Created
February 11, 2015 03:55
-
-
Save pletchm/8b40afa92f91775b2c95 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import numpy as np \n", | |
"from matplotlib import pyplot as plt\n", | |
"%matplotlib inline\n", | |
"from pylab import *" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"data=np.loadtxt(\"Magnetic+Moment+Measurements+Survey.csv\", delimiter=',')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"data.shape" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 3, | |
"text": [ | |
"(40, 4)" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"data[0:3:]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
"array([[ 1.32000000e+00, 5.00000000e-02, 5.36500000e+01,\n", | |
" 5.00000000e-02],\n", | |
" [ 1.48000000e+00, 3.00000000e-02, 5.36400000e+01,\n", | |
" 1.00000000e-01],\n", | |
" [ 1.20000000e+00, 1.00000000e-01, 5.36300000e+01,\n", | |
" 5.00000000e-01]])" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"m=data[:,0]\n", | |
"dm=data[:,1]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the mean mass." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"z=sum(m)/40\n", | |
"z" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": [ | |
"1.4205000000000001" | |
] | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"My mass is 1.2 grams with an uncertainty of .1 grams, so I would change my .3 to include the mean." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dz=(sum((m-sum(m)/40)**2)/40)**.5\n", | |
"dz" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": [ | |
"0.19679875507736319" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the standard deviation of uncertainty in the mass measurements." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"q=dz/(40**.5)\n", | |
"q" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 12, | |
"text": [ | |
"0.031116615336504699" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the weighted mean of our mass measurement." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"W=(sum(1/((m-z)**2)*m))/sum(1/((m-z)**2))\n", | |
"W" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 13, | |
"text": [ | |
"1.4053558594046851" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the uncertainty of the weighted mean." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dW=1/((sum(1/((m-z)**2))**.5))\n", | |
"dW" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 14, | |
"text": [ | |
"0.0053649383029114308" | |
] | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"np.histogram(m)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 15, | |
"text": [ | |
"(array([ 9, 0, 14, 3, 5, 7, 1, 0, 0, 1]),\n", | |
" array([ 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1]))" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the Histogram for measurements of mass. I plotted a Gaussian over it." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"(hist,bins,p)=plt.hist(m,bins=10,normed=True)\n", | |
"plt.plot(bins,(1/(dz*(2*np.pi)**.5)*np.exp((-(bins-z)**2/(2*dz**2)))))\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEACAYAAACnJV25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHXi//HXIN7AvGCGpiQqmCACoxlZXsZcM8kI84aV\nmrfI1fz6rfbS1n7Tcv112d3SbP3qrllmiZcusglWlkOpoaWUpmZYmuCFxKTEG7fz+4Piu4RykWEO\nc+b9fDzmETDH+bzPjLw9fWbO59gMwzAQERHL8DE7gIiIuJaKXUTEYlTsIiIWo2IXEbEYFbuIiMWo\n2EVELKbSYj9//jwxMTFER0cTHh7OI488UmEbp9NJixYtsNvt2O125s6dW2dhRUSkar6V3dmkSRM2\nbdqEn58fRUVF9O3bl82bN9O3b99y2w0YMIDk5OQ6DSoiItVT5VSMn58fAAUFBRQXFxMQEFBhG53j\nJCJSf1RZ7CUlJURHRxMYGMjAgQMJDw8vd7/NZmPr1q1ERUURGxvL3r176yysiIhUrcpi9/Hx4fPP\nPyc7O5uPPvoIp9NZ7v6ePXuSlZXFF198wQMPPEB8fHxdZRURkWqw1WStmCeffJKmTZvy8MMPX3Kb\nTp06sWPHjgpTNiEhIXzzzTeXn1RExAt16dKFAwcO1OjPVHrEnpubS15eHgDnzp3j/fffx263l9sm\nJyenbI59+/btGIZx0Xn4b775BsMwLHt7/PHH3TpeKcNNN0x/fq302mn/tH81uV3OAXGln4o5duwY\nEyZMoKSkhJKSEsaNG8egQYNYvHgxAImJiaxdu5ZFixbh6+uLn58fSUlJNQ4hIiKuU2mx9+jRg507\nd1b4eWJiYtnX06dPZ/r06a5PJiIil0VnnrqIw+EwO4JcJqu/dto/71OjN09rNZDNhpuG8go2m41f\n5r/dMJpeOxGTXE536ohdRMRiVOwiIhajYhcRsRgVu4iIxajYRUQsRsUuImIxKnYREYtRsYuIWIyK\nXUTEYlTsIiIWo2IXEbEYFbuIiMWo2EVELEbFLiJiMSp2ERGLUbGLiFiMil1ExGJU7CIiFqNiFxGx\nGBW7iIjFqNhFRCym0mI/f/48MTExREdHEx4eziOPPHLR7WbOnEloaChRUVFkZGTUSVAREake38ru\nbNKkCZs2bcLPz4+ioiL69u3L5s2b6du3b9k2KSkpHDhwgMzMTLZt28a0adNIT0+v8+AiInJxVU7F\n+Pn5AVBQUEBxcTEBAQHl7k9OTmbChAkAxMTEkJeXR05OTh1EFRGR6qiy2EtKSoiOjiYwMJCBAwcS\nHh5e7v4jR44QFBRU9n2HDh3Izs52fVIREamWSqdiAHx8fPj888/58ccfGTJkCE6nE4fDUW4bwzDK\nfW+z2S76WLNnzy772uFwVHgcERFv53Q6cTqdtXoMm/HrVq7Ek08+SdOmTXn44YfLfnb//ffjcDhI\nSEgAoFu3bqSlpREYGFh+IJutwj8AcvlK//F01/Op107ELJfTnZVOxeTm5pKXlwfAuXPneP/997Hb\n7eW2iYuLY/ny5QCkp6fTsmXLCqUuIiLuU+lUzLFjx5gwYQIlJSWUlJQwbtw4Bg0axOLFiwFITEwk\nNjaWlJQUQkJC8Pf3Z9myZW4JLiIiF1ejqZhaDaSpGJfSVIyId3D5VIyIiHgeFbuIiMWo2EVELEbF\nLiJiMSp2ERGLUbGLiFiMil1ExGJU7CIiFqNiFxGxGBW7iIjFqNhFRCxGxS4iYjEqdhERi1Gxi4hY\njIpdRMRiVOwiIhajYhcRsRgVu4iIxajYRUQsRsUuImIxKnYREYtRsYuIWIyKXUTEYiot9qysLAYO\nHEj37t2JiIhgwYIFFbZxOp20aNECu92O3W5n7ty5dRZWRESq5lvZnQ0bNuS5554jOjqa/Px8evXq\nxeDBgwkLCyu33YABA0hOTq7ToCIiUj2VHrG3bduW6OhoAJo1a0ZYWBhHjx6tsJ1hGHWTTkREaqza\nc+yHDh0iIyODmJiYcj+32Wxs3bqVqKgoYmNj2bt3r8tDiohI9VU6FfOL/Px8Ro4cyfz582nWrFm5\n+3r27ElWVhZ+fn6kpqYSHx/P119/fdHHmT17dtnXDocDh8Nx2cFFRKzI6XTidDpr9Rg2o4p5lMLC\nQoYNG8bQoUOZNWtWlQ/YqVMnduzYQUBAQPmBbDZN2biQzWYD3PV86rUTMcvldGelUzGGYTB58mTC\nw8MvWeo5OTllg27fvh3DMCqUuoiIuE+lUzFbtmxhxYoVREZGYrfbAZg3bx6HDx8GIDExkbVr17Jo\n0SJ8fX3x8/MjKSmp7lOLiMglVTkV47KBNBXjUpqKEfEOLp+KERERz6NiFxGxGBW7iIjFqNhFRCxG\nxS4iYjEqdhERi1Gxi4hYjIpdRMRiVOwiIhajYhcRsZhqLdvraY4fP87x48fdNl7jxo0rXFVKRMQs\nllwrplevAezff5QGDfzdMt6ZM3v57ruDtG/f3i3jgdaKEfEWl9OdljxiP3eukDNnXgFudMt4/v7B\nFBYWumUsEZGqaI5dRMRiVOwiIhajYhcRsRgVu4iIxajYRUQsRsUuImIxKnYREYtRsYuIWIyKXUTE\nYlTsIiIWU2mxZ2VlMXDgQLp3705ERAQLFiy46HYzZ84kNDSUqKgoMjIy6iSoiIhUT6VrxTRs2JDn\nnnuO6Oho8vPz6dWrF4MHDy63kmFKSgoHDhwgMzOTbdu2MW3aNNLT0+s8uIiIXFylR+xt27YlOjoa\ngGbNmhEWFsbRo0fLbZOcnMyECRMAiImJIS8vj5ycnDqKK25nK4G2UFisRc5EPEW159gPHTpERkYG\nMTEx5X5+5MgRgoKCyr7v0KED2dnZrkso5mlyChLi4R5o97d2TE2eysZvN1JUUmR2MhGpRLWW7c3P\nz2fkyJHMnz+fZs2aVbj/12sFl64VXtHs2bPLvnY4HDgcjuonFfdqtxNGj4T9cbAaduTuYM3eNTzy\nwSN8l/cdI8JGMLr7aPp37E8DnwZmpxWxDKfTidPprNVjVHmhjcLCQoYNG8bQoUOZNWtWhfvvv/9+\nHA4HCQkJAHTr1o20tDQCAwPLD+TGC22Eh9/Ivn1/xZ3rsX/5pZPg4GC3jAd1eaENA3r9E25+FFJe\nhD2j+fWFNr499S2r96xm9Z7VHD19lJHhIxnTfQw3XXMTPjZ90ErElS6nOyv9LTQMg8mTJxMeHn7R\nUgeIi4tj+fLlAKSnp9OyZcsKpS4eouEZGD4BYhbAS5t/LvWKOrfqzB/7/pGdiTv5aOJHtGvWjukp\n0wl6LohZG2axNWsrJUaJm8OLyC8qPWLfvHkz/fv3JzIysmx6Zd68eRw+fBiAxMREAGbMmMGGDRvw\n9/dn2bJl9OzZs+JAOmJ3KZcfsbfeXzr1ctwO7yyCwv+8rGD1Xrt9J/axes9qVu1ZRX5BPqPCRzEm\nYgy9r+59yek5Eanc5XSnJa95qmKvofA1cNtv4cO/wI6pwK9LuOav3Zfff1lW8gXFBYwOH82YiDHY\n29pV8iI1oGueSs00KIDBv4drk2HFBjjWy2UPHXFVBBFXRTDHMYddObtYtWcVo9aMwsfmw+jw0Yzu\nPprIwEiVvEgdULF7q+ZZMGo0nL0SFu+A863qZBibzUZU2yii2kbxl5v/ws5jO1m9ZzV3JN1BE98m\njO4+mjHdx9D9qu51Mr6IN9JHGLxRl/fgvt7wVTwkrauzUv81m81Gr6t78fTgpzn4XwdZPnw5ZwrO\ncOtrt9L9H915Iu0Jvsr9yi1ZRKxMR+zexFYC/Z+EXktgbRIccpgXxWbj+vbXc33763n2lmdJz05n\n1ZeruPmVm+nauivr71qPfyP/qh9IRCrQEbu38MuFu2Oh04ew5DNTS/3XfGw+3Bh0I/OHzif7wWw6\ntuzIvevuddub7SJWo2L3Bh3S4b5ecDwKln8A+e3MTnRJPjYfFg9bTPZP2Tz50ZNmxxHxSCp2SzPg\n+hdgbBykLoCNT0NJ/Z99a+LbhLfGvMW/dv6LN/a+YXYcEY9T/3/L5fI0Og1xU6B1JvwrHU51NjtR\njbRt1pa3E95myIohdAnoQnTbaLMjiXgMHbFbUZs9pZ96udAClm71uFL/Rc92PXkx9kXik+L5/sz3\nZscR8RgqdquJXAH3OuDjR+DfS6CoidmJamV099GMjxrPnavu5ELRBbPjiHgEFbtV+J6HYffDgCdK\n3yD9YoLZiVxmtmM2V/lfxW/X/1aflBGpBhW7FbQ8CJP6QtOTpR9lzIk0O5FL+dh8WD58OZ8d+4z5\n2+a7/PGbNw/AZrO57da8eYDL90HkP6nYPV3Xd2DKDbDrHlizGi40NztRnWjWqBnrEtbx9JaneffA\nuy597NOnT1G6oJp7bqXjidQdFbun8gEG/al0VcZVb0H6LCquymgtwS2DWT1yNePeGsf+3P1mxxGp\nt1TsHuh4/nEYB1z9WekCXlnuWZ64PujXsR/zBs0jLimOU+d05CtyMSp2D3Ps9DGu/+f18B2wIhXO\ntjE7kttN6TmFW7vcSsIbCbqwtshFqNg9SIlRwvi3xzMxeiI4AcN7LyL9tyF/wzAMfvfe78yOIlLv\nqNg9yDNbnuFC0QX+PODPZkcxna+PL6tGrmJ95npeynjJ7Dgi9YqWFPAQn2R9wnPpz/HZ1M/w9dHL\nBtCqaSuSxybTf1l/rm19LTddc5PZkUTqBR2xe4C883nc9eZdLB62mKAWQWbHqVe6XdmNV+JfYdSa\nURz+8bDZcUTqBRV7PWcYBvf9+z5uC72N+G7xZsepl4aGDuWhPg8RtzKOMwVnzI4jYjoVez33r53/\nYv/J/fz1lr+aHaVee7DPg9jb2Znw9gRKjBKz44iYSsVej+09sZc/ffgnkkYk0cTXsxfzqms2m43/\nve1/OXr6KE+kPWF2HBFTVVnskyZNIjAwkB49elz0fqfTSYsWLbDb7djtdubOnevykN7oXOE5xqwd\nw1ODniKsTZjZcTxCY9/GvDnmTV7KeIk1e9aYHUfENFV+vGLixIk88MADjB8//pLbDBgwgOTkZJcG\n83YPvfcQ3dt0Z5J9ktlRPErbZm1Zl7COW1bcQkhACPZ2drMjibhdlUfs/fr1o1WrVpVuo6VUXeuN\nvW+w4cAGFg9bjM1m7fVf6oK9nZ1/xP6D+FXx5OTnmB1HxO1qPcdus9nYunUrUVFRxMbGsnfvXlfk\n8lrf5X3HtPXTWDliJS2atDA7jsca1X0U90bdy/BVw3WBDvE6tT7TpWfPnmRlZeHn50dqairx8fF8\n/fXXF9129uzZZV87HA4cDkdth7eUopIi7n7zbh7q8xAxHWLMjuPxHnc8zp4Te7h//f28FPeS/u9H\nPILT6cTpdNbqMWxGNeZRDh06xO23387u3burfMBOnTqxY8cOAgLKX0zAZrO5bcomPPxG9u37K+Ce\nVQ/9/YP58ksnwcHBtXqcP3/4Z7Yd2caGezbgY6v8f6ZKS8pdU2Due+1c7UzBGW566SbGR43nwT4P\nXnQb9z6X4MnPp7jf5XRnradicnJyygbdvn07hmFUKHWp2qaDm1iasZTlw5dXWepSff6N/FmXsI5n\ntz5Lamaq2XFE3KLKqZixY8eSlpZGbm4uQUFBzJkzh8LCQgASExNZu3YtixYtwtfXFz8/P5KSkuo8\ntNWcOHOCcW+N4+X4l2nbrK3ZcSynY8uOrBm1hjtX3clHEz+i25XdzI4kUqeqNRXjkoE0FXNRhmFw\n+8rbCW8TzjODn6n2n9NUTM0t3bmUp7c8zbYp22jV9P8+6aWpGKnPTJmKkdqZv20+35/5nrk368Su\nuja552RiQ2MZs3aMLtAhlqZiN9HOYzv5y8d/IWlkEo0aNDI7jlf4Zc2dh9972OQkInVHxW6S0xdO\nk7A2gQW3LqBzq85mx/Eav1ygI/VAKkt3LjU7jkid0BUbTDIjdQb9runH2B5jzY7idVo1bUVyQjL9\nlvXj2iuvNTuOiMup2E2wYtcKth/ZzmdTPzM7ite69spreXX4q4xaMwpaAD+anUjEdTQV42aZJzP5\n73f/m6QRSfg38jc7jlcbEjKE39/4e0gAGmjZAbEOFbsbXSi6QMIbCTw+4HGi2kaZHUeAWTfMgjxg\n8B/MjiLiMip2N3rkg0cIah7E9N7TzY4iP7PZbJAMdHsLuv7b7DgiLqFid5OUzBTW7l3L0rilWoyq\nvjkHvPkaxE2FK46YnUak1lTsbnD09FEmrZvEijtX0Nqvtdlx5GIO94XtM2DE3WArNjuNSK2o2OtY\ncUkx494ax/3X3U//jv3NjiOV+fgRMGzQ/y9mJxGpFRV7HXt6y9MUlRTxWP/HzI7iMZo3D8Bms7nt\nVsZoAG+ugN7/gGs+Nu8JEKklFXsd2pq1lfnb5vPana/h66NTBqrr9OlTlC7K5a7bfw7eHtYtLZ2S\nafpDHe6lSN1RsdeRU+dOcdcbd7Fk2BI6NO9gdhypiczbYO8IuGMS7l31UcQ1VOx1wDAMpv57Krd3\nvZ07ut1hdhy5HBufguZZpdMyIh5GxV4HluxYwoEfDvDsLc+aHUUuV3FjWJsEjtkQ+IXZaURqRMXu\nYl9+/yWPfvgoSSOTaOLbxOw4Uhs/hMK7f4dRY6DhGbPTiFSbit2FzhaeJWFtAs8MfkaXX7OKXeMg\nOwaGzjQ7iUi1qdhd6MF3HyQyMJKJ0RPNjiKulPIidPwYInQ9X/EM+gyei6w/tJ73v32fjMQMLRlg\nNQXNSufb7xkCR66HU7owitRvOmJ3gZLmRTy+7XFWjlhJ88bNzY4jdeFYT/joMRiZAA0KzE4jUikV\ne201KODC7SeY2n0q17e/3uw0Upe2zYT8QLhZZxFL/aZir62hM7GdacDU7lPNTiJ1zgbrlkHESujy\nrtlhRC6pymKfNGkSgYGB9OjR45LbzJw5k9DQUKKiosjIyHBpwHqt1xLomEbjlCvxsenfSK9w9kp4\n61WIvxeaHTc7jchFVdlGEydOZMOGDZe8PyUlhQMHDpCZmcmSJUuYNm2aSwPWW0FbS/+XPGkdtgKV\nulc55ICdU2H4OLCVmJ1GpIIqG6lfv360atXqkvcnJyczYcIEAGJiYsjLyyMnJ8d1CeujK47AqFHw\n9jI42dXsNGKGtP8B3/Nwo84ulvqn1oeaR44cISgoqOz7Dh06kJ2dXduHrb98z8OYO+HT6aWLRYl3\nKvEtvepSn79Dh3Sz04iU45LPsRtG+RXwLvU57tmzZ5d97XA4cDgcrhjejQyInQ4/XlN6UQbxbj9e\nA+8shhF3weKdcL6l2YnEApxOJ06ns1aPUetib9++PVlZWWXfZ2dn0759+4tu+5/F7pF6/wPab4el\nnwA6CUmAr+Kh8/tw+32wZhX6eyG19euD3jlz5tT4MWo9FRMXF8fy5csBSE9Pp2XLlgQGBtb2Yeuf\njmkw4AlIerv0TESRX7z3N2i9H3r+y+wkIkA1jtjHjh1LWloaubm5BAUFMWfOHAoLCwFITEwkNjaW\nlJQUQkJC8Pf3Z9myZXUe2u1aHC494/CtV+FUF7PTSH1T1KR0yYGJ/SHrJjgRbnYi8XJVFvvKlSur\nfJCFCxe6JEy95HsOxgyHTx6Eb24xO43UV7lhpRfnGDkG/rkdipqanUi8mD6AXSmjdO70ZFfY+rDZ\nYaS+y5gE30fAkAfNTiJeTsVemRvmw1VfQvJS9KaYVM0G7/wvdHkPwt4wO4x4MRX7pXT6APo+Bave\ngkI/s9OIp7jQAt5YCcOmQYvvzE4jXkrFfjEtD8KIu+GN1yEv2Ow04mmOXA9bflf6+XafIrPTiBdS\nsf9awzOQMLz0BKSDN5udRjzVJw9BwRWlF8MWcTMVezkG3DEZjkeVrr0tcrkMH3jrFbC/BJ0+NDuN\neBkV+3+66Vlo9U3pG2B6s1Rq60xgabkPHw9+J8xOI15Exf6LLu/CDc/Dqjf1GWRxnW8Hw657Stdv\n1xK/4iYqdoCAA6VHVWtWwU9BVW8vUhMfPgl+JyFmvtlJxEuo2BvlQ0I8OGfD4X5mpxErKmkIa1dC\nv/8H7XaYnUa8gJcXuwHxEyCrD3x2v9lhxMryOkHKwtI1hxqZHUasziXrsXusfvPgiqOln1fXm6WV\n8L3kGvtSA3tGQ+eNcOcBCooLaNRADS91w3uP2Lu+U7q++uo3oLix2WnquSLAcOPNwlJeAGDE6hGc\nLzpvchixKu8s9tb74Y5JsHotnL7a7DTiTYobw2po6tuUO5Lu4GzhWbMTiQV5X7E3/qn0zdIP5kF2\nH7PTiDcqgddHvE6gfyC3vX4b+QX5ZicSi/GuYreVwPBxcGgg7JxidhrxYr4+viy7YxkhrUIYsmII\nP57/0exIYiHeVewDnoCmP8CG581OIkIDnwYsvn0x9rZ2fvPqb/jh3A9mRxKL8J5i7/Z26bodq9dC\nsT6NIPWDj82HF4a+wICOA7j5lZs5cUZLD0jteUext9lbeiWkVW+Urt8hUo/YbDaeHfwsw7oOw/GK\ng+P5x82OJB7O+sXeJK/0zdL3/gpHe5udRuSibDYbc2+ey9iIsQx4eQDZP2WbHUk8mLVPULIVl17s\nIDMWvhhvdhqRKj3W/zGa+DZhwMsD+GD8BwS3DDY7knggaxf7zX8G3/Pw3rNmJxGptodvfLhcuYcE\nhJgdSTyMdYs9/EPo8Tos+bR0ESYRDzLj+hk0atAIx8sO3h/3PmFtwsyOJB6kyjn2DRs20K1bN0JD\nQ3n66acr3O90OmnRogV2ux273c7cuXPrJGhNnG9xBm77GyS9BWfbmB1H5LLc1+s+5g2ax6Dlg9iV\ns8vsOOJBKj1iLy4uZsaMGWzcuJH27dvTu3dv4uLiCAsrf/QwYMAAkpOT6zRoTXwf/R2k/jcct5sd\nRaRWxkeNp3GDxtzy6i2k3J1Cz3Y9zY4kHqDSI/bt27cTEhJCcHAwDRs2JCEhgXXr1lXYzjDq18JN\nHTZfC18ONjuGiEuMiRjDotsWMfS1oaRnp5sdRzxApcV+5MgRgoL+74pCHTp04MiRI+W2sdlsbN26\nlaioKGJjY9m7d2/dJK0Bn+IGZkcQcanhYcNZdscy4lbG8fF3H5sdR+q5SqdiqrMGd8+ePcnKysLP\nz4/U1FTi4+P5+uuvL7rt7Nmzy752OBw4HI4ahRXxZrGhsbw+4nXuXH0nSSOSGNR5kNmRpA44nU6c\nTmftHsSoxCeffGIMGTKk7Pt58+YZTz31VGV/xAgODjZOnjxZ4edVDOVSYWF9DNhigOGWm79/R+Pg\nwYNu2z/DMH5euNw9++fesbxjvNpIO5RmtHmmjbH+6/Uu+tsk9dnl/H2pdCrmuuuuIzMzk0OHDlFQ\nUMCqVauIi4srt01OTg6lY5fOyRuGQUBAQO3+tRGRS+rfsT/JY5O59+17WfdVxfe8RCqdivH19WXh\nwoUMGTKE4uJiJk+eTFhYGIsXLwYgMTGRtWvXsmjRInx9ffHz8yMpKcktwUW82Q0dbiD17lRue/02\nLhRfYHT30WZHknrEZvxyuF3XA9lsuGkowsNvZN++vwI3umU8f/9gvvzSSXBwsFvGg1/e/3DP81l6\nPVh3jeUd47nqd2FXzi5uXXErT//macZFjXPJY0r9cjndad0zT0W8QGRgJB+M/4DBrw7mQvEFpvTU\nBWRExS7i8cLahLFpwiZ+8+pvuFB0genXTzc7kphMxS5iAaGtQ0m7N42bX7mZ80XneejGh8yOJCZS\nsYtYRHDLYNLuTWPQ8kGcKzrHY/0fMzuSmMT6F9oQ8SJBLYJIuzeNlV+u5LEPH3PbBxakflGxi1hM\nuyva4Zzg5J2v3+H37/9e5e6FVOwiFtTGvw0fTviQTYc2Eb8qns+Pf252JHEjFbuIRQU0DSDt3jQG\ndBxA7Gux3L7ydq0O6SVU7CIW5t/Inwf7PMi3//UtQ0OGMmbtGAa/Opi0Q2maorEwFbuIF2ji24Tf\n9v4tmQ9kMjZiLFP+PYV+y/qx4cAGFbwFqdhFvEijBo2YZJ/Evun7mN57Og+/9zC9/9mbt796mxKj\nxOx44iIqdhG388Vms7nt1rx5xdVWfX18GdtjLLum7eLRfo/y5EdPErkokpW7V1JcUmzCc3L5mjcP\nMP35rG9U7CJuV0TpomPuuZ0+feqSSXxsPgwPG85nUz/j2cHPsvDThYS9GMayjGUUFhe6esfrROn+\n1Y/ns75QsYsINpuNoaFD2TxxM0tuX8Jru18j9IVQFn26iPNF582OJzWkYheRMjabDUewg43jN7Jy\nxErWZ66ny4Iu/P2Tv3Om4IzZ8aSaVOwiclF9gvrwzl3v8M7Yd/gk+xM6L+jMvI/n8eP5H82OJlVQ\nsYtIpezt7KwZtYZNEzaxL3cfXRZ04X82/Q8nz540O5pcgopdRKolvE04rw5/lW1TtnE8/zhdF3bl\nd+/9juP5x82OJr+iYheRGukS0IUlty/h88TPuVB8gfAXw3kg5QEO/3jY7GjyMxW7iFyWoBZBLBi6\ngH3T9+HX0A/7YjtTkqew6eAmcs/mmh3Pq+li1i6gi1lrvPo+njt+906ePcnC7Qt5/9v32f39bvwb\n+hMZGEmPq3rQI7AHkYGRhF0ZRmPfxi4d172/C+Cu57NstMvoThW7C6jYNV59H8/d68EYhsHhHw+z\n+/vd7MrZVfbfb099S+dWnelxVY+y0o8MjOSaFtf8/He65lTsFVV5abwNGzYwa9YsiouLmTJlCn/4\nwx8qbDNz5kxSU1Px8/Pj5Zdfxm631yiEiFiLzWajY8uOdGzZkWFdh5X9/ELRBb7K/aqs7F/89EV2\nf7+b/IJ8Iq6KIPKqyLKj+4irImjZpKWJe+G5Ki324uJiZsyYwcaNG2nfvj29e/cmLi6OsLCwsm1S\nUlI4cOAAmZmZbNu2jWnTppGe7n1rPqenp7v1iF3EEzX2bUxU2yii2kaV+/nJsyfZ/f1udufsJuNY\nBsu/WM6eE3to1aRVuSP7HoE9uLb1tTRs0NCkPfAMlRb79u3bCQkJKSushIQE1q1bV67Yk5OTmTBh\nAgAxMTHk5eWRk5NDYGBg3aWuh9LT00lISDA7hohHau3XGkewA0ewo+xnJUYJB08dLJvGefOrN5mT\nNofDPx6EbF/9AAAF+UlEQVQmtHVo6dz9VT3gKiDgLSi4AgqawYWf//vL98WNTNsvs1Ra7EeOHCEo\nKKjs+w4dOrBt27Yqt8nOzva6YhcR1/Kx+dAloAtdAroQ3y2+7OfnCs+x98TesukcAoDoV6BRPjQ6\nDY1Pl/+6pEH5ov918Vf1fYWfmfecVFelxV7dNzN+PbF/uW+CuErDhj74+/+OBg3cs7zm2bM5pu+z\niLdo2rApva7uRa+rewHw3FfPwVdvX2JrA3wv/F/RN8ovX/y//t7vROX3N8qH5e7b18tVabG3b9+e\nrKyssu+zsrLo0KFDpdtkZ2fTvn37Co/VpUsXS5ff888/z/PPP+/mUd35fLr7tdN4Lh3Nwr97pSrZ\nv6Kfb2ddOJobn88uXbrU+M9UWuzXXXcdmZmZHDp0iKuvvppVq1axcuXKctvExcWxcOFCEhISSE9P\np2XLlhedhjlw4ECNw4mISM1VWuy+vr4sXLiQIUOGUFxczOTJkwkLC2Px4sUAJCYmEhsbS0pKCiEh\nIfj7+7Ns2TK3BBcRkYtz2wlKIiLiHi5dK2bSpEkEBgbSo0ePS24zc+ZMQkNDiYqKIiMjw5XD17mq\n9u+1114jKiqKyMhIbrrpJnbt2uXmhJevOq8dwKeffoqvry9vvvmmm5K5RnX2z+l0YrfbiYiIwOFw\nuC+cC1S1f7m5udx6661ER0cTERHByy+/7N6AtZSVlcXAgQPp3r07ERERLFiw4KLbeWq/VGf/atQv\nhgt99NFHxs6dO42IiIiL3r9+/Xpj6NChhmEYRnp6uhETE+PK4etcVfu3detWIy8vzzAMw0hNTfWo\n/atq3wzDMIqKioyBAwcat912m7F27Vo3pqu9qvbv1KlTRnh4uJGVlWUYhmGcOHHCnfFqrar9e/zx\nx40//vGPhmGU7ltAQIBRWFjozoi1cuzYMSMjI8MwDMM4ffq00bVrV2Pv3r3ltvHkfqnO/tWkX1x6\nxN6vXz9atWp1yfsvdTKTp6hq//r06UOLFi2A0v3Lzs52V7Raq2rfAF544QVGjhxJmzZt3JTKdara\nv9dff50RI0aUferryiuvdFc0l6hq/9q1a8dPP/0EwE8//UTr1q3x9a1yRZF6o23btkRHRwPQrFkz\nwsLCOHr0aLltPLlfqrN/NekXty7be6mTmaxo6dKlxMbGmh3DZY4cOcK6deuYNm0aYL2Pz2VmZvLD\nDz8wcOBArrvuOl599VWzI7nU1KlT2bNnD1dffTVRUVHMnz/f7EiX7dChQ2RkZBATE1Pu51bpl0vt\n33+qql/c/k+2Uc9OZqoLmzZt4qWXXmLLli1mR3GZWbNm8dRTT5WtNPfr19HTFRYWsnPnTj744APO\nnj1Lnz59uOGGGwgNDTU7mkvMmzeP6OhonE4n33zzDYMHD+aLL77giiuuMDtajeTn5zNy5Ejmz59P\ns2bNKtzv6f1S1f5B9frFrcVe3ZOZPNmuXbuYOnUqGzZsqHJqw5Ps2LGjbC2c3NxcUlNTadiwIXFx\ncSYnc42goCCuvPJKmjZtStOmTenfvz9ffPGFZYp969atPProo0DpCS+dOnVi//79XHfddSYnq77C\nwkJGjBjBPffcQ3x8fIX7Pb1fqto/qH6/uHUqJi4ujuXLS8/HrexkJk91+PBh7rzzTlasWEFISIjZ\ncVzq22+/5eDBgxw8eJCRI0eyaNEiy5Q6wB133MHmzZspLi7m7NmzbNu2jfDwcLNjuUy3bt3YuHEj\nADk5Oezfv5/OnTubnKr6DMNg8uTJhIeHM2vWrItu48n9Up39q0m/uPSIfezYsaSlpZGbm0tQUBBz\n5syhsLAQsMbJTFXt3xNPPMGpU6fK5qEbNmzI9u3bzYxcbVXtm6erav+6devGrbfeSmRkJD4+Pkyd\nOtWjir2q/fvTn/7ExIkTiYqKoqSkhGeeeYaAAPespeQKW7ZsYcWKFURGRpZd72HevHkcPlx6nVVP\n75fq7F9N+kUnKImIWIwuZi0iYjEqdhERi1Gxi4hYjIpdRMRiVOwiIhajYhcRsRgVu4iIxajYRUQs\n5v8DV4leebKvEW0AAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb3c8ac3350>" | |
] | |
} | |
], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"x=np.array(m)\n", | |
"y=np.array(dm)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 119 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here are our coefficients for the line of best fit, where A is the y-intercept and B is the slope." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"A=(np.sum(x*x)*np.sum(y)-np.sum(x)*np.sum(x*y))/(3*np.sum(x*x)-(np.sum(x))**2)\n", | |
"A" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 67, | |
"text": [ | |
"0.015384581898594183" | |
] | |
} | |
], | |
"prompt_number": 67 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"B=(3*np.sum(x*y)-np.sum(x)*np.sum(y))/(3*np.sum(x*x)-(np.sum(x))**2)\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 68 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is line of best fit on our data for mass." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.plot(x,y,'ro')\n", | |
"plt.plot(x,A+B*x)\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGsxJREFUeJzt3X9Q1Pe97/EXulSJpkbFYmQ3YwTKjyLoDP4ar3ZNRyFa\nSUftPXCm01wkhHqPEs+ZzLGjzQi5x6j5L0LTYzv5MYlKbTvpkBvMJtHJYqJRMtGRTJM6SMOItKVu\njMfkEA1svvcP4l4R2N8/4OPzMbPj7nc/fD/vj2ZefPP5fvazSZZlWQIAGGVcogsAAEQf4Q4ABiLc\nAcBAhDsAGIhwBwADEe4AYKCA4b5x40alpaVp7ty5I7Zxu92aP3++8vPz5XQ6o1kfACAMSYHWub/z\nzjuaPHmyfvrTn+rDDz8c8v7Vq1e1dOlSvfHGG7Lb7fJ4PEpNTY1ZwQCAwAJeuS9btkxTp04d8f1D\nhw5p/fr1stvtkkSwA8AoEPGce3t7u65cuaIVK1aoqKhIL7/8cjTqAgBEwBbpCfr6+nTmzBkdO3ZM\nvb29WrJkiRYvXqysrKxo1AcACEPE4e5wOJSamqqUlBSlpKRo+fLlOnfu3JBwz8zMVEdHR6TdAcAd\nJSMjQxcuXAj55yKelnnooYf07rvvyuv1qre3V6dPn1ZeXt6Qdh0dHbIsy9jHzp07E14D42NsjM+8\nR7gXxQGv3MvLy9XS0iKPxyOHw6G6ujr19fVJkqqrq5WTk6OSkhIVFBRo3LhxqqqqGjbcAQDxEzDc\nGxsbA57k8ccf1+OPPx6VggAAkeMTqlFi+oe3TB6fyWOTGN+dKuCHmKLWUVKS4tQVABgj3Ozkyh0A\nDES4A4CBCHcAMBDhDgAGItwBwEARbz8AAHeC483NenPfPtlu3FD/hAlaVVOj5WvWJLqsERHuABDA\n8eZmvfHYY9p1y1YAO755PloDnmkZAAjgzX37BgW7JO3q6NBb9fUJqigwwh0AArDduDHs8fHXr8e5\nkuAR7gAQQP+ECcMe906cGOdKgke4A0AAq2pqtCMjY9Cx7RkZWrllS4IqCoy9ZQAgCMebm/VWfb3G\nX78u78SJWrllS1xupoabnYQ7AIxibBwGAPAh3AHAQIQ7ABiIcAcAAwUM940bNyotLU1z58712+79\n99+XzWbTK6+8ErXiAADhCRjuFRUVcrlcftt4vV5t27ZNJSUlrIgBgFEgYLgvW7ZMU6dO9dumvr5e\nGzZs0IwZM6JWGAAgfBHPuXd3d6upqUmbNm2SNLAmEwCQWBGH+9atW7Vnzx7fQnumZQAg8SLez/2D\nDz5QWVmZJMnj8ej1119XcnKySktLh7Stra31PXc6nXI6nZF2DwBGcbvdcrvdEZ8nqO0HOjs7tXbt\nWn344Yd+21VUVGjt2rVat27d0I7YfgAAQhZudga8ci8vL1dLS4s8Ho8cDofq6urU19cnSaqurg69\nUgBAzLFxGACMYmwcBgDwIdwBwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBA\nhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABgoYLhv3LhRaWlpmjt37rDv\nHzx4UIWFhSooKNDSpUvV1tYW9SIBAKEJGO4VFRVyuVwjvj9nzhwdP35cbW1teuKJJ/Too49GtUAA\nQOgChvuyZcs0derUEd9fsmSJpkyZIklatGiRLl26FL3qAABhieqc+3PPPafVq1dH85QAgDDYonWi\nt99+W88//7xOnDgxYpva2lrfc6fTKafTGa3uAcAIbrdbbrc74vMkWZZlBWrU2dmptWvX6sMPPxz2\n/ba2Nq1bt04ul0uZmZnDd5SUpCC6AgDcItzsjHha5uLFi1q3bp0OHDgwYrADAOIr4JV7eXm5Wlpa\n5PF4lJaWprq6OvX19UmSqqur9cgjj+iPf/yj7rvvPklScnKyWltbh3bElTsAhCzc7AxqWiYaCHcA\nCF3CpmUAAKMP4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHAQIQ7\nABiIcAcAAxHuAGAgwh0ADES4A4CBCHcAMBDhDgAGItwBwEABw33jxo1KS0vT3LlzR2xTU1OjrKws\nFRYW6uzZs1EtEAAQuoDhXlFRIZfLNeL7R44c0YULF9Te3q5f//rX2rRpU1QLBACELmC4L1u2TFOn\nTh3x/VdffVUPP/ywJGnRokW6evWqenp6olchACBkEc+5d3d3y+Fw+F7b7XZdunQp0tMCACJgi8ZJ\nLMsa9DopKWnYdrW1tb7nTqdTTqczGt0DgDHcbrfcbnfE54k43NPT09XV1eV7fenSJaWnpw/b9tZw\nBwAMdfuFb11dXVjniXhaprS0VC+99JIk6dSpU7rnnnuUlpYW6WkBABEIeOVeXl6ulpYWeTweORwO\n1dXVqa+vT5JUXV2t1atX68iRI8rMzNSkSZP0wgsvxLxoAIB/SdbtE+ax6igpacjcPADAv3Czk0+o\nAoCBCHcAMBDhDgAGItwBwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsA\nGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYKGO4ul0s5OTnKysrS3r17h7zv8XhUUlKiefPm\nKT8/Xy+++GIs6gQAhMDvF2R7vV5lZ2fr6NGjSk9P14IFC9TY2Kjc3Fxfm9raWt24cUO7d++Wx+NR\ndna2enp6ZLPZBnfEF2QDQMhi8gXZra2tyszM1OzZs5WcnKyysjI1NTUNanPvvffq2rVrkqRr165p\n+vTpQ4IdABBfflO4u7tbDofD99put+v06dOD2lRVVemBBx7QrFmz9Pnnn+t3v/tdbCoFAATNb7gn\nJSUFPMFTTz2lefPmye12q6OjQytXrtS5c+d09913D2lbW1vre+50OuV0OkMuGABM5na75Xa7Iz6P\n33BPT09XV1eX73VXV5fsdvugNidPntSOHTskSRkZGbr//vt1/vx5FRUVDTnfreEOABjq9gvfurq6\nsM7jd869qKhI7e3t6uzs1FdffaXDhw+rtLR0UJucnBwdPXpUktTT06Pz589rzpw5YRUDAIgOv1fu\nNptNDQ0NKi4ultfrVWVlpXJzc7V//35JUnV1tbZv366KigoVFhbq66+/1tNPP61p06bFpXgAwPD8\nLoWMakcshQSAkMVkKSQAYGwi3AHAQIQ7ABiIcAcAAxHuAGAgwh0ADES4A4CBCHcAMBDhDgAGItwB\nwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGChguLtcLuXk5CgrK0t7\n9+4dto3b7db8+fOVn58vp9MZ7RoBACHy+wXZXq9X2dnZOnr0qNLT07VgwQI1NjYqNzfX1+bq1ata\nunSp3njjDdntdnk8HqWmpg7tiC/IBoCQxeQLsltbW5WZmanZs2crOTlZZWVlampqGtTm0KFDWr9+\nvex2uyQNG+wAgPjyG+7d3d1yOBy+13a7Xd3d3YPatLe368qVK1qxYoWKior08ssvx6ZSAEDQbP7e\nTEpKCniCvr4+nTlzRseOHVNvb6+WLFmixYsXKysra0jb2tpa33On08n8PADcxu12y+12R3wev+Ge\nnp6urq4u3+uuri7f9MtNDodDqampSklJUUpKipYvX65z584FDHcAwFC3X/jW1dWFdR6/0zJFRUVq\nb29XZ2envvrqKx0+fFilpaWD2jz00EN699135fV61dvbq9OnTysvLy+sYgAA0eH3yt1ms6mhoUHF\nxcXyer2qrKxUbm6u9u/fL0mqrq5WTk6OSkpKVFBQoHHjxqmqqopwB4AE87sUMqodsRQSAEIWk6WQ\nAICxiXAHAAMR7gBgIMIdAAxEuAOAgQh3ADCQ33XuwPHmZr25b59sN26of8IEraqp0fI1axJdFoAA\nCHeM6Hhzs9547DHt6ujwHdvxzXMCHhjdmJbBiN7ct29QsEvSro4OvVVfn6CKAASLcMeIbDduDHt8\n/PXrca4EQKgId4yof8KEYY97J06McyUAQkW4Y0Sramq0IyNj0LHtGRlauWVLgioCECw2DoNfx5ub\n9VZ9vcZfvy7vxIlauWULN1OBOAo3Owl3ABjF2BUSAOBDuAOAgQh3ADAQ4Q4ABiLcAcBAAcPd5XIp\nJydHWVlZ2rt374jt3n//fdlsNr3yyitRLRAAEDq/4e71erV582a5XC599NFHamxs1Mcffzxsu23b\ntqmkpITljgAwCvgN99bWVmVmZmr27NlKTk5WWVmZmpqahrSrr6/Xhg0bNGPGjJgVCgAInt9w7+7u\nlsPh8L222+3q7u4e0qapqUmbNm2SNLDgHgCQWH73cw8mqLdu3ao9e/b4PkXlb1qmtrbW99zpdMrp\ndAZdKADcCdxut9xud8Tn8bv9wKlTp1RbWyuXyyVJ2r17t8aNG6dt27b52syZM8cX6B6PR3fddZd+\n85vfqLS0dHBHbD8AACGLyd4y/f39ys7O1rFjxzRr1iwtXLhQjY2Nys3NHbZ9RUWF1q5dq3Xr1kWt\nQAC4k4WbnX6nZWw2mxoaGlRcXCyv16vKykrl5uZq//79kqTq6urwqgUAxBS7QgLAKMaukAAAH8Id\nAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHA\nQIQ7ABiIcAcAAxHuAGAgwh0ADBRUuLtcLuXk5CgrK0t79+4d8v7BgwdVWFiogoICLV26VG1tbVEv\nFAAQvIDfoer1epWdna2jR48qPT1dCxYsUGNjo3Jzc31t3nvvPeXl5WnKlClyuVyqra3VqVOnBnfE\nd6gCQMjCzU5boAatra3KzMzU7NmzJUllZWVqamoaFO5LlizxPV+0aJEuXboUciFAvB1vbtab+/bJ\nduOG+idM0KqaGi1fsybRZQFRETDcu7u75XA4fK/tdrtOnz49YvvnnntOq1evjk51QIwcb27WG489\npl0dHb5jO755TsDDBAHn3JOSkoI+2dtvv63nn39+2Hl5YDR5c9++QcEuSbs6OvRWfX2CKgKiK+CV\ne3p6urq6unyvu7q6ZLfbh7Rra2tTVVWVXC6Xpk6dOuy5amtrfc+dTqecTmfoFQNRYLtxY9jj469f\nj3MlwGBut1tutzvi8wS8odrf36/s7GwdO3ZMs2bN0sKFC4fcUL148aIeeOABHThwQIsXLx6+I26o\nYhT5RXGx/uPNN4ccf6K4WP/H5UpARYi3L7+ULl+WPJ6BP/09v3xZunJFGjdO6uyUbpmpjrmY3VC1\n2WxqaGhQcXGxvF6vKisrlZubq/3790uSqqur9eSTT+qzzz7Tpk2bJEnJyclqbW0NuRggXlbV1GhH\nR8egqZntGRkq2bIlgVXhpr4+6dNP/Yft7ce83tjWlJQkZWZKKSmx7SdaAl65R60jrtwxyhxvbtZb\n9fUaf/26vBMnauWWLdxMDcLXX0tXrwYO21uff/ll7Ou65x5pxgwpNXXgz1sftx67+XzSpNjXFA3h\nZifhDhjEsqSeHunPf5Y++mjgMWfOQCCPFLz/9V+xr+uuu0YO2eFCeMqUgSkQxHBaBkD0fPHF/w/d\nWwP4toU7cTV+fHBXujefT58uJScnrl4Eh3AHvnHjhnThgvTxx4OD989/HnhvtLnvPik3d+CRlzfw\nZ07OQAADhDvGhP5+accO6emnE11JcKZNGxq8ubkDqyyYbkA8EO6Iimeflf7lXxJdRXgKCqRnnpEW\nLhyYGwZMQLjfAS5ckMrKpA8+SHQl4Zk4UXrtNekHP0h0JcDYwf8gJtj161JDg2S3D6yjjcUjKyu2\nwf6znw2sMbas2Dy+/JJgB0Jl3JX7tn/+Z330+99rkmXpv5OSlPfjH2vvoUNhnWu4ZWU3Hz09US48\nRh59dGCeesqU8H7+2dpatTQ0KKW/X1/abPr+5s3637dsIxFN4fYV7u6Opu8Kafr4EIAVJ/Ho6t/L\ny61HJOv/ak2MriGj+3jsMcvq7Ax+fL/cudOqttkGnaTaZrN+uXNnTP4+49lfuH21vPaatT0jY9DP\nbc/IsFpeey0mPzdWmD6+O0m42WlUuP/wm3CYqN6Qg9bhsKzi4oHA3b/fst55x7IuX/bf34MjnOzB\nGI31f06fPmx//zR9+pjvL9y+dqxaNezP/aK4OCY/N1aYPr47SbjZadS0zCTLkiR9qcFLHsrGj9dv\n+/uj3t/kEI9HKmWEMUyMwdji3V+4fYW7u6Ppu0KaPj4EZtQN1f8eYe/5kY5H6osQj0fqS9vwv4uv\nj3B8LPUXbl/9EyYMe9w7cWJMfm6sMH18CMyocM/78Y9VdduxR745Hgtpy5cP21/a8uUx6e/7mzfr\nZ7eFXbXNpuWbN4/5/sLta1VNjXZkZAw6tj0jQysD7O4Y7s+NFaaPD4EZt3FYNFfLBKPi+99Xz/Hj\nmqyBK/a05cv1QktLzPp7trZWxxsaNLG/X9e/Cb9YrV6Jd3/h9hXu7o6m7wpp+vjuFOwKmSCjYblZ\nLGtY9p3vaPLly7IkJUn6ls2muQ88EHEfw9UsKa5/l/G+EADCEXZ2RumGbkBx7CpuRsNys1jW8D9m\nzLAekawWydp+26qLSPoYruaNM2da/zpzZtz+Lm8um721v0ck69/Ly2PSHxCucLOTcI/AaFhuFssa\nSr45144RlnyG28dwNUe7j0B+eNua+puPH9psMekPCFe42WnUDdV4Gw3LzWJZw80lnSOtVwm3j+Fq\njnYfgdxcNhvscWCsIdwjMBqWm8WyhptLOkdaaR5uH/+4dm3IsWj3EchIy2Oveb36p9RUPRvDm9RA\nPAQMd5fLpZycHGVlZWnv3r3DtqmpqVFWVpYKCwt19uzZqBc5Wq2qqVHlzJn6haRaSb+QtHHmzLgu\nN4tlDV/MmKEqSask7bjtvUiW1X01zPn+KqnqW9+KWh+BjLRsdq6kw59+qrZduwh4jGl+PyHi9Xq1\nefNmHT16VOnp6VqwYIFKS0uVm5vra3PkyBFduHBB7e3tOn36tDZt2qRTp07FvPDRYoqk/5DkluSU\n9G8JrOGmaNXwzj/+oWXf+Y52X76sTyWd0cBqmYIf/EAlESyrs3/723pA0hOSxkvySvpfkg5mZekJ\nu923dC9QH5GsEtp76JC2SVr7+9/rWn+/vi0pT9LNy5f/7O9XWUNDTJeZxovb7ZbT6Ux0GTFj+vjC\n5m9C/uTJk1bxLTe0du/ebe3evXtQm+rqauu3v/2t73V2drb197//PWo3BUazW28M7jTwhuqtdkZx\ns7Bo1BzNVUKFEyYMW8/DU6aEfK7RKJr/dqOR6eMLNzv9Tst0d3fL4XD4XtvtdnV3dwdsc+nSpaj+\nAhqtTL+hGivR+PTkm/v2addt3yq9q6NDb9XXh1xP3wjfexerbR2AePD7X29SkHuyWLetMAj258Y6\n02+oxsrNqZMnbvn0ZKjTPNH8pTZ74UL97MQJ/ectm5TFclsHIC78Xda/9957g6ZlnnrqKWvPnj2D\n2lRXV1uNjY2+1yNNy2RkZFiSePDgwYNHCI+MjIywpmX8XrkXFRWpvb1dnZ2dmjVrlg4fPqzGxsZB\nbUpLS9XQ0KCysjKdOnVK99xzj9LS0oac68KFC/66AgBEkd9wt9lsamhoUHFxsbxeryorK5Wbm6v9\n+/dLkqqrq7V69WodOXJEmZmZmjRpkl544YW4FA4AGFncNg4DAMRPVD+hunHjRqWlpWnu3LkjthnL\nH3gKNL6DBw+qsLBQBQUFWrp0qdra2uJcYfiC+beTpPfff182m02vvPJKnCqLjmDG53a7NX/+fOXn\n54+5ddOBxufxeFRSUqJ58+YpPz9fL774YnwLjFBXV5dWrFih733ve8rPz9e+ffuGbTdW8yWY8YWc\nL2HN1I/g+PHj1pkzZ6z8/Pxh329ubrYefPBBy7Is69SpU9aiRYui2X3MBRrfyZMnratXr1qWZVmv\nv/76mBpfoLFZlmX19/dbK1assNasWWP94Q9/iGN1kQs0vs8++8zKy8uzurq6LMuyrMuBvkB3lAk0\nvp07d1o///nPLcsaGNu0adOsvr6+eJYYkb/97W/W2bNnLcuyrM8//9z67ne/a3300UeD2ozlfAlm\nfKHmS1Sv3JctW6apU6eO+P6rr76qhx9+WJK0aNEiXb16VT09PdEsIaYCjW/JkiWaMmWKpIHxjaX1\n/oHGJkn19fXasGGDZsyYEaeqoifQ+A4dOqT169fLbrdLklJTU+NVWlQEGt+9996ra9/s6XPt2jVN\nnz5dtjG0jn/mzJmaN2+eJGny5MnKzc3VX//610FtxnK+BDO+UPMlrhuH3UkfeHruuee0evXqRJcR\nNd3d3WpqatKmTZskmfdZhvb2dl25ckUrVqxQUVGRXn755USXFFVVVVX605/+pFmzZqmwsFDPPPNM\noksKW2dnp86ePatFixYNOm5Kvow0vlsFky9x/9Vt3QEfeHr77bf1/PPP68SJE4kuJWq2bt2qPXv2\n+L4V5vZ/x7Gur69PZ86c0bFjx9Tb26slS5Zo8eLFysrKSnRpUfHUU09p3rx5crvd6ujo0MqVK3Xu\n3DndfffdiS4tJF988YU2bNigZ555RpMnTx7y/ljPl0Djk4LPl7iGe3p6urq6unyvL126pPT09HiW\nEHNtbW2qqqqSy+UKOM0xlnzwwQcqKyuTNHBz7vXXX1dycrJKS0sTXFl0OBwOpaamKiUlRSkpKVq+\nfLnOnTtnTLifPHlSO3YM7MWZkZGh+++/X+fPn1dRUVGCKwteX1+f1q9fr5/85Cf60Y9+NOT9sZ4v\ngcYnhZYvcZ2WKS0t1UsvvSRJfj/wNFZdvHhR69at04EDB5SZmZnocqLqL3/5iz755BN98skn2rBh\ng371q18ZE+yS9NBDD+ndd9+V1+tVb2+vTp8+rby8vESXFTU5OTk6evSoJKmnp0fnz5/XnDlzElxV\n8CzLUmVlpfLy8rR169Zh24zlfAlmfKHmS1Sv3MvLy9XS0iKPxyOHw6G6ujr19fVJMuMDT4HG9+ST\nT+qzzz7zzUsnJyertbU1kSUHLdDYxrpA48vJyVFJSYkKCgo0btw4VVVVjalwDzS+7du3q6KiQoWF\nhfr666/19NNPa9q0aQmuOngnTpzQgQMHVFBQoPnz50samGq6ePGipLGfL8GML9R84UNMAGAgvmYP\nAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYKD/B98SfflNO1+dAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb3c887bad0>" | |
] | |
} | |
], | |
"prompt_number": 73 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"\n", | |
"np.polyfit(x,y,1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 70, | |
"text": [ | |
"array([ 0.60288118, -0.74026772])" | |
] | |
} | |
], | |
"prompt_number": 70 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"When the polyfit graph is placed on the graph it doesn't correlate to the data at all." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the uncertainty of the line." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"S=(sum((y-B*x-A)**2)/38)**.5\n", | |
"S" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 23, | |
"text": [ | |
"0.23323167384392071" | |
] | |
} | |
], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the uncertainty of the coefficients." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dA=S*(sum(x**2)/(40*sum(x**2)-(sum(x))**2))**.5\n", | |
"dA" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 24, | |
"text": [ | |
"0.26872298993887439" | |
] | |
} | |
], | |
"prompt_number": 24 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dB=S*(40/(40*sum(x**2)-(sum(x)**2)))**.5\n", | |
"dB" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 25, | |
"text": [ | |
"0.18738515687011689" | |
] | |
} | |
], | |
"prompt_number": 25 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the weighted line for the mass measurements." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"w=(1/(sum((m-z)**2)))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 120 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the y-intercept for the line." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"a=((sum(w*x**2))*sum(w*y)-sum(w*x)*sum(w*x*y))/(sum(w)*sum(w*(x**2))-(((sum(w*x)))**2))\n", | |
"a" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 121, | |
"text": [ | |
"0.014580090001736826" | |
] | |
} | |
], | |
"prompt_number": 121 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the slope." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"b=(sum(w)*sum(w*x*y)-sum(w*x)*sum(w*y))/(sum(w)*sum(w*(x**2))-(sum(w*x))**2)\n", | |
"b" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 122, | |
"text": [ | |
"0.081492782646924652" | |
] | |
} | |
], | |
"prompt_number": 122 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the graph with the weighted line of the mass measurements. This changes the line too low such that it doesn't collect enough of the data points." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.plot(x,y,'ro')\n", | |
"plt.plot(x,a+b*x)\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGtZJREFUeJzt3X9slNed7/GPYVxwQ0IAUxM8ExFs1z/qHyCZAMu1O7AC\nO6Q4FdBbe9VNriGu6xU47FW0VNAsdu7yK/8Fe9ulFUk2AVyaKl1HNUwSUMY0EOMoIBwlXda4IIzb\n0kwSliReiD089w9girE94/ltH94vadSZZ84853sg/fDoPGfOJFiWZQkAYJRx8S4AABB5hDsAGIhw\nBwADEe4AYCDCHQAMRLgDgIEChvuaNWuUkpKivLy8Ydu43W7NnTtXubm5cjqdkawPABCChEDr3H/3\nu99p0qRJevzxx/XBBx8Mev/y5ctatGiR3njjDdntdnk8HiUnJ0etYABAYAGv3IuKijRlypRh39+/\nf79WrVolu90uSQQ7AIwCYc+5d3Z26tNPP9XixYtVWFioV155JRJ1AQDCYAv3BH19fTp58qSOHDmi\n3t5eLVy4UAsWLFBGRkYk6gMAhCDscHc4HEpOTlZSUpKSkpJUXFys06dPDwr39PR0dXV1hdsdANxV\n0tLSdPbs2aA/F/a0zGOPPaZ33nlHXq9Xvb29OnHihHJycga16+rqkmVZxj62bNkS9xoYH2NjfOY9\nQr0oDnjlXlFRodbWVnk8HjkcDtXX16uvr0+SVF1draysLJWWlio/P1/jxo1TVVXVkOEOAIidgOHe\n1NQU8CRPP/20nn766YgUBAAIH99QjRDTv7xl8vhMHpvE+O5WAb/EFLGOEhIUo64AwBihZidX7gBg\nIMIdAAxEuAOAgQh3ADAQ4Q4ABgp7+wEAuBscbWnRm7t2yXbtmvonTNCy2loVP/povMsaFuEOAAEc\nbWnRG089pa23bQWw+ebz0RrwTMsAQABv7to1INglaWtXl95qaIhTRYER7gAQgO3atSGPj796NcaV\njBzhDgAB9E+YMORx78SJMa5k5Ah3AAhgWW2tNqelDTi2KS1NS9evj1NFgbG3DACMwNGWFr3V0KDx\nV6/KO3Gilq5fH5ObqaFmJ+EOAKMYG4cBAHwIdwAwEOEOAAYi3AHAQAHDfc2aNUpJSVFeXp7fdu+9\n955sNptee+21iBUHAAhNwHCvrKyUy+Xy28br9Wrjxo0qLS1lRQwAjAIBw72oqEhTpkzx26ahoUGr\nV6/W9OnTI1YYACB0Yc+59/T0qLm5WTU1NZJurMkEAMRX2OG+YcMG7dixw7fQnmkZAIi/sPdzf//9\n91VeXi5J8ng8OnTokBITE1VWVjaobV1dne+50+mU0+kMt3sAMIrb7Zbb7Q77PCPafuD8+fNasWKF\nPvjgA7/tKisrtWLFCq1cuXJwR2w/AABBCzU7A165V1RUqLW1VR6PRw6HQ/X19err65MkVVdXB18p\nACDq2DgMAEYxNg4DAPgQ7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDC\nHQAMRLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABiIcAcAAxHuAGAgwh0ADBQw3NesWaOUlBTl5eUN+f6+\nfftUUFCg/Px8LVq0SB0dHREvEgAQnIDhXllZKZfLNez7s2fP1tGjR9XR0aFnnnlGP/zhDyNaIAAg\neAHDvaioSFOmTBn2/YULF2ry5MmSpPnz5+vixYuRqw4AEJKIzrnv2bNHy5cvj+QpAQAhsEXqRG+/\n/bZeeOEFHTt2bNg2dXV1vudOp1NOpzNS3QOAEdxut9xud9jnSbAsywrU6Pz581qxYoU++OCDId/v\n6OjQypUr5XK5lJ6ePnRHCQkaQVcAgNuEmp1hT8tcuHBBK1eu1N69e4cNdgBAbAW8cq+oqFBra6s8\nHo9SUlJUX1+vvr4+SVJ1dbWefPJJ/eY3v9GDDz4oSUpMTFR7e/vgjrhyB4CghZqdI5qWiQTCHQCC\nF7dpGQDA6EO4A4CBCHcAMBDhDgAGItwBwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4A\nBiLcAcBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwUMBwX7NmjVJSUpSXlzdsm9raWmVkZKig\noECnTp2KaIEAgOAFDPfKykq5XK5h3z948KDOnj2rzs5O/fznP1dNTU1ECwQABC9guBcVFWnKlCnD\nvv/666/riSeekCTNnz9fly9f1qVLlyJXIQAgaGHPuff09MjhcPhe2+12Xbx4MdzTAgDCYIvESSzL\nGvA6ISFhyHZ1dXW+506nU06nMxLdA4Ax3G633G532OcJO9xTU1PV3d3te33x4kWlpqYO2fb2cAcA\nDHbnhW99fX1I5wl7WqasrEwvv/yyJKmtrU3333+/UlJSwj0tACAMAa/cKyoq1NraKo/HI4fDofr6\nevX19UmSqqurtXz5ch08eFDp6em655579OKLL0a9aACAfwnWnRPm0eooIWHQ3DwAwL9Qs5NvqAKA\ngQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDCHQAMRLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABiI\ncAcAAxHuAGAgwh0ADES4A4CBCHcAMBDhDgAGChjuLpdLWVlZysjI0M6dOwe97/F4VFpaqjlz5ig3\nN1cvvfRSNOoEAATB7w9ke71eZWZm6vDhw0pNTdW8efPU1NSk7OxsX5u6ujpdu3ZN27dvl8fjUWZm\npi5duiSbzTawI34gGwCCFpUfyG5vb1d6erpmzZqlxMRElZeXq7m5eUCbBx54QFeuXJEkXblyRdOm\nTRsU7ACA2PKbwj09PXI4HL7XdrtdJ06cGNCmqqpKS5Ys0cyZM/X555/rV7/6VXQqBQCMmN9wT0hI\nCHiCbdu2ac6cOXK73erq6tLSpUt1+vRp3XvvvYPa1tXV+Z47nU45nc6gCwYAk7ndbrnd7rDP4zfc\nU1NT1d3d7Xvd3d0tu90+oM3x48e1efNmSVJaWpoeeughnTlzRoWFhYPOd3u4AwAGu/PCt76+PqTz\n+J1zLywsVGdnp86fP6+vvvpKBw4cUFlZ2YA2WVlZOnz4sCTp0qVLOnPmjGbPnh1SMQCAyPB75W6z\n2dTY2KiSkhJ5vV6tXbtW2dnZ2r17tySpurpamzZtUmVlpQoKCnT9+nU999xzmjp1akyKBwAMze9S\nyIh2xFJIAAhaVJZCAgDGJsIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4AYCDCHQAM\nRLgDgIEIdwAwEOEOAAYi3AHAQIQ7ABiIcAcAAxHuAGAgwh0ADES4A4CBAoa7y+VSVlaWMjIytHPn\nziHbuN1uzZ07V7m5uXI6nZGuEQAQJL8/kO31epWZmanDhw8rNTVV8+bNU1NTk7Kzs31tLl++rEWL\nFumNN96Q3W6Xx+NRcnLy4I74gWwACFpUfiC7vb1d6enpmjVrlhITE1VeXq7m5uYBbfbv369Vq1bJ\nbrdL0pDBDgCILb/h3tPTI4fD4Xttt9vV09MzoE1nZ6c+/fRTLV68WIWFhXrllVeiUykAYMRs/t5M\nSEgIeIK+vj6dPHlSR44cUW9vrxYuXKgFCxYoIyNjUNu6ujrfc6fTyfw8ANzB7XbL7XaHfR6/4Z6a\nmqru7m7f6+7ubt/0yy0Oh0PJyclKSkpSUlKSiouLdfr06YDhDgAY7M4L3/r6+pDO43daprCwUJ2d\nnTp//ry++uorHThwQGVlZQPaPPbYY3rnnXfk9XrV29urEydOKCcnJ6RiAACR4ffK3WazqbGxUSUl\nJfJ6vVq7dq2ys7O1e/duSVJ1dbWysrJUWlqq/Px8jRs3TlVVVYQ7AMSZ36WQEe2IpZAAELSoLIUE\nAIxNhDsAGIhwBwADEe4AYCDCHQAMRLgDgIH8rnMHjra06M1du2S7dk39EyZoWW2tih99NN5lAQiA\ncMewjra06I2nntLWri7fsc03nxPwwOjGtAyG9eauXQOCXZK2dnXprYaGOFUEYKQIdwzLdu3akMfH\nX70a40oABItwx7D6J0wY8rh34sQYVwIgWIQ7hrWstlab09IGHNuUlqal69fHqSIAI8XGYfDraEuL\n3mpo0PirV+WdOFFL16/nZioQQ6FmJ+EOAKMYu0ICAHwIdwAwEOEOAAYi3AHAQIQ7ABgoYLi7XC5l\nZWUpIyNDO3fuHLbde++9J5vNptdeey2iBQIAguc33L1er9atWyeXy6WPPvpITU1N+v3vfz9ku40b\nN6q0tJTljgAwCvgN9/b2dqWnp2vWrFlKTExUeXm5mpubB7VraGjQ6tWrNX369KgVCgAYOb/h3tPT\nI4fD4Xttt9vV09MzqE1zc7Nqamok3VhwDwCIL7/7uY8kqDds2KAdO3b4vkXlb1qmrq7O99zpdMrp\ndI64UAC4G7jdbrnd7rDP43f7gba2NtXV1cnlckmStm/frnHjxmnjxo2+NrNnz/YFusfj0de//nX9\n4he/UFlZ2cCO2H4AAIIWlb1l+vv7lZmZqSNHjmjmzJl6+OGH1dTUpOzs7CHbV1ZWasWKFVq5cmXE\nCgSAu1mo2el3WsZms6mxsVElJSXyer1au3atsrOztXv3bklSdXV1aNUCAKKKXSEBYBRjV0gAgA/h\nDgAGItwBwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADAQ4Q4ABiLcAcBAhDsAGIhwBwADEe4A\nYCDCHQAMRLgDgIEIdwAwEOEOAAYaUbi7XC5lZWUpIyNDO3fuHPT+vn37VFBQoPz8fC1atEgdHR0R\nLxQAMHIBf0PV6/UqMzNThw8fVmpqqubNm6empiZlZ2f72rz77rvKycnR5MmT5XK5VFdXp7a2toEd\n8RuqABC0ULPTFqhBe3u70tPTNWvWLElSeXm5mpubB4T7woULfc/nz5+vixcvBl0IEGtHW1r05q5d\nsl27pv4JE7SstlbFjz4a77KAiAgY7j09PXI4HL7XdrtdJ06cGLb9nj17tHz58shUB0TJ0ZYWvfHU\nU9ra1eU7tvnmcwIeJgg4556QkDDik7399tt64YUXhpyXB0aTN3ftGhDskrS1q0tvNTTEqSIgsgJe\nuaempqq7u9v3uru7W3a7fVC7jo4OVVVVyeVyacqUKUOeq66uzvfc6XTK6XQGXzEQAbZr14Y8Pv7q\n1RhXAgzkdrvldrvDPk/AG6r9/f3KzMzUkSNHNHPmTD388MODbqheuHBBS5Ys0d69e7VgwYKhO+KG\nKkaRn5SU6F/efHPQ8WdKSvT/XK44VIRYsSzpyy+ljz8e+PB4Bh+79fj8879+/tw56eYtyJiI2g1V\nm82mxsZGlZSUyOv1au3atcrOztbu3bslSdXV1Xr22Wf12WefqaamRpKUmJio9vb2oIsBYmVZba02\nd3UNmJrZlJam0vXr41gVJKmvT/rkE/9he+d7169Ht6YJE6TkZCktTZo8Obp9RUrAK/eIdcSVO0aZ\noy0tequhQeOvXpV34kQtXb+em6kBWNaNq9hgrnq//DL6dU2dKk2ffiOAp08f+nHrveRkKSkp+jVF\nSqjZSbgDBuntlf7zP6WPPvrrIzdXGjdu+ACOtokTAwfv7QF8//036sUNhDswyl2/Ll248NfQvT2E\n//u/41fXtGmDr26HC97k5BthjdiJ2pw7cLf45BPpv/5LOnNm4JXvuXPxrmywSZOknJzBjwcflMaP\nj3d1GA0Id4wJX3wh1dRIe/fGu5KRSUv7a+BmZ9/438xM6b774l0Z7haEOyJi717p7/8+3lWEZsUK\nadu2GwHMXC9MQbjfBS5fln70I+nAgXhXEpqHHpL+4z+k/Px4VwKMHYT7KNDWJv3zP0tvvRXvSkLz\n+OPSnj2Sjf+agFHDuP87bvy7v9NHr76qeyxLXyYkKOd739PO/ftDPl9fn9TZOfAG262H1xvBwqOk\nqEj693+/cfUbip/W1am1sVFJ/f36H5tN3163Tv9w2zYSkRRqX6Hu7mj6rpCmjw8BWDESi67+qaLC\nelKyjmixdePrFqP78Td/Y1mHDlnW9esjG9+/btliVdtsA05SbbNZ/7plS1T+PGPZX6h9tf72t9am\ntLQBn9uUlma1/va3UfncWGH6+O4moWanUeH+nZvhEErQjh9vWXl5lvX971tWfb1lvfqqZX34oWVd\nuzZ8f48Mc7JHojTW/z1t2pD9fX/atDHfX6h9bV62bMjP/aSkJCqfGytMH9/dJNTsNGpa5p6bC/0t\nDdymuHz8eP2yvz/i/U0K8ni4koYZw8QojC3W/YXaV6i7O5q+K6Tp40NgRi38+nKYveeHOx6uL4I8\nHq7/GeaO5dUo3cmMZX+h9tU/YcKQx70BvkYZ6ufGCtPHh8CMCvec731PVXcce/Lm8WhIKS4esr+U\n4uKo9Pftdev0ozvCrtpmU/G6dWO+v1D7WlZbq81paQOObUpL09IAuzuG+rmxwvTxITDj9paJ9GqZ\nQCq//W1dOnpUk3Tjij2luFgvtrZGrb+f1tXpaGOjJvb36+rN8IvW6pVY9xdqX6Hu7mj6rpCmj+9u\nwcZhcTIalptFs4aib3xDkz7+WJakBElfs9mUt2RJ2H0MVbOkmP5ZxvpCAAhFyNkZoRu6AcWwq5gZ\nDcvNolnD/5o+3XpSslola9Mdqy7C6WOomtfMmGH944wZMfuzvLVs9vb+npSsf6qoiEp/QKhCzU7C\nPQyjYblZNGsovXmuzcMs+Qy1j6FqjnQfgXznjjX1tx7fsdmi0h8QqlCz06gbqrE2GpabRbOGW0s6\nh1uvEmofQ9Uc6T4CubVsdqTHgbGGcA/DaFhuFs0abi3pHG6leah9/OXKlUHHIt1HIMMtj73i9er7\nycn6aRRvUgOxEDDcXS6XsrKylJGRoZ07dw7Zpra2VhkZGSooKNCpU6ciXuRotay2VmtnzNBPJNVJ\n+omkNTNmxHS5WTRr+GL6dFVJWiZp8x3vhbOs7qshzvdHSVVf+1rE+ghkuGWzeZIOfPKJOrZuJeAx\npvn9hojX69W6det0+PBhpaamat68eSorK1N2dravzcGDB3X27Fl1dnbqxIkTqqmpUVtbW9QLHy0m\nS/oXSW5JTkn/N4413BKpGn73l7+o6Bvf0PaPP9Ynkk7qxmqZ/L/9W5WGsazOft99WiLpGUnjJXkl\n/R9J+zIy9Izd7lu6F6iPcFYJ7dy/XxslrXj1VV3p79d9knIk3bp8+bf+fpU3NkZ1mWmsuN1uOZ3O\neJcRNaaPL2T+JuSPHz9uldx2Q2v79u3W9u3bB7Sprq62fvnLX/peZ2ZmWn/+858jdlNgNLv9xuAW\nA2+o3m5LBDcLi0TNkVwlVDBhwpD1PDF5ctDnGo0i+Xc3Gpk+vlCz0++0TE9PjxwOh++13W5XT09P\nwDYXL16M6D9Ao5XpN1SjJRLfnnxz1y5t7eoacGxrV5feamgIup6+YX5+KVrbOgCx4Pe/3oQR7sli\n3bHCYKSfG+tMv6EaLbemTp657duTwU7zRPIftVkPP6wfHTumf7ttk7JobusAxIS/y/p33313wLTM\ntm3brB07dgxoU11dbTU1NfleDzctk5aWZkniwYMHDx5BPNLS0kKalvF75V5YWKjOzk6dP39eM2fO\n1IEDB9TU1DSgTVlZmRobG1VeXq62tjbdf//9SklJGXSus2fP+usKABBBfsPdZrOpsbFRJSUl8nq9\nWrt2rbKzs7V7925JUnV1tZYvX66DBw8qPT1d99xzj1588cWYFA4AGF7MNg4DAMRORL+humbNGqWk\npCgvL2/YNmP5C0+Bxrdv3z4VFBQoPz9fixYtUkdHR4wrDN1I/u4k6b333pPNZtNrr70Wo8oiYyTj\nc7vdmjt3rnJzc8fcuulA4/N4PCotLdWcOXOUm5url156KbYFhqm7u1uLFy/Wt771LeXm5mrXrl1D\nthur+TKS8QWdLyHN1A/j6NGj1smTJ63c3Nwh329pabEeeeQRy7Isq62tzZo/f34ku4+6QOM7fvy4\ndfnyZcuyLOvQoUNjanyBxmZZltXf328tXrzYevTRR61f//rXMawufIHG99lnn1k5OTlWd3e3ZVmW\n9fHHH8eyvLAFGt+WLVusH//4x5Zl3Rjb1KlTrb6+vliWGJY//elP1qlTpyzLsqzPP//c+uY3v2l9\n9NFHA9qM5XwZyfiCzZeIXrkXFRVpypQpw77/+uuv64knnpAkzZ8/X5cvX9alS5ciWUJUBRrfwoUL\nNXnyZEk3xjeW1vsHGpskNTQ0aPXq1Zo+fXqMqoqcQOPbv3+/Vq1aJbvdLklKTk6OVWkREWh8Dzzw\ngK7c3NPnypUrmjZtmmxjaB3/jBkzNGfOHEnSpEmTlJ2drT/+8Y8D2ozlfBnJ+ILNl5huHHY3feFp\nz549Wr58ebzLiJienh41NzerpqZGknnfZejs7NSnn36qxYsXq7CwUK+88kq8S4qoqqoqffjhh5o5\nc6YKCgr0/PPPx7ukkJ0/f16nTp3S/PnzBxw3JV+GG9/tRpIvMf+n27oLvvD09ttv64UXXtCxY8fi\nXUrEbNiwQTt27PD9Ksydf49jXV9fn06ePKkjR46ot7dXCxcu1IIFC5SRkRHv0iJi27ZtmjNnjtxu\nt7q6urR06VKdPn1a9957b7xLC8oXX3yh1atX6/nnn9ekSZMGvT/W8yXQ+KSR50tMwz01NVXd3d2+\n1xcvXlRqamosS4i6jo4OVVVVyeVyBZzmGEvef/99lZeXS7pxc+7QoUNKTExUWVlZnCuLDIfDoeTk\nZCUlJSkpKUnFxcU6ffq0MeF+/Phxbd58Yy/OtLQ0PfTQQzpz5owKCwvjXNnI9fX1adWqVfrBD36g\n7373u4PeH+v5Emh8UnD5EtNpmbKyMr388suS5PcLT2PVhQsXtHLlSu3du1fp6enxLiei/vCHP+jc\nuXM6d+6cVq9erZ/97GfGBLskPfbYY3rnnXfk9XrV29urEydOKCcnJ95lRUxWVpYOHz4sSbp06ZLO\nnDmj2bNnx7mqkbMsS2vXrlVOTo42bNgwZJuxnC8jGV+w+RLRK/eKigq1trbK4/HI4XCovr5efX19\nksz4wlOg8T377LP67LPPfPPSiYmJam9vj2fJIxZobGNdoPFlZWWptLRU+fn5GjdunKqqqsZUuAca\n36ZNm1RZWamCggJdv35dzz33nKZOnRrnqkfu2LFj2rt3r/Lz8zV37lxJN6aaLly4IGns58tIxhds\nvvAlJgAwED+zBwAGItwBwECEOwAYiHAHAAMR7gBgIMIdAAxEuAOAgQh3ADDQ/wc1zlPSoaz+OAAA\nAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb3c86dc5d0>" | |
] | |
} | |
], | |
"prompt_number": 123 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"np.polyfit(x,y,1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 30, | |
"text": [ | |
"array([ 0.60288118, -0.74026772])" | |
] | |
} | |
], | |
"prompt_number": 30 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"data[2:3:]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 31, | |
"text": [ | |
"array([[ 1.2 , 0.1 , 53.63, 0.5 ]])" | |
] | |
} | |
], | |
"prompt_number": 31 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"c=data[:,2]\n", | |
"dD=data[:,3]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 79 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Because one persons measurement of the diameter was so much of an outlier I omitted it." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"D=c[c>50]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 124 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the mean Diameter" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"v=sum(D)/39\n", | |
"v" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 125, | |
"text": [ | |
"53.656153846153863" | |
] | |
} | |
], | |
"prompt_number": 125 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"My diameter is 54 milimeters with an uncertainty of 1 milimeter, so I would leave my error bars as they are on the graph from Lab 1." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dv=(sum((D-sum(D)/39)**2)/39)**.5\n", | |
"dv" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 126, | |
"text": [ | |
"0.12626011784012373" | |
] | |
} | |
], | |
"prompt_number": 126 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the Standard deviation of mean for the diameter measurements." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"s=dv/(39**.5)\n", | |
"s" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 43, | |
"text": [ | |
"0.020217799568951759" | |
] | |
} | |
], | |
"prompt_number": 43 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the weighted mean of the diameter measurements." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"W=(sum(1/((D-v)**2)*D))/sum(1/((D-v)**2))\n", | |
"W" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 44, | |
"text": [ | |
"53.654310036534177" | |
] | |
} | |
], | |
"prompt_number": 44 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the uncertainty of the weighted mean." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dW=1/((sum(1/((m-z)**2))**.5))\n", | |
"dW" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 45, | |
"text": [ | |
"0.0053649383029114308" | |
] | |
} | |
], | |
"prompt_number": 45 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the Histogram for the measurements of the diameter. I plotted the Gaussian over it.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"(hist,bins,p)=plt.hist(D,bins=20,normed=True)\n", | |
"plt.plot(bins,(1/(dv*(2*np.pi)**.5)*np.exp(-(bins-v)**2/(2*dv**2))))\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEACAYAAACnJV25AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UVHXCB/DvKPiKqCCgAiqBw4sMA6JgljlPmu+4Rj5u\naKEidc5uu+W2J9t66sS6Z9WsTpvb7p4tLdNId2srI5FWw6EXQjEUybcBhQAVEBCQF3kZf88fo6Mo\nr/fOC3P9fs65h5nL3N98pcu3y29m7lUJIQSIiEgx+tk7ABERWRaLnYhIYVjsREQKw2InIlIYFjsR\nkcKw2ImIFKbLYk9ISICXlxc0Go153eHDhxEVFYWIiAhMnToV2dnZVg9JREQ912Wxr169Gmlpae3W\nrVu3Dn/6059w9OhRrF+/HuvWrbNqQCIi6p0ui33GjBkYOXJku3VjxoxBbW0tAKCmpgbe3t7WS0dE\nRL2m6u6Tp0VFRYiJiUFeXh4A4Oeff8b9998PlUqFa9eu4YcffoCvr69NwhIRUfd6/eLpmjVrsGXL\nFhQXF+PNN99EQkKCNXIREZFUohuFhYUiNDTUfH/YsGHm29euXROurq4dbufv7y8AcOHChQuXXiz+\n/v7d1XK3en3EHhAQgIyMDABAeno61Gp1h487e/YshBAOu7zyyit2z8D89s9xN+Z35OxKyH/27Nne\n1vIdnLr6ZlxcHDIyMlBZWQlfX1+sX78e77zzDp566ik0Nzdj8ODBeOedd2SHICIiy+my2Hft2tXh\n+kOHDlklDBERycdPnnZCp9PZO4IszG9fjpzfkbMDjp/fErp9u6PkgVUqWGloIiLFskR38oidiEhh\nWOxERArDYiciUhgWOxGRwrDYiYgUhsVORKQwLHYiIoVhsRMRKQyLnYhIYVjsREQKw2InIlIYFjsR\nkcKw2ImIFIbFTkSkMF0We0JCAry8vKDRaNqt/+tf/4rg4GCEhobi+eeft2pAIqlcXd2gUqkkL66u\nbvb+JxBJ0uX52L/99lu4uLggPj4eeXl5AICDBw9iw4YNSE1NhbOzMy5dugQPD487B+b52MnOVCoV\nTNcHljwC92GyOaufj33GjBkYOXJku3X/+Mc/8MILL8DZ2RkAOix1IiKyn17Psefn5+Obb77BtGnT\noNPpcOTIEWvkIiIiibq8mHVH2tracPnyZWRlZSE7OxvLli3DuXPnOnxsUlKS+bZOp+O1CImIbqPX\n66HX6y06ZrfXPC0qKkJMTIx5jn3+/Pn4wx/+gJkzZwIAAgICcOjQIbi7u7cfmHPsZGecYydHZJdr\nni5ZsgTp6ekAAIPBgJaWljtKnYiI7KfLqZi4uDhkZGSgqqoKvr6+WL9+PRISEpCQkACNRoMBAwZg\nx44dtspKREQ90O1UjOSBORVDdsapGHJEdpmKISKivo3FTkSkMCx2IiKFYbETESkMi52ISGFY7ERE\nCsNiJyJSGBY7EZHCsNiJiBSGxU5EpDAsdiIihWGxExEpDIudiEhhWOxERArDYiciUhgWOxGRwnRZ\n7AkJCfDy8oJGo7nje2+88Qb69euH6upqq4UjIqLe67LYV69ejbS0tDvWl5SUYP/+/Rg/frzVghER\nkTRdFvuMGTMwcuTIO9Y/++yz2Lx5s9VCERGRdL2eY9+zZw98fHwQFhZmjTxERCSTU28e3NjYiA0b\nNmD//v3mdV1ddDUpKcl8W6fTQafT9TogEZGS6fV66PV6i46pEt1cDruoqAgxMTHIy8tDXl4eZs+e\njSFDhgAASktL4e3tjcOHD8PT07P9wBa40jaRHCqVCoCcfZD7MNmeJbqzV0fsGo0G5eXl5vt+fn74\n8ccf4ebmJisEERFZTpdz7HFxcZg+fToMBgN8fX3x/vvvt/u+6YiIiIj6km6nYiQPzKkYsjNOxZAj\nskR38pOnREQKw2InIlIYFjsRkcKw2ImIFIbFTkSkMCx2IiKFYbETESkMi52ISGFY7ERECsNiJyJS\nGBY7EZHCsNiJiBSGxU5EpDAsdiIihWGxExEpDIudiEhhui32hIQEeHl5QaPRmNc999xzCA4Ohlar\nRWxsLGpra60akoiIeq7bYl+9ejXS0tLarZszZw5OnDiB3NxcqNVqbNy40WoBiYiod7ot9hkzZmDk\nyJHt1j300EPo18+0aXR0NEpLS62TjoiIek32HPt7772HBQsWWCILERFZgJOcjf/85z9jwIABWL58\neYffT0pKMt/W6XTQ6XRyno6ISHH0ej30er1Fx1SJHlwOu6ioCDExMcjLyzOv2759O9599118/fXX\nGDRo0J0DW+BK20RyqFQqAHL2Qe7DZHuW6E5JR+xpaWl47bXXkJGR0WGpExGR/XR7xB4XF4eMjAxU\nVlbCy8sLf/zjH7Fx40a0tLTAzc0NAHDvvffi73//e/uBecROdsYjdnJElujOHk3FSBqYxU52xmIn\nR2SJ7uQnT4mIFIbFTkSkMCx2IiKFYbETESkMi52ISGFY7ERECsNiJyJSGBY7EZHCsNiJiBSGxU5E\npDAsdiIihWGxExEpDIudiEhhWOxERArDYiciUpguiz0hIQFeXl7QaDTmddXV1XjooYegVqsxZ84c\n1NTUWD0kERH1XJfFvnr1aqSlpbVbt2nTJjz00EMwGAyYNWsWNm3aZNWARETUO91eQen2C1kHBQUh\nIyMDXl5eKCsrg06nw+nTp+8cmFdQIjvjFZTIEdnlCkrl5eXw8vICAHh5eaG8vFxWACIisixZL56q\nVKrrR0VERNRXOPV2gxtTMKNHj8bFixfh6enZ6WOTkpLMt3U6HXQ6nZSMRESKpdfrodfrLTpmr+fY\n161bB3d3dzz//PPYtGkTampqOnwBlXPsZG+cYydHZInu7LLY4+LikJGRgcrKSnh5eWH9+vX4xS9+\ngWXLlqG4uBgTJkzAv//9b4wYMcIq4YjkYLGTI7J6scsamMVOdsZiJ0dkl3fFEBFR38ZiJyJSGBY7\nEZHCsNiJiBSGxU5EpDAsdiIihWGxExEpDIudiEhhWOxERArDYiciUhgWOxGRwrDYiYgUhsVORKQw\nLHYiIoVhsRMRKQyLnYhIYSQX+8aNGzFp0iRoNBosX74czc3NlsxFREQSSSr2oqIivPvuu8jJyUFe\nXh6MRiN2795t6WxERCSBk5SNXF1d4ezsjMbGRvTv3x+NjY3w9va2dDYiIpJA0hG7m5sbfv/732Pc\nuHEYO3YsRowYgdmzZ1s6GxERSSCp2M+ePYu//OUvKCoqwoULF1BfX4/k5GRLZyMiIgkkTcUcOXIE\n06dPh7u7OwAgNjYWmZmZWLFiRbvHJSUlmW/rdDrodDrJQYmIlEiv10Ov11t0TJUQQvR2o9zcXKxY\nsQLZ2dkYNGgQVq1ahaioKDz11FM3B1apIGFoIotRqVQA5OyD3IfJ9izRnZKmYrRaLeLj4zFlyhSE\nhYUBAJ588klZQYiIyDIkHbH3aGAesZOd8YidHJHdjtiJiKjvYrETESkMi52ISGFY7ERECsNiJyJS\nGBY7EZHCsNiJiBSGxU5EpDAsdiIihWGxExEpDIudiEhhWOxERArDYiciUhgWOxGRwrDYiYgUhsVO\nRKQwkou9pqYGS5cuRXBwMEJCQpCVlWXJXEREJJGki1kDwDPPPIMFCxbgk08+QVtbGxoaGiyZi4iI\nJJJ0abza2lpERETg3LlznQ/MS+ORnfHSeOSI7HZpvMLCQnh4eGD16tWYPHkynnjiCTQ2NsoKQkRE\nliFpKqatrQ05OTl4++23MXXqVKxduxabNm3C+vXr2z0uKSnJfFun00Gn08nJSkSkOHq9Hnq93qJj\nSpqKKSsrw7333ovCwkIAwHfffYdNmzbhyy+/vDkwp2LIzjgVQ47IblMxo0ePhq+vLwwGAwDgwIED\nmDRpkqwgRERkGZKO2AEgNzcXiYmJaGlpgb+/P95//30MHz785sA8Yic74xE7OSJLdKfkYu92YBY7\n2RmLnRyR3aZiiIio72KxExEpDIudiEhhWOxERArDYiciUhgWOxGRwrDYiYgUhsVORKQwLHYiIoVh\nsRMRKQyLnYhIYVjsREQKw2KnPs3V1Q0qlUrSQnS34tkdqU+Td4ZGnt2RHA/P7khERHdgsRMRKYys\nYjcajYiIiEBMTIyl8hARkUyyiv2tt95CSEgIX6giIupDJBd7aWkpUlNTkZiYyBeYiIj6EMnF/rvf\n/Q6vvfYa+vXjND0RUV/iJGWjL7/8Ep6enoiIiIBer+/0cUlJSebbOp0OOp1OytMRESmWXq/vskel\nkPQ+9hdffBE7d+6Ek5MTrl69irq6OjzyyCPYsWPHzYH5PnayAL6Pne42luhO2R9QysjIwOuvv46U\nlBSLhyPH5+rqhitXLsschcVOdw9LdKekqZiOghB1xFTq8sqViHqHpxQgq5I3lQLIO+rmETs5Hp5S\ngIiI7sBiJyJSGBY7EZHCsNiJiBSGxU5EpDAWebsjUd8hgOElgOdPgBuA/q8DKiPQzwj0a7t+u+22\n+518rxV4PfN1qN3VCHQPxD0j74Fzf2d7/wOJusViJ8c16DLglQd45pmK3Ov619bBQIUGqALQdhEQ\n/YFrTsC161/bBt+8f/v3br0/MBnn684jvTAdhioDSutKMW74OHPRq93VptujAjHGZQw/z0F9Bt/H\nTlZlkfexOzUBHidNpe2Zd7PMB9YBFaGmEi/X3LzdOOrmthZ8H3tzWzPOXT6HM1VnYKgywFBlMN9u\nbG28WfTXSz/aOxr+bv4ynp/uRn3ilAKdDsxiJ0gs9iGXgImpQEAaMGY3MHwQUB1gKu2K0OslrgFq\nxwGiq5eJbPcBpctNl5FfnY8zlWfMhf9d8XcYOmAo5gfMx/yA+dBN0GGw82AZeehuwGKnPq9nxS4A\nj1OAOgUITDEdjRfOAgyLgPNrgKpmwDhAyrP34Lm73l7OPiyEQG55Lvbl78O+gn04VnYM9427z1z0\nE90nyshGSsVipz6v02Lv1wqM//Z6mX8B9G8BziwGDDFAkQ5oG3RjhI6379mzy9jWtL0l9+Haq7U4\ncO4A9hWYin6w02DMC5iH+QHz8T9+/4MhzkMs9lzkuFjs1Oe1K/ZBl4GJ+0xlHvCVaXrlTIypzMu0\n6PiEX8op9lsJIZBXkWc+mv/x4o+Y7jvdfDSvdlfzxdi7FIud+jyVuwoIfMNU5mN/NB2Nn4kB8hcC\nV8b2ZAQosdhvV9dcZzqav170A50G4n9D/hfx2niEeITYJAP1DSx26pPK6svw4fEP8UHuB/jp7E+A\n4QlTmRfOAlp7O91wdxT7rW4czX+U9xE+PP4hRruMxkrtSjwa+ig8hnrYPA/ZFoud+ozmtmakGFKw\n/dh2fF/yPWKDYrEyfCVm+s0EZO0Hd1+x38p4zYj0wnTsOL4DKWdSMHPCTMSHxWORehEGOg20azay\nDhY72ZUQAjkXc7D92HbsPrEbYV5hWKVdhdjgWAwdMBQAz8duSVear+DTU59ix/EdyC3LNU/VTPOZ\nxvl4BbFrsZeUlCA+Ph4VFRVQqVR48skn8fTTT1s0HPVNZfVlSD6ejO2529HQ0oBV4asQr43HhBET\n7ngsi906imuLkXw8GR/kfgCjMCI+LB6Pax/v8L8B2ZYlLgdpt2IvKytDWVkZwsPDUV9fj8jISHz+\n+ecIDg42DcxiV5TmtmZ8afgS23O347vi7/Bw0MNYFb4K94+7H/1UnX9IiMVuXUIIHLlwBDtyd2D3\nid0I8QjBSu1KLA1ZCteBrvaOd1eyxD7fZ6ZilixZgt/+9reYNWuWaWAWu8O7fapF46nBqnDTVIvL\nAJcejcFit50WYwtS81OxI3cH0gvTsThwMZ6Y/ATuH3c/p2psSDHFXlRUhJkzZ+LEiRNwcTH9wrPY\nHVd1UzU+PP4htuZsRX1LPVZqV2Jl+EpJf+az2O2jsrESO3N3YuvRrWi71obEiETEa+Ph5eJl72iK\np4hir6+vh06nw0svvYQlS5bcHFilwiuvvGK+r9PpoNPp5DwVWdE1cQ0HCw9i69Gt2Je/DwvVC5EY\nkYiZE2Z2OdXSHRa7fQkhkFWaha05W/Hp6U/xoN+DSIxIxBz/Oejfr7+94ylS7/d5/fXlhj/at9hb\nW1uxaNEizJ8/H2vXrm0/MI/YHcL5uvPYfmw7th3dhmEDhyExIhErwlbAbbCbRcZnsfcddc112P3T\nbmzN2Yqy+jKsDl+NhIgEjB8x3t7RFMWhj9iFEFi5ciXc3d3x5ptv3jkwi73PajW2Ym/+Xmw7ug3f\nF3+PZZOWIXFyIiLHRFp8LpbF3jflluVi29Ft+CjvI0SOjcQTk5/A4sDFGNBfysnW6FYOXezfffcd\nHnjgAYSFhZnLYOPGjZg3b55pYBZ7n5NflY9tR7fhg9wPEOAWgMSIRCwNWWp+z7k1sNj7tqbWJnx2\n+jNszdmKE5dO4PGwx7EmYg2CPYLtHc1hOXSxdzswi71PaGxtxH9O/gdbj27F6crTiA+Lx5rJaxA0\nKsgmz89idxwF1QV47+h72H5sO/xG+uHxsMexbNIyi03L3S1Y7GQV18Q1fPPzN0g+noxPT3+KaO9o\nJE5OxCL1Ipv/qc1idzytxlZ8dfYr7Dy+E18VfIVZ98zCY5rHsGDiAp7GoAdY7GQxQggcLz+O5Lxk\n7PppF9wGu2GFZgXiQuPgO9zXbrlY7I6t5moNPjn5CXYe34kTFSewbNIyPB72OE9j0AUWO8n2c83P\n+CjvIyTnJeNKyxUsD12OFWErEOoZau9oAFjsSlJUU4Tk48nYeXwnjMKIxzSP4bGwx3hd19uw2EmS\n6qZqfHziYyTnJePkpZNYGrIUKzQrcN+4+2S959waWOzKc+M0BjuP78Tun3ZjovtEzsffgsVOPdbU\n2oQUQwqS85KRUZSBuQFzsUKzAvMC5vXpt6ix2JXt1vn4tII0zPKbhcfDHr+r5+NZ7NSlFmML9EV6\nfJT3Efac2YOpY6dihWYFHg5+2GFO8MRiv3vUXK3Bf07+BzuP78SxsmOY4z8HMeoYLJi4AO5D3O0d\nz2ZY7HSHi1cuYl/BPuzN34uvz32NoFFBeDT0UTwa+ihGu4y2d7xeY7Hfncrry7E3fy9SDClIL0yH\n1kuLxYGLEaOOQeCoQHvHsyoWO8F4zYjsC9nYa9iL1IJUFF4uxBz/OVgwcQHmBcyD51BPe0eUhcVO\nTa1NSC9MR4ohBSmGFLgMcEGMOgaLAxdjuu90OPVzsndEi2Kx36Wqm6rxVcFXSC1IRVpBGsa4jMGC\niQuwcOJC3Ot7r6J2dBY73erGqaC/OPMFUgwp+Ln2ZyyYuAAx6hjMC5jnMFOMXWGx90BbWxtSUlLQ\n2toqeYzJkycjICBAdhapbrzHPDU/FXvz9+J4+XHoJuiwcOJCzJ84H+OGj7NbNmtjsVNXSmpL8KXh\nS3xh+ALfF3+PaJ9oLFYvxux7ZiNwVGCfe5dXT7DYe+DkyZOIiJiGgQPnSdq+tfUcYmPDkZy8VXaW\nnjJeM+J05WlklWbhh9If8N4370G0CiAfgAHAzwDaejbWsGEjUVdXbcW0XbPEZb5Y7NQTV5qvYP+5\n/UgxpCCjKAO1zbW41+de3Od7H6b7TsdU76kY4jzE6jn6wj4vd7/r83/zCyEwaJAv6ur+LXGEbTAa\nMy2a6XYVDRU4VHoIWaVZOHT+ELIvZMNzqCem+UxDtHc0xHYBVF2DqWh658oV+366z7SDyy1mou4N\nGzgMscGxiA2OBQBcuHIBmSWZyCzJxLoD6/BTxU+Y5DEJ9/neh/vGmcp+7LCxFs+hhH2+zx+xnzhx\nAtOnL0Nd3QmJI2zDL3+Zid27t8nOApiu/Xms7BiySrOQdT4Lh0oPobqpGtE+0ZjmPQ3RPtGI8o7C\nqCGjzNvI+9PMvkeN9p1Kkbs9j9iVpKm1CdkXspFZkonvS75HZkkmXAe6YrrvdFPZ+96HUM9Q2RcQ\n6Qv7vOKP2O2pxdiCwsuFyLmYYz4az6vIg9pdjWne0zDXfy5emfkK1O5qh5wLJHIkg50H44HxD+CB\n8Q8AMP01f6bqDL4vNpX8lkNbcLH+IqK8oxDmGYagUUEI9ghG0Kigdgdad4O7vtiviWsorSuFocpg\nXvKr82GoMqCktgTert4IHx2OaO9obA7ZjMgxkVY9fzkR9YxKpULQqCAEjQrCmslrAJiu9Xqo9BBO\nXDqBzNJMvHfsPZy6dArO/Z1NRT8quN3X8SPGK/KgTHKxp6WlYe3atTAajUhMTMTzzz9vyVwWJSBw\nqeFSu/I2VBuQX5WPguoCjBw8Emp3NdRuakx0n4gH/R6E2l2Ne0be06c/rk9E7Y0aMgoL1QuxUL3Q\nvE4IgfKGcpy6dAqnK0/jVOUppBWk4VTlKVQ1VkHtrjYd2bubjvAxGkBdJdDojr4wXy6FpDl2o9GI\nwMBAHDhwAN7e3pg6dSp27dqF4OCbV12xzRy7AAZXAy5l15fyW25fX4aegrNHBYYOHWIq7+sFfuN2\ngFsAhg0cdsfIer3eYhfftsccu6Xy22++UQ9AJ2N7Oc99c3up+7Al9x9bc+TsQO/yX2m+gjNVZ9qV\n/mfffAYMGwk4NwD1Y4ArY4ErN75eX+pvud80Eu3/B+Cgc+yHDx9GQEAAJkyYAAB49NFHsWfPnnbF\nbik1zTVoCa8GnF7qoLQrgJahQP3om0uDl+nrpZDr637Aggfz8dmHyb06f/TdtHP3TXqYit0xOfLP\n35GzA73LP2zgMEwZOwVTxk4xr1M9qgJQDTg1mXpm2IVblouAx6mb910uAs5N7Yu/AcDV/wOahwNX\nh9/2dcTN2y1DYa2/CCQV+/nz5+Hre/PiDT4+Pjh06JDFQt2q9VorjG7NQPVAoDT6ZnHXjwYaPIG2\nQd2lxSBjKS8KQES90zYYqPEzLV1xbjQV/I3iH/oJMGgwMOQS4FYADKwFBtVe/1pz87ZTM9Ds2r78\nr44AdsuPLqnYbVmSXkO9gL0tcB18+M5v9uCzCq2txXByirJ8MCIiAGgdAlz2Ny0AgF8CeKn77fq1\nAgPrbin961/xhfxMQoIffvhBzJ0713x/w4YNYtOmTe0e4+/vL2CaaOLChQsXLj1c/P39pdRyO5Je\nPG1ra0NgYCC+/vprjB07FlFRUXe8eEpERPYhaSrGyckJb7/9NubOnQuj0Yg1a9aw1ImI+girnVKA\niIjsQ9JHriZMmICwsDBEREQgKsr0wuTLL78MrVaL8PBwzJo1CyUlJXdsd/XqVURHRyM8PBwhISF4\n4YUX5KWXSGr+G4xGIyIiIhATE2OryO3Iyd/RtrYkJ3tNTQ2WLl2K4OBghISEICsry5bRAUjPf+bM\nGURERJiX4cOHY8uWLbaOL+vnv3HjRkyaNAkajQbLly9Hc3OzLaMDkJf/rbfegkajQWhoKN566y1b\nxjbr6vfvjTfeQL9+/VBd3fHZXNPS0hAUFISJEyfi1Vdf7fqJpEzMT5gwQVRVVbVbV1dXZ769ZcsW\nsWbNmg63bWhoEEII0draKqKjo8W3334rJYIscvILIcQbb7whli9fLmJiYqyWsSty8ne0rS3JyR4f\nHy+2bdsmhDDtPzU1NdYL2gm5+44QQhiNRjF69GhRXFxslYxdkZq/sLBQ+Pn5iatXrwohhFi2bJnY\nvn27dcN2QGr+vLw8ERoaKpqamkRbW5uYPXu2KCgosHre23X2+1dcXCzmzp3b6ffb2tqEv7+/KCws\nFC0tLUKr1YqTJ092+jyST5IgbpvBGTbs5qc36+vrMWpUxyfdGTLE9B7FlpYWGI1GuLm5SY0gi9T8\npaWlSE1NRWJiol3P/Cc1f0fb2pqU7LW1tfj222+RkJAAwPQ6z/Dhw60btBNyfvYAcODAAfj7+7f7\nLIgtScnv6uoKZ2dnNDY2oq2tDY2NjfD29rZ61o5IyX/69GlER0dj0KBB6N+/P2bOnIlPP/3U6lk7\n0tHv37PPPovNmzd3us2tHwp1dnY2fyi0qyfpNT8/PxEeHi4iIyPFO++8Y17/4osvCl9fXxEYGCgu\nX77c4bZGo1FotVrh4uIinnvuOSlPL5uc/EuXLhU5OTlCr9eLRYsW2SpyO3Lyd7atrUjNfvToUREV\nFSVWrVolIiIiRGJiovmvP1uS87O/YfXq1eJvf/ubtaN2SE7+f/7zn8LFxUV4eHiIxx57zFaR25Ga\n/9SpU0KtVouqqirR0NAgpk2bJp5++mlbRhdCdJz/888/F2vXrhVCdH5E//HHH4vExETz/Z07d4rf\n/OY3nT6PpGK/cOGCEEKIiooKodVqxTfffNPu+xs3bhSrVq3qcoyamhoRHR0tDh48KCWCLFLzp6Sk\niF//+tdCCCEOHjxot2KX8/Pvbltrk5o9OztbODk5icOHDwshhHjmmWfEyy+/bP3At5G77zc3N4tR\no0aJiooKq+bsjNT8BQUFIjg4WFRWVorW1laxZMkS8eGHH9ok863k/Py3bdsmIiMjxQMPPCB+9atf\nmcvUljrKHx0dLWpra4UQpmKvrKy8Y7tPPvmkV8UuaSpmzJgxAAAPDw88/PDDOHy4/adCly9fjuzs\n7C7HGD58OBYuXIgjR45IiSCL1PyZmZn44osv4Ofnh7i4OKSnpyM+Pt4mmW8l5+ff3bbWJjW7j48P\nfHx8MHXqVADA0qVLkZOTY/3At5G77+/btw+RkZHw8PCwas7OSM1/5MgRTJ8+He7u7nByckJsbCwy\nM617ZbKOyPn5JyQk4MiRI8jIyMCIESMQGBho9by3uz1/RkYGCgsLodVq4efnh9LSUkRGRqKioqLd\ndt7e3u1eFC4pKYGPj0+nz9PrYm9sbMSVK1cAAA0NDfjvf/8LjUaDgoIC82P27NmDiIiIO7atrKxE\nTU0NAKCpqQn79+/v8HHWJCf/hg0bUFJSgsLCQuzevRsPPvggduzYYbPsgLz8nW1rK3Kyjx49Gr6+\nvjAYDABM89STJk2yTfDr5OS/YdeuXYiLi7N61o7IyR8UFISsrCw0NTVBCIEDBw4gJCTEZtkB+T//\nG2VZXFyMzz77DMuXL7d+6Ft0lD8qKgrl5eUoLCxEYWEhfHx8kJOTA09Pz3bbTpkyBfn5+SgqKkJL\nSwv+9a/ydcXbAAABBklEQVR/YfHixZ0/WW//lDh37pzQarVCq9WKSZMmiQ0bNgghhHjkkUdEaGio\n0Gq1IjY2VpSXlwshhDh//rxYsGCBEEKI3NxcERERIbRardBoNGLz5s29fXrZ5OS/lV6vt8u7YuTk\nP3v2bIfbOkJ2IYQ4duyYmDJliggLCxMPP/ywzd8VIzd/fX29cHd3b/cuDkfK/+qrr4qQkBARGhoq\n4uPjRUtLi0PlnzFjhggJCRFarVakp6fbNHtX+W/l5+dnnmO/PX9qaqpQq9XC39+/299dfkCJiEhh\nlHdNKCKiuxyLnYhIYVjsREQKw2InIlIYFjsRkcKw2ImIFIbFTkSkMCx2IiKF+X+LjZd6jdFVsgAA\nAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb3c8b13510>" | |
] | |
} | |
], | |
"prompt_number": 46 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"x=np.array(c)\n", | |
"y=np.array(dD)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 165 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here are our coefficients, where A is the y-intercept and B is the slope." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"A=(np.sum(x*x)*np.sum(y)-np.sum(x)*np.sum(x*y))/(3*np.sum(x*x)-(np.sum(x))**2)\n", | |
"A" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 166, | |
"text": [ | |
"0.00023094079015950763" | |
] | |
} | |
], | |
"prompt_number": 166 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"B=(3*np.sum(x*y)-np.sum(x)*np.sum(y))/(3*np.sum(x*x)-(np.sum(x))**2)\n", | |
"B" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 167, | |
"text": [ | |
"0.010377770444942581" | |
] | |
} | |
], | |
"prompt_number": 167 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the line of best fit for our data for diameter." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.plot(x,y,'ro')\n", | |
"plt.plot(x,A+B*x)\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEw9JREFUeJzt3XFs1PX9x/HXtQUqP3QbAm1dZ6gH2ILYVvhBlok7g+0Z\nuhkVf1HJWOPgl2yLrcOEoBRCf8wqTKexJWaJZhPdYvgtv4VuO1KOOK/9jZgxh+T3B8xogYwirVq2\nQYHC7vr5/QFUyt31vtd+v3f3kecjuXB87/v+ft98uL748vne93s+Y4wRAMBaedluAAAwPgQ5AFiO\nIAcAyxHkAGA5ghwALEeQA4DlCpyuOHPmTN1www3Kz8/XhAkTtG/fPi/7AgA45DjIfT6fIpGIpk6d\n6mU/AIA0pTW1wrVDAJB7HAe5z+fTPffco4ULF+rVV1/1sicAQBocT63s3btXJSUl+vTTT1VTU6Py\n8nItWbLEy94AAA44DvKSkhJJ0vTp0/XAAw9o3759I4J81qxZ6u7udr9DAPiC8kv6yIUpa0dTK2fP\nntXp06clSWfOnFE4HNb8+fNHrNPd3S1jTE4/Nm3alPUe6JM+6TM3+myqrZWR4h4bgkFP+7pyv24d\n+joK8r6+Pi1ZskRVVVVavHixvvWtb6m2ttalFgAg82obG9Xk949Ytt7vV01DQ8b3O16OplbKysp0\n4MABV3cMANl0V12dJGljW5vyBwcVKyzUvQ0Nw8szsV/t3u3KNh3PkX8RBAKBbLfgCH26iz7d9UXq\n8666Os+De7T9PuPzubI9nzHGlQ+H+3w+ubQpALgmuJWb3GsFACxHkAOA5QhyALAcQQ4AliPIAcBy\nBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALEeQ\nA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkA\nWI4gBwDLEeQAYDmCHAAsR5ADgOUcB3ksFlN1dbW+/e1ve9kPACBNjoP85Zdf1ty5c+Xz+bzsBwCQ\nJkdB3tPTo127dmn16tUyxnjdEwAgDY6CfM2aNXr++eeVl8eUOgDkmoJUK/z+97/XjBkzVF1drUgk\nMuq6zc3Nw88DgYACgcA42wOAL45IJJIyR8fCZ1LMlaxfv15vvvmmCgoKNDg4qFOnTmn58uV64403\nRm7I52PaBQDS4FZupgzyK3V2duqFF17Q7373O88aAoBrhVu5mfakN59aAYDcktYR+agb4ogcANKS\ntSNyAEBuIcgBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkAWI4gBwDL\nEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALEeQA4DlCHIAsBxB\nDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkAWM5RkA8ODmrx\n4sWqqqrS3Llz9fTTT3vdFwDAIZ8xxjhZ8ezZs5o8ebKi0ajuvPNOvfDCC7rzzjs/35DPJ4ebAgDI\nvdx0PLUyefJkSdKFCxcUi8U0derUce8cADB+joN8aGhIVVVVKioq0t133625c+d62RcAwCHHQZ6X\nl6cDBw6op6dHXV1dikQiHrYFAHCqIN2CL33pS6qrq9N7772nQCAw4rXm5ubh54FAIO51ALiWRSIR\nTw6CHZ3s/Oyzz1RQUKAvf/nLOnfunILBoDZt2qSlS5d+viFOdgJAWtzKTUdH5CdOnFB9fb2GhoY0\nNDSklStXjghxAED2OP74YcoNcUQOAGnJ+McPAQC5iSAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4A\nliPIAcByBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5\nghwALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPI\nAcByBDkAWI4gBwDLEeQAYDmCHAAs5yjIjx07prvvvlvz5s3TbbfdptbWVq/7AgA45DPGmFQr9fb2\nqre3V1VVVRoYGNCCBQu0c+dOVVRUfL4hn08ONgUAuMSt3CxwslJxcbGKi4slSVOmTFFFRYU+/vjj\nEUEOADbqCoUUbm1Vwfnzik6apNrGRt1VV5ftttLiKMivdPToUb3//vtavHixF/0AQMZ0hULa/cQT\naunuHl7WdOm5TWGe1snOgYEBPfTQQ3r55Zc1ZcoUr3oCgIwIt7aOCHFJaunu1p62tix1NDaOj8j/\n9a9/afny5frOd76j+++/P+E6zc3Nw88DgYACgcB4+wMAzxScP59wef7goCf7i0QiikQirm/X0clO\nY4zq6+t144036qWXXkq8IU52ArDMhmBQz4TDccs3BoP6cUeH5/t3KzcdTa3s3btXv/zlL/XOO++o\nurpa1dXV6sjAHxIAvFTb2Kgmv3/EsvV+v2oaGrLU0dg4OiJ3tCGOyAFYqCsU0p62NuUPDipWWKia\nhoaMneh0KzcJcgDIkoxOrQAAchdBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAc\nQQ4AliPIAcByBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHk\nAGA5ghwALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4A\nliPIAcByjoL8e9/7noqKijR//nyv+wEApMlRkD/22GPq6OhIud6GYFBdodC4mwIAt3SFQtoQDKo5\nEIjLqK5QSKvvuEOPTJ2q+q98RT+8446MZNgrzc16eNo017ZX4GSlJUuW6OjRoynXeyYcVlN3tyTp\nrrq6cTUGAOPVFQpp9xNPqOVSLkkazihJ2r56tYp7e/Xa5QXvv68nV6+WXnvNswx7pblZ/9fSoh3R\nqP7bpW26Pkfe0t2tPW1tbm8WANIWbm0dEeLS5xkVbm1VSW+vWq6qebG319MM69y2TT+LRl3dpqMj\ncqeaL/36v3/9qyKRiAKBgJubB4C0FJw/n3B5/uDgqHWpXh+rSCSiDwYGhrPSLZ4E+cbyckIcQNZF\nJ01KuDxWWChjTNK6WGGhJ/0EAgHdOmWKmi/9A/NfLm3X9amV9X6/ahoa3N4sAKSttrFRTX7/iGWX\nM6q2sVEniovVdFXNmuJiTzPsm48/ru8XuHoMLZ8Z7Z+lSx599FF1dnaqv79fM2bM0ObNm/XYY4+N\n3JDPpw3BoGoaGjjRCSBndIVC2tPWpvzBQcUKC0dkVFcopDc2btSZo0c1UdKUsjI9vHmz5xn2SnOz\nurZt047+/lH/Z+CUoyB3tCGfz5WGAOBa4VZucmUnAFiOIAcAyxHkAGA5d0+dAgDidIVCCre2quD8\neUUnTVJtY6OrJ1QJcgDwUKrbBLiBqRUA8NBotwlwC0EOAB4a620C0kGQA4CHRrtNgFsIcgDw0Gi3\nCXALV3YCgMeS3SbArdwkyAEgS7hEHwAgiSAHAOsR5ABgOa7sBDLIGGlo6OIjFhv5SLRsrK95vX6m\nln/2mdTXl+2/tdyX80FujPtvwGy++bO171TrDw1l+28awFi5GuQ+n5tbQ6bl5V185OcnfiR6zev1\ns7lvr9bn5yR7Hp42TTv6+yVJGyQ9k2CdjcGgftzRkZF+3HovuBrkf/yj+z8MecziA3DJddHo8PNk\n4efmpfOZ4mqQf+Mbbm4NANx17oovPY4mWcfNS+czheNdANeMK7/BvlZS01WvrykudvXS+Uzhyk4A\n15TL32BfcO6cPh4c1L9NnKip112nKWVlenjzZle/8CEVLtEHAMtxiT4AQBJBDgDWI8gBwHIEOQBY\njiAHAMsR5ABguZy/aRYAJNMVCinc2qqC8+cVnTRJtY2NKT8HPpaaXEeQA7BSVyik3U88oZbu7uFl\nTZeeJwvmsdTYgKkVAFYKt7aOCGRJaunu1p62NldrbECQA7BSwfnzCZePdvfCsdTYgCAHkJO6QiFt\nCAbVHAhoQzCorlBoxOvRSZMS1o1298Kra7okrZb0Xmen/mPCBH3X74/bjw2YIweQc5zMZdc2Nqqp\nu3vEOuv9ft07yt0Lb/r61/X9P/xBP4tG1SVpu6RiSa9JUjQqHT6sx1eulN5806o5c26aBSDnbAgG\n9Uw4HLf86m/v6QqFtKetTfmDg4oVFqqmoWHUAN4QDKo2HNYeSR9KmqWL3xL0iqROSddJOicpesst\n+p+r5tK94FZuOj4i7+jo0I9+9CPFYjGtXr1a69atG/fOASARp3PZd9XVpXXkfHm7RtInks5IelTS\nKUl1kn54ab3/PHxYrzQ364fNzek1niWO5shjsZgef/xxdXR06ODBg3rrrbd06NAhr3tzXSQSyXYL\njtCnu+jTXZnocyzz31dL1GfPqVPaLem4pFskrZXkl/TvknZL+qYuhvlKSW+/+GJ6TWeRoyDft2+f\nZs2apZkzZ2rChAl65JFH1N7e7nVvruMHxV306S76/FxtY6Oa/P4Ry9b7/Wl9e0+iPidKCuri0fh3\ndTG8n5HULKldUoWkRyTtlHRuYGAsrWeFo6mV48eP62tf+9rw70tLS/WnP/3Js6YAXNsuT5dsvGL+\n+94U899OzLjhBoUlTZcUltRy1es/k7RR0ouSlll0zs9RkPt8Pq/7AIAR0p3/diI6aZIKdPGEZrLw\ny7/06+Qk0zs5yTjw7rvvmmAwOPz7Z5991mzZsmXEOn6/3+jiOQQePHjw4OHg4ff7nURwSo4+fhiN\nRnXrrbfq7bff1k033aRFixbprbfeUkVFRapSAIDHHE2tFBQUaNu2bQoGg4rFYlq1ahUhDgA5wrUL\nggAA2ZHy44czZ87U7bffrurqai1atEiSdPLkSdXU1GjOnDmqra3VP/7xj4S1HR0dKi8v1+zZs7V1\n61Z3O3exz0S1mezz17/+tebNm6f8/Hzt378/aW22x9Npn9kez7Vr16qiokKVlZV68MEH9c9//jNh\nbbbH02mfmRrPRPvZuHGjKisrVVVVpaVLl+rYsWMJa7M9lk77zPZ787Kf/vSnysvL08mTJxPWpj2e\nqSbRZ86cafr7+0csW7t2rdm6dasxxpgtW7aYdevWxdVFo1Hj9/vNkSNHzIULF0xlZaU5ePCgC9P6\n7vaZrNYrifZ16NAh88EHH5hAIGD+8pe/JKzLhfF00meyWq8k2lc4HDaxWMwYY8y6dety9v3ppM9k\ntZnq8dSpU8PPW1tbzapVq+LqcmEsnfSZrNYryfb1t7/9zQSDwaSvj2U8HV0QZK6affntb3+r+vp6\nSVJ9fb127twZV5ONi4jG0meyWi9dva/y8nLNmTNn1JpcGE8nfSar9dLV+6qpqVFe3sW39uLFi9XT\n0xNXkwvj6aTPZLVeuXo/119//fDzgYEBTZs2La4mF8bSSZ/Jar2UaF9PPvmkfvKTnyStGct4pgxy\nn8+ne+65RwsXLtSrr74qSerr61NRUZEkqaioSH19fXF1iS4iOn78eKrdjdlY+0xWm8k+nciF8cxE\nbbpS7evnP/+5li1bFrc818YzWZ9Oar3usampSTfffLO2b9+up556Kq4uV8YyVZ+j1Waqz/b2dpWW\nlur2229PWjeW8Uz5qZW9e/eqpKREn376qWpqalReXh7XbKILhjJ9EdFY+0xWu2TJkoz16WRfuTCe\nTsckV8azpaVFEydO1IoVK+Lqcmk8R+szVW0memxpaVFLS4u2bNmiNWvW6Be/+MWIulwZy1R9jlab\nqT6fe+45ha+4q2OiI/axjGfKI/KSkhJJ0vTp0/XAAw9o3759KioqUm9vryTpxIkTmjFjRlzdV7/6\n1REnHI4dO6bS0tK0G3RqrH0mq81kn07kwnhmojZdyfb1+uuva9euXfrVr36VsC5XxjNVn6PVZqrH\ny1asWKE///nPcXW5Mpap+nRS62WfnZ2dOnLkiCorK1VWVqaenh4tWLBAn3zyyYi6sYznqEF+9uxZ\nnT59WpJ05swZhcNhzZ8/X/fdd5+2b98uSdq+fbvuv//+uNqFCxfqww8/1NGjR3XhwgXt2LFD9913\nn4M/fvrG02ey2kz2eaVk83e5MJ5O+syF8ezo6NDzzz+v9vZ2FSa5W14ujKeTPjM1nsn289FHHw2v\n097erurq6rjaXBhLJ31m+725aNEi9fX16ciRIzpy5IhKS0u1f//+uAPMMY3naGdCDx8+bCorK01l\nZaWZN2+eefbZZ40xxvT395ulS5ea2bNnm5qaGvP3v//dGGPM8ePHzbJly4brd+3aZebMmWP8fv9w\nrRfG02d3d3fC2kz2+Zvf/MaUlpaawsJCU1RUZO699964Po3J/ng66TMXxnPWrFnm5ptvNlVVVaaq\nqsr84Ac/iOvTmOyPp5M+MzWeyXpcvny5ue2220xlZaV58MEHTV9fX1yPxmR/LJ30mQvvzSuVlZUN\nf2plvOPJBUEAYDm+fBkALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABguf8HhYEd7EkM\nDYgAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb3c8ab46d0>" | |
] | |
} | |
], | |
"prompt_number": 171 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"When we make a polyfit of the line doesn't correlate to the data at all." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"np.polyfit(x,y,1)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 169, | |
"text": [ | |
"array([ 0.04389668, -1.79541447])" | |
] | |
} | |
], | |
"prompt_number": 169 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the uncertainty of our line." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"S=(sum((y-B*x-A)**2)/37)**.5\n", | |
"S" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 279, | |
"text": [ | |
"1.2383696305674723" | |
] | |
} | |
], | |
"prompt_number": 279 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The uncertainty of the y-intercept." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dA=S*(sum(x**2)/(40*sum(x**2)-(sum(x))**2))**.5\n", | |
"dA" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 280, | |
"text": [ | |
"17.951857713768025" | |
] | |
} | |
], | |
"prompt_number": 280 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The uncertainty of the slope." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dB=S*(40/(40*sum(x**2)-(sum(x)**2)))**.5\n", | |
"dB" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 281, | |
"text": [ | |
"0.33512318930379742" | |
] | |
} | |
], | |
"prompt_number": 281 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the weighted line for our diameter measurements." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"x=np.array(c)\n", | |
"y=np.array(dD)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 160 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"w=1/((sum((D-v)**2)))\n", | |
"w" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 161, | |
"text": [ | |
"1.6084331386716859" | |
] | |
} | |
], | |
"prompt_number": 161 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"Here are the coefficients of the weighted line." | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"a=((sum(w*x**2))*sum(w*y)-sum(w*x)*sum(w*x*y))/(sum(w)*sum(w*(x**2))-(((sum(w*x)))**2))\n", | |
"a" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 162, | |
"text": [ | |
"0.00021909622748799944" | |
] | |
} | |
], | |
"prompt_number": 162 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"b=(sum(w)*sum(w*x*y)-sum(w*x)*sum(w*y))/(sum(w)*sum(w*(x**2))-(sum(w*x))**2)\n", | |
"b" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 163, | |
"text": [ | |
"0.010377991544706413" | |
] | |
} | |
], | |
"prompt_number": 163 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the graph of weighted line for the diameter measurements." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"plt.plot(x,y,'ro')\n", | |
"plt.plot(x,a+b*x)\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEw9JREFUeJzt3XFs1PX9x/HXtQUqP3QbAm1dZ6gH2ILYVvhBlok7g+0Z\nuhkVf1HJWOPgl2yLrcOEoBRCf8wqTKexJWaJZhPdYvgtv4VuO1KOOK/9jZgxh+T3B8xogYwirVq2\nQYHC7vr5/QFUyt31vtd+v3f3kecjuXB87/v+ft98uL748vne93s+Y4wRAMBaedluAAAwPgQ5AFiO\nIAcAyxHkAGA5ghwALEeQA4DlCpyuOHPmTN1www3Kz8/XhAkTtG/fPi/7AgA45DjIfT6fIpGIpk6d\n6mU/AIA0pTW1wrVDAJB7HAe5z+fTPffco4ULF+rVV1/1sicAQBocT63s3btXJSUl+vTTT1VTU6Py\n8nItWbLEy94AAA44DvKSkhJJ0vTp0/XAAw9o3759I4J81qxZ6u7udr9DAPiC8kv6yIUpa0dTK2fP\nntXp06clSWfOnFE4HNb8+fNHrNPd3S1jTE4/Nm3alPUe6JM+6TM3+myqrZWR4h4bgkFP+7pyv24d\n+joK8r6+Pi1ZskRVVVVavHixvvWtb6m2ttalFgAg82obG9Xk949Ytt7vV01DQ8b3O16OplbKysp0\n4MABV3cMANl0V12dJGljW5vyBwcVKyzUvQ0Nw8szsV/t3u3KNh3PkX8RBAKBbLfgCH26iz7d9UXq\n8666Os+De7T9PuPzubI9nzHGlQ+H+3w+ubQpALgmuJWb3GsFACxHkAOA5QhyALAcQQ4AliPIAcBy\nBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALEeQ\nA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkA\nWI4gBwDLEeQAYDmCHAAsR5ADgOUcB3ksFlN1dbW+/e1ve9kPACBNjoP85Zdf1ty5c+Xz+bzsBwCQ\nJkdB3tPTo127dmn16tUyxnjdEwAgDY6CfM2aNXr++eeVl8eUOgDkmoJUK/z+97/XjBkzVF1drUgk\nMuq6zc3Nw88DgYACgcA42wOAL45IJJIyR8fCZ1LMlaxfv15vvvmmCgoKNDg4qFOnTmn58uV64403\nRm7I52PaBQDS4FZupgzyK3V2duqFF17Q7373O88aAoBrhVu5mfakN59aAYDcktYR+agb4ogcANKS\ntSNyAEBuIcgBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkAWI4gBwDL\nEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALEeQA4DlCHIAsBxB\nDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkAWM5RkA8ODmrx\n4sWqqqrS3Llz9fTTT3vdFwDAIZ8xxjhZ8ezZs5o8ebKi0ajuvPNOvfDCC7rzzjs/35DPJ4ebAgDI\nvdx0PLUyefJkSdKFCxcUi8U0derUce8cADB+joN8aGhIVVVVKioq0t133625c+d62RcAwCHHQZ6X\nl6cDBw6op6dHXV1dikQiHrYFAHCqIN2CL33pS6qrq9N7772nQCAw4rXm5ubh54FAIO51ALiWRSIR\nTw6CHZ3s/Oyzz1RQUKAvf/nLOnfunILBoDZt2qSlS5d+viFOdgJAWtzKTUdH5CdOnFB9fb2GhoY0\nNDSklStXjghxAED2OP74YcoNcUQOAGnJ+McPAQC5iSAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4A\nliPIAcByBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5\nghwALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPI\nAcByBDkAWI4gBwDLEeQAYDmCHAAs5yjIjx07prvvvlvz5s3TbbfdptbWVq/7AgA45DPGmFQr9fb2\nqre3V1VVVRoYGNCCBQu0c+dOVVRUfL4hn08ONgUAuMSt3CxwslJxcbGKi4slSVOmTFFFRYU+/vjj\nEUEOADbqCoUUbm1Vwfnzik6apNrGRt1VV5ftttLiKMivdPToUb3//vtavHixF/0AQMZ0hULa/cQT\naunuHl7WdOm5TWGe1snOgYEBPfTQQ3r55Zc1ZcoUr3oCgIwIt7aOCHFJaunu1p62tix1NDaOj8j/\n9a9/afny5frOd76j+++/P+E6zc3Nw88DgYACgcB4+wMAzxScP59wef7goCf7i0QiikQirm/X0clO\nY4zq6+t144036qWXXkq8IU52ArDMhmBQz4TDccs3BoP6cUeH5/t3KzcdTa3s3btXv/zlL/XOO++o\nurpa1dXV6sjAHxIAvFTb2Kgmv3/EsvV+v2oaGrLU0dg4OiJ3tCGOyAFYqCsU0p62NuUPDipWWKia\nhoaMneh0KzcJcgDIkoxOrQAAchdBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAc\nQQ4AliPIAcByBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHk\nAGA5ghwALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4A\nliPIAcByjoL8e9/7noqKijR//nyv+wEApMlRkD/22GPq6OhIud6GYFBdodC4mwIAt3SFQtoQDKo5\nEIjLqK5QSKvvuEOPTJ2q+q98RT+8446MZNgrzc16eNo017ZX4GSlJUuW6OjRoynXeyYcVlN3tyTp\nrrq6cTUGAOPVFQpp9xNPqOVSLkkazihJ2r56tYp7e/Xa5QXvv68nV6+WXnvNswx7pblZ/9fSoh3R\nqP7bpW26Pkfe0t2tPW1tbm8WANIWbm0dEeLS5xkVbm1VSW+vWq6qebG319MM69y2TT+LRl3dpqMj\ncqeaL/36v3/9qyKRiAKBgJubB4C0FJw/n3B5/uDgqHWpXh+rSCSiDwYGhrPSLZ4E+cbyckIcQNZF\nJ01KuDxWWChjTNK6WGGhJ/0EAgHdOmWKmi/9A/NfLm3X9amV9X6/ahoa3N4sAKSttrFRTX7/iGWX\nM6q2sVEniovVdFXNmuJiTzPsm48/ru8XuHoMLZ8Z7Z+lSx599FF1dnaqv79fM2bM0ObNm/XYY4+N\n3JDPpw3BoGoaGjjRCSBndIVC2tPWpvzBQcUKC0dkVFcopDc2btSZo0c1UdKUsjI9vHmz5xn2SnOz\nurZt047+/lH/Z+CUoyB3tCGfz5WGAOBa4VZucmUnAFiOIAcAyxHkAGA5d0+dAgDidIVCCre2quD8\neUUnTVJtY6OrJ1QJcgDwUKrbBLiBqRUA8NBotwlwC0EOAB4a620C0kGQA4CHRrtNgFsIcgDw0Gi3\nCXALV3YCgMeS3SbArdwkyAEgS7hEHwAgiSAHAOsR5ABgOa7sBDLIGGlo6OIjFhv5SLRsrK95vX6m\nln/2mdTXl+2/tdyX80FujPtvwGy++bO171TrDw1l+28awFi5GuQ+n5tbQ6bl5V185OcnfiR6zev1\ns7lvr9bn5yR7Hp42TTv6+yVJGyQ9k2CdjcGgftzRkZF+3HovuBrkf/yj+z8MecziA3DJddHo8PNk\n4efmpfOZ4mqQf+Mbbm4NANx17oovPY4mWcfNS+czheNdANeMK7/BvlZS01WvrykudvXS+Uzhyk4A\n15TL32BfcO6cPh4c1L9NnKip112nKWVlenjzZle/8CEVLtEHAMtxiT4AQBJBDgDWI8gBwHIEOQBY\njiAHAMsR5ABguZy/aRYAJNMVCinc2qqC8+cVnTRJtY2NKT8HPpaaXEeQA7BSVyik3U88oZbu7uFl\nTZeeJwvmsdTYgKkVAFYKt7aOCGRJaunu1p62NldrbECQA7BSwfnzCZePdvfCsdTYgCAHkJO6QiFt\nCAbVHAhoQzCorlBoxOvRSZMS1o1298Kra7okrZb0Xmen/mPCBH3X74/bjw2YIweQc5zMZdc2Nqqp\nu3vEOuv9ft07yt0Lb/r61/X9P/xBP4tG1SVpu6RiSa9JUjQqHT6sx1eulN5806o5c26aBSDnbAgG\n9Uw4HLf86m/v6QqFtKetTfmDg4oVFqqmoWHUAN4QDKo2HNYeSR9KmqWL3xL0iqROSddJOicpesst\n+p+r5tK94FZuOj4i7+jo0I9+9CPFYjGtXr1a69atG/fOASARp3PZd9XVpXXkfHm7RtInks5IelTS\nKUl1kn54ab3/PHxYrzQ364fNzek1niWO5shjsZgef/xxdXR06ODBg3rrrbd06NAhr3tzXSQSyXYL\njtCnu+jTXZnocyzz31dL1GfPqVPaLem4pFskrZXkl/TvknZL+qYuhvlKSW+/+GJ6TWeRoyDft2+f\nZs2apZkzZ2rChAl65JFH1N7e7nVvruMHxV306S76/FxtY6Oa/P4Ry9b7/Wl9e0+iPidKCuri0fh3\ndTG8n5HULKldUoWkRyTtlHRuYGAsrWeFo6mV48eP62tf+9rw70tLS/WnP/3Js6YAXNsuT5dsvGL+\n+94U899OzLjhBoUlTZcUltRy1es/k7RR0ouSlll0zs9RkPt8Pq/7AIAR0p3/diI6aZIKdPGEZrLw\ny7/06+Qk0zs5yTjw7rvvmmAwOPz7Z5991mzZsmXEOn6/3+jiOQQePHjw4OHg4ff7nURwSo4+fhiN\nRnXrrbfq7bff1k033aRFixbprbfeUkVFRapSAIDHHE2tFBQUaNu2bQoGg4rFYlq1ahUhDgA5wrUL\nggAA2ZHy44czZ87U7bffrurqai1atEiSdPLkSdXU1GjOnDmqra3VP/7xj4S1HR0dKi8v1+zZs7V1\n61Z3O3exz0S1mezz17/+tebNm6f8/Hzt378/aW22x9Npn9kez7Vr16qiokKVlZV68MEH9c9//jNh\nbbbH02mfmRrPRPvZuHGjKisrVVVVpaVLl+rYsWMJa7M9lk77zPZ787Kf/vSnysvL08mTJxPWpj2e\nqSbRZ86cafr7+0csW7t2rdm6dasxxpgtW7aYdevWxdVFo1Hj9/vNkSNHzIULF0xlZaU5ePCgC9P6\n7vaZrNYrifZ16NAh88EHH5hAIGD+8pe/JKzLhfF00meyWq8k2lc4HDaxWMwYY8y6dety9v3ppM9k\ntZnq8dSpU8PPW1tbzapVq+LqcmEsnfSZrNYryfb1t7/9zQSDwaSvj2U8HV0QZK6affntb3+r+vp6\nSVJ9fb127twZV5ONi4jG0meyWi9dva/y8nLNmTNn1JpcGE8nfSar9dLV+6qpqVFe3sW39uLFi9XT\n0xNXkwvj6aTPZLVeuXo/119//fDzgYEBTZs2La4mF8bSSZ/Jar2UaF9PPvmkfvKTnyStGct4pgxy\nn8+ne+65RwsXLtSrr74qSerr61NRUZEkqaioSH19fXF1iS4iOn78eKrdjdlY+0xWm8k+nciF8cxE\nbbpS7evnP/+5li1bFrc818YzWZ9Oar3usampSTfffLO2b9+up556Kq4uV8YyVZ+j1Waqz/b2dpWW\nlur2229PWjeW8Uz5qZW9e/eqpKREn376qWpqalReXh7XbKILhjJ9EdFY+0xWu2TJkoz16WRfuTCe\nTsckV8azpaVFEydO1IoVK+Lqcmk8R+szVW0memxpaVFLS4u2bNmiNWvW6Be/+MWIulwZy1R9jlab\nqT6fe+45ha+4q2OiI/axjGfKI/KSkhJJ0vTp0/XAAw9o3759KioqUm9vryTpxIkTmjFjRlzdV7/6\n1REnHI4dO6bS0tK0G3RqrH0mq81kn07kwnhmojZdyfb1+uuva9euXfrVr36VsC5XxjNVn6PVZqrH\ny1asWKE///nPcXW5Mpap+nRS62WfnZ2dOnLkiCorK1VWVqaenh4tWLBAn3zyyYi6sYznqEF+9uxZ\nnT59WpJ05swZhcNhzZ8/X/fdd5+2b98uSdq+fbvuv//+uNqFCxfqww8/1NGjR3XhwgXt2LFD9913\nn4M/fvrG02ey2kz2eaVk83e5MJ5O+syF8ezo6NDzzz+v9vZ2FSa5W14ujKeTPjM1nsn289FHHw2v\n097erurq6rjaXBhLJ31m+725aNEi9fX16ciRIzpy5IhKS0u1f//+uAPMMY3naGdCDx8+bCorK01l\nZaWZN2+eefbZZ40xxvT395ulS5ea2bNnm5qaGvP3v//dGGPM8ePHzbJly4brd+3aZebMmWP8fv9w\nrRfG02d3d3fC2kz2+Zvf/MaUlpaawsJCU1RUZO699964Po3J/ng66TMXxnPWrFnm5ptvNlVVVaaq\nqsr84Ac/iOvTmOyPp5M+MzWeyXpcvny5ue2220xlZaV58MEHTV9fX1yPxmR/LJ30mQvvzSuVlZUN\nf2plvOPJBUEAYDm+fBkALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABguf8HhYEd7EkM\nDYgAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7fb3c89ce490>" | |
] | |
} | |
], | |
"prompt_number": 164 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"My best estimate for magnetic moment can be calculated using this equation\n", | |
"\n", | |
"$\\tau$ = $\\frac{D}{2}$ $\\times$ $mg$ \n", | |
"where we make the angle with between the arm and the magnetic field $90$ degrees, such that we have\n", | |
"\n", | |
"$\\tau$ = $\\frac{D}{2}$ $mg$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"T=(v/2)*(z)*(9.81)\n", | |
"T" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 121, | |
"text": [ | |
"373.85206887115402" | |
] | |
} | |
], | |
"prompt_number": 121 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is the uncertainty of magnetic moment." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"dT=((((dz/z)**2)+((dv/v)**2))**.5)*T\n", | |
"dT" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 122, | |
"text": [ | |
"51.80164280646472" | |
] | |
} | |
], | |
"prompt_number": 122 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Here is my best estimate for the magnetic moment." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"$\\tau$ = $374$ $\\pm$ $52$\n" | |
] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment