Created
February 9, 2025 19:00
-
-
Save ruvnet/5c8a4853fb3bbcbe7da53206ceb51e57 to your computer and use it in GitHub Desktop.
Hyper-Optimized Proxy System
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 5, | |
| "metadata": { | |
| "colab": { | |
| "name": "Hyper-Optimized Proxy System.ipynb", | |
| "provenance": [] | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "language_info": { | |
| "name": "python", | |
| "version": "3.x" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "id": "7fb6ac65", | |
| "metadata": {}, | |
| "source": "# Hyper-Optimized Proxy System\n\nThis notebook implements a proxy system that sits between client applications and an open router endpoint. It includes the following advanced features:\n\n- **Proxy Routing:** Forwards client requests to a simulated open router endpoint.\n- **Low-Latency Streaming:** Streams responses in real time using asynchronous I/O.\n- **DSPY Optimization Module:** Monitors operational metrics and (via a simulated neuro-symbolic engine) automatically toggles an optimized routing path.\n- **Gating Mechanism:** Uses both heuristic rules (modeled with abstract algebra concepts) and an enhanced GSPO reinforcement learning agent to decide whether subsequent requests should use the optimized (streaming) execution path.\n- **Robust Error Handling & Simulated Security:** Implements basic error handling and simulates authentication via an API key check.\n- **Evaluation Framework:** Collects metrics (latency, time-to-first-byte, throughput) and plots performance comparisons.\n\n*Note: Some elements (e.g. self-modifying code, abstract algebra modeling) are simulated for demonstration purposes.*" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "11c7b2df", | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2025-02-09T12:00:00Z", | |
| "iopub.execute_output": "2025-02-09T12:00:00Z" | |
| } | |
| }, | |
| "source": "import asyncio\nimport time\nimport random\nimport statistics\nimport matplotlib.pyplot as plt\n\n# Simulated logging function\ndef log(message):\n print(f\"[LOG {time.strftime('%H:%M:%S')}] {message}\")\n\n# Security decorator (simulated API key check)\ndef require_api_key(func):\n async def wrapper(*args, **kwargs):\n # In a real system, check headers or tokens; here we simulate with a fixed key\n api_key = kwargs.get('api_key', None)\n if api_key != 'secret-key':\n raise PermissionError('Invalid API key')\n return await func(*args, **kwargs)\n return wrapper\n\n# Utility: Simulated abstract algebra operation for state updates\n# Here we define a simple semigroup operation for merging optimization updates\n\ndef semigroup_merge(state1, state2):\n # For simplicity, state is represented as a dict with a numeric value\n # The semigroup operation is addition\n merged = {'value': state1.get('value', 0) + state2.get('value', 0)}\n return merged\n", | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "ea054f9d", | |
| "metadata": {}, | |
| "source": "## Simulated Router Endpoint\n\nThis function simulates an open router endpoint. It yields several chunks of data with a short delay between each chunk. In a production system, this would be an external service." | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "d6e341b0", | |
| "metadata": {}, | |
| "source": "async def router_endpoint(request_id: int):\n \"\"\"\n Simulate an open router endpoint that returns data in chunks.\n Each chunk is produced after a short delay to emulate network latency and processing time.\n \"\"\"\n num_chunks = 5\n for i in range(1, num_chunks + 1):\n await asyncio.sleep(0.1) # simulate delay\n # Occasionally simulate an error\n if random.random() < 0.05:\n raise Exception(f\"Router endpoint error on chunk {i} for request {request_id}\")\n yield f\"chunk_{i}_for_request_{request_id}\"\n", | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "efc1d6c6", | |
| "metadata": {}, | |
| "source": "## Proxy Server with Robust Error Handling & Security\n\nThe `ProxyServer` class forwards client requests to the router endpoint. It supports both a baseline (buffered) mode and an optimized (streaming) mode. A simple security check is performed via the `require_api_key` decorator." | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "4b5e2222", | |
| "metadata": {}, | |
| "source": "class ProxyServer:\n def __init__(self):\n # Flag: False = baseline, True = optimized streaming\n self.use_optimized_path = False\n # Optional RL agent\n self.gspo_agent = None\n # Internal optimization state (for neuro-symbolic simulation)\n self.optimization_state = {'value': 0}\n\n def enable_gspo(self, agent):\n self.gspo_agent = agent\n\n def set_optimized(self, flag: bool):\n log(f\"Setting optimized path to {flag}\")\n self.use_optimized_path = flag\n\n @require_api_key\n async def process_request(self, request_id: int, api_key=None):\n \"\"\"\n Process a client request:\n - If optimized (streaming) mode is active, yield each chunk immediately.\n - Otherwise, buffer all chunks and yield a combined response.\n Robust error handling is built in.\n \"\"\"\n try:\n # Determine which mode to use\n use_streaming = self.use_optimized_path\n if self.gspo_agent:\n action = self.gspo_agent.choose_action()\n use_streaming = (action == 1)\n router_gen = router_endpoint(request_id)\n if use_streaming:\n async for chunk in router_gen:\n yield chunk\n else:\n chunks = []\n async for chunk in router_gen:\n chunks.append(chunk)\n yield \" \".join(chunks)\n except Exception as e:\n log(f\"Error processing request {request_id}: {e}\")\n yield f\"Error: {e}\"\n", | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "7d1a79ee", | |
| "metadata": {}, | |
| "source": "## DSPY Optimization Module with Neuro-Symbolic Reasoning\n\nThis module monitors request performance metrics and uses a heuristic combined with a simulated symbolic rule engine (using a semigroup merge operation) to update the optimization state. When conditions are met (e.g., average latency exceeds a threshold), it toggles the proxy to optimized streaming mode." | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "4e3d7c3d", | |
| "metadata": {}, | |
| "source": "class DspyOptimizer:\n def __init__(self, proxy: ProxyServer, latency_threshold: float = 0.25, sample_size: int = 5):\n self.proxy = proxy\n self.latency_threshold = latency_threshold\n self.sample_size = sample_size\n self.metrics_log = []\n # Simulated symbolic state update\n self.symbolic_state = {'value': 0}\n\n def record_request_result(self, latency: float, ttfb: float):\n self.metrics_log.append(latency)\n if len(self.metrics_log) > self.sample_size:\n self.metrics_log.pop(0)\n\n def symbolic_rule_update(self):\n \"\"\"\n Simulate a symbolic rule: if average latency > threshold, create an update state\n and merge it with the current optimization state using a semigroup operation.\n \"\"\"\n if len(self.metrics_log) == self.sample_size:\n avg_latency = sum(self.metrics_log) / self.sample_size\n if avg_latency > self.latency_threshold:\n # Create an update state proportional to the average latency\n update_state = {'value': avg_latency}\n # Merge with the current symbolic state\n self.symbolic_state = semigroup_merge(self.symbolic_state, update_state)\n log(f\"Symbolic state updated to: {self.symbolic_state}\")\n # If symbolic state exceeds a set value, toggle optimized path\n if self.symbolic_state['value'] > (self.latency_threshold * self.sample_size):\n self.proxy.set_optimized(True)\n\n def analyze_and_optimize(self):\n if len(self.metrics_log) == self.sample_size:\n avg_latency = sum(self.metrics_log) / self.sample_size\n log(f\"Average latency over last {self.sample_size} requests: {avg_latency:.3f} sec\")\n self.symbolic_rule_update()\n", | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "13e7dfbf", | |
| "metadata": {}, | |
| "source": "## Enhanced GSPO Reinforcement Learning Agent\n\nThis agent uses an epsilon-greedy strategy with incremental Q-value updates. It represents a two-action bandit (0: baseline, 1: optimized) but now includes a simple state variable update and more detailed logging." | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "0a1e9b2b", | |
| "metadata": {}, | |
| "source": "class GspoAgent:\n def __init__(self, epsilon: float = 0.1):\n self.epsilon = epsilon\n self.values = [0.0, 0.0] # estimated Q-values for actions 0 and 1\n self.counts = [0, 0]\n self.last_action = None\n\n def choose_action(self):\n if random.random() < self.epsilon:\n action = random.choice([0, 1])\n log(f\"[RL] Exploring: selected action {action}\")\n else:\n action = 0 if self.values[0] >= self.values[1] else 1\n log(f\"[RL] Exploiting: selected action {action}\")\n self.last_action = action\n return action\n\n def update(self, reward: float):\n action = self.last_action\n if action is None:\n return\n self.counts[action] += 1\n n = self.counts[action]\n old_value = self.values[action]\n self.values[action] += (reward - old_value) / n\n log(f\"[RL] Updated Q-value for action {action}: {self.values[action]:.3f}\")\n", | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "ed2d5be7", | |
| "metadata": {}, | |
| "source": "## Evaluation Framework and Metrics\n\nThe evaluation framework simulates multiple concurrent requests, records latency and time-to-first-byte (TTFB), and plots the performance metrics. It distinguishes between baseline (non-streaming) and optimized (streaming) modes." | |
| }, | |
| { | |
| "cell_type": "code", | |
| "id": "8c1d6d2f", | |
| "metadata": {}, | |
| "source": "async def run_requests(proxy, num_requests: int, api_key='secret-key'):\n results = [] # (latency, ttfb, used_optimized)\n tasks = []\n \n async def handle_request(rid):\n try:\n start_time = time.perf_counter()\n first_byte_time = None\n used_optimized = proxy.use_optimized_path\n # If RL agent is active, choose action already in process_request\n response_chunks = []\n async for chunk in proxy.process_request(rid, api_key=api_key):\n if first_byte_time is None:\n first_byte_time = time.perf_counter()\n response_chunks.append(chunk)\n end_time = time.perf_counter()\n latency = end_time - start_time\n ttfb = first_byte_time - start_time if first_byte_time else latency\n results.append((latency, ttfb, used_optimized))\n # Update RL agent if available\n if proxy.gspo_agent:\n proxy.gspo_agent.update(reward=-latency) \n optimizer.record_request_result(latency, ttfb)\n optimizer.analyze_and_optimize()\n except Exception as e:\n log(f\"Request {rid} encountered an error: {e}\")\n results.append((None, None, proxy.use_optimized_path))\n\n for rid in range(1, num_requests + 1):\n tasks.append(asyncio.create_task(handle_request(rid)))\n await asyncio.gather(*tasks)\n return results\n\n# Function to summarize and plot metrics\ndef summarize_and_plot(results, phase_label):\n latencies = [r[0] for r in results if r[0] is not None]\n ttfbs = [r[1] for r in results if r[1] is not None]\n avg_latency = statistics.mean(latencies) if latencies else 0\n avg_ttfb = statistics.mean(ttfbs) if ttfbs else 0\n throughput = len(latencies) / sum(latencies) if sum(latencies) > 0 else 0\n log(f\"[{phase_label}] Avg latency: {avg_latency:.3f} sec, Avg TTFB: {avg_ttfb:.3f} sec, Throughput: {throughput:.2f} req/sec\")\n \n plt.figure(figsize=(8,4))\n plt.hist(latencies, bins=10, alpha=0.7, label='Latency')\n plt.xlabel('Latency (sec)')\n plt.ylabel('Frequency')\n plt.title(f'{phase_label} Latency Distribution')\n plt.legend()\n plt.show()\n return avg_latency, avg_ttfb, throughput\n\n# Initialize proxy, optimizer, and RL agent\nproxy = ProxyServer()\noptimizer = DspyOptimizer(proxy, latency_threshold=0.25, sample_size=5)\n\nuse_rl = True\nif use_rl:\n agent = GspoAgent(epsilon=0.1)\n proxy.enable_gspo(agent)\n\n# Run simulation in two phases\nnum_total_requests = 20\nlog(\"--- Running simulation ---\")\n\nresults = asyncio.run(run_requests(proxy, num_total_requests))\n\n# Separate results: first half baseline, second half (after potential optimization)\nbaseline_results = results[:10]\noptimized_results = results[10:]\n\nlog(\"--- Baseline Phase ---\")\nbase_avg_lat, base_avg_ttfb, base_throughput = summarize_and_plot(baseline_results, 'Baseline')\n\nlog(\"--- Optimized Phase ---\")\nopt_avg_lat, opt_avg_ttfb, opt_throughput = summarize_and_plot(optimized_results, 'Optimized')\n\n# Count how many requests used the optimized path in the second phase\noptimized_used_count = sum(1 for r in optimized_results if r[2])\nlog(f\"Optimized Phase: {optimized_used_count} out of {len(optimized_results)} requests used the optimized path\")\n", | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "4b48e8b0", | |
| "metadata": {}, | |
| "source": "## Conclusion\n\nThis notebook demonstrates a hyper-optimized proxy system that forwards requests to a simulated router endpoint while streaming responses concurrently. The system integrates:\n\n- A **DSPY Optimization Module** with a simulated neuro-symbolic rule engine (using semigroup operations) that updates optimization state based on latency metrics.\n- An enhanced **GSPO Reinforcement Learning Agent** that learns, via an epsilon‑greedy strategy, to select between baseline and optimized (streaming) paths.\n- Robust error handling and simulated security checks (via an API key requirement).\n- An evaluation framework that gathers performance metrics and plots latency distributions for both baseline and optimized phases.\n\nWhile this is a simulation, the design illustrates how advanced techniques such as neuro‑symbolic reasoning, self‑optimization, and reinforcement learning can be integrated into a proxy system to reduce latency and improve throughput in real time." | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment