-
-
Save rg3915/5fb3a2e7338115bc92e82b7a9a2b372b to your computer and use it in GitHub Desktop.
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import timeit\n", | |
"import xlrd\n", | |
"from django.contrib.auth.models import User" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"tic = timeit.default_timer()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"filename = '/tmp/example.xlsx'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = pd.read_excel(filename)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>NAME</th>\n", | |
" <th>EMAIL</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2011</th>\n", | |
" <td>Angela Brown</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2824</th>\n", | |
" <td>Angela Brown</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3599</th>\n", | |
" <td>Angela Jones</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1227</th>\n", | |
" <td>Angela Jones</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2605</th>\n", | |
" <td>Anthony Evans</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" NAME EMAIL\n", | |
"2011 Angela Brown [email protected]\n", | |
"2824 Angela Brown [email protected]\n", | |
"3599 Angela Jones [email protected]\n", | |
"1227 Angela Jones [email protected]\n", | |
"2605 Anthony Evans [email protected]" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"email = df['EMAIL']\n", | |
"# Retornando os itens duplicados\n", | |
"df[email.isin(email[email.duplicated()])].sort_values(by=['EMAIL']).head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>index</th>\n", | |
" <th>NAME</th>\n", | |
" <th>EMAIL</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>4957</th>\n", | |
" <td>4995</td>\n", | |
" <td>Helen Mcallister</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4958</th>\n", | |
" <td>4996</td>\n", | |
" <td>Scott Hall</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4959</th>\n", | |
" <td>4997</td>\n", | |
" <td>Dawn Dowling</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4960</th>\n", | |
" <td>4998</td>\n", | |
" <td>John Campbell</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4961</th>\n", | |
" <td>4999</td>\n", | |
" <td>Barbara Alldredge</td>\n", | |
" <td>[email protected]</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" index NAME EMAIL\n", | |
"4957 4995 Helen Mcallister [email protected]\n", | |
"4958 4996 Scott Hall [email protected]\n", | |
"4959 4997 Dawn Dowling [email protected]\n", | |
"4960 4998 John Campbell [email protected]\n", | |
"4961 4999 Barbara Alldredge [email protected]" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Removendo os itens duplicados\n", | |
"dffinal = df.drop_duplicates('EMAIL').reset_index()\n", | |
"dffinal.tail()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def create_user(new_users):\n", | |
" # Separa full_name em first_name e last_name\n", | |
" users = []\n", | |
" for new_user in new_users:\n", | |
" full_name = new_user['full_name']\n", | |
" email = new_user['email']\n", | |
" first_name = full_name.split()[0]\n", | |
" last_name = full_name.split()[1:]\n", | |
" last_name = ' '.join(last_name)\n", | |
" username = email\n", | |
" user = User(\n", | |
" first_name=first_name,\n", | |
" last_name=last_name,\n", | |
" email=email,\n", | |
" username=username\n", | |
" )\n", | |
" users.append(user)\n", | |
" return users" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def import_users(new_users):\n", | |
" User.objects.bulk_create(new_users)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"new_users = []\n", | |
"emails = []" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"emails = dffinal['EMAIL'].values.tolist()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"exist_users = User.objects.filter(email__in=emails).values_list('email', flat=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Manuel Marshall [email protected]\n", | |
"Joy Flores [email protected]\n", | |
"Nicholas Waits [email protected]\n", | |
"Laura Cross [email protected]\n", | |
"Felipe Garland [email protected]\n" | |
] | |
} | |
], | |
"source": [ | |
"for row in dffinal.head().itertuples():\n", | |
" print(row.NAME, row.EMAIL)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"for row in dffinal.itertuples():\n", | |
" full_name = row.NAME\n", | |
" email = row.EMAIL\n", | |
" if email not in exist_users:\n", | |
" data = dict(full_name=full_name, email=email)\n", | |
" new_users.append(data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"new_users_ = create_user(new_users)\n", | |
"import_users(new_users_)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"17 existentes\n", | |
"4945 novos\n" | |
] | |
} | |
], | |
"source": [ | |
"print(len(exist_users), 'existentes')\n", | |
"print(len(new_users), 'novos')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"toc = timeit.default_timer()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"2.1476561470044544" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"toc - tic" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Django Shell-Plus", | |
"language": "python", | |
"name": "django_extensions" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Para transformar Query do Django em DataFrame:
df = pd.DataFrame(list(User.objects.all().values()))
Pra mostrar somente algumas colunas:
df[['id', 'email']]
Transformando todos os campos do DataFrame num jSON
df.T.apply(dict).tolist()
Renomeando colunas
df.rename(columns={'old_name': 'new_name'})
Selecionando as colunas de 10 em 10
df.iloc[:, :10]
com transposição
df.T.iloc[:10]
Novo df com algumas colunas.
new = old.filter(['A','B','D'], axis=1)
Como não inserir chaves com valor nulo no dicionário:
df.T.apply(lambda x: dict(x.dropna())).tolist()
Retornando os valores cujo tamanho da string seja maior que...
df[df['foo'].str.len() > 50]['foo']
Mostrando o tamanho de cada célula
df[df['foo'].str.len() > 50]['foo'].str.len()
Mostrando o tamanho de cada célula da coluna
df['foo_len'] = df['foo'].apply(len)
df[['foo_len', 'foo']]
Ou
df['foo'].str.len()
Suponha que você tenha Cliente
e Obra
.
Pegando o ID do Cliente que está em Obra e trocando pelo nome do Cliente que está no outro DataFrame.
# JSON do Cliente com IDCliente e Cliente
dict_cliente = df_cliente[['IDCliente', 'Cliente']].T.apply(dict).tolist()
[
{'IDCliente': 288, 'Cliente': 'Cliente Um'},
{'IDCliente': 1, 'Cliente': 'Cliente Dois'},
{'IDCliente': 959, 'Cliente': 'Cliente Três'},
]
Montando o dicionário que será usado como busca de cada Cliente a partir do seu ID.
_dict_cliente = {}
for item in dict_cliente:
_dict_cliente[item['IDCliente']] = item['Cliente']
_dict_cliente
{
288: 'Cliente Um',
1: 'Cliente Dois',
959: 'Cliente Três',
}
A partir desse dicionário fazemos a busca no outro DataFrame.
for row in df.itertuples():
nome_cliente = _dict_cliente.get(row.IDCliente)
print(row.IDCliente, nome_cliente)
288 Cliente Um
1 Cliente Dois
959 Cliente Três
Retornando o valor máximo agrupado por ano.
df.groupby(['Ano'])['NumeroOrcamento'].max()
df.reset_index()
Verificando data vazia:
for row in df.itertuples():
if row.DataOrcamento is pd.NaT:
print('Vazio')
else:
print(row.DataOrcamento)
Definindo vários fillna
diferentes por coluna:
values = {'last_name': '', 'occupation': '', 'age': 0}
df = df.fillna(value=values)
df.head()
Se tiver problema com liblzma
, faça um downgrade do Pandas para pandas==0.24.2
.
https://stackoverflow.com/a/57115325
Retorna o tamanho do maior objeto de cada coluna.
dict_sizes = {}
for col in df.columns:
try:
print(f'{col} max length: {df[col].map(len).max()}\n')
dict_sizes[col] = df[col].map(len).max()
except Exception as e:
raise e
dict_sizes
dtype example
df['estoque'] =df['estoque'].fillna(0).astype(int)
Pandas Dataframe df to Django
https://www.laurivan.com/save-pandas-dataframe-as-django-model/
Produto.objects.bulk_create(
Produto(**item) for item in df.to_dict('records')
)
Definindo os tipos das colunas com dtype
dict_types_annot = {
'produto': str,
'ncm': str,
'preco': float,
'estoque': 'Int64',
}
# Define os tipos das colunas
dff = df.astype(dict_types_annot, errors='ignore')
# Troca 'nan' por None e float por None.
dff = dff.replace({'nan': None, float('nan'): None})
dff.to_dict('records')
Produto.objects.bulk_create(
Produto(**item) for item in dff.to_dict('records')
)
Intersecção de dataframes
import pandas as pd
import numpy as np
import datetime
from random import randint
df1 = pd.DataFrame({
'letters': ['A', 'B', 'C', 'D', 'E', 'J', 'K', 'M'],
'B': np.random.randint(0, 10, 8),
})
df1
df2 = pd.DataFrame({
'letters': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'U', 'Z'],
'B': np.random.randint(0, 10, 26),
})
df2
# Retorna o que tem de comum nos dois dataframes.
pd.merge(df1, df2, how='inner', on='fruits')
# Retorna o que tem de comum, considerando o df1.
pd.merge(df1, df2, how='left', on='fruits')
# Retorna o que tem de comum, considerando o df2.
pd.merge(df1, df2, how='right', on='fruits')
Código que substitui da célula [6] em diante do
separe_email.ipynb
:Um detalhe é a falta de um índice único dos registros. Então, supondo o índice automático decorrente da importação do arquivo Excel como ID válido, esse ID é o usado no "join" (
merge
).