Last active
January 24, 2024 17:59
-
-
Save saxman/d2d37eaa1a2b990c3182463074125ebe to your computer and use it in GitHub Desktop.
Serialize Pandas Dataframe Rows as JSON Objects
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "752ef609-3a97-43a8-962e-57b6d62b4b79", | |
"metadata": {}, | |
"source": [ | |
"# Serialize Pandas Dataframe Rows as JSON Objects.\n", | |
"\n", | |
"An example demonstrating how to produce JSON objects from rows in a Pandas Dataframe." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "fd1e0c7b-fd06-4704-a194-85740b164cee", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"from json import loads, dumps" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7612ff75-5cb2-45c6-a094-faf2ecad6542", | |
"metadata": { | |
"tags": [] | |
}, | |
"source": [ | |
"Create a dataframe with a single row." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"id": "6ede7bc2-0acb-40da-acaf-6ec6bcae6a02", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>name</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>fred</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" name\n", | |
"0 fred" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df1 = pd.DataFrame({\"name\": \"fred\"}, index=[0])\n", | |
"df1" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "cd16ba0e-e3eb-4113-b02a-639d722236c2", | |
"metadata": {}, | |
"source": [ | |
"Create a second dataframe with two additional columns." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"id": "ca21530c-ed0f-421d-89bb-d9cbda086950", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>age</th>\n", | |
" <th>color</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>27</td>\n", | |
" <td>red</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" age color\n", | |
"0 27 red" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df2 = pd.DataFrame({\"age\": \"27\", \"color\": \"red\"}, index=[0])\n", | |
"df2" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "d11f2f1d-cb0c-4f03-a4f5-5a5c050f4cf6", | |
"metadata": {}, | |
"source": [ | |
"Create a single dataframe with all three columns." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"id": "d9ec5023-a18c-4fa4-9607-e0f23504f2a2", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>name</th>\n", | |
" <th>age</th>\n", | |
" <th>color</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>fred</td>\n", | |
" <td>27</td>\n", | |
" <td>red</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" name age color\n", | |
"0 fred 27 red" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df3 = pd.concat([df1, df2], axis=1)\n", | |
"df3" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "462e9d13-f682-4f91-b4a4-6c6f730e2d71", | |
"metadata": {}, | |
"source": [ | |
"Convert the dataframe to JSON. Note that there is a JSON attribute per column, each with a dictionary of values keyed by row." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"id": "97fb93c7-5d24-44d0-a0cb-35075e18dd99", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'{\"name\":{\"0\":\"fred\"},\"age\":{\"0\":\"27\"},\"color\":{\"0\":\"red\"}}'" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df3.to_json()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e02c7f8c-7ece-499f-8f84-bc0834796bfa", | |
"metadata": {}, | |
"source": [ | |
"Add another row to the dataframe." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"id": "6cb53944-f8ce-4d99-ad34-62bc2981f5ee", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>name</th>\n", | |
" <th>age</th>\n", | |
" <th>color</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>fred</td>\n", | |
" <td>27</td>\n", | |
" <td>red</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>wilma</td>\n", | |
" <td>29</td>\n", | |
" <td>green</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" name age color\n", | |
"0 fred 27 red\n", | |
"1 wilma 29 green" | |
] | |
}, | |
"execution_count": 33, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df4 = pd.DataFrame({'name':'wilma', 'age':'29', 'color':'green'}, index=[1])\n", | |
"df5 = pd.concat([df3, df4], axis=0)\n", | |
"df5" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "4ddaadbe-b4d2-4ddb-a63e-97b9cd9d06e3", | |
"metadata": {}, | |
"source": [ | |
"Convert the dataframe to JSON oriented so that each item in the list is a row." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"id": "11ec2e79-1ddb-4081-af1a-285b4f9741f0", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'[{\"name\":\"fred\",\"age\":\"27\",\"color\":\"red\"},{\"name\":\"wilma\",\"age\":\"29\",\"color\":\"green\"}]'" | |
] | |
}, | |
"execution_count": 39, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df5.to_json(orient=\"records\", force_ascii=False)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "27ce5cbd-f3a7-4f7e-99d2-76d55fa16a3b", | |
"metadata": {}, | |
"source": [ | |
"Convert the first row to JSON." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"id": "a9b04b89-b8a8-409e-971c-134a48db1361", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'[{\"name\":\"fred\",\"age\":\"27\",\"color\":\"red\"}]'" | |
] | |
}, | |
"execution_count": 47, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df5.iloc[[0]].to_json(orient=\"records\", force_ascii=False)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ef1c76f0-a542-4cf3-9ab0-d0b14f991f98", | |
"metadata": {}, | |
"source": [ | |
"Strip the list parens." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"id": "ffcd8b92-2bb2-4e3f-b519-f48a571a884e", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"'{\"name\":\"fred\",\"age\":\"27\",\"color\":\"red\"}'" | |
] | |
}, | |
"execution_count": 48, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df5.iloc[[0]].to_json(orient=\"records\", force_ascii=False)[1:-1]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "fbfea533-8af2-4ba6-aa60-91636bb74439", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"availableInstances": [ | |
{ | |
"_defaultOrder": 0, | |
"_isFastLaunch": true, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 4, | |
"name": "ml.t3.medium", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 1, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.t3.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 2, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.t3.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 3, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.t3.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 4, | |
"_isFastLaunch": true, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.m5.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 5, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.m5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 6, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.m5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 7, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.m5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 8, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.m5.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 9, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.m5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 10, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.m5.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 11, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.m5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 12, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.m5d.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 13, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.m5d.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 14, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.m5d.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 15, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.m5d.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 16, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.m5d.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 17, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.m5d.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 18, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.m5d.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 19, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.m5d.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 20, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": true, | |
"memoryGiB": 0, | |
"name": "ml.geospatial.interactive", | |
"supportedImageNames": [ | |
"sagemaker-geospatial-v1-0" | |
], | |
"vcpuNum": 0 | |
}, | |
{ | |
"_defaultOrder": 21, | |
"_isFastLaunch": true, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 4, | |
"name": "ml.c5.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 22, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.c5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 23, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.c5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 24, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.c5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 25, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 72, | |
"name": "ml.c5.9xlarge", | |
"vcpuNum": 36 | |
}, | |
{ | |
"_defaultOrder": 26, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 96, | |
"name": "ml.c5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 27, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 144, | |
"name": "ml.c5.18xlarge", | |
"vcpuNum": 72 | |
}, | |
{ | |
"_defaultOrder": 28, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.c5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 29, | |
"_isFastLaunch": true, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.g4dn.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 30, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.g4dn.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 31, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.g4dn.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 32, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.g4dn.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 33, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.g4dn.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 34, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.g4dn.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 35, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 61, | |
"name": "ml.p3.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 36, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 244, | |
"name": "ml.p3.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 37, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 488, | |
"name": "ml.p3.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 38, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 768, | |
"name": "ml.p3dn.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 39, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.r5.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 40, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.r5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 41, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.r5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 42, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.r5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 43, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.r5.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 44, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.r5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 45, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 512, | |
"name": "ml.r5.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 46, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 768, | |
"name": "ml.r5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 47, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.g5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 48, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.g5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 49, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.g5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 50, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.g5.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 51, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.g5.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 52, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.g5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 53, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.g5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 54, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 768, | |
"name": "ml.g5.48xlarge", | |
"vcpuNum": 192 | |
}, | |
{ | |
"_defaultOrder": 55, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 1152, | |
"name": "ml.p4d.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 56, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 1152, | |
"name": "ml.p4de.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 57, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.trn1.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 58, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 512, | |
"name": "ml.trn1.32xlarge", | |
"vcpuNum": 128 | |
}, | |
{ | |
"_defaultOrder": 59, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 512, | |
"name": "ml.trn1n.32xlarge", | |
"vcpuNum": 128 | |
} | |
], | |
"instance_type": "ml.t3.medium", | |
"kernelspec": { | |
"display_name": "Python 3 (Data Science 3.0)", | |
"language": "python", | |
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-east-1:081325390199:image/sagemaker-data-science-310-v1" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment