1+GFa+FpTenneqPxPjljgZ6QyZKrnbXFtzRCK5EAqJRandtYXvNcp462Eprb5jSXB/XL61g6awCSqtvJvHHh5FolITXy8BV17KsqiDt/qpK/vatlGx7jidnreSx0AK2neikNM/H6tmFLK8uJCeDdadgOM6+ph72NfUAUJbvY3ZRDrOLc6guClCcm7l1NmUUzoZVrzMbmDWt+i1GrE5shi3fgc1fBwRmrXLE6irzml8xpVO3WGYKWXPxichG4G5VfYWz/ykAVf18yjV7gVtUtV7MN1a3qhaKyB3A9ar6Pue6bwObVPVHYz1vxrj4/ufvYfuD8IEtULZo8HAsnuDnLzTQ3D204D9kQUWJe73c9aGv8iN3DXl+D1cvKmNZVUGaEIznDhxukT382fv5Y/li9jX10NITwu0SFlfks25OEdVFo+c3jfcMAL/XRUW+n4oCP2V5fkryvJTk+qa3pTWcaAiatsPxZ+HEs8baijpRlOVLhyys+VcbsbNYJhHr4hufGqA+Zb8BeMmwa3YBr8e4AV8HFIhI2Rhja7I31WlCex288D0TGJEiTgBPHWxNEyeA5pXr+cUXv0fVjj/z47yFPOauYWV1IS9dWo7fM9LSaV65fkzRgJEW2aJ92+i44zLW1BTR2htmb1M3+1t6OXiql6rCAJfMKWZxZf5g6PlYLsfhhKMJGjoHRgR4eN1CYY6XfL+HPL+HXJ+bXJ8bv8dNwOvC53bj87jwuAWvy4XbLXhcgksEt0twCZNnmXkDjsV0FfBxkxLQvAuOP2MEa88v4IUHzLUl82HeNeba+VebCMLpbkFaLNOAqf6T9R+Ar4vIO4GngUYgnulgEbkTuBPA55sBeS1P/7uprXfdP6Yd3t/cw57G7lGHHF60hi92l9A9EOWm5bNYObswo0f5PCaCL6FKKJognlAa1l1B3OsDxyJrWHfF4PUVBX6uX1bJGyL1BJ77E78pXspjPUvIP+JhXW0Rq2uKRnU5nkkQhxONK+19Edr7IhmPGY5LjFC5HOFyiQkCSd08LsHjcuH1uPC5Ba/bhd/jxu91EXDEMOB1OwLpIeB1jS98bq8JpqjdANd81IS+t+w27VBOPAsHfws7f2CuLawZWr+avR4qV05cTUWLJUMuhBiBbApUIzAnZb/WOTaIqjZhLChEJB+4TVW7RKQRuH7Y2E3DH6Cq9wH3gXHxTeDcJ5+uetj9M7j8vZBfOXi4JxTlyQOnRx3SF47xi+0NBMMxXre+htqSsXN48v0ellYVML8sl1mFgbQcJlWlZyDG6bXV7Kr8ObppE3UrN4wQl+p9O7jtn96NOxrhL70+/vNT3+JXgbk8W9fO88c6aC9ewhUeH57YSIGbLBKqJBQ4x0oao+F2CXl+D/l+NwUBY+EV5ngpCHgoyvFSGPDi8wzrqeVym3D12ZfAxr810YKtB4xYnXgWjm6C3T91rvVAxXKoWmvC26vXmv3c0gn7DNOCeMyE/MejkIixuXELmxo2c/3cl7Jx/ktNNREb0j8pXCgxAtlcg/IAh4AbMcK0FXizqu5NuaYc6FDVhIjcA8RV9V+cH8ALwKXOpduBy1S1Y6znXfBrUI99CrbcBx/eCcVDuv7L7Q2caB9ZISIcjfPTFxroDUX5y0tqmF08+ppQYY6XKxeWsryqcPwqECk0dQ2wt6mHgy09ROPm38jlP/o2Vz34FVyJBAmXm+fe8RG23vE+2vrC7Kzv4kBLL+vq93Fz6wH6rrwG2bgR11k880Imz++mOMdHUa6X4hwvJXk+inO9FOf4RooXmNDHzmPQ/KIpD9W8y7wPpvwxklPqJBMvgfLFULoIimpM+ai8iqltNKlqkqv726C/HYLt5nVwvw36O8x+0DkW6hocvpkYN9JPBPABT5DLRjym9FXhbGNlFs8xrV6qVpsk6pziKfu4FxrjrUFNdozAuZI1C0pVYyLyQeB3GBPyflXdKyKfAbap6iMYK+nzIqIYF98HnLEdIvJvGFED+MyZxOmCp78DXngQVr8hTZz2NfWMKk7xhPLbPc109UfGFCcRuHRuCRsXleF1n/0X2exiE3V37ZJydtV3sbO+a0wXYHm+n5evmMVVi8rY21TKNxrX0BuKkf/ccVbXFLJ6dtGFFQBxDgTDcYLhARq7RiZOFwQ8FOf6KMn1Dr6W5PooKl6Aq3QhrPrLoYt7W4xrsO2Qsx2BI48PuQeTuLxQWO2IVbkJdc8pdl5LIFAEnhxT0skTMC5Et99YdppI3xIJiIedyh5BE+yRfA31wECHIz4dZkvux8dwxbq8ptZiXrl5rV7nvC83c3T72FT3v0QO/II4CSK42LT45Wysvcbct6fRbAd+C9u/P3TfypWw4KUw/1rzGsjMnW0ZlQsiRsAm6k4HnvtP+P2n4f3Pmr8WgVA0zoPPHac/MnJJ7o+HWtlZ38VNK0Zfcwp43bxydRXzyycuiCcSS/BiQxcnf/sElS/8+YxReglVjrUFebGhm5Md/bgE5pflsbyqgAXleXjOQTBnIi4RinKMeCUtryJnK8zxpv9hEeqGzuOmeHDyC7ynyez3t8FAlxGOsUTjXBG3EbzcUiM2OaWQWzL0PilCueWmE3NumamBOM6a3eb6zdz4/RuJxCP43D6eePsTIxtrqpqE6ZY9Jnn6xLMmxD82YOouLroBVt4Ky15pc9GGISIRYHfKofucJZHk+TdgrKP3OPtvA16iqh9MuWY28HVgAcaAuA1YDbwHCKjqZ53r/g8woKr3TvjnsAI1xSQS8PUNZt3p3Y8NHv7joVa2nxjp0j3a2sdvXmzmkjnFXLd0ZL5NQcDD6y+tpTQvO0EjoWicF050sv1EZ0YV0zv7I+xp7OZgSy/BSByfx8USJwG4piQHz1S6qaY5uT734FpXvt8zGN2Y7/eQ40Q4BjzuITeqqinWO9Bp3GmxEMQi5jXuvCbiKdXiUza3z6kun2uqZ/jynArzOcQRwrE44WiCcCxh3scSzr55H0k5Ho0rsXiCaEKJxxPE1axzJr9qxAlcOda7g8Odz3PJrKu5ZNYV5Prcg+t7xTnG2hzhlo6FTeX8A4/Cvv9nqoC4vLD8VXDp22Hhy8znu8iZCBffsOvzgQOqWjuZLj4rUFPN0U3w/Vvh9d+BtW8CTLWIBzcfJz5MAHpDUR5+/iSFOV7euKF2xJd7QcDDGzfMOXOLjAmiJxTl2cNtg5UnxiOhSkPnAAeaezjS2kc0rnjdwtzS3MFK6YUBz6Qn8GaStzWdEUlGZLrxe1z43C68HhOl6HElw+/FFHxn6GebDCaJJ5SEKrGEEZVYXInEE0TjRnQiscQ5t245X1wilOSZElyVhQFmFweoLAgMiZaqyUXb/XPY9WNjQRbWwvq3wqVvg6LaKZn3dCADgZrUGIFz/hxWoKaYn74djv0J/n6/ya0B/nd384gvflXl1zubaO4e4I4r5lKSm24h5frcvGnDHEqyZDmNRVPXAH881ErLsBytMxGLmzyoo21BjrUF6Qubyhj5fg+ziwNUFQYoz/dTnu8nx5e9v4Yzzdua6GdeyIJ4NmTjs3rdwuziHOaW5jK/PI/yfCc8PxY2a1Y7HoK6p4xyL3WKLS+6cWoDSqaATBJ1ReRVwFcYihG4JzVGwHEDfh4Tqfc08AFVDTtj3w38k3Ore1T1gax8DitQU0iwDb60DF7yfnjFPYDp7fTD508w/NdyoLmH3+07xfVLK1g3Jz2ayeMSbrusdsxIvmyjquxt6uG5ujaC4YzT2AbHtgcjNHYN0NQ1QFNXaFCwwAhvkePmKgh4KfB7CHiNteD3GoshmfMkmL+6EccySChxVeKJ9C3mvN78yP3c+ov/wq0J4i4XP33tnfz85relXJdw7mO+70TM/ZOvbhEnl8qFL8V6CXjcQy4471Cl+KkQxKlisj5rYY6XRRV5LK7Mp6Y4x1jgncdN0NGOhyDYauosXvYuWP+2i6YMla0kYTl/9vzS9DS65C2Dh54/1j5CnAYicZ4+3EZVYYA1tUUjbvOy5ZVTJk5gqjesriliyax8thzrYMfJrhHuyTONTVpL62qLUVX6I3Ha+sK090VoC4bpDcU41RPmyOm+iUxv4nRgAa90e0yFd5eHn+UvYtfJrqGEXreT3CtCwllDSbrGFCNi0ZgRwTE/Hwwm/d757OO4IhFcmkCjUfI2P0PrnJUUBDz4PRkkA19AnG/Sdqb0DETZcbKLHSe7BnP9lldVMevld8H1n4IDv4FtD8AT/wpPfQ5WvtZYVfOunv7VPELdJhrzIsYK1FSy+6cwaw3MWglAe5/5Eh7Os3VthGNxblxRM6Jv04rqQlbXTI9/xH6Pm2uXVLCmpoinD7dRN8pnGQ8RkxSb5/cwryz9D8CkeJkF+QShmHmfSCgJhhbiVc0ivMvFoMCkV5JwOa/z+fG62SzYs5XGdVdwzapLufYcvrTiCbNuE0kJFuiPxBmImNf+SIz+SJyt89fxdrcXbzxK1OXmAe88tm85CRgruCDgId8JiCjwG6sxWfIpz2cCI84ml+1cyNQtp45lmvzc0bg661UJc8G8NVzh8eKOxYh7PLywYC0t3SG8TuWOgNeN1y0TKsp94RjbnQCesnwfK6oLWbHkVvJX3wath0zpqZ0/NGWoypcaoVp3+/SMAOw8AfddB7d8Edb91VTPZsqwLr6por0O/vNSuOkzcPVHAPjd3pbBCuBJWnvDPLzl5KhRe0U5Xt565bzRE0GnAfUd/TxzpO2s1qdmOtX7dlCz83kOr7yMAwtW0xeK0RuO0RuK0ReO0ReKsejIi6yr28mf564Z7NmVJGewBJObXL+HgMdxLzouRr/HjddjRNklQwES8w+9yMK92ziy8jKOL1nnWILGGozFE0TiCeYefJFP3PsBPLEoMY+XT/7tf/DinJVGeONDIhR1rh/vq+PSxv1ceXL3qJ8DjCgnBbgg4KEk12c2p3jwueTvDcclwryyXFbNLmRhRT7u2ADs/RVsux8at5lcsdW3GbGquXR6WFWJuAmcatoJf/MslMw761tYF5/l/Nj9M0BMci4mQu/gKBFxzx5pw+9x8ZIF6WVvRODmVbOmrTgBzCnN5Y4r5nLoVC+b69rpCE5wjs4FSGrB3mqAYcZv9b4d3PbwP5m1G4+P+/7lPvYvWEV/OE7QscSSFllz14AJ8R5HLC5t3M+//vif8cZjXDesWWUqf7v5adyxKG5NoLEo83dv5enyJfjcpkZhgd+ssSXX3LxuV/p7j4kcTH7Hy4Y5tHMzS4AFCSNwUSdCMBRNEAzHzGcKx6ncs521R4woP1azAgFK831UFQaYVZgMnPGdtcWVzMk71hYkx+dmeVUBqxa/gYr1bzHVO7Y9AC/+1CRCV6wwPcGWvcrUSJyqwIo/3A3H/wS3fvOcxGkmYQVqqtj9c5h/jSldA+yq7x6xbnOiPciJjn6uXVKeVjsPYG1t0Rlr700nls4qYHFFPgdaetlyrJ3O/uhUT2nakrZ2E4uyrm4nkSuGJ/ino06YeNL1GYkl0iykG44/hi8x1Kzy3bETLLj05YMWltsl+D0uZlXcgj7/UxLRKOr1Muu1t/DWldn/gqzet4PbfmhEOebx8dVPfpOt1cs51Rui7nQfex2vQo7XzZzSHOaU5jK3NJfCwNmlUwxE4oPrVZWFflZUz2X5K+4l96bPGHf73l+bXmx/uhfyq2DxjaaL8ryroHTh5FhXm78Bz30NNvw1rH/L+NfPcKxATQWtB6H9MLzkfQBE4wl2D6tWrqo8V9dOYcDD2mGBEXl+N1ctKp+06U4ELpewcnYhK6oLOHy6j23HOznVY11/wzlTRfmxEJHBtZ28UYqiBzdeQ+LX3x1sVtl35TWj/nHTsfYyfvHF7016GHyqKHtiUTbW78FzzdWA+X/QPRClqTtEfUc/9R39HDpl1jYr8v0sqsxjcUU+pXnjW1fD19dO97Typ0NtzC/PZWntm1i0/t34Il1w+HE4+CgcesysWYERrJpLoWrN0DaRbVPiUWM5bf66qY7xyi9OzH0vcOwa1FTwpy/BE58xuU+Fs9nT2M3j+06lXXKsLcgju5p4+YpKVs1OF6hXrKrKuK3GdKaxa4AX67s4crpvypJBpyPZyB+azvlXwxtvnikkXVXpCEY40d7Pkda+wR5pxblellYWsLy6YESOYPozxg5797qFeWUmZH1BeR4Bj8vUQzzxrGmb0vyi+cNSnUAQX76xrMoWQZlTzLdssdnPKclMvGIRI4abPm+q3V/+XrjlC+D2EIsnzrks2ExZg7ICNRXc9zLzj/e9TwLw8PMn06wJVeWn2xoIRmK8Y+P8tMitqqIAt18+Z0aFJA9E4hw81cvBlh6au0PjLr5PFclw8Rwnv8kEJZgGisnIwNRfSzIPKxY3OVVJF5wpExRnIBpnIGLccRc75yqgwXCMutY+jrT20dAxgAJVhQFWVBewdFbBoGt8rEr8Y+ESobo4wILyPOaV5lJR4Df/5yL9cHq/qUB/ej901JmAp64TQ8IF4M0zVdmLakxl9vxZpoyUJ8eUnepvh/YjcPLPpixV6UK4+R5TsglTKPpUT4iXLa8cY4ZnZqYIlHXxTTbdjaY8y413AXCqJzTC1XWyo5+WnhA3LK8cEVb80qUVM0qcAHJ8bi6ZU8wlc4rpDUU52hrkeHuQxq4BwtHE+DeYAJJh3kW5pr9TYUpycLIOXjZCvFWVcMwEDPQ7Yel94Rj9kZhTId15H4kTisanTLxdIinRgsad6HW7BnPFks0hzWcy7bhiiaHSSUaQE4Sioydyj9fteSzy/B7W1haztraYvnCMgy297G/u4amDrTx9qI0F5Xmsrimkau3lZ+U6TajS2DlAY+cAz2D+OKkpyaGmOEB10Uoq1q9PjzKMRYxItdcZ0epuGCroW/eUKXqrKZ/dk2MSiJe/xlSzX/gycHto7Q3zzJFWjrf1s6L6wveSnC9WoCabg4+a1+WvAWB3w8hOuVuPd5Lv97CiuiDt+MKKPGqmMCF3MigIeFk3p5h1c4pJJJS2YJhT3WFO94ZoD0bo7o8SjMTO+ova73UNCk1BwIiPESLTdDDfP/l1AMGsHwW8xiIrG+faREKN1RU1OVahaJyQU7A1NRQ8nkgMVssA0oq0iiTzwjD1+hyx8aVWxHC6LSe7DCdr/E3EzyeeUPrCMXpDUXoGYnQNROgMRmkPhukMRs/Lmsz3e7hsXgmXzi2mrS/CvuYeDrb0cqS1jycDJRz46Ne4rnkfpy+98qzFMBSNU3e6bzC3zyVCab6Pinw/5fk+SvN8lOTOo3DJ4tH/kFE160yxAdOg0peXdu/jrUH2NfVwsqN/2noQpgIrUJPN/t+YJMGKpUTjCQ6eSg8tb+0N09g1wLWLy9OKwYpwwQVGnC8ul1BZYAqEpsZjxxNKMBJjwEnajcaH3GTJL+BkCaKA10WO1z0jWny4XENJzBcqbpcMthRhWH5sLJ6gPRihpTtES0+Ipq4Bus4h4lNEqCjwc11BBVcvLqPudJA9Td08GJrNQ7NnszCez+r2IHNLc89ZdBOqtPWGaesNpx13iZDndw8mWec4f3x43a5BCzOWiBGKBukNxegIRujsj1hRGoML91/6hUi41yy4bvwAAIdP9RGJpbuwdtR34nULq4YFQSyuzKeiYJQQrYsQt0uM9XOWYcaW6Y3H7WKWk/e0zjnWF47R0NnPyfZ+Tnb00xuKnfEeI+7pcrGsqoBlVQWDrV/2Nfdw5HQfRTleVs0uZGV14YSJfkKV3lDsrOdpGR0rUJPJsT+Z2nuLXw7A/ub0qhHBcIxDLX2sqinEn5L3JAIvWTCeA8himXnk+z0srypkeZX5g621N8yxtiBHW/to6Tm7gJqSXB/XLqlg4yJjVe1u7Oa5unb+fLSdBeV5rKwuZH5Z3lB/LcuUk1WBEpFbMG4cscEAACAASURBVO2C3cB3VfULw87PBR4Eip1rPqmqj4rIfGA/cNC59M+q+v5sznVSqHvCRPfMuZLeUJT6zvR27nsau4mrcklterXyBeV51nqyWICKAj8VBX6uWFBKXzjGkdN9HDrVS1PXQMZilWZVBSPsbe5hf3MPda1Bcn1uVlQXsqq6cNJb1wyneOc2+M1uuP562Lhx3OtnIlkTKBFxA98AbsL0rN8qIo+o6r6Uyz4N/FRVvyUiK4FHgfnOuTpVvSRb85sSjvwBFlwLHh8HGzrS/kPFE8qLjd3MK8sd8R/j8vmlWCyWdPL9nrToz0OnetnX3DtiXehMlOT5uGZxORsXlnGiPcjeph62n+zkhROdVBcFWDargMWV+ZO+7le9bweXf/KdEI2CzwdPPHFRilQ2f+pXAEdU9SiAiPwYuBVIFSgFkostRUBTFucztbTXmT41V5r1p+HBEUdb++iPxEdYTzXFOVPaSsNiuRAoCHi5bF4pl80r5XRviL1NPRxo7h0zrH04bpewsCKfhRX5BMMxDrT0sq+5h02HWtl0qJWa4hyWVOazsCKPgklY+6zdtQWJRE3h2EgENm2yAjXB1AD1KfsNwPCiYncDvxeRDwF5wMtTzi0QkR1AD/BpVf1TFueafepMUi6Lb6QjGOF0T/pfeXube8j3e5hbll6C5tJ56YJlsVjOTGVBgMplAa5dXM6R1j5ebOimsXMg4/F5Trj6ZfNKaO8Lc/h0H4dP9w2KVWmej7mlucwrzaW6OIDfM3Fdn+MJpbU3zO8qlrHB7cEn4PL5jJvvImSqgyTuAL6nql8SkY3AQyKyGmgG5qpqu4hcBvxaRFapalpUgYjcCdwJ4PNNrb94XI48ASXzoXQhh451pJ3qDUU50d7PFfNL0/o9FeV4WVSRP8kTtVhmBh63azDAoq0vzIsNXexv7h0ROXsmyvL9lOX7uXJhGe19YY470YS7G7vZWd8FQEmul1mFASoL/BTn+ijO8VKQ40lLExlOMkG7qz9KZ38kLbw+nlCQGjru/BIf8zez8A2vviitJ8iuQDUCc1L2a51jqfw1cAuAqm4WkQBQrqqngbBz/AURqQOWAttSB6vqfcB9YEodZeNDTAjxqCmfv/ZNIMLhYY38kj2ghtfXWzeneMZVjbBYpoLyfD83LJ/F1YvL2dvUw676rrPOsUqK1WXzSojFEzR2DdDSE+JUT5iTHf0cGNYux+d2DSY6i8hgQ81QzCRap5afdIkJAFlbU0R1cYCa4hwum3cZC1dXTcTHv2DJpkBtBZaIyAKMMN0OvHnYNSeBG4HvicgKIAC0ikgF0KGqcRFZCCwBjmZxrtmleRdE+mDBS+kMRtIWcVWVfc09zCnNMcmLDqPlQlkslvPD73Fz6dwS1s8p5mhbkO0nOmk4C/dfkjkHd7ExWTtw3frBbs/dA1G6B6L0DEQJOd2Vw9EECggmZcTvCZDjNJ0syvFSmuujMMeb9W7JFyJZEyhVjYnIB4HfYULI71fVvSLyGWCbqj4CfAz4joj8HSZg4p2qqiLyUuAzIhIFEsD7VbVjjEdNf447y2fzrh5hPdV3DtATio2oEpFa6NJisUwsIsKiinwWVeRzuifE9pNdHDrVO6In22iMVRk9WeXDBjWlIyJfVNVPjHdsNLK6BqWqj2JCx1OP/UvK+33A1aOM+wXwi2zObVI5/iyUL4P8Sur2nUw7daC5B5/HxaKK9MLDa2ttcITFMhlUFga4ZXUV1ywpZ1d9Fy82dJ8x+i+tqWQ0Su2uLdOuhck04yZguBi9cpRjI7jwC5RNd+IxOLkZ5l9NbyiaVrk8Fk9Q1xpkcUV+Wq24igI/VUWBqZitxXLRku/3cPXict5z7QJevmIW5fmjB14lm0omXO6Mm0pOR0TkFhE5KCJHROSTo5yfKyJPicgOEXlRRF7lHJ8vIgMistPZ/muM+/+NiOwGljnjk9sx4MVM5jjVUXwznxZn/Wn+NRxtDaYl5x5rCxKJJ1hWlV61fE1NERaLZWrwul2sqS1iTW0R9R397Gro4mhrcND917xy/ZR0Hp5IJqmQwsPA/wKfB1IFsDfTJRsrUNnm+DPmdd41HD2Svv508FQvuT43tSVDPmuPS0YIlsVimRrmlOYypzSXYDjGfqckUltf5Jz7V00jsl5IQVW7gW7gDkcQZ2E0J19E8lX15BlvgBWo7HP8WShbQiSngoaOusHD4Vic4+39rKkpSst9WlSZb4MjLJZpRp7fw4b5pWyYX0prb5jDp3qpa+2jrS8y1VMbC4+IpKbl3Oek5SSZtEIKTrDc3cApTNAbGPFbO+6HGO8Cy3mQiJv1p9Wv52RHP7GUCKG608ZlsGxWurVkQ8stlulNsmDtVYvL6QlFOdneT1PXAKd6w3QGIxlFAiZxu4Qcr2kMmQwzj8YS9IXPu11HTFU3nOc9zquQQgofBZapavvZTsAKVDY5vR/CPTB3I8fagmmnDp7qpSjHy6zCoSrl+X4Pc0tzh9/FYrFMUwoDXlbXFLHaWTeOJ5TeUJTeUIx+p6FmXBXBiJHf4yLgNTlQeX7PYBLvaIRjmdURPEeyXkghhXqMq++ssQKVTRq2mNc5V3Bi75BAhaJxGjr7uXRuSdo/zmVVBbZyhMVyAeN2iSl3lHv+pdcmssbfKExmIYWjwCYR+S2OsAGo6n+MN0krUNmkfivkltPqmU1vaGg98FhbkIQyos7e8mobHGGxWLLPJBdSOOlsPmfLGCtQ2aRhi7GeOtIbE9a19pHv96S598rzfVQW2Nwni8UyOUxWIQVV/VcAEclV1f7xrk/FJupmi2A7tB+B2ss53j70O4nGE5xo72dhRV6aO2/pLGs9WSyWmYeIbBSRfcABZ3+diHwzk7FWoLJFw1YAYjWX09Q1VIzyRLuJ5ls8zL1nc58sFssM5SvAK4B2AFXdBbw0k4FWoLJFwxZweWjIWZ4WdlrX2kfA46ImpaDkrMLAhCyqWiwWy3REVeuHHcooRNGuQWWL+i0wazUnUlrExBPKsbYgCyvycLlS3Xu2KaHFYpmx1IvIVYCKiBf4CLA/k4HWgsoG8Rg0boc5V3AyJUCiqWuAcCwxInpvSaV171kslhnL+4EPYKpXNAKXOPvjYi2obNB2EKJBQrPW09Yx1JzweHsQtwhzSoaScWcVBijK9Y52F4vFYrngUdU24C3nMtYKVDZo2mle8lZCSnbA8fZ+akpy8HmGDNfFlda9Z7FYZi5OMvCHMJXQBzVHVV873lgrUNmgaQf4CqiLzwLMIlTPQJSOYITVw2rtWYGyWCwznF8D/w38hqFisRmR1TWoc22I5Zz7lDPuoIi8IpvznHCad0L1Ouo7h5oTHms3pY7mlw91zi3L91GaZ6P3LBbLjCakql9T1adU9Y/JLZOBWbOgzqchlvP+dmAVMBv4g4gsVdWsVk+cEOJRaNlNeP276B6IDh4+3hakKMdLcc7QetPwYAmLxWKZgXxVRO4Cfk96Lb7t4w3MpovvfBpi3Qr8WFXDwDEROeLcb3MW5zsxtB6AWIjWgpWDv4pYPEFD5wCrZhemVY+wAmWxWC4C1gBvA24gvR/UDeMNzKZAnU9DrBrgz8PG1mRnmhOMEyBxwr90UKAaugaIJTTNvTe8Fp/FYrHMUN4ILFTVs+7uONV5UMmGWLXAqzANsTKek4jcKSLbRGRbLHbeDb4mhqYd4C/kULRi8NDxtiAel1CbUj1ieC0+i8VimaHsAYrPZWA2LahzboiV4VicFsb3AeTl5WXexjKbNO8kNmstXQNDy2XH2/upLcnB4x7S3oXWvWexWC4OioEDIrKV9DWoKQ0zP+eGWMAjwMMi8h+YIIklwJYsznViiEehZQ89q985eKhnIEr3QJR1tUWDx3weF3NKcka5gcViscw47jrXgVkTqPNpiAXsFZGfYgIqYsAHLogIvtP7IR6mOXf54KGTnabUUWor9zmluWnWlMViscxUVPWPIjIPWKKqfxCRXIwmjEtWE3XPtSGWc+4e4J5szm/CadoBwGHP4sFYlfqOfnJ97rR8pwVleaONtlgslhmHiLwXuBMoBRZhAt7+C+M9OyP2z/iJ5NQe1JfP8UQlAKpKfccAc0pz0wIi5pfnjnUHi8VimWl8AGOI9ACo6mGgMpOBVqAmkpY9hEuXo86Pta0vwkA0ztyU4rAVBX4KArY4rMViuWgIp4aYi4gHs6QzLlagJgpVOLWXzsJlg4fqnfWnOaVDARELyq17z2KxXFT8UUT+CcgRkZuAn2Hq8o2LFaiJorsewt00+RcOHjrZ0U9JrjfNYppvBcpisVxcfBITnb0beB8mLuHTmQy0AjVRtOwB4Jh7AWC65zZ2mvWnJH6vi+rCwJRMz2KxWFKZxGLefwl8X1XfqKpvUNXvONHa42IFaqI4tReAFseCaukOEUtoWnj53NLctFbvFovFMhWkFPN+JbASuMMp0p1Kspj3ekwe6zedsanFvG8Bvuncbyz+AjgkIg+JyGucNaiMsAI1UZzaTbhgHlGPceHVd/YjkFbeaL4NL7dYLNODwWLeTgBDsph3KuMW81bVY0CymPeoqOq7gMWYtac7gDoR+W4mk7QNCyeKU3vpLFg6uNvYOUBFgR+/d+gPi7llNrzcYrFMCya1mLeqRkXkfzGil4Nx+71nvElmZEGJyC9F5NVnU8j1oiIShPY6mgKLAIglEjT3hKhJsZ7K8n0U2vByi8UyOXiShbSd7c5zuMd5FfNOIiKvFJHvAYeB24DvAlWZjM3Ugvom8C7gayLyM+ABVT14thOdsZw+ACgNPiNQp3rCxBNKTUq9vdS1KIvFYskyMVXdcIbzWS/mncLbgZ8A73N6/GVMRmqoqn9Q1bcAlwLHMR1unxORd4mINQtO7QagNW8JAI1dAwDMLhoSqHl2/clisUwfBot5i4gPE/TwyLBrksW8GaWY9+0i4neKgZ+xmLeq3oFpNnuTEySRURUJOIsgCREpA96J8RvuAL6KEazHM73HjKVlDzFvPj3+agCaOgcoy/OR4zPrT26XpLn7LBaLZSpR1RiQLOa9HxOtt1dEPiMiyTYYHwPeKyK7gB/hFPNW1b1Aspj3Y4xTzFtE3ogRsDcCbwKeF5E3ZDLPjFx8IvIrYBnwEPAXqtrsnPqJiGzL5B4zmlN76cpfDOIikVCaugdYUVU4eLqqKIDPY5fvLBbL9GESi3l/GrhcVU8DiEgF8Afg5+MNzHQN6muq+tQYEz2Tn3Pmo4q27qel+AYATveFicbt+pPFYrE4uJLi5NBOht67TP+sXykigy17RaRERP72LCY4cwm2IgOdtAbmA8a9B6S59KxAWSyWi5jHROR3IvJOEXkn8FuGWW5jkalAvVdVu5I7qtoJvPespzkTOb0fgI5cU+KooWuA4hwveX5jnPo8LqpseSOLxXIRIqbP0NeAbwNrne0+Vf1EJuMzdfG5RUSS9ZOcsha+ccZcHLSaaPv23EWoKk1dAyyuzB88XVuSY8sbWSyWixJVVRF5VFXXAL882/GZWlCPYQIibhSRGzERHY+NNyiDYoRfFpGdznZIRLpSzsVTzg0Pf5w+tB4g4ikg6C2jrS9COJZIc+/Nse49i8VycbNdRC4/l4GZWlCfwJRJ/xtn/3FMNvCYpBQjvAlTCmOriDziRIYAoKp/l3L9h4D1KbcYUNVLMpzflKGn99OWuwBEaOoauf40p8QKlMViuah5CfBWETkOBAHBGFdrxxuYkUCpagL4lrNlymAxQgARSRYj3DfG9XcAd53F/acF2nqQ9sJrAWjqHiDf76EgYH6suT435fnWE2qxWC5qxmvHMSaZ1uJbIiI/F5F9InI0uY0zbLRihKMWFBSRecAC4MmUwwGnhtSfReQvM5nnpNPXimugnXYnQKK5O0R1UQCzLgi1JbmD7y0Wi+ViRFVPAGUYA+W1QJlzbFwyXYN6AGM9xYCXAd8HfnD2Ux2T24GfD8tGnufkWL0Z+IqILBo+SETuTBZDjMViEzidDGk9AEB7zkL6wjF6QzGqioYi9lJbvVssFsvFiIj8C/AgRqTKgQdEZEI76uao6hOAqOoJVb0bePU4Y86moODtmMCLQVS10Xk9CmwifX0qec19qrpBVTd4PFPQOSQpULkLae4eWX+v1q4/WSwWy1swlSTuUtW7gCuBt2UyMFOBCjtl1g+LyAdF5HVA/jhjMilGiIgsB0owxQSTx0pExO+8L8eU2xhr7WrKSJzeT9idR9BXQUt3CLdLqCjwA5Dv91CaZ9efLBbLRU8TptBsEj9nrn4+SKZmx0eAXODDwL9h3HzvONMAVY2JSLIYoRu4P1mMENimqkmxuh3TnTG1R/0K4NsiksCI6BdSo/+mC9GW/bTnLgQRmrtDVBb4cbuS60/WvWexWCxAN7BXRB7HNCy8CdgiIl8DUNUPjzVwXIFywsX/SlX/AejD9IXKiPGKETr7d48y7jlgTabPmSrcbQdpL7yGWCLB6Z4wl8wZrAZl3XsWi8Vi+JWzJdmU6cBxBUpV4yJyzTlMamYTbMMTaqejagGtvWHiqmkBEjXWgrJYLBZU9cFzHZupi2+HU83hZ5hEq+SDz7p0xYxhMEBiAc1dIQCqHYHK87vt+pPFYrEAIvIazNLQPIzmJBN1C884kMwFKoApkX5DyjHlHGorzRQSpw/gAjpyF9JcH6Iw4BksEFtTbN17FovF4vAV4PXA7mGxBuOSaSWJjNedLhZCLQfwugL0eCto7j5BbUrNPRsgYbFYLIPUA3vOVpwg8466D2AspjRU9d1n+8CZQvz0Yfpy5tIbThCMxAfde2DXnywWiyWFfwQeFZE/AuHkQVX9j/EGZuri+5+U9wHgdZjY9osWT+cROnNW0Nydvv6U43NTZtefLBaLJck9mAjwAGfZpilTF98vUvdF5EfAM2fzoBlFLEwg2Ehn6S00dw/gdQvleSZBd3Zxjq2/Z7FYLEPMVtXV5zIw00oSw1kCVJ7j2Aseba9DUDoDc2npCVFZEBhsSpjaasNisVgsPCoiN5/LwEzXoHpJX4NqwfSIuigJNh0gH2gLzKWtN5KWoGsFymKxWNL4G+AfRCQMRJnoMHNVLTi/+c0sBloOkg8ciVcR1w5mFRr3ns/jotKpxWexWCzTGRG5BfgqphTdd1X1C8POfxlT1g5MqbtKVS12zsWB3c65k6r62rGecz76kakF9TrgSVXtdvaLgetV9dfn+uALmUTrYfq85ZwIugGYVWgCJKqLhlx9FovFMl2ZjI7nIrJcVQ+IyKWjnVfV7ePNM9MovrtUdbCWkqp2ichdwEUpUJ7OOjpz5nKqJ0SO1z3YQXe2de9ZLJYLg8noeP73wJ3Al0Y5p6QXfhiVTAVqtGCKKWjAND3I6ztOY+nLONUWZlahfzBqz64/WSyWaYJHRLal7N+nqvel7I/W8fwlo93oTB3PMU1svzCaN01V73ReXzb8XKZkKjLbROQ/MCYhwAeAF871oRcy/V2nyY120eafS0cwwtJK0xbLJZJWLNZisVimkJjTkXwiGKvjeaOILASeFJHdqlo3Qc8bJNMw8w8BEeAnwI+BEEakLjp6GvYDcFSrgKH1p8pCP173uUbtWywWy6SS9Y7nE0GmUXxB4JPZmMCFRqjlIAD7I+kCZdefLBbLBcRgx3OMMN0OvHn4RWN1PAf6VTWc0vH8/2ZjkplG8T0OvFFVu1Im+GNVfUU2JjWdSbQeJi4e9vQXUxiIkuMzkXyzrXvPYrFcIExGx/OxovdS5jBhUXzlSXFybtwpIuNWkjjPOPt3AJ92zn32fJpeTSSerjq6ArU09UapKhwSJWtBWSyWC4lJ6HiejN4LABuAXZgk3bXANmDjeDfIVKASIjJXVU8CiMh8Rqlunsr5xNmLSCkmpHGD85wXnLGdGc43K8QTSl7vMdr9c+jtjHFJrRGoohzvYC8oi8VisQxF74nIL4FLVXW3s78auDuTe2S6qv/PwDMi8pCI/AD4I/CpccYMxtmragQTXHHrGa6/g6GFuFcAj6tqhyNKjwO3ZDjXrNHZN0DRQAMnpQaw608Wi8WSAcuS4gSgqnswbsJxyTRI4jER2YBJutqBSdAdGGfY+cTZjza2JpO5ZpOu5jrKNcKRRBUCVBQkK5jb9SeLxWIZgxdF5LvAD5z9twAvZjIw0yCJ9wAfwYQi7gSuxER1jJsJnCGjxdlnMq87MaKJz5f9HkyhlkMA7A1XUJrnw+cxBmh1kbWgLBaLZQzehSkY+xFn/2ngW5kMzNTF9xHgcuCE41dcD3Sdech5xdlnNFZV71PVDaq6wePJ/hpQvPUwADuC5YPuPb/XRXm+bVBosVgso6GqIeC/gE+q6utU9cvOsXHJVKBCyRuKiF9VDwDLxhkzGGcvIj6MCD0y/KLR4uwxoY83i0iJE9J+s3NsSnF3HSfsyqUhmk+lU8G8uihgGxRaLBbLGIjIazGet8ec/UtEZIQWjEamZkeDU8H818DjItIJnDjTgPOJs1fVDhH5N4zIAXxGVTsynGtWCEXj5AbrafVWAzLYVqOq0Lr3LBaL5QzchQma2wSgqjudBOFxyTRI4nXO27tF5CmgCEcNxxl3TnH2zvH7gfszmd9k0NobpijUwBGpQYDyfBsgYbFYLBkQVdXuYZ6mM6YpJTnrhRtV/ePZjpkJtPcOUB1q5JhnPaV5PrxuFyLYArEWi8VyZvaKyJsBt4gsAT4MPJfJQFvdNEN6T5/Eo1EORMoHw8vL8v34Pe4pnpnFYrFMaz4ErALCwMNAN0MRfWfElj/IkFibqSR/KFoxuP5UXWitJ4vFYhmHV6vqP2MKPgAgIm8EfjbeQGtBZYCqop3HADips6gscFq82/Uni8ViGY/Rqg6NV4kIsBZURvSEYhQETxLDQ5OWUV5g8p5sgq7FYrGMjoi8EngVUCMiX0s5VYjpxDsuVqAyoL0vTFGokRappDDHrDsFvG5Kcr1TPTWLxWKZrjRhqpa/lvQO7L3A3406YhhWoDKgrS/CvFADh3TWYIJuVZHfJuhaLBbLGKjqLmCXiPwKCCZL2TmdLvyZ3MOuQWVAR1+IolADdbEKKp3ACJuga7FYLBnxeyD1CzMH+EMmA61AZUBv5ykC8SAnddZgiHm1zX+yWCyWTAioal9yx3mfm8lAK1DjkEgo2m4i+E5oJZUFfpuga7FYLJkTTG3/LiKXMX67JsCuQY1L10CUgn7TmqrNV8Nqr5uSXB8Br03QtVgslgz4KPAzEWnCtHyvAv4qk4FWoMahrc/U4EsghPNNBxBrPVksFktmqOpWp2tFsgPGQVWNZjLWuvjGob0vQuFAPS1aQklhIWDXnywWiyVTRCQX+ATwEafd+3wReU0mY61AjUN7MExesN6pIJFssWEFymKxXNiIyC0iclBEjojIJ0c5/2UR2elsh0SkK+XcO0TksLO9Y5xHPQBEgI3OfiPw2UzmaF1849DeF6Ek3MjziXVUFPjxumWw1YbFYrFciDi5SN8AbgIagK0i8oiq7kteo6p/l3L9hzCd1BGRUkyPpw2YthkvOGM7x3jcIlX9KxG5w7lvv2SYRGotqDMQiycI9nZTnOik2VVFnt9DZUEAl8sm6FoslguaK4AjqnpUVSPAj4Fbz3D9HcCPnPevAB5X1Q5HlB4HbjnD2IiI5OD0gBKRRZjK5uNiBeoMdPRHKBgwEXzdgVrABkhYLJYZQQ1Qn7Lf4BwbgYjMAxYAT57tWIe7MA1u54jID4EngH/MZJJZFajxfJzONW8SkX0isldEHk45Hk/xf2bUv36i6QhGKOxvACCYPxewAmWxWC4IPCKyLWW78zzudTvw82SporNFVR8HXg+8E2OFbVDVTZmMzdoaVCY+Tqe74qeAq1W1U0QqU24xoKqXZGt+mdDeF8HXewKAaOE8AGbZAAmLZVyi0SgNDQ2EQqGpnsqMJhAIUFtbi9c7onB1TFU3nGFoIzAnZb/WOTYatwMfGDb2+mFjN40z1euAazBuPi/wq3GuB7IbJDHo4wQQkaSPc1/KNe8FvpFcXFPV01mcz1nT1hemuO8kHZpPflEZeX43RTm2grnFMh4NDQ0UFBQwf/58W1Q5S6gq7e3tNDQ0sGDBgrMdvhVYIiILMIJzO/Dm4Rc5+UslwOaUw78DPiciJc7+zZyhv5OIfBNYzNAa1vtE5OWq+oGxxiTJpkCN5qd8ybBrlgKIyLOAG7hbVR9zzgVEZBumb8gXVPXXWZzrqHQEI8wPNXBSZ1GS67PWk8WSIaFQyIpTlhERysrKaG1tPeuxqhoTkQ9ixMYN3K+qe0XkM8A2VU0uq9wO/FhVNWVsh4j8G0bkAD6jqh1neNwNwIrkPUTkQWBvJvOc6jBzD7AEYy7WAk+LyBpV7QLmqWqjiCwEnhSR3apalzrY8aveCeDz+SZ0YtF4gu6BKBWxJna7l+JyiRUoi+UssOKUfc7nZ6yqjwKPDjv2L8P27x5j7P3A/Rk+6ggwFzjh7M9xjo1LNoMkMvFxNgCPqGpUVY8BhzCChao2Oq9HMf7N9cMfoKr3qeoGVd3g8Uys1nYGIxCLMCvRSoffBKjYBF2LxWI5awqA/SKySUSewizzFIrII+MFwGXTgsrEx/lrTHz9AyJSjnH5HXV8m/2qGnaOXw383yzOdQRtfRG8fY24RenNtRF8FovFco78y/iXjE7WBCpDH+fvgJtFZB8QBz6uqu0ichXwbRFJYKy8L6RG/00G7cEw7i7TZiNSOJfiXK+tYG6xWCxnT+vw728RuT6TUPOsrkGN5+N0Fs3+3tlSr3kOWJPNuY1HRzBCwAkxTxQvsO49i+Uc+dff7GVfU8+E3nPl7ELu+otVY54/fvw4t9xyC1deeSXPPfccl19+Oe9617u46667OH36ND/84Q+54oorCAaDfOhDH2LPnj1Eo1Huvvtubr31Vo4fP87b3vY2gsEgAF//+te56qqr2LRpE3fffTflv9oBigAAHg9JREFU5eXs2bOHyy67jB/84Acj1oK+853vcN999xGJRFi8eDEPPfQQubm5nDp1ive///0cPXoUgG9961tcddVVfP/73+fee+9FRFi7di0PPfTQhP68ppifisj3gX8HAhhv2AaGavONia0kMQZtfREKBxrox088t3Kw1bvFYrkwOHLkCB/72Mc4cOAABw4c4OGHH+aZZ57h3nvv5XOf+xwA99xzDzfccANbtmzhqaee4uMf/zjBYJDKykoef/xxtm/fzk9+8hM+/OEPD953x44dfOUrX2Hfvn0cPXqUZ599dsSzX//617N161Z27drFihUr+O///m8APvzhD3Pdddexa9cutm/fzqpVq9i7dy+f/exnefLJJ9m1axdf/epXJ+cHNHm8BBMk8Rxm6acJs2wzLlMdxTcticQS9IaiLI400eKqAhG7/mSxnCNnsnSyyYIFC1izxjhiVq1axY033oiIsGbNGo4fPw7A73//ex555BHuvfdewITHnzx5kv/f3p1HV1XdCxz//kggCUERDPCYFGgFQjAJAYIRhAiUQVkgiiICSnF40kfL09UBUDBirdZH1aK2QC1FulRAEUSXtTKYAhWEUAISCA7IYhThAiEJZP69P85JvIQkhCSX3Jv8PmudlXvPsM/e90B+2efsu39t2rRh6tSppKamEhQUxJdffllSbnx8PO3aOVOfxcbGcuDAAfr163fBuXfv3s2TTz7JmTNnyMrKYujQoQCsX7+eJUuWABAUFETTpk1ZsmQJd999NxEREQA0b97cdx9K7cjHyaAbhtOD+lZViypzoAWoMpzKziO/oIg2Rcc4GXI9DURKUm0YYwJDSMgP/2cbNGhQ8r5BgwYUFBQAzpddV6xYQZcuXS44NikpiVatWrFz506KiooIDQ0ts9ygoKCSsrxNmjSJVatWERMTw+LFi0lOTq7JpgWabcD7QG8gApgvInep6t2XOtBu8ZXBk53LqawcrpPvORvWluZNGtEwyD4qY+qaoUOH8sorr1D8PdQdO3YAkJGRQevWrWnQoAF///vfKSy8vGnoMjMzad26Nfn5+bz55psl6wcNGsSf//xnAAoLC8nIyGDgwIG88847eDweAE6dqug7rwHpQVWd7X6d6JiqjgIqNb+q/dYtgycrj/yMo4RIPjlNrqeV9Z6MqZNmzZpFfn4+0dHRREVFMWvWLAB+9rOf8cYbbxATE0N6ejrh4eGXVe4zzzxDnz596Nu3L127di1Z/8c//pFPP/2UG2+8kZ49e7Jnzx6ioqJ44oknGDBgADExMTz++OMVlByQtovIBBGZDSAi1wH7KnOgeM1gEdDCw8O1eMRNda3acYStyav5XcZ0VnSbx48TRhHT/poaKduY+mDv3r1ERkbWdjXqhbI+axE5p6qXF1V9RET+DBQBA1U10v2e6yeq2vtSx9ozqDKczMqlSfZBADLC2tsUR8YYU3V9VDVORHYAuJkrKjU3nd3iKyW3oJCz5/NpnneEAoLIDmtNRJOanefPGGPqkXw3/VLxZLEtcHpUl2QBqpRT2Xlk5hTQTo/jCW5F86saE2wDJIwxpqrm4eR/aikizwKbgN9V5kC7xVeKJyuPE1m5XCfHORPallZX2e09Y4ypKlV9U0S2A4MAAe5Q1b2VOdYCVCme7DxOnM2hgxzn6/A4e/5kjDHVpKrpQPrlHmf3rkrxZOWSn+XhajlHZlh7Wl1tQ8yNMaY2WIAqxZOVR2N3BF9m43Zc28QClDF1xYEDB+jevXttV+MiiYmJpKSk1HY1/I4FKC85+YWcOZdH89yjAEjzTgQ1sKygxlwRmzfDc885PwNIWVMdmZphAcqLJzuPU9l5XCfHAQhr+aNarpEx9cTmzTBoEMya5fysoSD14osv0r17d7p3787LL78MOAFl/PjxREZGMmbMGM6dOwfA9OnT6datG9HR0fzyl78E4MSJE9x111307t2b3r17l8xcnpSUxMSJE+nbty8TJ07kpptuIi0treS8xT2i7OxsJk+eTHx8PD169OD9998H4Pz589x7771ERkYyevRozp8/XyPtrWtskIQXT1YuJ7Pz6NngOGcbRhDR3GaPMOaKSE6GvDwoLHR+JidDwiXTBVVo+/bt/O1vf+Pzzz9HVenTpw8DBgxg3759/PWvf6Vv375MnjyZP/3pT/z0pz9l5cqVpKenIyKcOXMGgGnTpvHYY4/Rr18/Dh48yNChQ9m71xmAtmfPHjZt2kRYWBgvvfQSy5cv5+mnn+bYsWMcO3aMXr16MXPmTAYOHMiiRYs4c+YM8fHxDB48mAULFtC4cWP27t3Lrl27iIuLq+YHWDdZD8qLJysPT1Yu18txzoa2o6UNMTfmykhMhEaNICjI+ZmYWO0iN23axOjRowkPD6dJkybceeedbNy4kfbt29O3r5OOaMKECWzatImmTZsSGhrKgw8+yHvvvUfjxo0BWLt2LVOnTiU2NpaRI0dy9uxZsrKyABg5ciRhYWEA3HPPPbz77rsALF++nDFjxgBOOo/nn3+e2NhYEhMTS9J5bNiwgQkTJgAQHR1NdHR0tdtbF/m0ByUiw4A/4qR8f11Vny9jn3uAJJxvGe9U1fvc9Q8AT7q7/VZV3/BlXcGZ4siTlUeHBt9zIqwfnW0GCWOujIQEWLfO6TklJla791SR0tlvRYTg4GC2bt3KunXrePfdd3n11VdZv349RUVFbNmy5YJ0G8W8J5Bt27Yt1157Lbt27WLZsmXMnz8fKD+dh6kcn/Wg3KktXgOGA92AcSLSrdQ+NwAzgL6qGgX8r7u+OfAUTibGeOApd4JBn/Jk55GdnUELTpPb9HqbQcKYKykhAWbMqLHgdMstt7Bq1SrOnTtHdnY2K1eu5JZbbuHgwYNsdp9xvfXWW/Tr14+srCwyMjK47bbbeOmll9i5cycAQ4YM4ZVXXikpMzU1tdzzjR07lhdeeIGMjIySHlF56Tz69+/PW2+9BTjJDXft2lUjbb4cIjJMRPaJyNciMr2cfe4RkT0ikiYib3mtLxSRVHepVOqMqvDlb+B44GtV3a+qecBSYFSpfR4GXlPV0wCq+r27fiiwRlVPudvWAMN8WFeycws4nZ3HtXnHAGhwrQ2QMCaQxcXFMWnSJOLj4+nTpw8PPfQQzZo1o0uXLrz22mtERkZy+vRppkyZQmZmJiNGjCA6Opp+/frx4osvAjBv3jxSUlKIjo6mW7duJT2jsowZM4alS5dyzz33lKwrL53HlClTyMrKIjIyktmzZ9OzZ0/ffhilVKcD4TqvqrHuMtJX9fTlLb62wCGv94dxekTeOgOIyL9xbgMmqerH5Rzb1ndV9bq9547gC2n5Y1+ezhhzBTz++OMX5VdKT794QoPGjRuzdevWi9ZHRESwbNmyi9YnJSVdtK5Vq1YXDTkPCwtjwYIFF+0bFhbG0qVLL1V9XyrpQACISHEHYo/XPuV1IK6Y2r6HFQzcACQC44C/iEilh86JyCMikiIiKdX9LsLJrDxOZuVyvXwHwNVtOlerPGOMqUXBxb8b3eWRUtsr0wnoDHQWkX+LyBZ3TEGxULfcLSJyhw/qD/i2B3UEaO/1vp27ztth4HNVzQe+FZEvcQLWEZyg5X1scukTqOpCYCE4CQurU1lniHkuw4JOcD64KddGtKhOccYYU5sKVLVXNcvw7kC0AzaIyI2qega4XlWPiEgnYL2IfKGq31TzfBfxZQ9qG3CDiHR0k1Pdy8V56FfhBiIRicCJ2PuBfwJDRKSZOzhiiLvOZ05m5eHJyuNHwd+TFX4dIcFBvjydMcbUpsp2IFarar6qfgsUdyBQ1SPuz/04nYcevqikzwKUqhYAU3ECy15guaqmicgcESl+qPZPwCMie4BPgV+pqkdVTwHP4AS5bcAcd52v6oonKwdPdh7X8R15V1/vq1MZY4w/qHIHwu04hHit78uFz65qjE+/B6WqHwEflVo32+u1Ao+7S+ljFwGLfFm/YmfO5XPqXD4U5NIi+CTHmne6Eqc1xphaoaoFIlLcgQgCFhV3IIAUVV3ND3ey9gCFuB0IEbkZWCAiRTidnOdVNfACVKDwZDsj+NrJCRpQRKMWNoLPGFO3VbUDoaqfATdeiTrW9ig+v3Ai84cpjgDCW99QyzUyxvi72bNns3bt2nK3z58/nyVLlgCwePFijh49WrLtoYceYs8en3Q66hTrQeF8B+pkdh6JDU8A0LiVBShjTMXmzJlT4fZHH3205PXixYvp3r07bdq0AeD111/3ad3qCgtQwJnz+Xiycunc8AT5hNMwPKK2q2RM3fGP6fDdFzVb5n/dCMMvmtrzInfccQeHDh0iJyeHadOm8cgjj/Dxxx8zc+ZMCgsLiYiIYN26dXg8HsaNG8eRI0dISEhgzZo1bN++naysLEaMGMHu3bsBmDt3LllZWSQlJTFp0iRGjBjBmDFjmD59OqtXryY4OJghQ4Ywd+5ckpKSaNKkCR06dCAlJYXx48cTFhbG5s2bGT58OHPnzqVXr168/fbb/O53v0NVuf322/n9738PQJMmTZg2bRoffvghYWFhvP/++7Rq1apmP0c/Z7f4gMLCIk5n59OxwXFyrroexJIUGlMXLFq0iO3bt5OSksK8efM4fvw4Dz/8MCtWrGDnzp288847ADz99NP069ePtLQ0Ro8ezcGDByt9Do/Hw8qVK0lLS2PXrl08+eSTF2wfM2YMvXr14s033yQ1NbVkBnSAo0eP8pvf/Ib169eTmprKtm3bWLVqFQDZ2dncdNNN7Ny5k/79+/OXv/ylBj6RwGI9KJwv6Raq0ka/Q6+Jqe3qGFO3VKKn4yvz5s1j5cqVABw6dIiFCxfSv39/OnbsCEDz5s0B2LBhA++99x4At99+O82aVX5uau9UHSNGjGDEiBGVPnbbtm0kJibSooUzMcD48ePZsGEDd9xxB40aNSopq2fPnqxZs6bS5dYV1oMCjmfmEkQhEQXfEdzCJok1pi5ITk5m7dq1bN68mZ07d9KjRw9iY2Mvq4zg4GCKiopK3ufk5JS5z9atWxkzZgwffvghw4bVzLzWDRs2LEkNEhQUVC9Ty1uAAo6fzaGNeAjWAkJb2RBzY+qCjIwMmjVrRuPGjUlPT2fLli3k5OSwYcMGvv32WwBOnXK+/++d/uIf//gHp0+fBpwJYL///ns8Hg+5ubl8+OGHF52nvFQd3q666ioyMzMvWh8fH8+//vUvTp48SWFhIW+//TYDBgyosc8g0NktPuD42VyiQk+BQgP7kq4xdcKwYcOYP38+kZGRdOnShZtuuokWLVqwcOFC7rzzToqKimjZsiVr1qzhqaeeYty4cURFRXHzzTdz3XXXAU4vZvbs2cTHx9O2bVu6du160XkyMzMZNWoUOTk5qGpJqg5vkyZN4tFHHy0ZJFGsdevWPP/889x6660lgyRGjSqdlaj+kuJEWoEuPDxcs7Ozq3Rs3DNreKDhOqbl/Bke2wNNfZrZw5g6b+/evURGRtZ2NaqseORdRIT/j+gt67MWkXOqGl7OIQGj3t/iO5fnJCr8UdBxioJC4KrWtV0lY4wx2C0+vjyehQIdOEr+NT8ipEG9j9nG1HsHDhyo7SoYrAfFvu/OAtC64DANWtgMEsYY4y/qfYDKTt7EtK1LaZZ7lIYtLYuuMcb4i/p9i2/zZh6Y/SBcnU+D/uFwurYrZIwxplj9DlDJyQTl50Nzd2qj9O9rtz7GGGNK1O9bfImJ0KgRRRFunO4/ssLdjTH1W1JSEnPnzgXKT7eRnJx8yemOUlNT+eijjyrcx/g4QInIMBHZJyJfi8j0MrZPEpETIpLqLg95bSv0Wl86FXHNSEiAdes4fXN3Chs2g1sG++Q0xphL23xoM89tfI7NhzZfemc/MGfOHAYPrtrvDAtQleOzACUiQcBrwHCgGzBORLqVsesyVY11F+8kKee91vuua5OQQGHrMGgd5bNTGGMqtvnQZgYtGcSsT2cxaMmgGgtSS5YsITo6mpiYGCZOnMgHH3xAnz596NGjB4MHD+b4cSdJaVJSEpMnTyYxMZFOnToxb968kjKeffZZOnfuTL9+/di3b1/J+kmTJvHuu+8C8PHHH9O1a1fi4uJKJp0F2Lp1KwkJCfTo0YObb76Zffv2kZeXx+zZs1m2bBmxsbEsW7aM7OxsJk+eTHx8PD169OD9998HIC0tjfj4eGJjY4mOjuarr76qkc8lUPjyGVQ88LWq7gcQkaXAKMC/0kiqck32twT96K7arokx9VbygWTyCvMo1ELyCvNIPpBMQvuEapWZlpbGb3/7Wz777DMiIiI4deoUIsKWLVsQEV5//XVeeOEF/vCHPwCQnp7Op59+SmZmJl26dGHKlCns2rWLpUuXkpqaSkFBAXFxcfTs2fOC8+Tk5PDwww+zfv16fvzjHzN27NiSbV27dmXjxo0EBwezdu1aZs6cyYoVK5gzZw4pKSm8+uqrAMycOZOBAweyaNEizpw5Q3x8PIMHD2b+/PlMmzaN8ePHk5eXR2FhYbU+k0DjywDVFjjk9f4w0KeM/e4Skf7Al8Bjqlp8TKiIpAAFwPOqusontTznoVH+WYiw70AZU1sSOyTSKKgReYV5NApqRGKHxGqXuX79eu6+++6S6YqaN2/OF198wdixYzl27Bh5eXklaTfASbMREhJCSEgILVu25Pjx42zcuJHRo0fTuHFjAEaOvPhmTnp6Oh07duSGG5zfIRMmTGDhwoWAM2HtAw88wFdffYWIkJ+fX2ZdP/nkE1avXl3yfCsnJ4eDBw+SkJDAs88+y+HDh7nzzjtLzlFf1PYgiQ+ADqoaDawB3vDadr2q9gLuA14WkYvyYIjIIyKSIiIpVZ6K/qTbZb62fl14Y/xJQvsE1t2/jmdufYZ196+rdu+pPD//+c+ZOnUqX3zxBQsWLLggfUZISEjJ65pKbzFr1ixuvfVWdu/ezQcffFBmug4AVWXFihWkpqaSmprKwYMHiYyM5L777mP16tWEhYVx2223sX79+mrXKZD4MkAdAdp7vW/nriuhqh5VzXXfvg709Np2xP25H0gGepQ+gaouVNVeqtorOLiKnUGPG6CsB2VMrUpon8CMW2bUWHAaOHAg77zzDh6PB3BSa2RkZNC2rTMZ9BtvvFHR4YCThmPVqlWcP3+ezMxMPvjgg4v26dq1KwcOHOCbb74B4O233y7Z5n2+xYsXl6wvnX5j6NChvPLKKxRP3r1jxw4A9u/fT6dOnfjFL37BqFGj2LVr1+V8BBW61CA2d597RGSPiKSJyFte6x8Qka/c5YEaq1QpvgxQ24AbRKSjiDQC7gUuGI0nIt4zs44E9rrrm4lIiPs6AuiLr55dnfwKDQqBa67zSfHGmNoRFRXFE088wYABA4iJieHxxx8nKSmJu+++m549e1ZqpvK4uDjGjh1LTEwMw4cPp3fv3hftExoaysKFC7n99tuJi4ujZcuWJdt+/etfM2PGDHr06HFBj+zWW29lz549JYMkZs2aRX5+PtHR0URFRTFr1iwAli9fTvfu3YmNjWX37t3cf//9NfDJVG4Qm4jcAMwA+qpqFPC/7vrmwFM4j2zigadEpPIpiC+nnr5MtyEitwEvA0HAIlV9VkTmACmqulpEnsMJTAXAKWCKqqaLyM3AAqAIJ4i+rKp/rehcVU63kbYSju6An8y5/GONMWUK9HQbgaQq6TZEJAFIUtWh7vsZAKr6nNc+LwBflhpdjYiMAxJV9b/d9wuAZFV9mxrm05kkVPUj4KNS62Z7vZ6BE6FLH/cZcKMv61YiarSzGGNM/VGZQWydAUTk3zidjCRV/bicY32SRK9+T3VkjDF1U7A7CrrYQlVdeLllADcAiThjCDaIyJXpOHhVwBhjapyqIiK1XY06rYJHNAXuKOjyXHIQG07P6HNVzQe+FZEvcQLWEZyg5X1scuVrXXm1PczcGFMHhYaG4vF4KvoFaqpJVfF4PISGhlbl8EsOYgNW4QYid7BaZ2A/8E9giDuYrRkwxF1X46wHZYypce3atePw4cOcOHGitqtSp4WGhtKuXbvLPk5VC0RkKk5gKR7EluY9iI0fAtEeoBD4lap6AETkGZwgBzBHVU/VQHMu4tNRfFdSlUfxGWNMHXOpUXyBwm7xGWOM8UsWoIwxxvglC1DGGGP8Up15BiUiRcD5Kh4ejDObRSCzNvgHa4P/qAvtqGobwlQ14DsgdSZAVYeIpFziOwN+z9rgH6wN/qMutKMutKE6Aj7CGmOMqZssQBljjPFLFqAclztHlT+yNvgHa4P/qAvtqAttqDJ7BmWMMcYvWQ/KGGOMX7IAZYwxxi/VyQAlIsNEZJ+IfC0i08vYHiIiy9ztn4tIB69tM9z1+0RkaGXLDJA2HBCRL0QktVSuGL9qg4hcKyKfikiWiLxa6piebhu+FpF54uN8Dj5qQ7JbZqq7tCxdrp+04Scist39vLeLyECvYwLlOlTUhkC5DvFeddwpIqMrW2bAU9U6teDMzPsN0AloBOwEupXa52fAfPf1vcAy93U3d/8QoKNbTlBlyvT3NrjbDgARAXAdwoF+wKPAq6WO2QrcBAjwD2B4ALYhGegVANehB9DGfd0dOBKA16GiNgTKdWgMBLuvWwPf43yB94r+XqqNpS72oOKBr1V1v6rmAUuBUaX2GQW84b5+Fxjk/gU4Cliqqrmq+i3wtVteZcr09zZcaVVug6pmq+omIMd7ZxFpDVytqlvU+d+6BLgjkNpQC6rThh2qetRdnwaEuX/lB9J1KLMNPqxrearThnOqWjybRChQPLLtSv9euuLqYoBqCxzyen/YXVfmPu6FzwCureDYypRZk3zRBnD+YX/i3up4xAf1LrN+ZdTjon1KtaGiMg9fosya5Is2FPube8tmlo9vj9VUG+4C/qOquQTudfBuQ7GAuA4i0kdE0oAvgEfd7Vf699IVVxcDlClfP1WNA4YD/yMi/Wu7QvXUeFW9EbjFXSbWcn0qJCJRwO+B/67tulRVOW0ImOugqp+rahTQG5ghIlVKoxto6mKAOgK093rfzl1X5j4iEgw0BTwVHFuZMmuSL9qAqhb//B5YiW9v/VWnDRWV6Z0+1J+vQ7m8rkMm8BZ+fB1EpB3Ov5X7VfUbr/0D5jqU04aAug7FVHUvkIX7PK0SZQa22n4IVtMLzsPD/TgDBIofHEaV2ud/uPBh5HL3dRQXDjDYj/Mg8pJlBkAbwoGr3H3Cgc+AYf7YBq/tk7j0IInbAqkNbpkR7uuGOM8aHvXHNgDXuPvfWUa5AXEdymtDgF2HjvwwSOJ64CgQUZkyA32p9Qr46B/DbcCXOCNcnnDXzQFGuq9DgXdwBhBsBTp5HfuEe9w+vEYmlVVmILUBZ6TPTndJC4A2HABO4fy1eBh3dBLQC9jtlvkq7mwogdIGnD8OtgO73OvwR9xRlv7WBuBJIBtI9VpaBtJ1KK8NAXYdJrp1TAX+A9xRUZl1abGpjowxxviluvgMyhhjTB1gAcoYY4xfsgBljDHGL1mAMsYY45csQBljjPFLFqBMvSMiWbVdh7KISAcRua+262GMv7AAZUwViUhQFY4JrmBzB8AClDEuC1CmXhORX4nINhHZJSJPe61f5U6qm+Y9sa6b3+kPIrITSHDfP+vm6dkiIq3KOEeSiPxdRP4N/N3tKW0Ukf+4y83urs8Dt7iTlz4mIkEi8n9e9QvYufCMqQoLUKbeEpEhwA04c7DFAj29JtCdrKo9cWZM+IWIFM+MHQ58rqox6qTTCAe2qGoMsAF4uJzTdQMGq+o4nHw+P1Fn4t6xwDx3n+nARlWNVdWXgAeBDFXtjTNJ6MMi0rHGPgBj/FxFtxuMqeuGuMsO930TnIC1AScoFWcube+u9wCFwAqvMvKAD93X24GflHOu1ap63n3dEHhVRGLd8jpXUL9oERnjvm/q1uPbSrXOmABnAcrUZwI8p6oLLlgpkggMBhJU9ZyIJOPMkwaQo6qFXrvn6w/zhRVS/v+pbK/XjwHHgRicuxjlJTUU4Oeq+s/KNceYusVu8Zn67J/AZBFpAiAibUWkJU5P5bQbnLrizNpdk5oCx1S1CGci0OLBFpnAVaXqN0VEGrr16ywi4TVcF2P8lvWgTL2lqp+ISCSw2U2mmgVMAD4GHhWRvTgzwm+p4VP/CVghIve75yruXe0CCt0BGItxZtjuAPzHzfZ6At+mVjfGr9hs5sYYY/yS3eIzxhjjlyxAGWOM8UsWoIwxxvglC1DGGGP8kgUoY4wxfskClDHGGL9kAcoYY4xf+n8WjiKRYVgRbgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXzdZZn3/77Ofk72tW2SpnvpQgst0FJQQVAoKvqIowLqgD4jrujoOKPO408Yx4X5DSo6jgsqiiAq4vKggwuyKDuUQgtd6ZI0a7PvOfv1/HF/k5yTpM1Jm5Ok6f1+vb6vc77L/f3eJ23yOdd1X4uoKhaLxWKxzDZcMz0Bi8VisVjGwwqUxWKxWGYlVqAsFovFMiuxAmWxWCyWWYkVKIvFYrHMSqxAWSwWi2VWYgXKYrFYLLMSK1AWywSIyM0icncW779YRB4QkU4RaRaRb4mIJ1vPs1hOFaxAWSwzz7eBFmABcDZwEfDhGZ2RxTILsAJlsTiIyKdFpEFEekVkn4hcKiJbgX8F3ikifSKyw7m2QER+KCJNzpgviojbOXe9iDzhWELdIrJXRC49zqOXAPeqalhVm4E/Amuz/XktltmOFSiLBRCRM4CPAuepah5wOVCjqn8Evgz8QlVzVfUsZ8iPgTiwHNgAXAb8Q8otNwMHgVLgJuDXIlJ8jMffBlwtIiERqQSuwIiUxXJaYwXKYjEkAD+wRkS8qlqjqgfHu1BE5gFvAP5RVftVtQX4OnB1ymUtwG2qGlPVXwD7gDce49l/w1hMPUA9sA347VR8KIvlVMYKlMUCqOoB4B+Bm4EWEfm5iFQc4/JFgBdoEpEuEekCvgeUp1zToOmVmGuBMfcTERfGWvo1kIOxuIqA/zi5T2SxnPpYgbJYHFT1HlV9FUaAlBGRGF3yvw6IAKWqWuhs+aqaum5UKSKSsl8NNI7z2GLn3LdUNaKq7cCPMBaaxXJaYwXKYsGsQYnIJSLiB8LAIJB0Th8FFjvWDqraBPwZ+KqI5IuIS0SWichFKbcsBz4mIl4ReTuwGnhg9HNVtQ04DHxIRDwiUghcB+zM0ke1WE4ZrEBZLAY/cAvQBjRjBOazzrlfOq/tIrLdef/3gA/YDXQC92HCxId4Bljh3O9LwN851tF4XAVsBVqBA0AM+MTJfySL5dRGbMNCi2VqEZHrgX9w3IUWi+UEsRaUxWKxWGYlVqAsFovFMiuxLj6LxWKxzEqsBWWxWCyWWcmcqZjscrk0GAzO9DQsFotlxhkYGFBVPeUNkDkjUMFgkP7+/pmehsViscw4IjI403OYCk55hbVYLBbL3MQKlMVisVhmJVagLBaLxTIrsQJlsVgsllmJFSiLxWKxzEqsQFksFotlVmIFao7zVN1TfOWxr/BU3VMzPRWLxWKZFHMmD8oCqMJAB3QcgnAXTzVu49K/3Uw0Gcfn9vDQa7/ClqotECqGYDEEi8Bt/wtYLJbZif3rdKoz2Am7fgMHHoIjT8HASMuhR4kQJUpCIBqP8uiD/8oW/OnjQ6VQWD2yFS2C8rUwby0E8qf5w1gsFssIVqBOVbrq4K+3wM5fQiJixGXlViMsxUshVMrFnQfw/e59RBMxfG4vF7/hO1BQbayswU4jZr1N0HUEjr4M+x6ARHTkGYXVMG8dVJ0LCzdDxQbwhWbuM1ssltOKOVPNPCcnR0+LUkeJODz2VXjsVkBgw7vhnOtgwVnjXv5U3VM8WvMoFy++mC0Ltxz/3skk9DRAy24jWEd3QdMOaD9gzrs85jkLN8PCTbDwfMhfcPx7WiyWaUdEBlQ1Z6bncbJYgTqV6GmEe6+D+mfhzL+D1/8bFFRlNDSRVCLxBPGkIoDH5cLvceFyycSD+9uh/jmoewbqnoWG5yHulPoqqIbqzY5obTYWnMt94p/RYrGcNFagZhlzXqBa98FdV0G4G668Ddb93TEvjcaTHOkYoL5zgJbeCF0DUQaiCUb/U4tA0OsmP+ilKOSlJNdPeZ6fefkBAt7jiEwiBs074cgzUPe0ee1rNud8ucYlWHkOlK+B8tVQsgI8vin4IVgslkywAjXLmNMC1bof7rjcuNjefd8x3XmNXYPsqOviYGsfscSJ/7uKQGmun4XFIRYVh6gqCuJxHycjQdWsY9U9OyJYLbtBE+a8y2PWxQqrjcWXXwUFlRAqgUDByOYNgstrrnd7QVxmMsdgUu5Li+U0wgrULGPOClRPE/zw9RCPwPv+CCXLxlzS2hvhb/tbOdIxkJUpeN1CdUkOy8pyWFaWe3zraoh4xKxdtewxYtW6D7rroLs+LdJwQlweELcjViPbUxrl0lgLURQfwkOBKrZ4clKuESN4waL0LW8+FCw0W+FCyCk7rghaLKcic0WgbBTfbCYegZ9dbSLurv+fMeKUSCrPHGrnuZpOkqO+aCzY/QJVO56l/qxNNK3ZkHYuqQpKZutPQCyhHGzp42BLHy5pYWFxkJXz8lhWlkvQdwyx8vjNetS8tePccNCspw12QbjLuC3D3eZ4MgbJuAkGScbNvipo0tnM+0cbniTa0EICiAKPFlWxZd7G9Gtj/eYZXXXQtNMIY3xUmxxPEEpXGFdk2SrzOm+tETArXBbLjGItqNnMHz4Dz3wHrr4HVr0x7VR/JM7vdzbS2BUeM2zB7hd426evxx2LEvf4+NInvslfS5azcN8O1h94kacWnsn2ytV43ULI56E4x0dJjo/KwiAVhUF8nswKjLhEqC4JsqI8j+XlGVpWU8RTdU9x6U8uJZqI4nP7eOjvH5rYzadqBLG73ohWdz101ULrXmPp9TSMXBsqNetow9tGk+BssZwCzBULygrUbGXfH+Fn74TNH4Irbkk71dEf5dfb6+kNx8e1lM6557tceOc3cGuSuLj42qvfze6VG/nunZ/GG48R93j54ie+yUvVa+mPxOnoj9I5ECWp4BKoKAiyYl4uy8tzCfkyM7LdLmFhcZDlZXksK8/JeNzJMOVrUOFu44ps3gkN2020Yus+wPkdKVsFiy6ExRea17z5J/9MiyULWIHK5OYiW4FvAG7gB6p6y6jzi4A7gDKgA3i3qtY7564DPudc+kVVvfN4z5pTAhXphW9tMt/Y3/+wcZc5tPdFuO/5egaiiTRLKeH18av/+DGPl62g++G/cfudn8abiJPweLnny3ewYvfzXHDnbbiSSZIuN09e93Geu+YDw/eNJ5I0doc50jHAodY+OgdiiMCi4hDrqwpZVBLClaHLSwQWFARYUprL4tIQZbl+5FR1l4V7oOlFEwBS+6QJtY/2mXPFyxyxepV5zTDk32LJNnNFoLL2NVdE3MB/A68H6oHnROR+Vd2dctmtwE9U9U4RuQT4CvAeESkGbgLOxXx9fd4Z25mt+c4qHvmKqfDwzrvSxKl7MMavtzcwEDXRcVU7nsUdi+JKJtFYjMEHH+L3Z+ZSsngt3/3c9zi3dicNZ22ma80G6r1uEl4fxGIkvF7qz9qU9kiP20V1cYjNzfuorHmGl1ds5C+FS9nb1MP9OxrJD3hYX1XI2or8CV15qtDYFaaxK8wTByDH72ZhUYiqohAVhQGKc3ynjmAF8mHJa8wGZm2seQfUPAG1T8Cu/wvbf2LOFS6Cxa8esbCKFs3cvC2WOUDWLCgR2QLcrKqXO/ufBVDVr6RcswvYqqp1Yv5idatqvohcA1ysqh9wrvse8Kiq/uxYz5szFlTzS/C918DG60y+k0M4luDebXW0942UIhqyoFyxGDGXh2uv+SLeCy/kvMXFuMcJgDhe4ETq/VItsvpVZ3OwtY+d9d00dA3icQlnVhSwobqQ/KB30s8ACHjdzMv3U54XoDTPR0mOn6KQ9/ih7LOVZMJU3RgSrNonTFALmECLxa8acQsWLbGBF5ZpwVpQE1MJ1KXs1wObR12zA7gK4wZ8K5AnIiXHGFs5+gEicgNwA4DPN0cSQR/6Avjz4dLPDx9SVf60qzlNnACa1mzg+5+/nfCDD/Hs4vUsueISqoqOXSsvct5mei55DQv8HqpEiCWS9IRjtPVF6RmMpVlkxMx+05oNrJyXx8p5ebT1Rdh+pJOdDV3saOjijHl5nLOoiNJcY+WNJ3DjiVQ4lqC2fYDa9pGweBHI9XvID3rJ83vIDXgI+dwEvR4CXhc+j7O5XbhdgsflwuUygRpmY2asMpfb5KUtOAu2fNiUi2rdAzWPm+2VP8MO53tVXoURqsWvguoLoGQ5uE5BUbZYpomZDjP/FPAtEbke+BvQACQyHayqtwO3g7GgsjHBaaX2KfMH7XU3p0WMbT/SyaHWsdbh0Z4wvxkoxX/RNbx1QyWFobEineN3c1ZVIasr8skPjLV4hugNx2gZ2Erynm8f0w1YmuvnOpooa3iKB8tW86vWhext7mVxSYhzFhVx7o5nxhW4TFCF3nCc3nA8o+uPhQgIkvLeeRVBxAiaWwSXS3CLcW163UbwhkTQ73ER8LoJeN0EvW5CPrPl+D0TRyq6XCPh9Zs/YD5Y6z6oecxYV4f+Ci/90lzrL4CKs6BioynEW7nRhrdbpo3pjBE4UbIpUA3AwpT9KufYMKraiLGgEJFc4G2q2iUiDcDFo8Y+msW5zjyqxnrKnQebRoIXWnrDPHFgbGJrZ3+U37zQgN/j4m0bq8a429wu4bzFxZy7uAhvBq6zvICXvLe8Hh55mPCDD7F31UY6yldCLDl8TaqF9BqvjzVfuoM/5C3hxboufrW9gS7fYjZ7vLjjcZLjCNx0YFK8nO8qaV9Zpub7i9ct5Po95Aa85AU85Ae85Ac9FAS9FIZ85Pjc6ZacCJSvMtum95sJth8wrVEaXzDRgk/9t8n3AlNdo3yNiRgsO8N5XQU5pVa4LFPGqRIjkE2Beg5YISJLMMJ0NXBt6gUiUgp0qGoS+CxGrQH+BHxZRIqc/cuc83OX2ifgyJNwxX8Ot7RIJJU/7TpKIpn+x3UwluD/7mjEJcJV44hTUcjLG9dXUJY3qvdTJmzZQmDLFs4GVscT7Kjr5vnaTsKxxBgX4NJd29h0zTlsrC5kd1MPzx/xcvU7vshrGnfRvelC/CvXj+4+dcoTSyidAzE6B2Ljnve6hYKQj8Kgl6KQj8KQl6IcH0Uhrwm9FzGJwaUrYOPfOzcNm8rxjdtNxGDrPtj5C4j0jNzYX+D07BqqglFtykXllJktVGoqZViXoSUzNgEHVPUQgIj8HHgLkCpQa4BPOu8fAX7rvL8ceFBVO5yxDwJbgWPGCJwoWRMoVY2LyEcxYuMG7lDVXSLyBWCbqt6PsZK+IiKKcfF9xBnbISL/jhE5gC8M/TDmLE/+l/n2vPE9w4eer+2krTeSdllSlQdeaqIvEueqDZUUjBKnqqIgV55VMSVJs36Pm01LijlrYQHP13TSuGEziXvGRgJ63C7WVxWyrrKAwytKue/IRuq7BvE9XsPainzWVRVQNI77cS4SSyhtvZEx/25ggkOKhgXLR3GOsboKgz48VedA1TkjF6uaSM7WvdCy13RJ7q6Dzlo4/BhEe8c+XFxOp+RCU7TXlwu+HLP5nX2PH9y+kc3jN3UP3c5xz9A555jL42zucd6nHkvZl9TjVjBnCI+IbEvZv91ZEhki6zECU0FW16BU9QHggVHHPp/y/j7gvmOMvYMRi2pu07oP9v8RLv6sqR+HCSl/9vBY19622k7qOwd53epyKgqDaecWl4a4cn3FlEfD+T1uLlheSu/738rzRSESjzxC3fqxUXoiwtKyXJaW5dLSE+aFui521HfxQl0XlYVB1lbks7w8NyOX41wkHEvQ1J2gqTu9+sdQgEihY3kVhrwUBL3kB4vJX3gRwWWXpN9ouCJGAwy0Qb+zDb0Pd0O03+Rr9TWb95E+8xoPj7gTpwUxwiXu9Nfxjnn8EChMr51YUGnC94sWQdFiU1TYkglxVT33JO9xUjECU8FMB0lYAJ76FngCcN4/DB96/JW2MRXJm7oHefpQOyvn5bJmQXo79sqiYFbEKZW8gJfz3/0mmq68lNq9rdAztszSEOX5AS5fO59XLS9ld1MPuxp7+PPuozy6r5Xl5aZKxcLiIB77DTstQKRunPNet5AX8JLr95Dj95Dr9xDyuwn5qgkWLCFY6sbvdeN3AjwmjGZUNZ2TE1HTOiUeSdmPOvsx06k5mXC2+KgtYarVp+4n42giBskE6uxLMoZo0rk2YWokpo1PORaPGOHtazaRkAMdI0nRQxQshPnrYcF6U4Kq+nzw503Zv8VpxCkRI2BLHc00g53w1VWw/p3w5m8C0NA1yL3Ppf+piieS3P3MEVSVazdX4/eMuPCKQl6u3lQ9rbXwVJWXGrp54kA74djEX6pUlYauQXY39nCwtZ9oIonP7WJJaQ6LSkIsLAqRG5j+70uZ5G2dSoiANyUy0eseilg0ry6R4cjGVFSN+1gx/1ZJZz+pZj+RHPs+qTp87dD4Y+ESwe0yBYo9TpqA1+PC73bh95qoSRMt6RkOPikIegkmeoxbs6vWuDmbXzKFf9sPAGqsr4qzTYL0sktg0QXGPXmaM1EelIh4gP3ApRhheg64VlV3pVwzHCMgIl8CEqr6eSdI4nlgo3PpduCcbCzDWAtqptn5S+N2Ofd9w4eeeKVtzGXP1nTQPRjjqg2VaeLk87imbM1pMogI66sKWVGex+MH2tjV2D2mIeLo66ucahLxZJL6jkEOtPZxqLWffUfNekpRyEtlYZDy/ADleX5KcnxZtQgzzdua6mdmUxBVTcPKaBym2RszhtGfNZkAEopZnctsbgGvm+KcYkpyFlC26CLmrQtQlufHHeuHhm0m1+zwYyYS8onbjAtwxWVwxhtg+etMJRDLGE6VGAFrQc0kqvCdC803vg/8FYDDbf389oU0S5v2vgj3PHuEM+bncdma9AKlW8+cz+oFM/9L2NQ9yMN7W2jpGRsccDxUlba+KHUdA9R1DtDYHSYaN6HtIgx/ky4ImrDuoM/kJgW87uGkXZfgvArJlG/45lWJJ5V4IkkiOfReiSeTXPH7H/O233zPFNV1ubjnDf/Az1/3buLJpHONDr8fHptMIghulzgJwyPvAx73sDUwkkvlIsdn3HLLD+7kHZ9937QK4kyRTfH3uIR5+QEqi4IsdMpneeIDcOhR2PeAWc8daDfBHksvhtVvNoKVUzIlzz8VsJUkLCdPw/PQsgve9PXhQ08fSg+MUFUe3tuCz+Pi1cvL0s6tmp83K8QJYEFBkGs3VbOzvpsnD2bm9gNjWZXl+SnL87NxURGqSk84TktvmNbeCF0DMboHY7T0hAnHkxPfcBJ0h5ZypduDNxEn5vLwQOkZHOkYMC4ox0XmcQlBn8s5Zl4B4kkl4QhdQo3odQxECccSRGLm2Gg+/NQfkWgUlyZJRqOEH3yYp/zV5AaMgOU6FTQCmawjzXKOVZVkKognjbu4oWuQZw934HULlUVBFpdcyNLLL6fgzS5T3Hfv72HP/Sb5XdymisfqN5vWNfkVUzKXrKEKz94OZ119WgeGWIGaSbb/BLwhOPPvAKht76d5VITXwdZ+GrvDXLKqPK05YI7fzWtXlU/rdCdCRDhrYSEr5+Xx5ME2Xm7oOe66xLHuMWQxrShPX/yOJZIMxhKEYwkGowmiiSTJpFn7SKiSTOrIeotImnU1JC6etPdL+fXGSqpfeo6Gszazec2GMXG2J4I6VlskZubbH43TH4nTqxeSeOoX4LQ8+XP5Kp6tGesZcbskTbCG36fsh3zujKvLT4ZMXZDJpBJLJonFh16TxBzBVoDF69jkJG0nPB62L13P0Z4wXrcpV+XzuFi0f8eUuDtjCaWmbYCatgEe3ddKWZ6f5eUrWX7h5ym97Iumfcru+2HP7+CBT5mtahOsvhLWvNlEB842XrwH/vAvJnVg0/tnejYzhnXxzRTxCNy6AlZuhatMesIvt9VR3znS8TWRVO5+phYXwrs2V6d1wH3T+gWsmDe7o5daeyM89kprWs29053RApBIKgPROH2ROH1h81qx50VW7nmep6vX8fS8lfRHEmMsMhHI8Rmh8g+XaDIuRr/bhWeU+3PFwZdYuXc7+1dt5ODy9U6Aw0ggRCyRZMkrO/n8bR/DE48R83j5pxu+yo6Fq4kljPiYV/N+dPL4eGxs2MP5R17i6ep1bK9cPebcT3/+f/Am4sQ9Xj7z4a/RvGYDRSGfs01N8eCSXB8ryvM4Y34exTk+k9KxxxGrph3movnrjWW1+kpT8WOm6TgE332NiVS87ncmBH+SzBUXnxWomWLvA/Dza+Bd98GK13O0J8w9zxxJu2RnfReP7GvlyvULWFqWO3x8cWmIt244dXoP1bb38/iBtkmvT52OjLd207j6bAZjiTQRG9oGowki8STReJJIPEkknhiTnpAqBjG3h3dd/aUxggHw4afv5ZN/uxuP0+jye6+7np++9lonKtCF1yN4neg7r0vMqxMxOHSNxyXjVmRKJJVofEToLrv/Dv7ut7cPN9X81cat1OaUDouZAMW5PubnB5ifH2BefoDS3JNr01KW5+eM+abwcUHQC501Rqj2/M70+QIoXWmEauUVpgCwZ5oTzAe74IeXQd9R+MDfTrhly1wRKOvimyle+qXJ+l96MQDba9PLWMUTSZ453EFFYYAlpSP/z9wu4eKVs8u1NxGLSnKoLg5xoKWPpw+10zaqKrtlhGOt3YR8HkI+D+UZGM2JpA4HiCSSypZ7H8SXjOPWJJJM8GGp54kLrjAh52JCv70uoWr+FejT95KMxVCvl5I3Xsbb1yyc+IEngF50MckHfozEYuB287adf8GViBP3+LjtM99m24JVHO0Jc6Clj12NpuRTwOtiYVGI6mKzjdfu5Xi09kZo7Y3w+CttVBQGWDmvgBXnfIjcC26EnqaRNavHb4PHvgqeIFSda0LXq8+HBWenFXGecgY64O63QcdBeM9vbT8xrEDNDJE+2PcHOPsacHvpi8TZfzQ9IfHlxh4GognecOaCtG+N66sKKMo59coGiQgr5uWxvDyXg619bKvpHFNRwQL1Z206bmPJTBiKKhyi9ZwtJO/9HhKLkfR6aTtny7h/3JvXbuRX//HjackLa1qzYfhZeS2NrPvDvbiSSTzxGBfUvYz3VRcCZj2vazBGc3eYuo4BjnQM8EqL+V0pyfGxrDyX5WW5GVlXqe7VxjUbaOwK89f9rVQUBllRnsvy9deTt+n90N8OtY+b7gK1T8Df/tMkE4OTKLzOuAXnrzMFfYsWn3zuVd2z8Ov3G6F8x12w5NUnd785gnXxzQQv3Qe/+t9w/QOw+EKePNjGM4dGFssTSeXHT9aQH/Tw9nNGvsH6vS7ed+GSac95yhaNXYO8WNfFgZa+jNY0TheykSs1mxOSR9yaRpSPF5KuqnT0R6ntGOBQaz+NXYMokB/wsKI8j1UL8ob7k43/jGOHvYvAvPwAS0tzWFKWQ3lewJwI95icq6adJlG4eSe0vcJwhXyXxzSjLF1henyVrjSiVVAJ+ZVpXbHTiA2aHK7tdxrrrWAhvO2HUG1CdXrDMfKO0yLneMwVF58VqJng3utMu4VP7iWJ8IPHD9EfGQnLfrmhm4f2tvC/zq5gUcnI/7ELlpWweency+UYjCbY29zD3ubeMVGMswGfxzVcZijH507LxfJ7nXUYlwu320QQDn2RHwpASCScSLdE0kmiTRJ2IvwGYwkGo3H6IwkGovEx60enEi4RvB7zMxiy4FRxwvCTx/1sJyqgA9E4h1r7OdDaR13HAEmFslw/qxbkcca8PHL8xkl03s++xwV33oYrmSTpcvPkdR/nuWs+cNx75/o9VJeEWFRiEsxz/SkOp2i/KeLbth/aXzGvbQeMey4xyoWdUwZ5803Ersdvykj1t0LHYVPuKVgE570fLrgRAvnEEkmeONBGJJ7k8rXpeY+ZMlcEyrr4ppt4BA48BGdeBS4Xh1p608Qpqcq22k7K8/xUF490xw363GyoLhrvjqc8Q59tQ3UR3YMxDrX2UdPeT2PXSNJuNnGJkBcY6uk0khhsCrZ6p9VijcQT9EcS9DtBECOvI+HqA9HEtPxc/F4XIa+bkN8zHDE4VI4o6Ah1wDOSmDxR1F0yqUTiyZGw+3CcroEYnQNR2kOb2LZ2w3GrkYxHyOfhzMoCzqwsYCBqXOV7mnp47JU2Hj/QRnVxiDUL8ilfdy6bJ+k67YvE2d3Yw25nDawo5KWiMEhFYZB5+QFKKjbiSq1AD6a2YFetKc/U02AK+vbUQ1+LqRgTCxt34Ly1sPatJtx96cXg8ZFMKvuaenjyYDs9g7FZk+M4k1gLaro58BezEHrNL+CMrfzmhXpq2kbCsA+29vH7nU284cz5aWHkr1pRynmLs7hAOwtJJJXW3ghN3YO09kbo6I/SNRhjMDq5Ej4uEXL87uE8otTqFEMilLpmcyownBMWNVZYaiRfLOFUv3Byw4Zy0Ya6DY/UwzOReD63i4B3JEzddBH2TPvPJBpP0tIbprk7TEPXII1d4YwTvkfT0R9lT5OxyvsicfweF28ZrOWS5j10nreF5rUbJ77JBHhcQkmun9JcHyW5Pqf/l4/8gCfjEPl4IsnR3giHW/vZ29yT1lF69YJ8tp5pLSjLdLL3AWPqL72I3nBsTI7Qi3Vd5AU8LEsJKw943ayvOv2yyd0uYX5BgPkFgbTj0XiSgWicwZixJOJJU7QUTDCGCYUW/J4hV9ypX5lhNENh3fknuEYxG/F5XMP1Gs/FrDe19Eaoaeunpr2fpu5wxhZWcY6PC5eXsmVZCXUdA+xu6uFXrdXcu3AhpX0+1hzpZNX8/LTk98kSTypHe8IcHaeqf9DnJsfvIZTiBnaLoBhRCscT9AzG6R6M2fXX42AFajpRNdF7yy4Bb5Ddde1pv3BtfRHqOwe5cHlJWlLuWQsL0grEnu74PC58Hh+FMz0RS1YRMTX35uUH2Ly0hIFonIMt/bzS0ktdx2BGVUpcIiwqyWFRSQ7hWIJ9R3vZ3djD3xwX4JLSHNZWFLCoOJT2O3eyDEYTk7b0LWOxAjWdNL0IvY2w6v8DYE9TT9rpHXVdeFzCmRUj1pLXLZy90P4ptlhCPg/rqgpYV5W+3pRpYE3A6+asqkLOqiqkrS/C7kbjAjzY2k+Oz82qBfmsWWH1FmUAACAASURBVJBvKk5YZgVZFSgR2YppF+wGfqCqt4w6Xw3cCRQ613xGVR8QkcXAHmCfc+nTqvrBbM51Wtj/J0BgxeU0d4fpHBjpbBqOJdjb3Muq+Xlpi/KrF+QT8tnvERZLKiGfh7MXFnL2wkLa+yLsbjLBDAMZWi2luX5es7KMC5eXUtPez+7GHrYf6eT52k4WFARYsyCfFfNyZ9RzUfjiNvjdS3DxxbBly4zNYybJ2l8+EXED/w28HtOz/jkRuV9Vd6dc9jngXlX9joiswbSHX+ycO6iqZ2drfjPCwYehciPklLBnX0vaqX3NvcSTyrqUtSYRrPVksUxASa6fV68o44JlpRxs7WNnfTd1HZnVf3S7hGVluSwry6U/Emdvcy+7m3p4aG8Lf91vuj+vWZBPVVFwWtcxF+x+gfM+cz3EYuDzwUMPnZYilc2v5puAA6p6CEBEfg68BUgVKAWGYikLgMYszmdmGeyC+m3w6k+STCqvOE36htjV1ENZnn8kORCoLg5RMk7SocViGYvbJaycZ2rttfdF2FHfxZ6m3oxD8nP8Hs5ZVMTG6kKO9kTY1dTN/uY+9jb3kh/wcMb8PBaX5DA/PzCl61XjUbXjWSQaM2Hr0Sg8+qgVqCmmEkjtW14PY7oZ3Az8WURuBHKA16WcWyIiLwA9wOdU9bHRDxCRG4AbAHy+We43rnnMJOUtfS31nYNpuU9DvY8uXpne7+ksaz1ZLCdESa6fS1bN44Jlpbzc0M2LdV1pIdzHQ2QkevSiFWUcaO1jd2MP22o7ea6mE7/HRXVxiKqiIAsKgpTk+qas9UlfOM6RzgFq85ZxjsuDX8Dl8xk332nITC9uXAP8WFW/KiJbgLtE5EygCahW1XYROQf4rYisVdW0qAJVvR24HUwe1HRPflIcfAR8uVB1Hvv3pxeG3d3Yg9slnDF/JO8pP+hlaekpn8ZgscwoAa+bcxcXs7G6iP0tvWyv7Ro3LPxYeNwuVs3PZ9X8fMKxBHUdA9S0D1Db3j9cE9DndlGe76c4x0dxyEdhyEuO30PQa9IcUq2toV5h4ViC3nCcnsEYXYMxWnsjHO0ND39xDeYvJecT3+TD1FP51itOS+sJsitQDUBqKeQq51gq/xvYCqCqT4lIAChV1RYg4hx/XkQOAiuBbVmcb3Y5+DAsfjVJl5eDrSOFYeOJJHube1lWlpMWHHFmRf6cy92xWGYKl0uGhaauY4BttR1pCfKZEPC6WTEvjxXz8lBVup0itk1OLtTepl6iibHuRLdLEEzIezyZZLy0p6KQl6qiEPPy/FQVhSjN9bGm4mwqTzBRd66QTYF6DlghIkswwnQ1cO2oa44AlwI/FpHVQABoFZEyoENVEyKyFFgBHMriXLNLx2HoPAznf4iGrsG0SKODrf1E4knWpoSWu0RYW3n6JeZaLNPBwuIQC4tDtPZGeL62k33NvZPu/Fyx50U2jaodqKoMRBN0DcToj5peXYOxBPGEopi6jB6XOE0l3eQ65bUmU3nidCNrAqWqcRH5KPAnTAj5Haq6S0S+AGxT1fuBfwK+LyKfwARMXK+qKiKvAb4gIjEgCXxQVcf2xj5VOPSIeV12CQda0ttq7DvaS67fw8Ki4PCxJWU56YUpLRbLlFOW52frmfO5YHkJLxzp4uWG7owCKo5VGV1ETEFh+7s7ZWT1J6mqD2BCx1OPfT7l/W7gwnHG/Qr4VTbnNq0cfgzyKtDiZRzcUzN8OBxLUNvez9kLC9PceWsrbJFIi2W6yA94uWhlGZuXFPNSQzc7JgioOFZTScv4iMh/qOqnJzo2HtauzDaqUPskLL6Qo73RtP/4B1r6SCqsTCkKm+N3s6TEBkdYLNNNwOvmvMXFvPfCJVyxbv6YGpBDDDWVTLrcJ9xUcjYgIltFZJ+IHBCRz4xzvlpEHhGRF0Rkp4i8wTm+WEQGReRFZ/vuBI96/TjHrshkjtYWzTYdh6CvGRZdwKHWse69wqCX8ryRXKcz5udnPcfCYrEcG3dKQEVzd5gd9V28crR3uJ9Vajfg2dgAMhOmo5CCiHwI+DCwVER2ppzKA57IZJ5WoLJN7ZPmddGFHDw40g6kPxKnvnOQTUuK09x7qxfkjb6DxWKZIUw+1HwuWlnG/qO97GnqobErTNOaDaekMKUwHYUU7gH+AHwFSLXQejONKbAClW1qn4RQCT25S2jrrRk+vN+pJHFGinuvNNeXVknCYrHMDkzLm0LWVxXSPRjjQEsfh1r7aOoOz9Z2GR4RSU3Lud3JGx0i64UUVLUb6AaucSy2eRjNyRWRXFU9MuGHmOgCy0lS+wQsuoDDo3IuXmnpozTXl1Y5eZXtoGmxzHoKgl7OWVTEOYuKiMaTNHYN0tg1SEtvhLa+CH2ReEZ9q3weFyGfSeb1eVy4XYKq6arcG45zkmmQcVU996TucJKFFIZworlvBo5iorLBWGfrJ5qAFahs0l1v2j+f/yFq2tPde03dYbYsLRk+JkJaJQmLxTL78XlcLC7NYXFK1Zd4Ikl/xORAxRJJEklFxKxt+TwuAl43Ia97wtynZHYts+kspPCPwBmq2j7ZSVqByia1TwEQr9pC3f70tu4AS8tG/lNXFATnVHdUi+V0xeN2URByUcDJ/T5nOVhqOgsp1GFcfZPGClQ2OfIk+PNp8C8llmgePnyotZ+CoJeSFPfeSms9WSyWaWKaCykcAh4Vkf/BsbycOXxtonlagcom9c9B5TnUdA7/mxCJJ6jrHEhLzhWBFeW5MzVLi8VyGjKNhRSOOJvP2TLGClS2iPbD0V3w6k9xJGX9qaZtgKTCsrIRQaosDNryKBaLZU6iqv8GICIhVZ1UhV5bSSJbNL4AmmRg3gba+qLDhw+29hHyuVmQkqW+Yp5171kslrmJiGwRkd3AXmf/LBH5diZjrUBli/rnADgSXDN8KJ5IUtPez9LSnDT33nLr3rNYLHOX24DLgXYAVd0BvCaTgVagskX9NiheSs3ASBmjhq5BYgllaYp7b0FBwFYut1gscxpVrRt1KDHuhaOwApUNVI0FVXUeRzpGXK41bQO4XZLWWsNaTxaLZY5TJyIXACoiXhH5FLAnk4FWoLJBdz30HaWv7OzhFs4ANe39VBUF0xL0lpfZ9SeLxTKn+SDwEUx5pQbgbGd/QqxvKRs460/1OWdC2BzqGojSNRjjrIWFw5eV5vooCNnkXIvFMndR1TbgXScy1gpUNqjfBp4Ar8gihvLSatqNq29xSWj4stRQc4vFYpmLONUqbsS06hjWHFV980Rjs+riO9GGWM65zzrj9onI5dmc55TT+AI6fz313SPNCWvaTfWIwtBIntpSK1AWi2Xu81ugBvgv4Ksp24RkzYI6mYZYzvurgbVABfAXEVmpqhlFfswoySQ072RwzTsIx8x044kk9Z2DrKsoGL4s1+9hXr7/WHexWCyWuUJYVb95IgOzaUENN8RS1Sgw1BArlWM1xHoL8HNVjajqYeCAc7/ZT8dBiPbRkrtq+FB95yCJpLKodMS9tyQlF8pisVjmMN8QkZuchN2NQ1smA7O5BnUyDbEqgadHja3MzjSnmMYXAajxrRwui1jT3o/bJVQVjoSXL0mpZG6xWCxzmHXAe4BLSO8HdclEA2c6SOJYDbEyQkRuAG4A8PkmVYMwezS9iLr97E8sGD5U2z6QFl7ucQnVxaFj3cFisVjmEm8HljqetEmRTRdfpg2x7gXTEAvTb6Q0w7Go6u2qeq6qnuvxzLTWOjTtIF62hv64+dH2hmN0DcbSBKmqOIh3gmZlFovFMkd4GSic8KpxyOZfyeGGWCLiwwQ93D/qmqGGWKQ2xHKuu1pE/E6I4grg2SzOdWpQhaaddBeuHT5U1zEIwMKiEYFaXGLdexaL5bShENgrIn8SkfuHtkwGZs3sOJmGWMAuEbkX2A3EgY+cEhF8nYch0k1TaOXwobrOAYJeN6W5Iy7IJaVWoCwWy2nDTSc6MKt+sRNtiOWc+xLwpWzOb8pp2gHAAfcyAFSVIx0DLCwKDkfsFYXSc6EsFotlLqOqfxWRRcAKVf2LiIQwRsuE2IWQqaTxRdTlpc6zGICO/igD0QQLU9afFlnryWKxnEaIyPuB+4DvOYcqMcm7E2IFaipp2kGk+AwSLmMh1XU660/Fdv3JYrGctnwE4ynrAVDVV4DyTAZagZoqVKFpBx35q4cP1XUMkB/wUBA0BWE9LqEqpdWGxWKxnAZEUkPMRcSDiTmYECtQU0VPIwx2UO9fDkAyqdR3DaZZTxWFNrzcYrGcdvxVRP4VCIrI64FfAr/LZKD9azlVHN0FQK1nKQAtvRGi8WRaePmiEpuca7FYZgfTWMz7M5j0oZeAD2AC5z6XyRxnSXbrHKDFCFRryAhUXadpr5Hq0qu2AmWxWGYB01zM+38BP1HV7092ntaCmiqO7iISWkDEY2rfNnQNUhzykeM33wFCPjdlubZ6ucVimRVMZzHvK4H9InKXiLzJWYPKCCtQU8XR3XTmrQAgqUpTV5iKwsDw6erikK1ebrFYZgvjFfMeXZD7ZuDdIlKPsZ5unMTYYVT1vcByzNrTNcBBEflBJpO0AjUVxKPQto8mv0nQbeuLEE0kqUxx7y20xWEtFsv04RGRbSnbDSdwj6Fi3lXAGzDFvE9IM1Q1BvwBY6k9j3H7TUhGppaI/Br4IfAHVU1OdP1pR/srkIzTFDDrT41dYQAqC+36k8VimRHiqnrucc5nWsx7K5hi3iIyqWLeQ4jIFcA7gYuBR4EfAO/I5ENkqobfBq4FXhGRW0TkjAzHnR44EXxtIRNi3tA5SF7AQ17A5D8VhbzkO+8tFotlFjCdxbz/HlM54gxVvV5VH1DVeCaTzMiCUtW/YCI1CjBm319EpA74PnC3Y76dvhzdRdLlpTO4GFWloWswLaTcWk8Wi2U2MZ3FvFX1GhGZB7zeWYd/VlVbMplnxtEUIlICvBvTGfEF4KfAq4DrMKbb6cvRXXTnLCHp8tDVH2Uwlkhz76XmQlksFstsYLqKeYvI24FbMe49Af5LRP5ZVe+baGyma1C/Ac4A7gKuVNUm59QvRGRbJveYy2jLbo4G1wMmvBxG1p9EoMoKlMViOX35HHDekNUkImXAXzAFZI9LphbUN1X1kfFOTLAQN/cZ6EB6GmgtugowAhX0uikMmTWn0lw/QV9GleUtFotlLuIa5dJrJ8P4h0yDJNaIyHDLXhEpEpEPT2KCc5cWk3jdmuMESHQNUpnS/8mGl1ssltOcPzrddK8XkeuB/2GUa/FYZCpQ71fVrqEdVe0E3j/pac5FWvYA0B5aRk84Rm84nrb+ZKuXWyyW0xUx39S/iekFtd7ZblfVT2cyPlMXn1tExIngGKrjZNvCArTuI+rOoc9XTuPRXmBk/cklkiZWFovFcjqhqioiD6jqOuDXkx2fqQX1R0xAxKUicinwM+fYccmgWu7XReRFZ9svIl0p5xIp50bH588aki17aQ8tARGausJ43UJJrtHusjw/Aa9df7JYLKc120XkvBMZmKkF9WlMmfQPOfsPYrKBj0km1XJV9RMp198IbEi5xaCqnp3h/GYMbd1HR66pk9jUE2Z+fgCXs/5k3XsWi8XCZkxNvxqgHxNqrqq6fqKBmSbqJoHvOFumDFfLBRCRoWq5u49x/TXATZO4/8wz2Il7oIX2sqXEEkna+iKcu6ho+LQVKIvFYmGiflHHJCMXn4isEJH7RGS3iBwa2iYYlnHFWxFZBCwBHk45HHCKHD4tIuMWFhSRG4aKIcbjGVXOmFpa9wPQEVrM0Z4wqrCgYCT/qcKuP1ksltMcVa0FSjAGypuBEufYhGS6BvUjjPUUB14L/AS4e/JTPSZXA/eNKpexyMmxuha4TUSWjR6kqrer6rmqeq7HMwO9F1v3AtARWkJTtykQO7/AtNiw608Wi8UCIvJ54E6MSJUCPxKRjDrqZipQQVV9CBBVrVXVm4E3TjBmMhVvr8YEXgyjqg3O6yFMiYwNY4fNLImWfcRdfnr8C2juDlMY8hJ0RMlG71ksFgsA78JUkrhJVW8CzseUzJuQTAUq4vQBeUVEPioibwVyJxiTSbVcRGQVUAQ8lXKsSET8zvtSTD2oY61dzRix5t10BBeRxEVTd5gFBSMNCu36k8VisQCmE28gZd/PcdpzpJKpX+zjQAj4GPDvGDffdccbkGG1XDDC9fOhHCuH1cD3RCSJEdFbUqP/ZgvSvp+O4Jl0D8YYjCWYn2/+DUSgstBWkLBYLBagG1MB/UFMVfTXA8+KyDcBVPVjxxo4oUA54eLvVNVPAX3AezOd1UTVcp39m8cZ9ySwLtPnzAiRPvx9DbQXX0lzj1l/GgqQKM7x2fp7FovFYviNsw3xaKYDJxQoVU2IyKtOYFJzm/ZXAOgILqGpPT1B164/WSwWi0FV7zzRsZm6+F5wqjn8EpNoNfTgSZeumCskju7BjYngaz4UZl5Kgm6lXX+yWCwWAETkTZiloUUYzRlK1M2faGymAhXAlEi/JOWYcgK1leYKg417CIqbVm8lrX21aQm6Nv/JYrFYhrkNuAp4aVSswYRkWkki43Wn04VEy166AtU09cVRHcl/yg96yQ94Z3h2FovFMmuoA16erDhB5h11f4SxmNJQ1fdN9oFzBU/HK7SEFtPsJOguyDdWU2Vh4HjDLBaL5XTjX4AHROSvQGTooKp+baKBmbr4fp/yPgC8FRPbfnoSjxLsO0JH5Wtp7g5TEPQOR+1Z957FYrGk8SVMBHiASbZpytTF96vUfRH5GfD4ZB40l9DOw7g0QUdwEUfrImlRe1agLBaLJY0KVT3zRAZmWkliNCuA8hMce8rT17gPgCZ3JX2ROPPy/QAEvG5KcmwfR4vFYknhARG57EQGZroG1Uv6GlQzpkfUaclg0z7ygL2xcqCPcqeCREVhAHFCzS0Wi2U2IyJbgW9gKv38QFVvGXX+65iqQWAqCZWraqFzLgG85Jw7oqpvPs6jPgR8SkQiQIypDjNX1bxMrjtdSLa9woCnkJp+HwKU5xkLaqiShMViscxmprOh7MnoR6b9oN4qIgUp+4XH6tF0OuDuPERXsJqjvWGKc3143ebHWGEj+CwWy6nBcENZVY0CQw1lj8U1jOo4MRFOIXBEZON4Wyb3yDSK7yZVHa6lpKpdInIT8NvJTHiuEOo9zOGC82lpjrCkNAcAt0uYl28FymKxzAo8IrItZf92Vb09ZX+8hrKbx7vR8RrKYnoE3qKq42nBJ4EbgK+Oc05JL/ww/oeY6AKH8SytGegQOPMM9HaSE23jqLeKwVhiOECiLM8/bElZLBbLDBN3Gr5OBcdqKNsgIkuBh0XkJVU9mDpIVW9wXl/LCZLpX9RtIvI1EVnmbF8Dnj/Rh57KdNebCL6DyfkAw1aTDS+3WCynEKdEQ9lMBepGIAr8AuOrDAMfycaEZjuDzUag9kTLcctIBfPUZoUWi8UyyzklGspmGsXXD3wmGxM41Ui2mTYbOwaKKcn14nEZjbcCZbFYThVOlYaymeZBPQi8XVW7nP0izKQvz8akZjOuzsP0+OZT3wtnzB8pEJtnC8RaLJZTiGw3lJ0oUk9Vt090j0wDHUqHxMm5caeITFhJ4iQTwa4DPuec++LJNL2aKpJJJdR7mFZfFdGe5HCAhLWeLBaLZQxD0XsB4FxgByZJdz2wDdgy0Q0yFaikiFSr6hEAEVnMONXNUzmZRDARKQZucj6UAs87YzsznG9W6OyPUDhwhL05RlOHAiSsQFksFks6Q9F7IvJrYKOqvuTsnwncnMk9Mg2S+D/A4yJyl4jcDfwV+OwEY04mEexy4EFV7XBE6UFga4ZzzRodbU0EEr0cSMzH4xKKQ0MBEjaCz2KxWI7BGUPiBKCqL2PWsSYk0yCJP4rIuZikqxcwCbqDEww7mUSw8cZWjjPuBmdO+HzZL9I62GQi+HZFyinP8+NyCR6XUOaUOrJYLBbLGHaKyA+Au539dwE7MxmYaZDEPwAfx8TKvwicjwk7nDATOEPGSwSbECcz+naAnJycSXdrnCyJ1qEIvlLKK41bb15+ALfLFoi1WCyWY/BeTMHYjzv7fwO+k8nATF18HwfOA2odv+IGoOv4Q04qEWwyY6cNV+ch4uKhNlkyXCB2vl1/slgslmOiqmHgu8BnVPWtqvp159iEZCpQ4aEbiohfVfcCZ0ww5oQTwTCx+Zc5CWFFwGXOsRkjHEuYCD5PBQncw249WyDWYrFYjo2IvBnjefujs3+2iIzRgvHINIqvXkQKMWtPD4pIJ1B7vAEnkwimqh0i8u8YkQP4gqp2ZDjXrNDeH6Vo8AiHZQHulACJ+TZAwmKxWI7HTZiguUcBVPVFEVmSycBMgyTe6ry9WUQeAQpw1HCCcSeUCOYcvwO4I5P5TQftvYOsCddz0LWW0lwfLpeQF/CQ6z8ta+ZaLBZLpsRUtXtUM9eMYgYm/ddVVf862TFzgb7WOjzJCHtjpZSV2/Uni8ViyZBdInIt4BaRFcDHgCczGWj7Q2RIpPUQAAcT5ZTn2gRdi8ViyZAbgbVABLgH6GYkou+4WIHKlM7DANTqPMryhywou/5ksVgsE/BGVf0/qnqes30OeHMmA61AZUBfJE6or44ELpoooTTHh0tkONTcYrFYLMdkvKpDE1UiAk7TrriTpb0vQkG4nmYpIz8UwuN2UZrnsx10LRaL5RiIyBXAG4BKEflmyql8TKv4CbEClQFtfVEqw/UcTM6jrMBWMLdYLJYMaMRULX8z6R3Ye4FPjDtiFFagMqC9L8LqwXoOJ84bdusNVTK3WCwWy1hUdQewQ0R+A/QPlbJzOl1ktD5ifVQZ0NvVRijRwxEtH64gYSuYWywWS0b8GUj9gxkE/pLJQCtQE6CqxNtTIvjy/Pi9LopCtoOuxWKxZEBAVfuGdpz3oUwGWoGagJ5wnJx+0/mjw1eJ3+NmXl6AUVnRFovFYhmf/tT27yJyDhO3awLsGtSEtPdFKAzXAxDOMwXWbQUJi8ViyZh/BH4pIo2Ylu/zgXdmMtAK1AR09EfJHaijVfPJzS8CbICExWKxZIqqPud0rRjqgLFPVWOZjLUuvglo64uS01/HEZ1ne0BZLBbLJBGREPBp4ONOu/fFIvKmTMZagZqA9v4IRZEGEyCR67cVzC0Wy5xARLaKyD4ROSAinxnn/NdF5EVn2y8iXSnnrhORV5ztugke9SMgCmxx9huAL2YyR/uX9jioKt29fRQnWml2vZocv8e69ywWyymPk4v038DrgXrgORG5X1V3D12jqp9Iuf5GTCd1RKQY0+PpXEzbjOedsZ3HeNwyVX2niFzj3HdAMowysxbUcegejBEcaMSF0umvAuz6k8VimRNsAg6o6iFVjQI/B95ynOuvAX7mvL8ceFBVOxxRehDYepyxUREJ4vSAEpFlmMrmE2IF6ji090fJHzARfP0hI1DzrUBZLJbZj0dEtqVsN4w6XwnUpezXO8fGICKLgCXAw5Md63ATpsHtQhH5KfAQ8C8ZfYhMLjpRRGQr8A1My/cfqOot41zzDuBmjLruUNVrneMJ4CXnsiOqmlF59qmkvS+Kr9d0to/mL0YEyvNtBXOLxTLriavquVN0r6uB+4ZKFU0WVX1QRLYD52PCzD+uqm2ZjM2aQGXi43S6K34WuFBVO0WkPOUWg6p6drbmlwkd/RFCfUfoVz++gvkUBr0EvO6ZnJLFckoQi8Wor68nHA7P9FTmNIFAgKqqKrzeSVe2aQAWpuxXOcfG42rgI6PGXjxq7KMTPO8i4FUYQ8QL/CaTSWbTghr2cQKIyJCPc3fKNe8H/ntocU1VW7I4n0nT1hfljMF66rSc4ly/DS+3WDKkvr6evLw8Fi9ebKuuZAlVpb29nfr6epYsWTLZ4c8BK0RkCUZwrgauHX2Rk79UBDyVcvhPwJdFpMjZv4zj9HcSkW8DyxlZw/qAiLxOVT9yrDFDZFOgxvNTbh51zUoAEXkC4wa8WVX/6JwLiMg2TN+QW1T1t6Mf4PhVbwDw+XxTOnlVpbM/SmmskRr3AtwuodyuP1ksGREOh604ZRkRoaSkhNbW1kmPVdW4iHwUIzZu4A5V3SUiXwC2qer9zqVXAz9XVU0Z2yEi/44ROYAvqGrHcR53CbB66B4iciewK5N5znSYuQdYgTEXq4C/icg6Ve0CFqlqg4gsBR4WkZdU9WDqYFW9HbgdICcnR5lCugZixBMJFiSbeT5wDmAj+CyWyWDFKfuczM9YVR8AHhh17POj9m8+xtg7gDsyfNQBoBqodfYXOscmJJtRfJn4OOuB+1U1pqqHgf0YwUJVG5zXQxj/5oYsznUM7f1RPAMtBCRGX7DKtni3WCyWEyMP2CMij4rII5hlnnwRuV9E7j/ewGxaUJn4OH+Lia//kYiUYlx+hxzf5oCqRpzjFwL/fxbnOoaO/ijSadpshHOrKc61Ld4tFovlBPj8xJeMT9YEKkMf55+Ay0RkN5AA/llV20XkAuB7IpLEWHm3pEb/TQftfRF8vUcASBQuttaTxWKxnBito/9+i8jFqvroRAOzugY1kY/TWTT7pLOlXvMksC6bc5uIjoEoeQN1xNVFPG+hTdC1WE6Qf/vdLnY39kzpPddU5HPTlWuPeb6mpoatW7dy/vnn8+STT3Leeefx3ve+l5tuuomWlhZ++tOfsmnTJvr7+7nxxht5+eWXicVi3HzzzbzlLW+hpqaG97znPfT39wPwrW99iwsuuIBHH32Um2++mdLSUl5++WXOOecc7r777jFrQd///ve5/fbbiUajLF++nLvuuotQKMTRo0f54Ac/yKFDhwD4zne+wwUXXMBPfvITbr31VkSE9evXc9ddd03pz2uGuVdEfgL8JxDAeMPOZaQ23zGxPqtxGIrgK4400OIqI+myNfgsllONAwcO8E//9E/s3buXvXv3cs899/D4449z66238uUvfxmANm2AWAAAHVxJREFUL33pS1xyySU8++yzPPLII/zzP/8z/f39lJeX8+CDD7J9+3Z+8Ytf8LGPfWz4vi+88AK33XYbu3fv5tChQzzxxBNjnn3VVVfx3HPPsWPHDlavXs0Pf/hDAD72sY9x0UUXsWPHDrZv387atWvZtWsXX/ziF3n44YfZsWMH3/jGN6bnBzR9bMYESTyJWfppxCzbTMhMR/HNSroHY0RiSeYlmmjxL8AlQmnu1IaxWyynC8ezdLLJkiVLWLfOOGLWrl3LpZdeioiwbt06ampqAPjzn//M/fffz6233gqY8PgjR45QUVHBRz/6UV588UXcbjf79+8fvu+mTZuoqvp/7d15dFXV9cDx7yYxI0rBAFJAgVYgBJMwBSIRwlAGZYEoiggoxaHS2vLT1QFQMGKt1h9Vi9oCtRRplUERRJdVGUyBCjLUEAiDA/JjkIK8SEwCISHZvz/uTXyETCR55L1kf9a6K++de8+557wL2Tn3nneOM/VZfHw8Bw8eJCkp6bxz7969m0cffZRTp06Rk5PD0KFDAVi/fj2LFy8GICgoiCZNmrB48WJuu+02oqKiAGjWrJnvPpS6UYCzgm44Tg/qS1UtqkpGC1Bl8OTmc+pMAVfLcXaFRXNl4xCCbYCEMQElNPS758aNGjUqed+oUSPOnTsHOHdLVqxYQadOnc7Lm5KSQsuWLdm5cydFRUWEhYWVWW5QUFBJWd4mTZrEqlWriIuLY9GiRaSmptZm0wLNNuAtoBcQBcwTkVtV9bbKMtpv3TJk5uaTk+WhmeRwOvJqu71nTD01dOhQXnjhBYq/h/rJJ58AkJWVRatWrWjUqBF///vfKSy8uGnosrOzadWqFQUFBbz66qsl6YMGDeLPf/4zAIWFhWRlZTFw4EBef/11PB4PAJmZFX3nNSDdo6qz3K8THVPVUUCFw8uLWYAqgyfnLMHfFk8S29ZG8BlTT82cOZOCggJiY2OJiYlh5syZAPz0pz/llVdeIS4ujn379hEZGXlR5T7xxBP07t2bvn370rlz55L0P/7xj3z44Ydcd9119OjRgz179hATE8MjjzxC//79iYuL4+GHH66g5IC0Q0QmiMgsABG5GthflYziNYNFQIuMjNTiETc19erH/8enH/6Dx/Oe4R9x/2DwwB/ZPHzGXIS9e/cSHR1d19VoEMr6rEXktKpeXFT1ERH5M1AEDFTVaPd7rh+oaq/K8tozqFKKR/A1OXMEBL4Nb2sDJIwxpvp6q2p3EfkEwF25okq/VO0WXylZZwrIzjvHVYXHyGrUhMu/19QGSBhjTPUVuMsvFU8W2xynR1Up+81biic3n5M5Z7lGTpAZ0pqW9vzJGGNqYi7O+k8tRORJYBPwu6pktFt8pXhy8jmZk881jY7zTUQPW2LDGGNqQFVfFZEdwCCcFXVvVtW9VclrAaqUzNyznMrOoRUeDke05RrrQRljTI2o6j5g38Xms1t8pXhy8wnJOUqQKN+Gt6a5BShjjKkTFqC8qCqZOWe54swR533TdrbEhjH1yMGDB+natWtdV+MCycnJbN++va6r4Xfst6+XrDMFZJ4u4Pv6XwBCm/+gjmtkTAOyeTM89ZTzM4CUNdWRqR0WoLyczMnHk5PPNXKcfAnliuZtK89kjKm5zZth0CCYOdP5WUtB6tlnn6Vr16507dqV559/HnACyvjx44mOjmbMmDGcPn0agGnTptGlSxdiY2P55S9/CcDXX3/NrbfeSq9evejVq1fJzOUpKSlMnDiRvn37MnHiRPr06UNGRkbJeYt7RLm5uUyePJmEhAS6devGW2+9BcCZM2e44447iI6OZvTo0Zw5c6ZW2lvf2CAJL5m5+XhynSHmp8La2Ag+Yy6V1FTIz4fCQudnaiokVrpcUIV27NjB3/72Nz7++GNUld69e9O/f3/279/PX//6V/r27cvkyZP505/+xI9//GNWrlzJvn37EBFOnToFwNSpU3nooYdISkri0KFDDB06lL17nQFoe/bsYdOmTYSHh/Pcc8+xfPlyHn/8cY4dO8axY8fo2bMnM2bMYODAgSxcuJBTp06RkJDA4MGDmT9/PhEREezdu5f09HS6d+9eww+wfrIelBdPzlk8Ofm0a3SCb8Pb2AAJYy6V5GQICYGgIOdncnKNi9y0aROjR48mMjKSxo0bc8stt7Bx40batm1L377OckQTJkxg06ZNNGnShLCwMO655x7efPNNIiIiAFi7di0PPvgg8fHxjBw5km+//ZacnBwARo4cSXh4OAC33347b7zxBgDLly9nzJgxgLOcx9NPP018fDzJyckly3ls2LCBCRMmABAbG0tsbGyN21sf+bQHJSLDgD/iLPn+sqo+XcYxtwMpON8y3qmqd7rpdwOPuof9VlVf8WVdAU7m5pOZk8fVcpxPGycTdlmQr09pjAGnt7RundNzSk6uce+pIqVXvxURgoOD2bp1K+vWreONN97gxRdfZP369RQVFbFly5bzltso5j2BbOvWrbnyyitJT09n2bJlzJs3Dyh/OQ9TNT7rQblTW7wEDAe6AONEpEupY64FpgN9VTUG+B83vRnwGM5KjAnAY+4Egz5TVOSM4As+fYJQ8tGm7X15OmNMaYmJMH16rQWnG264gVWrVnH69Glyc3NZuXIlN9xwA4cOHWKz+4zrtddeIykpiZycHLKysrjxxht57rnn2LlzJwBDhgzhhRdeKCkzLS2t3PONHTuWZ555hqysrJIeUXnLefTr14/XXnsNcBY3TE9Pr5U2XwwRGSYi+0XkcxGZVs4xt4vIHhHJEJHXvNILRSTN3aq0dEZ1+PIWXwLwuaoeUNV8YCkwqtQx9wEvqeo3AKp6wk0fCqxR1Ux33xpgmA/ryjen8/Hk5tPGHcF3mY3gMyagde/enUmTJpGQkEDv3r259957adq0KZ06deKll14iOjqab775hilTppCdnc2IESOIjY0lKSmJZ599FoC5c+eyfft2YmNj6dKlS0nPqCxjxoxh6dKl3H777SVp5S3nMWXKFHJycoiOjmbWrFn06NHDtx9GKTXpQLjOqGq8u430VT19eYuvNXDY6/0RnB6Rt44AIvJvnNuAKar6Xjl5W5c+gYjcD9wPEBJSsxnHM3PdEXyNjgMQcdUPa1SeMabuPfzwwxesr7Rv34UTGkRERLB169YL0qOioli2bNkF6SkpKRektWzZ8oIh5+Hh4cyfP/+CY8PDw1m6dGll1felkg4EgIgUdyD2eB1TXgfikqnrQRLBwLVAMjAO+IuIfK+qmVV1gar2VNWewcE1i7XOEPOzXC0nKCKIpq061Kg8Y4ypQ8Eist1ru7/U/qp0AjoCHUXk3yKyxR1TUCzMLXeLiNzsg/oDvu1BHQW8v0jUxk3zdgT4WFULgC9F5FOcgHUUJ2h55031WU0BT+5ZPLn5/DD4a7LDWtEkMsKXpzPGGF86p6o9a1iGdweiDbBBRK5T1VPANap6VEQ6AOtFZJeqflHD813Alz2obcC1ItLeXZzqDi5ch34VbiASkSiciH0AeB8YIiJN3cERQ9w0n/HkOM+g2jc6zpnG9gVdY0y9VtUOxGpVLVDVL4HiDgSqetT9eQCn89DNF5X0WYBS1XPAgziBZS+wXFUzRGS2iBQ/VHsf8IjIHuBD4Feq6lHVTOAJnCC3DZjtpvnEucIiTuac5dRpZ5BE4fdsBJ8xpl6rdgfC7TiEeqX35fxnV7XGp9+DUtV3gXdLpc3yeq3Aw+5WOu9CYKEv61cs83Q+mbn5NNYcGmsOOVH2/MkYU3+p6jkRKe5ABAELizsQwHZVXc13d7L2AIW4HQgRuR6YLyJFOJ2cp1U18AJUoDiZXTwHnzNIJayFDTE3xtRv1e1AqOpHwHWXoo51PYrPLzgDJM7Szh1i3viqa+u4RsYYfzdr1izWrl1b7v558+axePFiABYtWsRXX31Vsu/ee+9lzx6fdDrqFetBASfdOfiSQ06CQrDd4jPGVGL27NkV7n/ggQdKXi9atIiuXbvy/e9/H4CXX37Zp3WrLyxAATl55/Dk5vOD4BPkBTUnLCSy8kzGmKr55zT4767aLfOq62D4BVN7XuDmm2/m8OHD5OXlMXXqVO6//37ee+89ZsyYQWFhIVFRUaxbtw6Px8O4ceM4evQoiYmJrFmzhh07dpCTk8OIESPYvXs3AHPmzCEnJ4eUlBQmTZrEiBEjGDNmDNOmTWP16tUEBwczZMgQ5syZQ0pKCo0bN6Zdu3Zs376d8ePHEx4ezubNmxk+fDhz5syhZ8+eLFmyhN/97neoKjfddBO///3vAWjcuDFTp07lnXfeITw8nLfeeouWLVvW7ufo5+wWH5B/roisMwVcLScouOKauq6OMaaWLFy4kB07drB9+3bmzp3L8ePHue+++1ixYgU7d+7k9ddfB+Dxxx8nKSmJjIwMRo8ezaFDh6p8Do/Hw8qVK8nIyCA9PZ1HH330vP1jxoyhZ8+evPrqq6SlpZXMgA7w1Vdf8Zvf/Ib169eTlpbGtm3bWLVqFQC5ubn06dOHnTt30q9fP/7yl7/UwicSWKwHBZzIPgtAq6Jj0GxgHdfGmHqmCj0dX5k7dy4rV64E4PDhwyxYsIB+/frRvr3zVZJmzZoBsGHDBt58800AbrrpJpo2rfrc1N5LdYwYMYIRI0ZUOe+2bdtITk6mefPmAIwfP54NGzZw8803ExISUlJWjx49WLNmTZXLrS+sBwWc+DaPUPJpeu4kIc3t+ZMx9UFqaipr165l8+bN7Ny5k27duhEfH39RZQQHB1NUVFTyPi8vr8xjtm7dypgxY3jnnXcYNqx25rW+7LLLSpYGCQoKapBLy1uAwulBtWv0NQChzW2SWGPqg6ysLJo2bUpERAT79u1jy5Yt5OXlsWHDBr788ksAMjOd7/97L3/xz3/+k2+++QZwJoA9ceIEHo+Hs2fP8s4771xwnvKW6vB2+eWXk52dfUF6QkIC//rXvzh58iSFhYUsWbKE/v3719pnEOjsFh9wPPssceEe56tozWwWCWPqg2HDhjFv3jyio6Pp1KkTffr0oXnz5ixYsIBbbrmFoqIiWrRowZo1a3jssccYN24cMTExXH/99Vx99dWA04uZNWsWCQkJtG7dms6dO19wnuzsbEaNGkVeXh6qWrJUh7dJkybxwAMPlAySKNaqVSuefvppBgwYUDJIYtSo0qsSNVxSvJBWoIuMjNTc3Nxq5Y1NeZ+fhb3PT/L+Cr86AJFX1nLtjGlY9u7dS3R0dF1Xo9qKR95FRUXVdVUqVdZnLSKnVTXghyM3+Ft8WacL+DbvHB2CTlAYcgVENKvrKhljjMFu8fHpCee+8NV6lMKmPyDIfShpjGm4Dh48WNdVMFgPiv3/dQLUVQVHCWrRsY5rY4wxpliDD1Bn/rWRh7YtoUnBcYKibA4+Y4zxFw37Ft/mzdyTcj/atABuiIDMosrzGGOMuSQadg8qNZVGBfkEFX9pfM+xOq2OMcaY7zTsAJWcDCEhFEW5Hcn+9v0DY0z5UlJSmDNnDlD+chupqamVTneUlpbGu+++W+ExxscBSkSGich+EflcRKaVsX+SiHwtImnudq/XvkKv9NJLEdeOxERYt45TfWIoDImCpAE+OY0xpnKbD2/mqY1Psfnw5soP9gOzZ89m8ODB1cprAapqfBagRCQIeAkYDnQBxolIlzIOXaaq8e7mvUjKGa/0kb6qJ4mJFF0VCq1jfHYKY0zFNh/ezKDFg5j54UwGLR5Ua0Fq8eLFxMbGEhcXx8SJE3n77bfp3bs33bp1Y/DgwRw/7ixSmpKSwuTJk0lOTqZDhw7MnTu3pIwnn3ySjh07kpSUxP79+0vSJ02axBtvvAHAe++9R+fOnenevXvJpLMAW7duJTExkW7dunH99dezf/9+8vPzmTVrFsuWLSM+Pp5ly5aRm5vL5MmTSUhIoFu3brz11lsAZGRkkJCQQHx8PLGxsXz22We18rkECl8OkkgAPlfVAwAishQYBfjXMpKqXJH7fwR1TKzrmhjTYKUeTCW/MJ9CLSS/MJ/Ug6kktq3Z/8mMjAx++9vf8tFHHxEVFUVmZiYiwpYtWxARXn75ZZ555hn+8Ic/ALBv3z4+/PBDsrOz6dSpE1OmTCE9PZ2lS5eSlpbGuXPn6N69Oz169DjvPHl5edx3332sX7+eH/7wh4wdO7ZkX+fOndm4cSPBwcGsXbuWGTNmsGLFCmbPns327dt58cUXAZgxYwYDBw5k4cKFnDp1ioSEBAYPHsy8efOYOnUq48ePJz8/n8LCwhp9JoHGlwGqNXDY6/0RoHcZx90qIv2AT4GHVLU4T5iIbAfOAU+r6qrSGUXkfuB+gJCQkOrVMvckIeey4UqbJNaYupLcLpmQoBDyC/MJCQohuV1yjctcv349t912W8l0Rc2aNWPXrl2MHTuWY8eOkZ+fX7LsBjjLbISGhhIaGkqLFi04fvw4GzduZPTo0URERAAwcuSFN3P27dtH+/btufZa52sqEyZMYMGCBYAzYe3dd9/NZ599hohQUFBQZl0/+OADVq9eXfJ8Ky8vj0OHDpGYmMiTTz7JkSNHuOWWW0rO0VDU9SCJt4F2qhoLrAFe8dp3jar2BO4EnheRH5TOrKoLVLWnqvYMDq5mrPW4XeYoC1DG1JXEtomsu2sdTwx4gnV3ratx76k8P//5z3nwwQfZtWsX8+fPP2/5jNDQ0JLXtbW8xcyZMxkwYAC7d+/m7bffLnO5DgBVZcWKFaSlpZGWlsahQ4eIjo7mzjvvZPXq1YSHh3PjjTeyfv36GtcpkPgyQB0F2nq9b+OmlVBVj6qedd++DPTw2nfU/XkASAW6+aSWns+dn9aDMqZOJbZNZPoN02stOA0cOJDXX38dj8cDOEtrZGVl0bp1awBeeeWVirIDzjIcq1at4syZM2RnZ/P2229fcEznzp05ePAgX3zxBQBLliwp2ed9vkWLFpWkl15+Y+jQobzwwgsUT979ySefAHDgwAE6dOjAL37xC0aNGkV6evrFfAQVqmwQm3vM7SKyR0QyROQ1r/S7ReQzd7u71ipVii8D1DbgWhFpLyIhwB3AeaPxRKSV19uRwF43vamIhLqvo4C++OrZ1cnP0KBQaNK28mONMQEjJiaGRx55hP79+xMXF8fDDz9MSkoKt912Gz169KjSTOXdu3dn7NixxMXFMXz4cHr16nXBMWFhYSxYsICbbrqJ7t2706JFi5J9v/71r5k+fTrdunU7r0c2YMAA9uzZUzJIYubMmRQUFBAbG0tMTAwzZ84EYPny5XTt2pX4+Hh2797NXXfdVQufTNUGsYnItcB0oK+qxgD/46Y3Ax7DeWSTADwmIlVfgvhi6unL5TZE5EbgeSAIWKiqT4rIbGC7qq4WkadwAtM5IBOYoqr7ROR6YD5QhBNEn1fVv1Z0rmovt5GxEr5Kgx89fvF5jTFlCvTlNgJJdZbbEJFEIEVVh7rvpwOo6lNexzwDfFpqdDUiMg5IVtWfuO/nA6mquoRa5tOpjlT1XeDdUmmzvF5Px4nQpfN9BFzny7qViBntbMYY03BUZRBbRwAR+TdOJyNFVd8rJ29rX1SyYc/FZ4wx9VOwOwq62AJVXXCxZQDXAsk4Ywg2iMil6Th4VcAYY2qdqiK2vppPVfCI5pw7Cro8lQ5iw+kZfayqBcCXIvIpTsA6ihO0vPOmVr3WVVfXw8yNMfVQWFgYHo+nol+gpoZUFY/HQ1hYWHWyVzqIDViFG4jcwWodgQPA+8AQdzBbU2CIm1brrAdljKl1bdq04ciRI3z99dd1XZV6LSwsjDZt2lx0PlU9JyIP4gSW4kFsGd6D2PguEO0BCoFfqaoHQESewAlyALNVNbMWmnMBn47iu5SqPYrPGGPqmcpG8QUKu8VnjDHGL1mAMsYY45csQBljjPFL9eYZlIgUAWeqmT0YZzaLQGZt8A/WBv9RH9pR3TaEq2rAd0DqTYCqCRHZXsl3BvyetcE/WBv8R31oR31oQ00EfIQ1xhhTP1mAMsYY45csQDkudo4qf2Rt8A/WBv9RH9pRH9pQbfYMyhhjjF+yHpQxxhi/ZAHKGGOMX6qXAUpEhonIfhH5XESmlbE/VESWufs/FpF2Xvumu+n7RWRoVcsMkDYcFJFdIpJWaq0Yv2qDiFwpIh+KSI6IvFgqTw+3DZ+LyFzx8XoOPmpDqltmmru1KF2un7ThRyKyw/28d4jIQK88gXIdKmpDoFyHBK867hSR0VUtM+Cpar3acGbm/QLoAIQAO4EupY75KTDPfX0HsMx93cU9PhRo75YTVJUy/b0N7r6DQFQAXIdIIAl4AHixVJ6tQB9AgH8CwwOwDalAzwC4Dt2A77uvuwJHA/A6VNSGQLkOEUCw+7oVcALnC7yX9PdSXWz1sQeVAHyuqgdUNR9YCowqdcwo4BX39RvAIPcvwFHAUlU9q6pfAp+75VWlTH9vw6VW7Taoaq6qbgLyvA8WkVbAFaq6RZ3/rYuBmwOpDXWgJm34RFW/ctMzgHD3r/xAug5ltsGHdS1PTdpwWlWLZ5MIA4pHtl3q30uXXH0MUK2Bw17vj7hpZR7jXvgs4MoK8lalzNrkizaA8w/7A/dWx/0+qHeZ9SujHhccU6oNFZV5pJIya5Mv2lDsb+4tm5k+vj1WW224FfiPqp4lcK+DdxuKBcR1EJHeIpIB7AIecPdf6t9Ll1x9DFCmfEmq2h0YDvxMRPrVdYUaqPGqeh1wg7tNrOP6VEhEYoDfAz+p67pUVzltCJjroKofq2oM0AuYLiLVWkY30NTHAHUUaOv1vo2bVuYxIhIMNAE8FeStSpm1yRdtQFWLf54AVuLbW381aUNFZXovH+rP16FcXtchG3gNP74OItIG59/KXar6hdfxAXMdymlDQF2HYqq6F8jBfZ5WhTIDW10/BKvtDefh4QGcAQLFDw5jSh3zM85/GLncfR3D+QMMDuA8iKy0zABoQyRwuXtMJPARMMwf2+C1fxKVD5K4MZDa4JYZ5b6+DOdZwwP+2Abge+7xt5RRbkBch/LaEGDXoT3fDZK4BvgKiKpKmYG+1XkFfPSP4UbgU5wRLo+4abOBke7rMOB1nAEEW4EOXnkfcfPtx2tkUlllBlIbcEb67HS3jABow0EgE+evxSO4o5OAnsBut8wXcWdDCZQ24PxxsANId6/DH3FHWfpbG4BHgVwgzWtrEUjXobw2BNh1mOjWMQ34D3BzRWXWp82mOjLGGOOX6uMzKGOMMfWABShjjDF+yQKUMcYYv2QByhhjjF+yAGWMMcYvWYAyDY6I5NR1HcoiIu1E5M66rocx/sIClDHVJCJB1cgTXMHudoAFKGNcFqBMgyYivxKRbSKSLiKPe6WvcifVzfCeWNdd3+kPIrITSHTfP+mu07NFRFqWcY4UEfm7iPwb+LvbU9ooIv9xt+vdQ58GbnAnL31IRIJE5H+96hewc+EZUx0WoEyDJSJDgGtx5mCLB3p4TaA7WVV74MyY8AsRKZ4ZOxL4WFXj1FlOIxLYoqpxwAbgvnJO1wUYrKrjcNbz+ZE6E/eOBea6x0wDNqpqvKo+B9wDZKlqL5xJQu8Tkfa19gEY4+cqut1gTH03xN0+cd83xglYG3CCUvHKpW3ddA9QCKzwKiMfeMd9vQP4UTnnWq2qZ9zXlwEviki8W17HCuoXKyJj3PdN3Hp8WaXWGRPgLECZhkyAp1R1/nmJIsnAYCBRVU+LSCrOPGkAeapa6HV4gX43X1gh5f+fyvV6/RBwHIjDuYtR3qKGAvxcVd+vWnOMqV/sFp9pyN4HJotIYwARaS0iLXB6Kt+4wakzzqzdtakJcExVi3AmAi0ebJENXF6qflNE5DK3fh1FJLKW62KM37IelGmwVPUDEYkGNruLqeYAE4D3gAdEZC/OjPBbavnUfwJWiMhd7rmKe1fpQKE7AGMRzgzb7YD/uKu9fo1vl1Y3xq/YbObGGGP8kt3iM8YY45csQBljjPFLFqCMMcb4JQtQxhhj/JIFKGOMMX7JApQxxhi/ZAHKGGOMX/p/0QbFwtmrsqYAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXycZ3Xvv2f20b7LtmRL3mPHzr45YQkEkrAvLW0Iey8NtJDSFnoLLSUpS4F7C4UWSgncsC9lKTS0IRCSuEBikjiJHS+J41W2dmvfRrOe+8fzShrJi0ayxpLl8/183s/Muzzv+4wSz5lznt85R1QVwzAMw1ho+OZ7AoZhGIZxMsxAGYZhGAsSM1CGYRjGgsQMlGEYhrEgMQNlGIZhLEjMQBmGYRgLEjNQhmEYxoLEDJRhTIOI3Cki387j/TeIyIMi0i8iB0Tkdfl6lmGcS5iBMox5REQCwH8C/wVUALcB3xaRdfM6McNYAJiBMgwPEflrEWkRkUER2SciN4jIzcDfAH8oIkMistO7tlRE/p+ItHljPi4ifu/c20XkYRH5gucVPSsiN5zisRcAy4B/UtW0qj4IPAy85Sx8ZMNY0ATmewKGsRAQkfXAe4ErVbVVRBoBv6oeFJF/ANao6puzhnwd6ATWAIU4D+gY8GXv/NXAj4Aq4PXAf4jISlXtyWU6wKYz/lCGcY5jHpRhONJAGNgoIkFVPaKqB092oYjUAi8H/lxVh1W1E/gn4JasyzqBz6lqUlX/HdgHvOIkt9vnXftXIhIUkRuBFwIFc/bJDOMcxQyUYQCqegD4c+BOoFNEvi8iy05xeQMQBNpEpE9E+nCeU03WNS06uRJzEy6UN/W5SeC1OOPVDrwf+AHQfGafyDDOfcxAGYaHqn5XVZ+HM0AKfHrs1JRLjwFxoEpVy7ytRFUvzLqmTkQka38F0HqK5z6tqi9U1UpVvQlYBTw2F5/JMM5lzEAZBm4NSkReLCJhYBSIARnvdAfQKCI+AFVtA34JfEZESkTEJyKrReSFWbesAf7MC9u9AdgA3HuKZ18kIhERKRCRDwBLcWtchnFeYwbKMBxh4FNAFy7UVgN8yDv3Q++1W0Se9N6/FQgBe4FenCBiadb9HgXWevf7BPD7qtp9ime/BWjDrUXdALxUVeNz8JkM45xGrGGhYcwtIvJ24J1euNAwjFliHpRhGIaxIDEDZRiGYSxILMRnGIZhLEjMgzIMwzAWJIum1JHP59NoNDrf0zAMw5h3RkZGVFXPeQdk0RioaDTK8PDwfE/DMAxj3hGR2HzPYS445y2sYRiGsTgxA2UYhmEsSMxAGYZhGAsSM1CGYRjGgsQMlGEYhrEgMQNlGIZhLEjMQBnjbDu2jU/+5pNsO7ZtvqdiGIaxePKgjGlQhXQCkjFIjZ7wuq11Ozc88Fck0ilC/gAPvPSzbFl+LRRUQcky8Pnn+xMYhnGeYQbqXCeThrad0PoUdO2H/mMQ63Xb6ACkYpAcda+aOeVtthInQYK0QCKVYOvP388Wwu6kPwRlK6BiFSzZDEsvgWWXQOlymNQ01jAMY+4wA3WucuxxePIb8Mw9MNrvjgULoKwBCiqcMQmXQDACgSgEo1nvp75Gub73AKH7bieRSRHyB7n+xs9ByXIY6oDeI9B7GLoOwIEHQNPueQVV0LAFGp4HjddBzYXgs6ixYRhzw6KpZl5YWKjnRamj9l1w/0fg4IMQLISNr4Y1L4HlV0NJ3RkZiG3HtrH1yFaub7yeLcu3nPyiZAw69jiPreUJOPIw9B915yJl0HAtNFznDNeSi8Fvv4EM42wjIiOqWjjf8zhTzECdK2TS8JvPwtZPQqQEnv8BuPxtEC4+7TBVZWA0Rf9IksF4klgiTSKVIZlRMqr4RAj4hHDARyTopygcoDQapCQaxO/LMXzXd9QZqqbfutfew+54sBCWXwkrrnWGq/4K58kZhpFXzEAtMBa1gUoMw4/+CJ67Dza/AV7+fyFaftJLVZWWvhhN3SO09MU4PhgnkTr12tOp8IlQXhikuihMTUmEZWURaoojuRmtgTY4+gg0bYOj25zHhYIvCEs2Qe0mWHKRW8+q3QiR0hnPzzCMU2MGaoGxaA1UfBC++VpofdIZpivfedLLBkeTPN3cz97WAYbiqbxMJegXlpRGWV4eZUVlAbXFEXy5GKxYLxx7DJoehtYdLkwZ65k4X1AF5Y1uK1sBRTVQUOltFc4TC0YgEIFAGPxhQJ0y8ZSvuPfAtubH2Hrst1y//HlsqbvSCTuChRAIzeWfxzAWDGagFhiL0kAlR+E7vw9Nj8AffAM2vOqES2KJNL871M2uln7SmYn/lkv3PkX9zseIlZQRHeij+eKraNt46ZxOLxz0saKigMbKQlZUFlASCeY2UBUGWqFjt/Oueo9AX5P3emxChDEHbCPFDYyQAELAAxSwZUwb5As4QxUqcKHSolpnHItq3VbeAJVrnOAkdM7/WzfOIxaLgbIV7IWKKvzXX8CR38Drv3JS47SvfZCH9nUSS0z+Ql+69yl+76/fjj8RR1RREZKBEF98zXuJDPSybflmdtRvwCdCJOijIOTWnaqKQlQVhakuCufkGcWTGfZ3DLG/YwiAyqIQDZWFNFQUUFceJeg/hWBDBErr3LbupsnnMhkY7YORbhjucq+p0aycrTik44B4EvfTvAJbD/+CxP6fkUZJ4GPr2hvZsvIlkByBxIj3OuQk+cPHnfhjqNMdy6Z4mQtHLrt0QmZfUmcye8PII+ZBLVQe/3/w338JL/wgvOhDk06l0hke2nec3S39455Stod05fe+zJZvfA5/JoPivqpTIqj4EFVSgSAf+tPPsrdxE6OJNMOJFH0jSVKeBxb0C8tKo9SXR1lVXUR5QRCZ4RdxwCcsLXP3qC+PsqQkQuBUBiuPbDu2jRu+eQOJdIKQP8QDb33g1ArFbOKDzqPrPuC2rgMuNHn8mYl8suJl0Pg8t618PpSvNINlLAgWiweVVwMlIjcDnwf8wFdV9VNTzjcAdwPVQA/wZlVt9s69Dfiwd+nHVfUbp3vWojJQXfvhS9e5L71bfzhJOj6aTHPPzlZaemMTnlIyQToY4sef/jq7V2yk51f/w2fuej/BVBI/SkZ84PMhmTQ+VTI+P4+87X08/sZ3jd83o8pALEnnYJyW3hgtfTG6hxMAlEWDrK4uYnVNIUtKIjM2VuAMVk1JmCWlzljVFIcpm4Xhmw05yedzJTHiQpOtO5wA5MhvYbjTnSupgzU3wNqbYNX1EC4606kbxqwwAzXdjUX8wHPAS4Fm4HHgjaq6N+uaHwL/parfEJEXA+9Q1beISAWwHbgCt9L9BHC5qvae6nmLxkBlMvC1l7lf6u95DIqXjJ8aTab58ZPNdA7EAecpXfuNz+HLZEj7/Hz/le/k7za+iqDfxy2pZl7UvpdkWQXRgT5iJWVc/2//gD+ZJB0M8uNPf/2ka1LZHtlzqzZxqGuYQ8eHae4dIaNQEgmwrraY9UuKqSoKn9FHDQV8lBeEqCgMUVYQHJe3F4UDFIb88+JxzRhV94PiyK/h8K/h4EMQH3DVNxqf54zVupugYuV8z9Q4jzADNd2NRbYAd6rqTd7+hwBU9ZNZ1+wBblbVY+J+SveraomIvBG4XlXf5V33ZWCrqn7vVM9bNAbqsa/AvR+A134JLrl1/HAileHHTzbT3j86fmzMg/IlkyT9AW79w48zesXVPG9NFdHQibXzThYOnHp+qkc2dl08lebQ8WH2dQxytGcEVagsDLFuSTHra4spjQZzesZMCAV8RIN+IkE/oYCPoF8I+n34fYJfBJ8PRIRcfLCx63wi+AR8Ppf/5fe5e4YDPkJeLlgk4Ccacs+cMemk86ye+4Xbuve741XrYf3NsO5lsPwqq21o5BUzUNPdWOT3ccbnnd7+W4CrVfW9Wdd8F3hUVT8vIq8HfgxUAe8AIqr6ce+6vwNiqvqPU55xG3AbQCgUujwej+fls5w1Yr3weW8B/i0/HV/PUFXu2dnKoeMnGuDI9scYvf8Bti3fTNVLX8ja2hMTd0WgtiRCfXmUysIwBSE/Is7oDcZTdA8laO+PsfIr/zLukZ0sDDjGSCLF/s4h9rUP0uYZzCUlEV4+dIQPfea9+FMnGrh8MJfG8GSEAj6KwgGKwgFKos7DK40GKS8MUl4QOrUIJJvug56x+rlTY2ZSEK2AtTc6g7X6Bpd4bRhzyGIxUPOt4vsA8AUReTvwa6AFyFljrKp3AXeB86DyMcGzym8+4+rq3fiJSYvtjxzsPqlxau2L8Z9DlYSefwuvvWQZlVNCbgGfsKm+lEuXl1FWMH3OTyzxWvjel8gkE6QDQZovvuqEa8aMwuqLr+LiKy5lIJbkuY5B9nUMEnn410gygU8zaDJJ1RPb8magTuftzRWJVIaeVIIeby0uGxEoiQSpKg5TVRSipjhCTUn4RKl95WrY8qdui/XBwQecwdr/C3j6+y55ueFaWP8yWHezhQKNs8bZ1AjMlnwaqBZgedZ+vXdsHFVtBV4PICJFwO+pap+ItADXTxm7NY9znX96m+DRL7uw3pJN44ePdA3z+JGeEy7vHBzlP3e0UhD28/pL6yie8sW4vKKAl2yoyckwjRF94fPhwQdg61bi1z6PNQ0XMtrST+9IEji5UWDjpVzRWMEVjRUUBl5Ketu/QypJ0ufnX7WeY48epbGqgBUVBSwtjeZePmka6nc+hj+ZwJfJQDJJ/c7H8uqtTUUV+mNJ+mNJDnZOHC8I+VlSGmFJSYSlpVFqS8OEA144L1oGm37PbekUND8G+37uKoTc90G3VV8Aq17kjNaKLVBUfdY+k3H+4GkEvkiWRkBE7snWCAD/CHwzSyPwSWBMI3AHWRoBb+wpNQKzJZ8G6nFgrYisxBmmW4Bbsy8QkSqgR1UzwIdw1hrgF8A/iMhYPZ8bvfOLl9/+k3t90d+OH4ol0vxybztTo7D9sSQ/faqVUMDH66YYJxHYsqqSq1ZWzE4ht2ULbNlCFPd/3+UN5RzribGjuY/K75/eKAxffhU/+b/foH7nYzx7wWUUVqwhcHyI7U29PH6kl6BfqCuLsryiYFzJN1shRPPFV5EOhsATfZzM25sPRhJurW7M4xWBqqIwy8qcwVpWFnXrdf6AV1j3WrjxY1mhwPvgia/Bo19yN6xa59asllzkSkTVXugM3TnKnCoqjTPhKuCAqh4CEJHvA68Bsg3URuAvvfcPAT/13t8E3K+qPd7Y+4GbgVNqBGZL3gyUqqZE5L04Y+MH7lbVPSLyUWC7qt6D85I+KSKKC/G9xxvbIyIfwxk5gI+O/TEWJYPtsOM7cMmbXPKqx4PPdjIcnxzxTKYz/OzpVjKqvOHS+kkhJb9PuHnTEtadZB1qtogIKyoLWFFZwNCbX4t+91/JJE5tFNo2XjputC4DLmsoJ55Mc6w3xtGeEY72jHCkuwsAn/flXVMcpqLQqfnKC0MUhwPTGte2jZfy409/Pa9rUHOBKhwfjHN8MM7OY64tSnEkwNLSKEvLIiwrjVJdHMafHQpMJaBthysN1bQNnr0Xnvr2xE1L6ryyUA2uNFTJMlcSKlrhajRGSr2SUKGJTcTlb2XSrlJH9msmDZmkWx9LJ6fsp9xrrvsnrGlP7G/rPcgNj37GtXTxBXjgqr9kS/lqV9EjVORk+aEiV9WjeAkUVpuYZPYERGR71v5d3pLIGHXAsaz9ZuDqKffYiYtwfR54HVAsIpWnGFtHHrBE3YXA/R+BR/4Fbn/CldUBDh0f4j93tE66TFW5b3c7+zuHeM0ly2ionFgD9fuEV1y0lNXVec692baN1IMPcnDjFTxcvY7+WHLGtxiOp2gfGKW9f5T2gVGOD8aJZxW09fvESc3Dfu81QCTgH1fahQI+Qp6az+fzVHnilH3iKfTG1Xoy+b0IZyX3aiaM5YjVlkTGt0nJ0aruR0zHbi9ZeJ+rIN/X5EpGcW78G/4kcf6OOGkBv8LHCPMhTpOq4AtA8VIorYfq9VCz0W1LNp/TXuTZYDqRRI4itmXAF4CVOAfi94BNwDvJQcQ2F8y3SMIY7YfH74YLXzdunJJepYip7G0b4LnOIa5dXTnJOInASzfW5t84AWzZQmDLFtYD61Q51DXMjqN9HO0ZyfkWheGAS/z15quqxJJpeoYT9A4n6YslGIqnGI6n6RiIMxwfHq9yMRdMNVx+vxD2O1n5mBEMB1wJqMKwn0LPSBaG/BSGArkVyJ0BqYzS2jdKa99ECkEo4KOyMERlUZjKohAVBSWU111P8eqXTH5+KuGaSsZ6YKTH66Tc7zyhdBzSCXcNCuJ3Sd/id57J2Ksv4DZ/cOJ9Dvsp/KTFT4oAKXyk8ZNByGRc4ndG1TlUnsR/c+eTBO+9FTJJQoEgV7/2BySXX0WQtKvYHx+cKDs11O6M70CrW5/d+5/wxNe9Dy0u1LliiwuRrrreeZDGTDgnNALmQc03j34Zfv6/4batrs4b8LtD3Ww72D3psv5Yku8+epSa4jCvv6xukhdwzapKtqyuPIuTPpGe4QQ7m/t4pm2AeHLm7T2mI5XJkEh5W9q9pjNK2vsSzGSUjLovxrSqi2Z5X5Jjx1XxrtfxL9G1h3ax8bmneGLlxeys30A8lSaeyhBPZhhNpk/wTXyeeq+0IEhZNEhZQYjSaJDKwhDFkelDk2eKT4SiSIDiiJO/F4T8FIQCRII+woGJfLGAz4fP564fQ9X9GEirur9dRkmmlVQmQyqtJNIZkt7fN+n9jeOpDMm0uh5i6Ym/fyrt/rYz5cjgUxzof4w1pVfRWOz+fw/4hKj3OQrDfkoiLmG7vCBIRaH7+wo4Q9yxxzXKbHrEVchPDjtDu+IalxC97mVQvW6O/trnLjl4UAFcIYUbcIbpceBWVd2Tdc24RkBEPgGkVfUjnkjiCVwUH+BJXCGFOV+GMQM1n6jCv17jWrXf9hDgwl9ff+TIpB5OqsqPnmymazDBm65eQUl0Yt1pVXUhr7542YIJWyXTGQ50DrGndYDm3pETlyQWENNJ1TMZ59k5b855dAOjTrnXF0vSN5IgmZ74gCG/j0qv4G5lUYiqQidBDwf9k5650NfN5oq5+qxBv1Bd7PqSLS2NsKws6tZe0ylX3He/Jy5p3+UG1G6Czb/v1JJlK+bo05xb5JIHJSIvBz7HhEbgE9kaAS8M+ElcDPnXwHtUNe6N/SPgb7xbfUJVv5aXz2EGah5pesSVNXr1F+CytwDw4LMd44vpY+xu7eeBZzp5yYYaLlw20dyvOBLgzdc0EAkuzIXkgdEk+9oHea5jcLw800Iiu1TU6RKTT8VYaLJ3JEn3UJzuoQRdQ3G6hhOTfmAURwJUF4XZ0vkcd3z+z/CnkmTOQiLzfJLvPLWSaJAVFQU0VLoUhkjQD/3N8Ox/w64fOQk/wPKrYdPvuxD6uSbZV5118WFL1DXOnO13Q7gUNr0ecGG83S0Dky4ZTaZ5+EAXy0ojbFw6UXFABG66cMmCNU7gQmFXNlZwZWMF/SNJDhwf4nDXMK19sUm9q+aLM5WqiwgFoQAFoQB1ZROt7FWVoXiKrjGDNRSnazBB6aMP40sm8WsGTSTovfeXPOiro7ooTFWx87xyqk5xDpDvPLWBWJLdLf3sbunHJ0JdeZRV1YWsufiPKLn6Xa4S/e4fw64fw8//yuWYrX6R60h9wSucUnAhEx+Eb/8+vPhvYeUL5ns284YZqPki1gd774HL3jreDO/xwz0nfHE/crCbeCrD9etrJoXxLqovZXlFwVmd8plQWhDk8oZyLm8oJ5HK0NoXo7k3RmtfjI6B0TkVQeRKvqTqIkJxJEhxJMjKqokfsTXFN5P53b+TTqVI+wM8teoS9rUPsis94TGXRV11iuoiFx6sLg5TlIPsfq7IJSyn6tauRpNpRpNpYsk0o0m3RpXOKKmM0lt9AVf6gwRIkvIHuL/mAg419eL3CeGgq7G4/tBu1j37BB2XXkPHpstO+qxcyKhyrGeEYz0j/Pq54ywpibBuSSnrrnofRc9/P3TshV0/dJ7VT94Fgair3LH5DbDmJQuzs/IvPwzHHvW6R5+/WIhvvnjym3DP7fDOB6H+cgZHk3zt4SOTDFTXUJzvPHqUS+rLeOH6ifBEcSTAW7Y0TFQoOMdJZ5Tu4TidA3G6hxP0DMfpG0kyEEvNaiF+ITPVAKgqg6Mpjg+5XKmuoTjLntnB5v1P8bsVm3mybgMBn4xXei+JuOaSxZGgExYEXWHbcMB3WiN2KsOj6gxKPJWhateT/K8734k/lSTlD/LRP/9nnl6+kVhizAiNbRnSOfx3uazlGa45umv8c0w9953v/y3BdIqkP8Btb/s0R9ddTFmBM9A1xWEqC8NnVHlEBOrLC7hgSTFra4sI+8SF/nb9EHb/h1M+RsrgwtfCha93ikB/jl2h88mz/w3fvxWuvR1u/PisbrFYQnxmoOaLr78SBlrg9idBhF8/d5wnmiZXCvnZzlaa+2K849rGSaG8V1y0dE6TcRcqmYwylEgxNJpiJJFiJJEmlkgz6qn5kp7aLJXW8V/u48q9zGT1nqKkM2P77tqF+L9+9tpNKhDk0x/4Ik8su4CBWHJcoJEtzBjDJ06aHvD5CPiFoPcKcGHTXr5w918RSCVJBYK8622fYvuyC0imnHJvjD/d9gP+8jffJqAZUuLjs89/M197wRtdRfnQRGV5t2VVfvf2QwGv0rzPUxF6OWdj/z3G1IOjyQxbfnAXN/37F/FnMqR8Pn5+9Ss5WlTF1qUbeXzpBeOfqaooTH15lLryKHVl0Vn/KAv6hVXVRVywpJjGykJ8mnKtUXb9wBmE5AiES1wYcO1NzrMqrp3Vs86Itqfh7pudEvEd90EwMqvbLBYDZSG++WCg1TW6u/6DIMJoMs2ulsnCiLb+GIe6htmyqnKScaovj54Xxglcwm1JJHhiAdY5IuMZtVTGSanHZdSevHosfBVLphmJu87Dw56i72RGYi7IXrsJpFK8qG0vRdc/f/y8qvuCH4wnxz2bMcOdSGVIZjKk00rS+1wAVzY9TSCVJKAZSCV5QeteujZfTtDvEp6DASHk9yGR68dDkBoIUv+6l3HbhavO+DP5RPD5ZfzLpiAEA1dfR+Y/voIkk+D387Lt9+FLp7gtGOLrf/8VnqzbQOdgnPb+UXYe6+fJo30Irir/yupCVlcVUlEYyjn0mUwr+9oH2dc+SEHIz7olxVyw5PksXXejy8E6+CDs/yXsv9/lXAFUrHby9RXXOLFF5Zr8VrZofgK+83uuEsgt3521cVpMmIGaD3b9CFAXAwf2tA6cICt/5EA30aCfS5ZPZMyLMCnUZ5wZPp8Q8gkhZi5MiCXSDMZdGLI/lmTAKxzbN5Kg/wxCk9MJN0RcztDJ+n2ditLwS9CHvk0mmUSDQQpvvIGXbDiJd1B/Hf/xf74xHgrsyKPCMHv9r7izlc0//8G4oGLDvqcYuuyq8R9iqXSG9oFRjvXGaOoeZttBlydYGg2yurqQ9UuKqS4KT2usssOcOzZeyo6jfZQVBFlfW8za+hup3vAqp5xr3wWHHoKjj7pivju+424QiELNBqjd6KTsVetc9fnSFa624mxJJeDRf4MHP+ZKPL31Hle+yrAQ37xw14sAhdu2oqp87eEjk0oGNfeO8OMnW3jhuupJBmrD0hJu3rTkxPsZC4pMRumPJekdSdA7kqBnOEnvcILu4QSjyem7yeQjV2oh519NhDVP3+15jKHRFIe6hjjUNcyxHtfpuaIgxPqlxVxQWzwpT/DEZ5xa9l5eEGRNTTGrawpZUhJxBk8Vug+4pOCOPa7cVMduGMlKpPcFoHS5qwRTsdLlXhUvc8ameKl7DWdVeVF1FTM69sCBX8GO78FAs0syfs0XodAl3XcNxWfdtXqxhPjMQJ1tBlrhsxvgho/A899/0pp7P93RQudAnD+6rnG82rffJ7zt2sbxzrXGuclIwjWI7BlO0DOSoGfIGbHB0dR8T+2MGOtGPFYqaqxbMXjVPTJ4oVMXksyOGMDsDWgsmeZAxxDPtg/Q6jXPrC+LsqmulNU1hQR87t/PTHPeCsN+GioLx/OsCkJZHpIqDHU6w9VzCHoPQ89h977nMMT7T7yhPwSBiHtNDEHKK2slPlj5QtjyXlhzw3jI/6FnOxGRWf8gXSwGykJ8Z5t997rXC14JcMLa0/HBOE3dI2xZXTmpFcWmuhIzTouAglCAgorACSkCiVQmy+NK0D+SpHfEhQ1z8brySSTopyQaoCQSpDgSoDji1IRFEZcDVhjyz7htSiKVYXDUfcbekQRdS17AwSuvpnckMaPat9Ggn831pWyuL2UgluTZ9kH2tg1w3552Is/52Li0hE3LSmec8zYcT7O3dYC9rS4vsbIoRF1Z1FWhL41QVlSDFNdC43UnDo4PwkAbDLa5Ir+Dba5GYjrhDFOoyNUOrFoP9VeOJxCn0hn2tPbzu0PdjCTSbFhqnZbNgzrbfOt1rhL1e7czEE9x928PT1KT/Xx3G4e7hvmj61aOiyP8PuHt1zXmTSxgLGxGk2lPxZdicDQ5qfTSSDLNaMLJv2eSSyYCQb/zelw9v4laeMVhZ4iKIs4ohQJnL3l4NJmmrX+U5l7XmuX4YHzGaktV5WjPCLtbBjjUNURGoa4syqtHmthybBetl1x9xmHOUMBHtddNuaIwTEVBiNKCIMXhmRUTTqUztPWPcqhrmGfbBhhJTPwYOZOQvnlQxsyJ9cHhX8OW94AIe1sHJv3j648l2d8xxKUryiYp9zYuLTHjdB4zJu2umeYHtSv+6oq5ZrxisGP/e421I/H7hYBPps2bmi8iQT8rqwrHE5xHEikOdw1z8PgwR7uHc1JPiogXnitkOJ5ib9sAu1v6+VKihq/X38jGYAmbRhIz6jY9lUQqQ0tvjJbe2KTjPpHxCvgFIb9XwFfw+3wILtyZSGWIeT86ekeSC6KqykLFDNTZ5MCvXFO39a9AVcfDB2Psau4H4QTl3hWN5VPvZBgn4HKQ/Au6/NVMKQgFuHBZKRcuKyWRynCoa4h97YM0dY/k9MVeGA5wZWMFVzSUc7RnhF0t/Tx5rJcnjvayvCLK5rpSVlUVnVFCcDYZL/H6XF9TXHZPeawAACAASURBVCiYgTqbPPtfUFgD9VfQ3BubpNwbiz+vqiqc1MJ9TU3RGf3SM4zFQijg44IlJVywpIRYIs0z7QPsaR2ga3D6QsTZXtVQPMWe1n52twxw7652CkJ+Llzm1qpOpgA05o+8GigRuRnXLtgPfFVVPzXl/ArgG0CZd80HVfVeEWkEngH2eZf+TlXfnc+55p1M2iUDXvBK8Pl5pm2y9/Rc5xCjqQwX10/uFHp5g3lPhjGVaMjPZSvKuWxFOe39ozzd3MdzHYM5hQCLwgGuXlnJlY0VNHU7r2r7kV4eP9JLY2UBm+tKXbWJOW5MOVPKdmyHn+2C66+HLVvmdS7zRd4MlIj4gS8CL8X1rH9cRO5R1b1Zl30Y+IGqfklENgL3Ao3euYOqekm+5nfWaX3KdTpd/WJS6QwHjg9NOv10cx8VBSHqyyeqYi8ri7C0NDr1ToZhZLGkNMKS0iW8YF01e1r72XGsn4Gs6MSp8ImMr3cNjCbZ0zrAntZ+fvZ0G0XhAGtri1hfW0xN8fRJwHPN0r1PceUH3w7JJIRC8MAD56WRyqcHdRVwQFUPAYjI94HXANkGSoGxpd9SYHJC0GLi4EOAwKoXcaR7eFLX2Y6BUToG4ly/rnrSP4RLlpv3ZBi5Egn6ubyhgstWlHPw+BBPNvXR0hebfiCuNcyWVZVc3VjB4e5h9rYOsPNYH08d7aM0GmRdbRGrq4vOmrGq3/kYkki6yEsiAVu3moGaY+qAY1n7zcDVU665E/iliNwOFAIvyTq3UkSeAgaAD6vqb6Y+QERuA24DCIUW+DrNwQdh6cVQWMm+g22TTu1tHcDvEy5YOlFjrygcYE1N0dS7GIYxDSLCmppi1tQU094/yvamHg50DuUkV/f5hNXVzhiNJtMcPD7Evo7B8RBgNOinsbKAhspC6sqiFEXm9it0KJ6iqXuYw0WrudwXICzgC4VcmO88ZL5FEm8Evq6qnxGRLcC3RGQT0AasUNVuEbkc+KmIXKiqkxZuVPUu4C5weVBne/I5Mzrgyvxf+2ckUhkOd02E91LpDPs6BllTXTSpUvOFdSVzpiwyjPOVJaURXnnRMvpGEjzR1Mve1oGc88UiQf+4gnAkkaKpe4Qj3cMc7hrmmfZBwP2QXFoaobo4THlBiPKCIKXR4LSJy+mMuur0I0l6RhK094/SPjA6rv4rLF/Fp97/L7ybYyx9zcvOS+8J8mugWoDlWfv13rFs/hdwM4CqbhORCFClqp1A3Dv+hIgcBNYB2/M43/xx5LdOXr76xRyZkstxuGuYeCrDhizvySfC5rrSk93JMIxZUFYQ4oYNtVyzqpKnjvaxs7nvhHJLp6MgFGDD0hI2LC0hozpeab2tP0Z7/yj7OyevKQf9Mt6eZCwiqOryp0ZTaeLJzKSCGcWRAEtLIlyyPMLy8gKqikJsXHYJS8/z2pv5NFCPA2tFZCXOMN0C3DrlmqPADcDXRWQDEAGOi0g10KOqaRFZBawFDuVxrvnl4IMQLITlV7F/b8+kU3vbBigKTy5901hVMElqbhjG3FAYDvC8tVVc0VjO0839PHW0d1L1hlzwiXBp8zMTtQOvu5R4Kk2fV7ZpIJaa1OAx2xCVFQSJBJzhKo0GKStw26Raf8Y4efurqGpKRN4L/AInIb9bVfeIyEeB7ap6D/B+4Csi8hc4wcTbVVVF5AXAR0UkCWSAd6tqzyketfA5tBUaryMlQY50T5RjGo67sMHlDeX4shZeN5n3ZBh5JRL0c9XKCi5dUcae1gGeaOrNSfkHp66MXlvip7bEejjNJXk126p6L046nn3sI1nv9wInVFtU1R8DP87n3M4aQ53QvR8ueytNPSOTwgrPtg+iuFJGYxSFA6ysPOdLaBnGOUHQ7+OS5WVcVFfqxBBNvdMm/mY3lSSZpH7nYwuuhcli4exVgTxfaXrEvTZcy8Epcep9HYPUloQpL5xQIF6wtHjeEwQN43zD5xM2LC3hLdc08PrL6mioLDjltWOV0TM+f06V0RcqInKziOwTkQMi8sGTnF8hIg+JyFMi8rSIvNw73igiMRHZ4W3/Ns1zPp3LsZNhgc980/QIBAvQJRdx+OCE6r53JMHxwTjPX1s16fKNVmLfMOaVsZJI3UNxdhzr49n2wUmRj+xuwAuxAWQunOVCCi8F/nrKsZed5NgJmIHKN02PwPKraBtKT1qMHVP9rM3KdaotiVA5yw6ahmHMLZVFYW7YUMvz1laxr32QPa0DtHtNEds2XnpOGqYs8l5IQUT+BPhTYJWIPJ11qhh4OJd7mIHKJ7Fe1x76RX/D4a7Jvar2dwyytDQySa2XLTU3DGNhEA74uai+jIvqy+geirOvY5CDnUN0DSXme2qnIyAi2Wk5d3l5o2PkvZAC8F3g58AngewQ4mCuojczUPnk6KOAQsO1HGqfMFC9wwm6hhK8ICu85xNh/RIzUIaxkKksCnNtUZhrV1fRP5KkqWeY5t4YrX2xWbXY8IlQEPITCfoI+n2IQCKtDMdTnGFFpZSqXnFGdzjzQgr9QD/wRi+kWIuzOUUiUqSqR6ebgBmofNL0MPhDDFZeRNf+9vHDE+G9CYO0ojJquRCGcQ5RWhDkogLnWYHrBtwznKA/lmQ4niKeypDKKKqK3yeEvA7GYw0Ni8IBCkOn7sCbTOeeSDwLzlohBS/d6E6gA5c2BC58eNF0k7RvxHzS9AjUXU7TwOTSKs91DLKsLDKpjtf6WhNHGMa5TCToZ1lZlGVlc9OBIDhNuaQz5GwWUvhzYL2qds90kiYzzxfJUWjbCcuvnpSc2zuSoHs4Mcl7CviE1TWW+2QYxtlBVVPAWCGFZ3BqvT0i8lERebV32fuBPxaRncD38AopAC8AnhaRHcCPmL6QwjFcqG/GmAeVL9qfhkySTN0VHO0cGT88JpZYVTVhkBqqCicVijUMw8g3Z7GQwiFgq4j8N15o0LvPZ6cbaAYqXzQ/DkBn6WbiLRNqn0PHh6kqCk1qLb2u1tpqGIaxaDnqbSFvyxkzUPmieTuULufwaDHgQq+xZJrWvhhXNlaMXxbwua6ehmEYixFV/XsAESlQ1ZHprs/G1qDyRfN2qLucoz0T609HuoZRYGX1hEFaUVlg4T3DMBYtIrJFRPYCz3r7F4vIv+Yy1gxUPhjsgP6jpJZdTnv/ROHJQ13DFIb81BZPVIuwrrmGYSxyPgfchBdKUtWdOKHFtJiBygctLh2go2QzGa/PdCqToal7mJXVhYiXgecT117aMAxjMaOqx6YcyqkJlxmofNC8HXwBDvpXjx9q6Y2RTCurqiYMUn15lEjQwnuGYSxqjonItYCKSFBEPoCTtk+LGah80Pw41G6iaXAiQfdI9wh+n7C8fCKJb7WF9wzDWPy8G3gPrv5fC3CJtz8tpuKbazIZaN1BatMf0D00sf7U1D1MXVmUQFZ2+KpqU+8ZhrG4UdUu4E2zGWsGaq7pOQSJQbpLN6Je+tPAaJLekeSkVu41JWFKsiqZG4ZhLEa8ckq343pJjdscVX31qcaMkdcQ32w7NnrnPuSN2yciN+VznnNK2w4AjobXjB862u2k/w0VE106s9eiDMMwFjE/BY4A/wJ8Jmublrx5UGfSsdF7fwtwIbAM+JWIrFPVnJQf80r70+APsT9Tz1jh3qbuEYrCASqyWrtbeM8wjPOEUVX959kMzKcHNd6xUVUTwFjHxmxO1bHxNcD3VTWuqoeBA979Fj5tO8lUb6RzxBmnTEY52jtCQ2XBuLy8KBygptg65xqGcV7weRG5w0vYvWxsy2VgPtegzqRjYx3wuylj66Y+QERuA24DCIVmVOIpP6hC206GVr4cL/2J9oFREqnMpPBeY9VELpRhGMYiZzPwFuDFTO4H9eLpBs63SOJUHRtzwmthfBdAYWGhTnN5/ulvhlgvnYXrxg819YwgwPIsA7WyquAkgw3DMBYlbwBWeZG0GZHPEF+uHRt/AK5jI64hVlWOYxcebTsBOBScLJCoLYmMJ+T6fcKKClt/MgzjvGE3UDabgfk0UOMdG0UkhBM93DPlmrGOjWR3bPSuu0VEwp5EcS3wWB7nOje07UTFz34aAIgn03QMjLKicsJjqiuLEgpYfrRhGOcNZcCzIvILEblnbMtlYN5CfKqa8nrR/wLwA3ePdWwEtqvqPbiOjV8Rkb/AxSTHOjbuEZEfAHuBFPCec0LB17aTZMVaEuIEEC19MRQmVY9otPCeYRjnF3fMdmBe16Bm27HRO/cJ4BP5nN+c0/40A9XXjO8e643h9wlLSiPjxxoqLbxnGMb5g6r+j4g0AGtV9VciUoBzWqbFYk1zxWAHDLbRVrB+/FBz7whLSyMEfO7PXBwJUFVk8nLDMM4fROSPgR8BX/YO1eGSd6fFDNRc0b4LgIMBV8E8lkzTNZRgeflESM+8J8MwzkPeg4uUDQCo6n6gJpeBZqDmio7dALSGVwGuvQa4lhpjNFTa+pNhGOcd8WyJuYgEcJqDaTEDNVd07iVZuJR4wBXGaO4dIeATakvc+pMIrKgwA2UYxnnH/4jI3wBREXkp8EPgZ7kMNAM1V3Tspb947fhuc2+MZWVR/D5XMSI7F8owDGO+OYvFvD+ISx/aBbwLJ5z7cC5znO9KEouDdBK69tGx4lYARhIpuocTrF9SPH5Jg3lPhmEsEM5yMe/XAt9U1a/MdJ7mQc0F3QchneBYcCXgvCdgkkBiuRkowzAWDmezmPergOdE5Fsi8kpvDSonzEDNBZ3uR0dX1Cn4mntjBP0yXrE86BeWlUVPOdwwDGOOCYjI9qzttinnT1bMe2pB7juBN4tIM857un0GY8dR1XcAa3BrT28EDorIV3P6ELlcZExD515U/PQUOA+qtS/GstIoPm/9qa58Yi3KMAzjLJBS1SvO8B5nVMw7G1VNisjPcV5ZFBf2e+d043LyoETkP0TkFSJiHtfJ6NjLUFEjaV+I0WSa7uHEJI8pO9RnGIaxADhrxbxF5GUi8nVgP/B7wFeBJblMMleD86/ArcB+EfmUiKyfbsB5Recejkdd/lNb/ygAS7PKG5m83DCMBcbZLOb9VlzliPWq+nZVvVdVU7lMMicDpaq/UtU3AZfhesv/SkQeEZF3iEgwl3ssWuJD0HuE9siYgYrhE8br70WCfqqte65hGAsIz0CMFfN+BqfW2yMiHxWRV3uXvR/4YxHZCXwPr5i3qu7BeVZ7gfuYppi3qr4R2Aa81BNJ5FRFAmawBiUilcCbcZ0RnwK+AzwPeBtwfa73WXQcfxaArgLXA6q1b5Tq4jBBv7P99eVR655rGMaC42wV8xaRNwD/CGwFBPgXEfkrVf3RdGNzMlAi8hNgPfAt4FWq2uad+ncR2Z7LPRYtHXsAZ6DSGaV9YJSL6krHT5u83DCM85wPA1eqaieAiFQDv8IVkD0tuXpQ/6yqD53sxBwoRc5tOp8h5Y/SH1lG58Ao6YxOEkhk1+IzDMM4D/GNGSePbnJcXspVJLFRRMZb9opIuYj86QwmuHg5/oyTl4uPtr7JAomCkN/aaxiGcb5zn9dN9+0i8nbgv5kSWjwVuRqoP1bVvrEdVe0F/njG01yEZDr30RVpBKC1P0ZpNEhh2Dmm9SYvNwzjPEbcAvw/43pBXeRtd6nqX+cyPtcQn19ExGvHPlbHKZTD5G4GPo/rnvhVVf3UlPP/BLzI2y0AalS1zDuXxhUXBDiqqq9moREfxDfURk/l61BVWvtGJ7V0t/CeYRjnM6qqInKvqm4G/mOm43M1UPfhBBFjHRHf5R07JbkUI1TVv8i6/nbg0qxbxFT1khznNz90PQdAT7SRvliSWDLNslJbfzIMw8jiSRG5UlUfn+nAXA3UX+OM0p94+/fjsoFPx3gxQgARGStGuPcU178RuCPH+SwMuvYD0BNdSWufKxA7JpAoCPmptPUnwzCMq3E1/Y4AwzipuarqRdMNzMlAqWoG+JK35crJCgpefbILRaQBWAk8mHU44knYU8CnVPWEHvZeAcTbAEKhaSOOc8/xfaQlQH+knrb+biIBH+UFLm+5zrwnwzAMgOn6RZ2SXPOg1gKfBDbiyl0AoKqrZvvgKdwC/GhKNnKDqraIyCrgQRHZpaoHswep6l3AXQCFhYU5tRCeS5IdzzIQqSfjC9DeP8qS0sh4Um6dVS83DMNAVZtE5DJcYQcFHlbVJ3MZm6uK72s47ymFEzV8E/j2NGNmUlDwFlwpjXFUtcV7PYTLQL70xGHzix5/jp5oI/GUKxC7pGSi/p55UIZhGCAiHwG+AVTiis1+TURy6qibq4GKquoDgKhqk6reCbximjG5FCNERC4AynG1msaOlYtI2HtfhSu3caq1q/khnSTQf4TegkY6B+LARP29cNBHta0/GYZhALwJV0niDlW9A7gGVzJvWnIVScS9Vhv7ReS9OE+o6HQDVDXlXfsLnMz87rFihMB2VR0zVrfgujNmh+g2AF8WkQzOiH5qSivi+afnMD5N0RNdSfuAS9Ct9TyoujKrv2cYhuHRilsaGvX2w5ymPUc2uRqo9+HylP4M+BguzPe26QZNV4zQ27/zJOMeATbnOLf5oWsfAD3RBtrbRimLBokE/QDWPdcwDGOCfmCPiNyPW4N6KfCYiPwzgKr+2akGTmugvHymP1TVDwBDwDvmZMrnOIn2ZwgB3dEG2gc6J/V8MoGEYRjGOD/xtjG25jpwWgOlqmkRed4sJrWoSbTvIx6qoTcVZiSRHhdIBHwyHuozDMM431HVb8x2bK4hvqdE5B7gh7hEq7EHz7h0xWJBup6jO9pIu9dBt9YTSNSWRvD7bP3JMAwDQEReiVsaasDZnLFE3ZLpxuZqoCK4EukvzjqmzKK20qJAlXD/AXqqX0X7wCh+n4yr9iy8ZxiGMYnPAa8Hdk0Rw01LrpUkbN0pm4FWAqkRJ5BoHaW6KDzuNZlAwjAMYxLHgN0zNU6QeyWJr+E8pkmo6h/N9IGLgVTnPgJAd6SBzoE4m7wOuiITvaAMwzAMAP43cK+I/A8QHzuoqp+dbmCuIb7/ynofAV6H07afl4y0PksJcEiXkcrExgUSlUXhcam5YRiGAcAncArwCDm0acom1xDfj7P3ReR7wG9n8qDFRKJzP0lfhOeGi4DYeAWJZeY9GYZhTGWZqm6azcBcSx1NZS1QM8ux5zzSc5C+yHLaB+NEgj5KIs7O2/qTYRjGCdwrIjfOZmCua1CDTF6Dasf1iDovCQ0coT26ms7+UWqKJyqYZzcrNAzDWMicxY7nfwJ8QETiQJK5lpmranEu150XpFMUjDTTXfpCeoYTNFYWAlAY9lPq9YIyDMNYyJzNjudnYj9yCvGJyOtEpDRrv0xEXjvbh57LDHYcxK9pjskyMgo1JS7/aal5T4ZhnDuMdzxX1QQw1vH8VLyRKS2RpsPrVIGIXHayLZd75Kriu0NVx2spqWqfiNwBnNDldrEz1LqPYmB/qhaA2mJPIFFmAgnDMBYMAa8j+Rh3eQ1ex8h7x3PgL3Edzz9zknPK5MIPJ/8Q013gcTJPK9exi4p4x34A9sSriAR8FHsCCfOgDMNYQKRU9Yo5utdsO57f5r2+iFmSq4pvu4h8VkRWe9tngSdm+9Bzmp6DxP2FPDcYpabECST8PqGm2BoUGoZxznBOdDzP1UDdDiSAf8fFKkeB9+RjQgudYN9heiP1dI8kxo1STXGYgH+2in3DMIyzzjnR8TxXFd8w8MF8TOBcIpXOUDjcRFN4vRNIeAZqiSXoGoZxDnGudDzPNQ/qfuANqtrn7ZfjJn3TNOPORGf/NuDD3rmPn0lPkbmiZ3CIqtE2joavB6CmZEwgYetPhmGcW+S74/l0Sj1VfXK6e+QqdKgaM07ejXtF5LSVJM5EZy8iFcAdwBU4tccT3tjeHOebFwZaD1JDhv2pGsKBiQoS5kEZhmGcwJh6L4L7Lt+JS9K9CNgObJnuBrkunGREZMXYjog0cpLq5lM4E539TcD9qtrjGaX7gZtznGveiHc8B8Ce0WpqSsKICEXhACURS9A1DMPIRlVf5Cn42oDLVPUKVb0c54icSpAxiVw9qL8FfuuVSxfg+Th9++k4E539ycbWnWTcbWPzCIVmVCR3VmS6nYpyx0gFjVXOazLvyTAM47SsV9Wxskio6m4R2ZDLwFxFEveJyBU4Y/AULkE3NpuZnoKT6exzmdddwF0AhYWFM26GNVP8vYeI+Yro1mKuLh6rIGEGyjAM4zQ8LSJfBb7t7b8JeDqXgbmKJN4JvA+nld8BXIOTHZ4uE3imOvts2XoLcP2UsVtzmWu+GE2mKRxqoi1QB8i4QMI8KMMwjNPyDlzB2Pd5+78GvpTLwFzXoN4HXAk0eTHFS4G+0w+Zvc4eJ3280dPblwM3esfmje7hBGWjxzjKknGBhE+EmmIzUIZhGKdCVUeBfwM+qKqvU9V/8o5NS64GanTshiISVtVngfXTTCoFjOnsnwF+MKazF5Hs0uwn6OxVtQf4GM7IPQ581Ds2b/T2DVASb2d/qpbqYieQqCwKEQpYgq5hGMap8L7vdwD3efuXiMgJzsrJyFUk0SwiZbi1p/tFpBdomm7QbHX23vG7gbtznF/eGe48gKDsTVRTU+Ul6JaY92QYhjENd+BU3VsBVHWHiKzMZWCuIonXeW/vFJGHgFI8a3i+kDp+CIDD6VpqiqyChGEYRo4kVbV/rLGrR06ithlXJFfV/5npmMWA9B0BoElruNBKHBmGYeTKHhG5FfCLyFrgz4BHchloCyg5EEukiQ4dY0SiDEgJ5QVu7amyMP+5V4ZhGOc4twMXAnHgu0A/E4q+03Je9nSaKV1DcUpHW2ihloqi8Hh7jSkuq2EYhnEir1DVv8UVfABARN4A/HC6geZB5UDPcILS0RaOZKqpKnJek4X3DMMwcuJDOR47AfOgcqBnKM7G0RYOpzdSXWQKPsMwjOkQkZcBLwfqROSfs06V4FrFT4sZqBwY6m4hqAmOag3VnkCi1jwowzCM09GKq1r+aiZ3YB8E/uKkI6ZgBioH0t2HATimNVxQFKYw7LcK5oZhGKdBVXcCO0XkJ8DwWK1VrxVTOJd72BrUNMQSaSJDrrB6d2gpkaCfWgvvGYZh5MovgeyurlHgV7kMNAM1Dd3DcUpGW8ggJAvrAcxAGYZh5E5EVYfGdrz3BbkMNAM1DT3DCUpiLbRrOaUlRYAJJAzDMGbAcHb7dxG5nBzbNdka1DR0DyVoGGnmmNaMK/jMgzIMw8iZPwd+KCKtuIa3S4A/zGWgGahp6B5OcHG8hScyG6kuDlMaDRIN+ed7WoZhGOcEqvq411ZprAPGPlVN5jLWQnzT0D8wQEW6ixappSQSMO/JMAxjBohIAfDXwPtUdTfQKCKvzGWsGajTMJpM4x9oBqAvvAwRobYkJ3WkYRjGgkZEbhaRfSJyQEQ+eJLz/yQiO7ztORHpyzr3NhHZ721vm+ZRXwMSwBZvvwX4eC5ztBDfaegeTlA66gzUcOFySrH1J8Mwzn28XKQvAi8FmoHHReQeVd07do2q/kXW9bfjOqkjIhW4Hk9X4NpmPOGN7T3F41ar6h+KyBu9+45IjoVMzYM6DT1DCUKDRwFIlTQgwnglCcMwjHOYq4ADqnpIVRPA94HXnOb6NwLf897fBNyvqj2eUbofuPk0YxMiEsXrASUiq3GVzafFPKjT0DOSIDJ0jBENEyqtpSwaJBI0gYRhGAuegIhsz9q/S1XvytqvA45l7TcDV5/sRiLSAKwEHjzN2LrTzOUOXIPb5SLyHeA64O05fIb8GigRuRn4POAHvqqqnzrJNX8A3ImzrjtV9VbveBrY5V12VFVfnc+5noye4Th1sVaOag2VRWEL7xmGca6QUtUr5uhetwA/GitVNFNU9X4ReRK4Biczf5+qduUyNm8GKpcYp9dd8UPAdaraKyI1WbeIqeol+ZpfLnQPJbgo2cpRXy1Bv48aM1CGkRPJZJLm5mZGR0fneyqLmkgkQn19PcHgjGuDtgDLs/brvWMn4xbgPVPGXj9l7NZpnvdC4Hk4RyQI/CSXSebTgxqPcQKIyFiMc2/WNX8MfHFscU1VO/M4nxmRSGUYjCVZkmlnR3AzADW2/mQYOdHc3ExxcTGNjY3W2DNPqCrd3d00NzezcuXKmQ5/HFgrIitxBucW4NapF3n5S+XAtqzDvwD+QUTKvf0bOU1/JxH5V2ANE2tY7xKRl6jqe041Zox8GqhcYpzrAETkYVwY8E5Vvc87F/FiqCngU6r606kPEJHbgNsAQqG5bb/eO5IgGO+hkFEGInWIQI1JzA0jJ0ZHR8045RkRobKykuPHj894rKqmROS9OGPjB+5W1T0i8lFgu6re4116C/B9VdWssT0i8jGckQP4qKr2nOZxLwY2jN1DRL4B7MllnvMtkggAa3HuYj3waxHZrKp9QIOqtojIKuBBEdmlqgezB3uLfncBFBYWKnNI91ACX/8RAGJFyymLBgkHTCBhGLlixin/nMnfWFXvBe6dcuwjU/bvPMXYu4G7c3zUAWAF0OTtL/eOTUs+Zea5xDibgXtUNamqh4HncAYLVW3xXg/h4puX5nGuJ9AznCA44BzAVGmDCSQMwzBmRzHwjIhsFZGHcMs8JSJyj4jcc7qB+fSgcolx/hSnr/+aiFThQn6HvNjmiKrGvePXAf8nj3M9gZ6RBIXDzkBpyQoL7xmGYcyOj0x/ycnJm4HKMcb5C+BGEdkLpIG/UtVuEbkW+LKIZHBe3qey1X9ng56hONXxFo5TTiYYpabYPCjDMIxZcHzq97eIXK+qW6cbmNc1qOlinN6i2V96W/Y1jwCb8zm305FKZ+iPpdiYbKczsASwChKGMVv+/md72Ns6MKf33LishDtedeEpzx85coSbb76Za665hkceeYQrr7ySd7zjHdxxxx10dnbyne98h6uuuorh4WFuv/12du/eTTKZ5M477+Q1k2aUwAAAHetJREFUr3kNR44c4S1veQvDw8MAfOELX+Daa69l69at3HnnnVRVVbF7924uv/xyvv3tb5+wFvSVr3yFu+66i0QiwZo1a/jWt75FQUEBHR0dvPvd7+bQoUMAfOlLX+Laa6/lm9/8Jv/4j/+IiHDRRRfxrW99a07/XvPMD0T+f3v3HlZVmT58/HsLIqJllul4KvXNFFFEUYw0JXU8lK+mWVZmOU41OT8n35ppfmnpmGU1/ZwOVjPmlGPOm6VlmnU1TSoyammKCSqKHczX46hBMoDARrjfP9aCtgiIsLfsjffnutbF3uvwrOfZS7h91nr2c8ti4H+AcJy7Yb34aW6+CtlUR+U4mVfIKc9pWnGMzAatuCzCZpAwJth8++23/Pa3vyU9PZ309HSWLFnCxo0bmTt3Ls888wwAc+bMYeDAgWzZsoV169bx6KOPkpubS/PmzVm9ejVfffUVS5cu5aGHHiotd/v27bz00kvs3r2bffv28fnnn5917jFjxrB161ZSU1OJjIzkzTffBOChhx5iwIABpKam8tVXXxEVFUVaWhpPP/00iYmJpKam8vLLL1+YD+jC6YMzSOILnEc/R3Ae25xTbY/iC0iZuR5OZufSkgx2Nmxjt/eMqYHKejr+1L59e7p1c27EREVFMWjQIESEbt26sX//fgA+++wzVq1axdy5cwFnePyBAwdo1aoVU6ZMISUlhZCQEL7++uvScuPi4mjTpg0AMTEx7N+/n379+p1x7l27dvHEE09w8uRJcnJyGDp0KACJiYksXrwYgJCQEJo0acLixYu57bbbaNasGQCXX365/z6U2lGIk0G3IU4P6ntVLa7KgRagypGZ64Gsg4SIUnDJVbS2ARLGBJ0GDX76va1Xr17p+3r16nH69GnA+bLr8uXL6dSp0xnHzpo1ixYtWpCamkpxcTHh4eHllhsSElJalreJEyeycuVKunfvzqJFi0hKSvJl04LNVuBDoDfQDJgvIreq6m3nOtBu8ZUjM9dDg2xnBF9B4zalqd6NMXXL0KFDeeWVVyj5Hur27dsByMrKomXLltSrV4+///3vFBWd3zR02dnZtGzZksLCQt5+++3S9YMGDeIvf/kLAEVFRWRlZTFw4EDee+89MjIyAMjMrOw7r0Hpl6o60/060VFVHQVUOry8hAWocmTkemic5+SBygpvY0PMjamjZsyYQWFhIdHR0URFRTFjxgwAfv3rX/PWW2/RvXt30tPTadSo0XmV+9RTT9GnTx/69u1L586dS9e//PLLrFu3jm7duhEbG8vu3buJiori8ccfZ8CAAXTv3p1HHnmkkpKD0jYRuVtEZgKIyFXA3qocKF4zWAS1Ro0aacmIm5pQVV5Z+w0R62dzT71PWTxwM/f1v8YHNTTm4rFnzx4iIyNruxoXhfI+axE5parnF1X9RET+AhQDA1U10v2e62eq2vtcx1oPqoysvEKy8k7TSo/xQ+jPuPLShrVdJWOMCWZ93Ilh8wHcycGrNHmqBagyMnM9/JBbwFVynKzw1vb9J2OMqZlCN/1SyWSxV+L0qM7JAlQZmbkeMrILuEqOkRvRxlJsGGNMzczDyf/UXETmABuBZ6pyoA0zLyMj10NBdgaXSh45EW3p2Ni+A2WMMdWlqm+LyDZgEE5G3VtUdU9VjrUAVcaPuR4i3EliTzVuQ5OI885UaYwxxouqpgPp53uc3eIr40ROAZfkHwEg5PLzzlJpjDHGRyxAecnOL+REdgFtOAZARPMOtVwjY4wv7d+/n65du9Z2Nc6SkJBAcnJybVcj4FiA8pKZ6yEz18NVcpyckMvq4pxYxgSuTZvg2Wedn0GkvKmOjG9YgPKSmeshI9dDWznOf2yIuTEXzqZNMGgQzJjh/PRRkHrhhRfo2rUrXbt25aWXXgKcgDJ+/HgiIyMZO3Ysp06dAuCxxx6jS5cuREdH87vf/Q6AEydOcOutt9K7d2969+5dOnP5rFmzmDBhAn379mXChAlcd911pKWllZ63pEeUm5vLpEmTiIuLo0ePHnz44YcA5OXlcccddxAZGcno0aPJy8vzSXvrGhsk4SUz10Nmjod2ISfIjojhmkYWoIy5IJKSwOOBoiLnZ1ISxJ8zXVCltm3bxt/+9je+/PJLVJU+ffowYMAA9u7dy5tvvknfvn2ZNGkSf/7zn/nFL37BihUrSE9PR0Q4efIkAFOnTuXhhx+mX79+HDhwgKFDh7JnjzMAbffu3WzcuJGGDRvy4osvsmzZMp588kmOHj3K0aNH6dWrF9OnT2fgwIEsXLiQkydPEhcXx+DBg3n99deJiIhgz5497Nixg549e9bwA6ybrAflJSPXQ1ZOHi05geeSqwipJ+c+yBhTcwkJEBYGISHOz4SEGhe5ceNGRo8eTaNGjWjcuDFjxoxhw4YNtG3blr59nXREd999Nxs3bqRJkyaEh4fzy1/+kg8++ICIiAgA1qxZw5QpU4iJiWHkyJH85z//IScnB4CRI0fSsKEz08ztt9/O+++/D8CyZcsYO3Ys4KTzeO6554iJiSEhIaE0ncf69eu5++67AYiOjiY6OrrG7a2L/NqDEpFhwMs4Kd/fUNXnytnndmAWzreMU1X1Lnf9vcAT7m5Pq+pb/qwrwA85BTTIO0poWDE0befv0xljSsTHw9q1Ts8pIaHGvafKlM1+KyKEhoayZcsW1q5dy/vvv8+rr75KYmIixcXFbN68+Yx0GyW8J5Bt3bo1V1xxBTt27GDp0qXMnz8fqDidh6kav/Wg3KktXgOGA12AO0WkS5l9OgLTgL6qGgX8H3f95cAfcDIxxgF/cCcY9JtTntMcy8qntTuCL+xKG8FnzAUVHw/TpvksON1www2sXLmSU6dOkZuby4oVK7jhhhs4cOAAm9xnXEuWLKFfv37k5OSQlZXFTTfdxIsvvkhqaioAQ4YM4ZVXXiktMyUlpcLzjRs3jueff56srKzSHlFF6Tz69+/PkiVLACe54Y4dO3zS5vMhIsNEZK+IfCsij1Wwz+0isltE0kRkidf6IhFJcZcqpc6oDn/e4osDvlXVfarqAd4FRpXZ537gNXfyQFT1uLt+KLBaVTPdbauBYX6sKxk5P43gA2j0s//lz9MZY/ysZ8+eTJw4kbi4OPr06cN9991H06ZN6dSpE6+99hqRkZH8+OOPTJ48mezsbEaMGEF0dDT9+vXjhRdeAGDevHkkJycTHR1Nly5dSntG5Rk7dizvvvsut99+e+m6itJ5TJ48mZycHCIjI5k5cyaxsbH+/TDKqEkHwpWnqjHuMtJv9fRXug0RGQsMU9X73PcTcGa1neK1z0rga5z89CHALFX9VER+B4Sr6tPufjNwPpC5Zc7xAPAAQFhYWGxBQUG165t68CTPf5pO3//3Gr+q/wn5vz9Co4Y2SMKY6rB0GxdOddJtiEg8zt/boe77aQCq+qzXPs8DX6vqG+Ucn6OqjX3UhArV9iCJUKAjkADcCfxVRC6r6sGqukBVe6lqr9DQmj1OK/kOVIeQE2SHt7LgZIwJZqEikuy1PFBme2vgoNf7Q+46b9cC14rI5yKy2R1TUCLcLXeziNzih/oD/h0kcRho6/W+jbvO2yHgS1UtBL4Xka9xAtZhnKDlfWyS32qKM4IvI9fD1SEnyG/c9twHGGNM4Dqtqr1qWIZ3B6INsF5EuqnqSeBqVT0sIh2ARBHZqarf1fB8Z/FnD2or0FFE2otIGHAHZ+ehX4kbiESkGU7E3gf8ExgiIk3dwRFD3HV+k5GTT2auh9Z6jKLLrvbnqYwxprZVtQOxSlULVfV7nMcxHQFU9bD7cx9O56GHPyrptwClqqeBKTiBZQ+wTFXTRGS2iJQ8VPsnkCEiu4F1wKOqmqGqmcBTOEFuKzDbXecXeZ4i/p1VQERxDpdqtk0Sa4yp66rdgXA7Dg281vcFdvujkn79HpSqfgJ8UmbdTK/XCjziLmWPXQgs9Gf9SmTkFrhTHJ0AoGFzG8FnjKm7VPW0iJR0IEKAhSUdCCBZVVfx052s3UARbgdCRK4HXheRYpxOznOqGnwBKliUDJBoWzrE/JparpExxvhXdTsQqvoF0O1C1LG2R/EFhJLvQF0T6vSgQq9oV7sVMsYEvJkzZ7JmzZoKt8+fP5/FixcDsGjRIo4cOVK67b777mP3br90OuoU60HhjODLzPVwTf0f8IQ0ISy8SW1XyRgT4GbPnl3p9gcffLD09aJFi+jatSutWrUC4I03zvpqkSmHBSjgVEEhmbkero5wJokNq+0KGVOX/OMx+PdO35b5s24w/KypPc9yyy23cPDgQfLz85k6dSoPPPAAn376KdOnT6eoqIhmzZqxdu1aMjIyuPPOOzl8+DDx8fGsXr2abdu2kZOTw4gRI9i1axcAc+fOJScnh1mzZjFx4kRGjBjB2LFjeeyxx1i1ahWhoaEMGTKEuXPnMmvWLBo3bky7du1ITk5m/PjxNGzYkE2bNjF8+HDmzp1Lr169eOedd3jmmWdQVW6++Wb++Mc/AtC4cWOmTp3Kxx9/TMOGDfnwww9p0aKFbz/HAGe3+ID/5J/GU1RMK/03elm72q6OMcZHFi5cyLZt20hOTmbevHkcO3aM+++/n+XLl5Oamsp7770HwJNPPkm/fv1IS0tj9OjRHDhwoMrnyMjIYMWKFaSlpbFjxw6eeOKJM7aPHTuWXr168fbbb5OSklI6AzrAkSNH+O///m8SExNJSUlh69atrFy5EoDc3Fyuu+46UlNT6d+/P3/961998IkEF+tBASeyC6hHMc1OH8PTzIaYG+NTVejp+Mu8efNYsWIFAAcPHmTBggX079+f9u2d3/OSrNnr16/ngw8+AODmm2+madOqz03tnapjxIgRjBgxosrHbt26lYSEBK688koAxo8fz/r167nlllsICwsrLSs2NpbVq1dXudy6wnpQwPHsfFqSQQhFNLjShpgbUxckJSWxZs0aNm3aRGpqKj169CAmJua8yggNDaW4uLj0fX5+frn7bNmyhbFjx/Lxxx8zbJhv5rWuX79+aWqQkJCQizK1vAUo4Hh2AdfU/wGAepe3q93KGGN8Iisri6ZNmxIREUF6ejqbN28mPz+f9evX8/333wOQmel8/987/cU//vEPfvzxRwBatGjB8ePHycjIoKCggI8//vis81SUqsPbJZdcQnZ29lnr4+Li+Ne//sUPP/xAUVER77zzDgMGDPDZZxDs7BYfzi2+Xg0y4TSWqNCYOmLYsGHMnz+fyMhIOnXqxHXXXceVV17JggULGDNmDMXFxTRv3pzVq1fzhz/8gTvvvJOoqCiuv/56rrrqKsDpxcycOZO4uDhat25N586dzzpPdnY2o0aNIj8/H1UtTdXhbeLEiTz44IOlgyRKtGzZkueee44bb7yxdJDEqFFlsxJdvPyWbuNCa9Sokebm5p73capK5MxPmd34A27LX448cRxCLG4bUxPBnm6jZORds2bNarsq51SddBvB4qK/xXciu4D8wmLayb8pvLStBSdjjAkQF/1f42+O5wDQqugI0sIGSBhjYP/+/bVdBYP1oPjmWDagNC88TOiVNgefMcYEios+QOVv+JxpKf+XsOI85AoLUMYYEygu7lt8mzbxq9kPoC0K4boIOF5Q2zUyxhjjurh7UElJiMdDvabOl+HYeah262OMMabUxR2gEhIgLAy9IgQtUhjwv2u7RsaYADZr1izmzp0LVJxuIykp6ZzTHaWkpPDJJ59Uuo/xc4ASkWEisldEvhWRx8rZPlFETohIirvc57WtyGt92VTEvhEfD2vXkhXbieLGbaBvP7+cxhhzbpsObuLZDc+y6eCmc+8cAGbPns3gwYOrdawFqKrxW4ASkRDgNWA40AW4U0S6lLPrUlWNcRfvJCl5XutH+quexMejzUKRNl39dgpjTOU2HdzEoMWDmLFuBoMWD/JZkFq8eDHR0dF0796dCRMm8NFHH9GnTx969OjB4MGDOXbsGOD0jCZNmkRCQgIdOnRg3rx5pWXMmTOHa6+9ln79+rF3797S9RMnTuT9998H4NNPP6Vz58707NmzdNJZgC1bthAfH0+PHj24/vrr2bt3Lx6Ph5kzZ7J06VJiYmJYunQpubm5TJo0ibi4OHr06MGHH34IQFpaGnFxccTExBAdHc0333zjk88lWPhzkEQc8K2q7gMQkXeBUUBgpZEsLuaSvIPUu2JIbdfEmItW0v4kPEUeirQIT5GHpP1JxLeNr1GZaWlpPP3003zxxRc0a9aMzMxMRITNmzcjIrzxxhs8//zz/OlPfwIgPT2ddevWkZ2dTadOnZg8eTI7duzg3XffJSUlhdOnT9OzZ09iY2PPOE9+fj73338/iYmJXHPNNYwbN650W+fOndmwYQOhoaGsWbOG6dOns3z5cmbPnk1ycjKvvvoqANOnT2fgwIEsXLiQkydPEhcXx+DBg5k/fz5Tp05l/PjxeDweioqKavSZBBt/BqjWwEGv94eAPuXsd6uI9Ae+Bh5W1ZJjwkUkGWeGvOdUdWXZA0XkAeABgLCwaqYZzD5KaFE+XNGhescbY2osoV0CYSFheIo8hIWEkdAuocZlJiYmctttt5VOV3T55Zezc+dOxo0bx9GjR/F4PKVpN8BJs9GgQQMaNGhA8+bNOXbsGBs2bGD06NFEREQAMHLk2Tdz0tPTad++PR07dgTg7rvvZsGCBYAzYe29997LN998g4hQWFhYbl0/++wzVq1aVfp8Kz8/nwMHDhAfH8+cOXM4dOgQY8aMKT3HxaK2B0l8BLRT1WhgNfCW17arVbUXcBfwkoicNc2Dqi5Q1V6q2is0tJqxNvM75+flNouEMbUlvm08a+9Zy1M3PsXae9bWuPdUkd/85jdMmTKFnTt38vrrr5+RPqNBgwalr32V3mLGjBnceOON7Nq1i48++qjcdB3gzAm6fPlyUlJSSElJ4cCBA0RGRnLXXXexatUqGjZsyE033URiYmKN6xRM/BmgDgNtvd63cdeVUtUMVS358tEbQKzXtsPuz31AEtDDL7XMcAPUFRagjKlN8W3jmXbDNJ8Fp4EDB/Lee++RkZEBOKk1srKyaN26NQBvvfVWZYcDThqOlStXkpeXR3Z2Nh999NFZ+3Tu3Jn9+/fz3XfO35J33nmndJv3+RYtWlS6vmz6jaFDh/LKK69QMnn39u3bAdi3bx8dOnTgoYceYtSoUezYseN8PoKg588AtRXoKCLtRSQMuAM4YzSeiLT0ejsS2OOubyoiDdzXzYC++OvZVeY+NKQBXNrGL8UbY2pHVFQUjz/+OAMGDKB79+488sgjzJo1i9tuu43Y2NgqzVTes2dPxo0bR/fu3Rk+fDi9e/c+a5/w8HAWLFjAzTffTM+ePWnevHnptt///vdMmzaNHj16nNEju/HGG9m9e3fpIIkZM2ZQWFhIdHQ0UVFRzJgxA4Bly5bRtWtXYmJi2LVrF/fcc48PPhnHuUZZu/vcLiK7RSRNRJZ4rb9XRL5xl3t9Vqmy5/dnug0RuQl4CQgBFqrqHBGZDSSr6ioReRYnMJ0GMoHJqpouItcDrwPFOEH0JVV9s7JzVTfdBmkr4EgK/PzJ8z/WGFOuYE+3EUyqk27DHWX9NfBznPEBW4E7VXW31z4dgWXAQFX9UUSaq+pxEbkcSAZ6AQpsA2JV9UcfN82/Ux2p6ifAJ2XWzfR6PQ2YVs5xXwDd/Fm3UlGjncUYYy4eVRllfT/wWkngUdXj7vqhwGpVzXSPXQ0MA97Bx2p7kIQxxhjfCxWRZK/lgTLbyxtl3brMPtcC14rI5yKyWUSGncexPnFxTxZrjPEbVUVEarsadVolj2hOu6OgayIU6Agk4AxyWy8iF+bOlst6UMYYnwsPDycjI6OyP6CmhlSVjIwMwsPDq3P4OUdZ4/SMVqlqoap+j/PMqmMVj/UJvw6SuJCqPUjCGONzhYWFHDp0qMLv/RjfCA8Pp02bNtSvX/+M9VUYJBGKE3AG4QSXrcBdqprmtc8wnIET97qjqbcDMfw0MKKnu+tXOIMkMn3XMofd4jPG+Fz9+vXPmKXBBBZVPS0iU4B/8tMo6zTvUdbutiEishsoAh5V1QwAEXkKJ6gBzPZHcALrQRljTJ1zrh5UsLBnUMYYYwKSBShjjDEBqc7c4hORYiCvmoeH4sxmEcysDYHB2hA46kI7qtuGhqoa9B2QOhOgakJEkn3wnYFaZW0IDNaGwFEX2lEX2lATQR9hjTHG1E0WoIwxxgQkC1COBbVdAR+wNgQGa0PgqAvtqAttqDZ7BmWMMSYgWQ/KGGNMQLIAZYwxJiDVyQB1rlTGItJARJa6278UkXZe26a56/eKyNCqlhkkbdgvIjtFJEVEkgO1DSJyhYisE5EcEXm1zDGxbhu+FZF54ud8Dn5qQ5JbZoq7NC9bboC04eciss39vLeJyECvY4LlOlTWhmC5DnFedUwVkdFVLTPoqWqdWnAmPvwO6ACEAalAlzL7/BqY776+A1jqvu7i7t8AaO+WE1KVMgO9De62/UCzILgOjYB+wIPAq2WO2QJcBwjwD2B4ELYhCegVBNehB9DKfd0VOByE16GyNgTLdYgAQt3XLYHjOF/gvaB/l2pjqYs9qNJUxqrqAUpSGXsbBbzlvn4fGOT+D3AU8K6qFqiT/+Rbt7yqlBnobbjQqt0GVc1V1Y3AGbkaRKQlcKmqblbnt3UxcEswtaEW1KQN21X1iLs+DWjo/i8/mK5DuW3wY10rUpM2nFLVktkkwnHSXVS1zKBWFwNUVdIRl+7jXvgs4IpKjr1gKY7L1q+S851vG8D5h/2Ze6ujbApoX6tJGyor89A5yvQlf7ShxN/cWzYz/Hx7zFdtuBX4SlULCN7r4N2GEkFxHUSkj4ikATuBB93tF/rv0gVXFwOUqVg/Ve0JDAf+S0T613aFLlLjVbUbcIO7TKjl+lRKRKKAPwK/qu26VFcFbQia66CqX6pqFNAbmCYi1UqjG2zqYoCqSjri0n3EySzZBMio5NgLluK4bP0qOd/5tgFVLfl5HFiBf2/91aQNlZXZ5hxl+pI/2uB9HbKBJQTwdRCRNjj/Vu5R1e+89g+a61BBG4LqOpRQ1T1ADu7ztCqUGdxq+yGYrxech4f7cAYIlDw4jCqzz39x5sPIZe7rKM4cYLAP50HkOcsMgjY0Ai5x92kEfAEMC8Q2eG2fyLkHSdwUTG1wy2zmvq6P86zhwUBsA3CZu/+YcsoNiutQURuC7Dq056dBElcDR4BmVSkz2Jdar4Cf/jHcBHyNM8LlcXfdbGCk+zoceA9nAMEWoIPXsY+7x+3Fa2RSeWUGUxtwRvqkuktaELRhP5CJ87/FQ7ijk4BewC63zFdxZ0MJljbg/OdgG7DDvQ4v446yDLQ2AE8AuUCK19I8mK5DRW0Isuswwa1jCvAVcEtlZdalxaY6MsYYE5Dq4jMoY4wxdYAFKGOMMQHJApQxxpiAZAHKGGNMQLIAZYwxJiBZgDIXHRHJqe06lEdE2onIXbVdD2MChQUoY6pJREKqcUxoJZvbARagjHFZgDIXNRF5VES2isgOEXnSa/1Kd1LdNO+Jdd38Tn8SkVQg3n0/x83Ts1lEWpRzjlki8ncR+Rz4u9tT2iAiX7nL9e6uzwE3uJOXPiwiISLyP171C9q58IypDgtQ5qIlIkOAjjhzsMUAsV4T6E5S1VicGRMeEpGSmbEbAV+qand10mk0AjarandgPXB/BafrAgxW1Ttx8vn8XJ2Je8cB89x9HgM2qGqMqr4I/BLIUtXeOJOE3i8i7X32ARgT4Cq73WBMXTfEXba77xvjBKz1OEGpJHNpW3d9BlAELPcqwwN87L7eBvy8gnOtUtU893V94FURiXHLu7aS+kWLyFj3fRO3Ht9XqXXGBDkLUOZiJsCzqvr6GStFEoDBQLyqnhKRJJx50gDyVbXIa/dC/Wm+sCIq/p3K9Xr9MHAM6I5zF6OipIYC/EZV/1m15hhTt9gtPnMx+ycwSUQaA4hIaxFpjtNT+dENTp1xZu32pSbAUVUtxpkItGSwRTZwSZn6TRaR+m79rhWRRj6uizEBy3pQ5qKlqp+JSCSwyU2mmgPcDXwKPCgie3BmhN/s41P/GVguIve45yrpXe0AitwBGItwZthuB3zlZns9gX9TqxsTUGw2c2OMMQHJbvEZY4wJSBagjDHGBCQLUMYYYwKSBShjjDEByQKUMcaYgGQByhhjTECyAGWMMSYg/X8yznd06cZ3iwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "MwxmkP5su0c-" | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment