Skip to content

Instantly share code, notes, and snippets.

@sachinruk
Created March 31, 2017 02:20
Show Gist options
  • Save sachinruk/bed215437a9f572d407975225d2ba018 to your computer and use it in GitHub Desktop.
Save sachinruk/bed215437a9f572d407975225d2ba018 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a positive definite matrix"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(100, 100)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A = np.random.randn(100,120)\n",
"A = A.dot(A.T)\n",
"A.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Implementation of cholesky algorithm from:\n",
"\n",
"https://en.wikipedia.org/wiki/Cholesky_decomposition#The_Cholesky.E2.80.93Banachiewicz_and_Cholesky.E2.80.93Crout_algorithms"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def cholesky_d(A):\n",
" L = np.zeros_like(A)\n",
" n = len(L)\n",
" for i in range(n):\n",
" for j in range(i+1):\n",
" if i==j:\n",
" val = A[i,i] - np.sum(np.square(L[i,:i]))\n",
" # if diagonal values are negative return zero - not throw exception\n",
" if val<0:\n",
" return 0.0\n",
" L[i,i] = np.sqrt(val)\n",
" else:\n",
" L[i,j] = (A[i,j] - np.sum(L[i,:j]*L[j,:j]))/L[j,j]\n",
" \n",
" return L"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2 µs, sys: 1 µs, total: 3 µs\n",
"Wall time: 5.01 µs\n"
]
}
],
"source": [
"%time\n",
"L1 = cholesky_d(A)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2 µs, sys: 1e+03 ns, total: 3 µs\n",
"Wall time: 6.2 µs\n"
]
}
],
"source": [
"%time\n",
"L2 = np.linalg.cholesky(A)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Are the values similar?"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.allclose(L1,L2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"latex_envs": {
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 0
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment