Created
August 7, 2021 22:50
-
-
Save parashardhapola/0c698226437237718abd8da882cd1fda to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "00194853-8c88-4fc0-8aaf-fccda642fa29", | |
"metadata": {}, | |
"source": [ | |
"## Demonstrating usage of tqdm progress bar within UMAP package" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "9f16986e-8863-4551-a0bc-c3329074a3ea", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"UMAP version: 0.5.1\n", | |
"time: 1.69 s (started: 2021-08-08 00:47:36 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"%load_ext autotime\n", | |
"\n", | |
"from sklearn.datasets import load_digits\n", | |
"import umap\n", | |
"\n", | |
"print (\"UMAP version: \", umap.__version__)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "b9aa52b2-4653-41f3-8362-3534f5f57d22", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"time: 78 ms (started: 2021-08-08 00:47:37 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"digits = load_digits()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ce59cf11-a0e6-47c8-8f10-6aa7b36e0efe", | |
"metadata": {}, | |
"source": [ | |
"### Instantiating UMAP class and running the fit method. Here the default value of `verbose` (False) will be used and hence no log or progress bar is printed" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "56061f1f-d607-4dda-98f3-039c647f4e7f", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"time: 10 s (started: 2021-08-08 00:47:37 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"umap.UMAP(random_state=42).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ac36083d-1c45-46d5-aefa-b6a9be54e548", | |
"metadata": {}, | |
"source": [ | |
"### Now we set `verbose=True`. Notice that now we see the log and tqdm progress bar with the default settings" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "69bca6b0-7eec-4988-8ac1-c2a02c5615c0", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:47:47 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:47:49 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:47:49 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:47:49 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "c93f06f834da4326b5ce55992dd23783", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:47:53 2021 Finished embedding\n", | |
"time: 5.19 s (started: 2021-08-08 00:47:47 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"umap.UMAP(random_state=42, verbose=True).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "070df82d-e17e-495b-a9e2-a68b4613c96c", | |
"metadata": {}, | |
"source": [ | |
"### By setting `verbose=False` explicitly, the log as well as the progress bar can be disabled" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "98eb63db-e2a6-4552-9818-2b73dc1fa85f", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"time: 5.27 s (started: 2021-08-08 00:47:53 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"umap.UMAP(random_state=42, verbose=False).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3b53d0fb-d45c-4378-b934-0c595e6b52b4", | |
"metadata": {}, | |
"source": [ | |
"### The `tqdm_kwds` parameter can be used to pass arguments to `tqdm`. Here, the width and color of the progress bar were changed." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "fd879503-3b45-4916-b253-b9c644cce1c8", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:47:58 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:00 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:00 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:00 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "c62649d08d3d49c1882dbdda6df52182", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| …" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:03 2021 Finished embedding\n", | |
"time: 5.58 s (started: 2021-08-08 00:47:58 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"tqdm_kwds = {\n", | |
" \"ncols\": 400,\n", | |
" \"colour\": \"#FFC0CB\",\n", | |
"}\n", | |
"umap.UMAP(random_state=42, verbose=True, tqdm_kwds=tqdm_kwds).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "8794f295-cd24-437d-9a7c-f1e9fe266e17", | |
"metadata": {}, | |
"source": [ | |
"### Sometimes, it can be useful have the UMAP logs but not the progress bar itself. A common use case is when running UMAP in some batch script. In such cases, `verbose` is set to `True` and `disable=True` is used in the `tqdm_kwds` argument" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "8d2c2606-286c-4ad3-9200-99ae4a271571", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:03 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:05 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:05 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:05 2021 Construct embedding\n", | |
"Sun Aug 8 00:48:09 2021 Finished embedding\n", | |
"time: 5.59 s (started: 2021-08-08 00:48:03 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"tqdm_kwds = {\"disable\": True}\n", | |
"umap.UMAP(random_state=42, verbose=True, tqdm_kwds=tqdm_kwds).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "227ce17a-dbd7-4fc9-81bb-b6bece41965a", | |
"metadata": {}, | |
"source": [ | |
"### Benchmarking runtime in scenarios where the progress bar is either enabled or disabled" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "19240422-336c-44d9-8d4e-ab1524d3a08e", | |
"metadata": { | |
"scrolled": true, | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:09 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:11 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:11 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:11 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "e6f8ad16f9044f53b839223c562159be", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:14 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:14 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:16 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:16 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:16 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "ae99717409aa421b9011ec9411d5b6c1", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:20 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:20 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:22 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:22 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:22 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "262fa143a41d4310b147854ebbbbbec1", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:25 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:25 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:27 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:27 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:27 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "d533730d70984a5ca3d486990642a05b", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:31 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:31 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:32 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:33 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:33 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "14e403157d6d4471a11c45c6e7a46f21", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:36 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:36 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:38 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:38 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:38 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "a8cefa7312974ba183de1e3e8f0a0660", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:42 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:42 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:43 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:43 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:43 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "43334124df9b4e72b129326c8688457f", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:47 2021 Finished embedding\n", | |
"UMAP(random_state=42, verbose=True)\n", | |
"Sun Aug 8 00:48:47 2021 Construct fuzzy simplicial set\n", | |
"Sun Aug 8 00:48:49 2021 Finding Nearest Neighbors\n", | |
"Sun Aug 8 00:48:49 2021 Finished Nearest Neighbor Search\n", | |
"Sun Aug 8 00:48:49 2021 Construct embedding\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "74346c0127554276aeeb91de1c0a98c8", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Epochs completed: 0%| 0/500 [00:00]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sun Aug 8 00:48:53 2021 Finished embedding\n", | |
"5.47 s ± 95.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n", | |
"time: 43.8 s (started: 2021-08-08 00:48:09 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"umap.UMAP(random_state=42, verbose=True).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "ef05b8d2-e62e-4f93-acfe-615442c55570", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"5.24 s ± 78.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n", | |
"time: 42.2 s (started: 2021-08-08 00:48:53 +02:00)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"umap.UMAP(random_state=42, verbose=False).fit(digits.data);" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "4c3e21f7-c6c1-4a4f-a0a6-e681eb6477b0", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.0" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"state": { | |
"00b234136d864785b3ee67576c6fda24": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"02714b722a36461eae5a9ce7bb5110a7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"04f8c30211994adaa40725c248d57cae": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"07997e16da6e41acadff9a3cc863ecb5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_a1d9a01938a84e84adfcf4638385ec55", | |
"max": 500, | |
"style": "IPY_MODEL_0becf187566e4fc6aac90f91c7b8d365", | |
"value": 500 | |
} | |
}, | |
"0980fb7a121146d88507e633eb44207b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"09fbb6b3a63b40faa76ef3f7c44fff75": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_a4ceacd12cfe45e9b351bf7db9ddad48", | |
"style": "IPY_MODEL_7a29b8251b48438c9fa1eafe46e879ca", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"0a14bf0eeeb04c30afd12ee40a985344": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0becf187566e4fc6aac90f91c7b8d365": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"0c0bc9e0730f4a64868c0b4d4cc0fdef": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"11e9c6a0dad6455b9d6bb9b26485a775": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_27bebaff8d924b38adda5d3d50800a4f", | |
"style": "IPY_MODEL_420cdec29fca40dfb52f9194239198da", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"14e403157d6d4471a11c45c6e7a46f21": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_de070ff456e94011b8017912857c4a39", | |
"IPY_MODEL_69c9950377984d6e9e6177a5e3d40b0e", | |
"IPY_MODEL_84d03771b8f7430ba35e12c394f4208f" | |
], | |
"layout": "IPY_MODEL_7aa975305f6a4236b51ca8d01a2f4629" | |
} | |
}, | |
"1c547c899124439f9fad1b9aa3174394": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"262fa143a41d4310b147854ebbbbbec1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_09fbb6b3a63b40faa76ef3f7c44fff75", | |
"IPY_MODEL_81bb4b7a5bf44595bb27be2c70ab6621", | |
"IPY_MODEL_e06d746e5efa43c9a4e2a2281f72337c" | |
], | |
"layout": "IPY_MODEL_37228ca57c4a4bb1aa29e9826c25fb27" | |
} | |
}, | |
"263f0035a7e646ea930a63da3e570254": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"27b29f7dfafd4dea967b3d99108fa366": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"27bebaff8d924b38adda5d3d50800a4f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"285c0f91595045389c504ee8b0cf7b3b": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2a6314a5547644ff916857601e96835f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"2bbdc9419b914f16a30a66f3e523ddfe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_474b8449927d4e80811b09737a3f55bb", | |
"max": 500, | |
"style": "IPY_MODEL_700e86b7bc0b40f59efe9b939cf11d28", | |
"value": 500 | |
} | |
}, | |
"2e2b951e3f684b51824920c7a2e65ec1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"3297e27f2ef7435ebdbf34910797b930": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_dec0dc338a5c41bba159c99c252c2492", | |
"max": 500, | |
"style": "IPY_MODEL_e15a39ee3cc14fb487e200a8160b68a5", | |
"value": 500 | |
} | |
}, | |
"32cec8c518f44bc4a1e69e4786cfaeb3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_285c0f91595045389c504ee8b0cf7b3b", | |
"style": "IPY_MODEL_e14c7949c5b3470595d5b9cfa51184d3", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"33304014126647eaa77b3b7bf3f20653": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"36b547a80ecb441a8998b98398fe9ea0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"37228ca57c4a4bb1aa29e9826c25fb27": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3bfdccf0f0a3480aad5fd6f185c9c559": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"3d76b7ca804249d0ab07f4ea21176ed0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_2a6314a5547644ff916857601e96835f", | |
"style": "IPY_MODEL_04f8c30211994adaa40725c248d57cae", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"3de4d433c4ed4848b23cc7798aae1d0d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"418a220550f94409a8259b4010144ff0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"420cdec29fca40dfb52f9194239198da": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"43334124df9b4e72b129326c8688457f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_6055318329874427b4a62d6176f101f9", | |
"IPY_MODEL_99d2938c72cc4f8087d69b427ca88f21", | |
"IPY_MODEL_f2f6acdbe8264bec873330adc3bfec77" | |
], | |
"layout": "IPY_MODEL_8c4a1e92a77e4b3980265c6cda919ecb" | |
} | |
}, | |
"45905daf0ec441f6b8aac32c73b07073": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"474b8449927d4e80811b09737a3f55bb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"48923e0136c24f8faa942393596dd973": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"4d57799c67eb439aaf94c9715fea8d15": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_27b29f7dfafd4dea967b3d99108fa366", | |
"style": "IPY_MODEL_00b234136d864785b3ee67576c6fda24", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"5383378c3a12409697b6410bb829aa58": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_7d32a1b9a0314f09ba7ff921e96b5ed6", | |
"style": "IPY_MODEL_7bfb4b79f04f4640a388bbd7156cd8fe", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"56f0d908646148fea05008c1211321ef": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": { | |
"flex": "2" | |
} | |
}, | |
"593c326bf2ee49c5bf7df41546ff697c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5b5d4a42c6074b96b12b7a133d4b5be1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"5e8bc81842ec4552800b471e2050bf06": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"602d21d106ce4d08a6923cbada748720": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_56f0d908646148fea05008c1211321ef", | |
"max": 500, | |
"style": "IPY_MODEL_816a597ed1444a9aad689f9915a52029", | |
"value": 500 | |
} | |
}, | |
"6055318329874427b4a62d6176f101f9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_ae588a2bf30b427e94082657ac9cc92e", | |
"style": "IPY_MODEL_99febd22de6a4b18aaf97194ce5349cd", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"69c9950377984d6e9e6177a5e3d40b0e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_8c6599e6d81243d7a0977ce1027b8238", | |
"max": 500, | |
"style": "IPY_MODEL_97549b4df84841b2a0bc2c5c49a0391c", | |
"value": 500 | |
} | |
}, | |
"6bd1e504785f4b57aa43f304e2c31a13": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_0980fb7a121146d88507e633eb44207b", | |
"style": "IPY_MODEL_5e8bc81842ec4552800b471e2050bf06", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"700e86b7bc0b40f59efe9b939cf11d28": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7374107fa71f4cf4b032075bb0f5149a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"74346c0127554276aeeb91de1c0a98c8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_5383378c3a12409697b6410bb829aa58", | |
"IPY_MODEL_b350edf12b6b417189a3bcc75f611e0e", | |
"IPY_MODEL_4d57799c67eb439aaf94c9715fea8d15" | |
], | |
"layout": "IPY_MODEL_f821b450ebfd45848c7b2e7c4e091b76" | |
} | |
}, | |
"76c56dd25f0a4f27ab1ea6730f1239ec": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7774c1f324fd42d99e83d563053c5035": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"78b8437250b24c63bd877df221880248": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_b11c7350eac944c0bc2f49ddd809fb96", | |
"max": 500, | |
"style": "IPY_MODEL_7d3818fcece04e1680e139420f30ab45", | |
"value": 500 | |
} | |
}, | |
"7a29b8251b48438c9fa1eafe46e879ca": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7aa975305f6a4236b51ca8d01a2f4629": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7bbcc15c3ed6468e9502ce208ef100a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7bfb4b79f04f4640a388bbd7156cd8fe": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"7d32a1b9a0314f09ba7ff921e96b5ed6": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"7d3818fcece04e1680e139420f30ab45": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"802a5f049ffc4b37b3825c737450e4a3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"816a597ed1444a9aad689f9915a52029": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"bar_color": "#FFC0CB", | |
"description_width": "" | |
} | |
}, | |
"81b2f477dc184d16984282e6cab899b4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_33304014126647eaa77b3b7bf3f20653", | |
"max": 500, | |
"style": "IPY_MODEL_0a14bf0eeeb04c30afd12ee40a985344", | |
"value": 500 | |
} | |
}, | |
"81bb4b7a5bf44595bb27be2c70ab6621": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_76c56dd25f0a4f27ab1ea6730f1239ec", | |
"max": 500, | |
"style": "IPY_MODEL_2e2b951e3f684b51824920c7a2e65ec1", | |
"value": 500 | |
} | |
}, | |
"8218524223e1453f8f27a388c84d07b0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"84d03771b8f7430ba35e12c394f4208f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_1c547c899124439f9fad1b9aa3174394", | |
"style": "IPY_MODEL_ddc801b9c5044dab9759d0ab7c62428e", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"870ce05ae24042bc91e483fbfaab46ec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"899a16fa8c1746e08da5ef4e8bedb936": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"8b6eba910ac74c43a6d7680f37d8cad3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_bf5a87df2536489b9957140161551b24", | |
"style": "IPY_MODEL_418a220550f94409a8259b4010144ff0", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"8c4a1e92a77e4b3980265c6cda919ecb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"8c6599e6d81243d7a0977ce1027b8238": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"93a8077d324d447cacf2571ffe96ef4a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"97549b4df84841b2a0bc2c5c49a0391c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"99d2938c72cc4f8087d69b427ca88f21": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_e5da8d8522034cb8a862b2ed9f8d5f29", | |
"max": 500, | |
"style": "IPY_MODEL_fe281fb416ff4b5186eade30cd847751", | |
"value": 500 | |
} | |
}, | |
"99febd22de6a4b18aaf97194ce5349cd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"9eec36b859084283a6f143c795a0ea28": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_5b5d4a42c6074b96b12b7a133d4b5be1", | |
"style": "IPY_MODEL_36b547a80ecb441a8998b98398fe9ea0", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"a1d9a01938a84e84adfcf4638385ec55": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"a4ceacd12cfe45e9b351bf7db9ddad48": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"a8cefa7312974ba183de1e3e8f0a0660": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_dac8966f8e884452b672af51f890fc32", | |
"IPY_MODEL_07997e16da6e41acadff9a3cc863ecb5", | |
"IPY_MODEL_f2165e17c44845878ce2d94ee3bd86ea" | |
], | |
"layout": "IPY_MODEL_93a8077d324d447cacf2571ffe96ef4a" | |
} | |
}, | |
"aa6529e24a1b4bbdbbdef8269f492299": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": { | |
"display": "inline-flex", | |
"flex_flow": "row wrap", | |
"width": "400px" | |
} | |
}, | |
"abbce260ee624906bf5d66ad5215bae6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"ae588a2bf30b427e94082657ac9cc92e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"ae830ca86ee64a81bd4c985e29c51036": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_bbc0fc556c6443f6b62716131cadd0cb", | |
"style": "IPY_MODEL_abbce260ee624906bf5d66ad5215bae6", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"ae99717409aa421b9011ec9411d5b6c1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_6bd1e504785f4b57aa43f304e2c31a13", | |
"IPY_MODEL_2bbdc9419b914f16a30a66f3e523ddfe", | |
"IPY_MODEL_f61aaf6b1dba4dde8ac254e4e02f0668" | |
], | |
"layout": "IPY_MODEL_fa6252c9593743fda674f80a234ec851" | |
} | |
}, | |
"b11c7350eac944c0bc2f49ddd809fb96": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"b350edf12b6b417189a3bcc75f611e0e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"bar_style": "success", | |
"layout": "IPY_MODEL_c82e2048498d4364bc28ccd89b1ea8d4", | |
"max": 500, | |
"style": "IPY_MODEL_263f0035a7e646ea930a63da3e570254", | |
"value": 500 | |
} | |
}, | |
"bbc0fc556c6443f6b62716131cadd0cb": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"bea9bb13efd94e2b968a5ddc1342ae71": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"bed555dfd4104c629a8e71e9945c63d7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"bf5a87df2536489b9957140161551b24": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"c4e413cd0e0c4d72a20297e834988dde": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"c62649d08d3d49c1882dbdda6df52182": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_9eec36b859084283a6f143c795a0ea28", | |
"IPY_MODEL_602d21d106ce4d08a6923cbada748720", | |
"IPY_MODEL_8b6eba910ac74c43a6d7680f37d8cad3" | |
], | |
"layout": "IPY_MODEL_aa6529e24a1b4bbdbbdef8269f492299" | |
} | |
}, | |
"c82e2048498d4364bc28ccd89b1ea8d4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"c93f06f834da4326b5ce55992dd23783": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_11e9c6a0dad6455b9d6bb9b26485a775", | |
"IPY_MODEL_3297e27f2ef7435ebdbf34910797b930", | |
"IPY_MODEL_3d76b7ca804249d0ab07f4ea21176ed0" | |
], | |
"layout": "IPY_MODEL_593c326bf2ee49c5bf7df41546ff697c" | |
} | |
}, | |
"d4760d8ef60c43b092dd694b6cf0047a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_7374107fa71f4cf4b032075bb0f5149a", | |
"style": "IPY_MODEL_bed555dfd4104c629a8e71e9945c63d7", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"d533730d70984a5ca3d486990642a05b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_d4760d8ef60c43b092dd694b6cf0047a", | |
"IPY_MODEL_78b8437250b24c63bd877df221880248", | |
"IPY_MODEL_ae830ca86ee64a81bd4c985e29c51036" | |
], | |
"layout": "IPY_MODEL_48923e0136c24f8faa942393596dd973" | |
} | |
}, | |
"dac8966f8e884452b672af51f890fc32": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_c4e413cd0e0c4d72a20297e834988dde", | |
"style": "IPY_MODEL_870ce05ae24042bc91e483fbfaab46ec", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"ddc801b9c5044dab9759d0ab7c62428e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"de070ff456e94011b8017912857c4a39": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_3bfdccf0f0a3480aad5fd6f185c9c559", | |
"style": "IPY_MODEL_fc6a1af862e7488ca2a201db08b6c5ec", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"dec0dc338a5c41bba159c99c252c2492": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"e06d746e5efa43c9a4e2a2281f72337c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_02714b722a36461eae5a9ce7bb5110a7", | |
"style": "IPY_MODEL_45905daf0ec441f6b8aac32c73b07073", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"e14c7949c5b3470595d5b9cfa51184d3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"e15a39ee3cc14fb487e200a8160b68a5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"e5da8d8522034cb8a862b2ed9f8d5f29": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"e6f8ad16f9044f53b839223c562159be": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HBoxModel", | |
"state": { | |
"children": [ | |
"IPY_MODEL_eb5499316602482e893fd367dc273e5c", | |
"IPY_MODEL_81b2f477dc184d16984282e6cab899b4", | |
"IPY_MODEL_32cec8c518f44bc4a1e69e4786cfaeb3" | |
], | |
"layout": "IPY_MODEL_8218524223e1453f8f27a388c84d07b0" | |
} | |
}, | |
"eb5499316602482e893fd367dc273e5c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_bea9bb13efd94e2b968a5ddc1342ae71", | |
"style": "IPY_MODEL_802a5f049ffc4b37b3825c737450e4a3", | |
"value": "Epochs completed: 100%| " | |
} | |
}, | |
"f2165e17c44845878ce2d94ee3bd86ea": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_3de4d433c4ed4848b23cc7798aae1d0d", | |
"style": "IPY_MODEL_899a16fa8c1746e08da5ef4e8bedb936", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"f2f6acdbe8264bec873330adc3bfec77": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_ff0b5148f4424598830363a70944f692", | |
"style": "IPY_MODEL_7bbcc15c3ed6468e9502ce208ef100a6", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"f61aaf6b1dba4dde8ac254e4e02f0668": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "HTMLModel", | |
"state": { | |
"layout": "IPY_MODEL_7774c1f324fd42d99e83d563053c5035", | |
"style": "IPY_MODEL_0c0bc9e0730f4a64868c0b4d4cc0fdef", | |
"value": " 500/500 [00:03]" | |
} | |
}, | |
"f821b450ebfd45848c7b2e7c4e091b76": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"fa6252c9593743fda674f80a234ec851": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
}, | |
"fc6a1af862e7488ca2a201db08b6c5ec": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"fe281fb416ff4b5186eade30cd847751": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_module_version": "1.5.0", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"description_width": "" | |
} | |
}, | |
"ff0b5148f4424598830363a70944f692": { | |
"model_module": "@jupyter-widgets/base", | |
"model_module_version": "1.2.0", | |
"model_name": "LayoutModel", | |
"state": {} | |
} | |
}, | |
"version_major": 2, | |
"version_minor": 0 | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment