Created
January 23, 2026 16:00
-
-
Save ricardoV94/5c0936025f62cbb582a799f21c8a3d6d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "id": "63d9bc06-f486-4e34-ac5c-c9ce79853090", | |
| "metadata": { | |
| "ExecuteTime": { | |
| "end_time": "2026-01-23T16:00:04.776661738Z", | |
| "start_time": "2026-01-23T16:00:04.131802442Z" | |
| } | |
| }, | |
| "source": [ | |
| "import numpy as np\n", | |
| "from numpy.random import Generator, SeedSequence, PCG64\n", | |
| "\n", | |
| "import pytensor.tensor as pt\n", | |
| "from pytensor.graph import Op\n", | |
| "from pytensor.tensor.type import TensorType\n", | |
| "from pytensor.tensor.random.type import random_generator_type, RandomType\n", | |
| "from pytensor import scan\n", | |
| "from pytensor.gradient import null_type\n", | |
| "\n", | |
| "uint128 = TensorType(shape=(2,), dtype=\"uint64\")\n", | |
| "\n", | |
| "\n", | |
| "class StateFromGenerator(Op):\n", | |
| " itypes = [random_generator_type]\n", | |
| " otypes = [uint128, uint128]\n", | |
| "\n", | |
| " def perform(self, node, inputs, outputs):\n", | |
| " [generator] = inputs\n", | |
| " \n", | |
| " state_dict = generator.bit_generator.state[\"state\"]\n", | |
| " s = state_dict[\"state\"]\n", | |
| " i = state_dict[\"inc\"]\n", | |
| " mask_64 = 0xFFFFFFFFFFFFFFFF\n", | |
| " s_hi = (s >> 64) & mask_64\n", | |
| " s_lo = s & mask_64\n", | |
| " i_hi = (i >> 64) & mask_64\n", | |
| " i_lo = i & mask_64\n", | |
| " \n", | |
| " outputs[0][0] = np.array([s_hi, s_lo], dtype=np.uint64)\n", | |
| " outputs[1][0] = np.array([i_hi, i_lo], dtype=np.uint64)\n", | |
| "\n", | |
| " def L_op(self, inputs, outputs, output_gradients):\n", | |
| " return [null_type()]\n", | |
| "\n", | |
| "\n", | |
| "class GeneratorFromState(Op):\n", | |
| " itypes = [uint128, uint128]\n", | |
| " otypes = [random_generator_type]\n", | |
| "\n", | |
| " def perform(self, node, inputs, outputs, _seed_seq=SeedSequence(0)):\n", | |
| " state_arr, inc_arr = inputs\n", | |
| " bit_gen = PCG64(_seed_seq)\n", | |
| " state = bit_gen.state # returns a copy\n", | |
| " state[\"state\"] = {\n", | |
| " \"state\": (int(state_arr[0]) << 64) | int(state_arr[1]),\n", | |
| " \"inc\": (int(inc_arr[0]) << 64) | int(inc_arr[1]),\n", | |
| " }\n", | |
| " bit_gen.state = state\n", | |
| " outputs[0][0] = Generator(bit_gen)\n", | |
| "\n", | |
| " \n", | |
| " def L_op(self, inputs, outputs, output_gradients):\n", | |
| " return [null_type(), null_type()]\n", | |
| "\n", | |
| " \n", | |
| "state_from_generator = StateFromGenerator()\n", | |
| "generator_from_state = GeneratorFromState()" | |
| ], | |
| "outputs": [], | |
| "execution_count": 1 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "ef8e1142-58d5-4d8b-a68c-3bcdc1d8ceb3", | |
| "metadata": { | |
| "ExecuteTime": { | |
| "end_time": "2026-01-23T16:00:04.834364760Z", | |
| "start_time": "2026-01-23T16:00:04.778779458Z" | |
| } | |
| }, | |
| "source": [ | |
| "def standard_normal(rng):\n", | |
| " return pt.random.normal(rng=rng).owner.outputs\n", | |
| "\n", | |
| "sigma = pt.scalar(name=\"sigma\")\n", | |
| "rng = random_generator_type(\"rng\")\n", | |
| "state, inc = state_from_generator(rng)\n", | |
| "\n", | |
| "def step(prev_state, inc, sigma):\n", | |
| " rng = generator_from_state(prev_state, inc)\n", | |
| " next_rng, x = standard_normal(rng)\n", | |
| " return state_from_generator(next_rng)[0], x * sigma\n", | |
| "\n", | |
| "[states, xs] = scan(\n", | |
| " step,\n", | |
| " outputs_info=[state, None],\n", | |
| " non_sequences=[inc, sigma],\n", | |
| " n_steps=10,\n", | |
| " return_updates=False\n", | |
| ")\n", | |
| "\n", | |
| "last_x = xs[-1]" | |
| ], | |
| "outputs": [], | |
| "execution_count": 2 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "7e9e9520-25df-4454-8d70-c523cc40c8f2", | |
| "metadata": { | |
| "ExecuteTime": { | |
| "end_time": "2026-01-23T16:00:05.581777227Z", | |
| "start_time": "2026-01-23T16:00:04.841802091Z" | |
| } | |
| }, | |
| "source": [ | |
| "last_x.eval({sigma: 1.0, rng: np.random.default_rng(3)})" | |
| ], | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array(3.32299952)" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "execution_count": 3 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "9745f5f2-7233-4ec5-8876-6fa7072c0633", | |
| "metadata": { | |
| "ExecuteTime": { | |
| "end_time": "2026-01-23T16:00:05.923196309Z", | |
| "start_time": "2026-01-23T16:00:05.646226514Z" | |
| } | |
| }, | |
| "source": [ | |
| "pt.grad(last_x, sigma).eval({sigma: 1.0, rng: np.random.default_rng(3)})" | |
| ], | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array(3.32299952)" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "execution_count": 4 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "2a74247a-1946-4514-ac58-1de6e42ed8ca", | |
| "metadata": { | |
| "ExecuteTime": { | |
| "end_time": "2026-01-23T16:00:05.944416676Z", | |
| "start_time": "2026-01-23T16:00:05.935340994Z" | |
| } | |
| }, | |
| "source": [], | |
| "outputs": [], | |
| "execution_count": 4 | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3 (ipykernel)", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.12.8" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment