Created
November 15, 2017 10:31
-
-
Save se7oluti0n/40fcd95286d383a1e222fd79a2131025 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import cv2\n", | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## you can take an analytic derivative of a Gaussian in X or Y and use that filter" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"simA = cv2.imread('input/simA.jpg', cv2.IMREAD_GRAYSCALE)\n", | |
"plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def calculateGradients(img, ksize, axis=0):\n", | |
" if axis == 1:\n", | |
" grad = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize)\n", | |
" else:\n", | |
" grad = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize)\n", | |
" \n", | |
" grad = cv2.normalize(grad, grad, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)\n", | |
" return grad" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"gradx = calculateGradients(simA, 3, axis=1)\n", | |
"plt.imshow(gradx)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def harrisScoreFunction(Ix, Iy, weights, alpha, norm=True):\n", | |
" Ixx = Ix ** 2\n", | |
" Ixy = Ix * Iy\n", | |
" Iyx = Iy * Ix\n", | |
" Iyy = Iy ** 2\n", | |
" \n", | |
" im_rows, im_cols = Ix.shape\n", | |
" w_rows, w_cols = weights.shape\n", | |
" \n", | |
" Rs = np.zeros(Ix.shape)\n", | |
" \n", | |
" for i in range(w_rows / 2, im_rows - w_rows / 2):\n", | |
" min_i = i - w_rows / 2\n", | |
" max_i = i + w_rows / 2 + 1\n", | |
" for j in range(w_cols / 2, im_cols - im_cols / 2):\n", | |
" min_j = j - w_cols / 2\n", | |
" max_j = j + w_cols / 2 + 1\n", | |
" \n", | |
" wIxx = Ixx[min_i:max_i, min_j:max_j]\n", | |
" wIxy = Ixy[min_i:max_i, min_j:max_j]\n", | |
" wIyx = Iyx[min_i:max_i, min_j:max_j]\n", | |
" wIyy = Iyy[min_i:max_i, min_j:max_j]\n", | |
" \n", | |
" Mxx = (weights * wIxx).sum()\n", | |
" Mxy = (weights * wIxy).sum()\n", | |
" Myx = (weights * wIyx).sum()\n", | |
" Myy = (weights * wIyy).sum()\n", | |
" \n", | |
" M = np.asarray([Mxx, Mxy, Myx, Myy]).reshape((2,2))\n", | |
" Rs[i, j] = np.linalg.det(M) - alpha * (M.trace() ** 2)\n", | |
" if norm:\n", | |
" Rs = cv2.normalize(Rs, Rs, alpha=0, beta=255,\n", | |
" norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)\n", | |
" return Rs" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def generateGaussianWeights(window_size):\n", | |
" c = np.zeros((window_size,)*2, dtype=np.float32);\n", | |
" c[window_size / 2, window_size / 2] = 1.0\n", | |
" w = cv2.GaussianBlur(c, (window_size,)*2, 0)\n", | |
" return w" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"gradx = calculateGradients(simA, 3, axis=1)\n", | |
"grady = calculateGradients(simA, 3, axis=0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"weights = generateGaussianWeights(3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"weights" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"Rs = harrisScoreFunction(grad_x, grad_y, weights, 0.04)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"plt.imshow(Rs)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def findCorner(scores, threshold, radius):\n", | |
" shape = scores.shape\n", | |
" scores[scores < threshold] = 0\n", | |
" scores = scores.reshape(shape)\n", | |
" \n", | |
" #Non-maximum suppression\n", | |
" for i in range(radius, shape[0] - radius):\n", | |
" min_i = i - radius\n", | |
" max_i = i + radius\n", | |
" for j in range(radius, shape[1] - radius):\n", | |
" min_j = j - radius\n", | |
" max_j = j + radius\n", | |
" \n", | |
" patch = scores[min_i:max_i, min_j:max_j]\n", | |
" max_val = np.amax(patch)\n", | |
" patch[patch < max_val] = 0\n", | |
" scores[min_i:max_i, min_j:max_j] = patch\n", | |
" \n", | |
" corners = []\n", | |
" for i in range(shape[0]):\n", | |
" for j in range(shape[1]):\n", | |
" if scores[i, j] > 0:\n", | |
" corners.append((i, j))\n", | |
" return corners" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"corners = findCorner(Rs, 100, 5)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"imgA_color = cv2.imread('input/simA.jpg')\n", | |
"for r,c in corners:\n", | |
" cv2.circle(imgA_color, (c,r), 2, (0,0,255))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"imgA_color = cv2.cvtColor(imgA_color, cv2.COLOR_BGR2RGB)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"plt.imshow(imgA_color)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.14" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment