Skip to content

Instantly share code, notes, and snippets.

@shortthirdman
Last active April 24, 2025 12:14
Show Gist options
  • Save shortthirdman/e7b53ba49992d3ca9031e8044843d78b to your computer and use it in GitHub Desktop.
Save shortthirdman/e7b53ba49992d3ca9031e8044843d78b to your computer and use it in GitHub Desktop.
SVB, Inverted Curve, and Bond Risk
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# SVB, Inverted Curve And Bond Risk\n",
"\n",
"### A short story by [Ashwin Rao](http://stanford.edu/~ashlearn)"
],
"metadata": {
"id": "FSdcLpbFQ9F8"
}
},
{
"cell_type": "markdown",
"source": [
"You are wondering what the hell happened with Silicon Valley Bank (SVB) - it sounds like they didn't invest in any toxic assets like what happened in the [2008 Subprime Crisis](https://en.wikipedia.org/wiki/Subprime_mortgage_crisis). It appears that much of the problem was due to A) taking large deposits from startups and Venture Capitalists (who get large investment money from various sources for building highly innovative tech companies from scratch), then B) investing that money in bonds, and then C) losing money on those bonds when those depositors tried to take their money out. Most of these bond investments are (on the surface) \"safe investments\" - things like (US Government-backed) Treasury bonds and fairly safe Mortgage-backed securities (not the toxic subprime mortgage derivatives of the 2008 crisis). So what went wrong?\n",
"\n",
"I will simplify the situation to make it easy to understand. I will only use high-school-level math and won't assume any knowledge of financial/investments math. We start with a little lesson of how a traditional bank used to make money, and then we understand how that strategy, seemingly safe on the surface, can lead to large losses (as what happened with SVB recently)."
],
"metadata": {
"id": "2QB4CUeQecM-"
}
},
{
"cell_type": "markdown",
"source": [
"Back in the day, a bank would collect a lot of cash deposits from people (and institutions) who wanted to keep their money safe at the bank, and the bank would then invest that money in bonds that would fetch a healthy yield. The term *investing in bonds* means lending money to a bond-issuer (eg: US Government, for Treasury bonds) who will pay it back as Principal and Interest. The Principal payment is the return of the bond debt taken by the bond-issuer (Principal paid at maturity of the bond), and the Interest is typically paid twice a year until bond maturity. Let's say the bank collected `$100B` in deposits and paid the depositors 1% interest rate (annualized rate) on their deposits. Let's also say the bank invested in Treasury bonds that mature over several years (typically 5 or 10 or 30). Some of the longer maturity bonds fetched a healthy interest rate back in the day. Let's say the bank invested in bonds that fetched a 6% interest rate. Thus, they collect a net yield of 5% (= 6% - 1%) annually on the `$100B` in deposits. This is \"free money\" to the tune of `$5B` (= `$100B * 5%`). This sounds like an amazing business. We should all start a bank. Is there a catch?\n",
"\n",
"Yes, there always is. For this, I need to explain some Math. Fear not - this will be high-school math. This is known as *Bond Math* (not the James Bond kind though!)."
],
"metadata": {
"id": "z5ADW0QlgIxV"
}
},
{
"cell_type": "markdown",
"source": [
"A bond has a time to maturity that we refer to as $T$ ($T$ can be 30 years or 10 years or 5 years or 2 years, and actually you can also do $T = 1$ year, half a year or quarter of a year). We will focus on situations where $T$ is large (*long-dated bonds*), the typical one being 30 years. A bond also has a *coupon*. Back in the day, a bond holder would get paper coupons that they could take to the friendly lady at the office of the institution who issued the bond, and she would give out the money stated on the coupon. The coupon is the regular interest payment a bond-issuer must make for the money they borrowed from the bond investor (when issuing the bond to the investor). So if the coupon (call it $C$) is 5% and a bond investor invested \\$1M for maturity $T =$ 30 years, then each year (over 30 years), the friendly lady would give the bond investor `$1M * 5% = $50,000`. Typical Treasury bonds pay the coupon twice a year, but to keep things simple, we will work with once-a-year coupon payments.\n",
"\n",
"The coupon is typically set to a value close to the prevailing market interest rate for the maturity of the bond (we call this market interest rate as the bond *yield*). So if the prevailing market interest rate (i.e., *yield*) for 30-year maturity was 6.1%, the bond-issuer would set the coupon to the nearby round number of 6%. To understand the relationship between maturity $T$, coupon $C$ and yield (call it $y$), we have to do some simple math, and specifically, we need to understand the concept of *Price of a bond*."
],
"metadata": {
"id": "MH0VZ-7di-C1"
}
},
{
"cell_type": "markdown",
"source": [
"Let us assume that the bond-investor is SVB Bank and the bond issuer is the US Government (Treasury bonds).\n",
"\n",
"Simply put, the Price of a bond (refered to as $P$) is the Current Value of the future Interest (i.e., Coupon) and Principal payments. The Principal is the return of borrowed money (borrowed by the bond-issuer) and we refer to it as $B$. So, the bond-issuer has to pay the bank $B \\cdot C$ as interest every year for $T$ years (as interest payment in the form of coupons), and at the end of $T$ years, also has to pay the principal $B$.\n",
"\n",
"We've already said that the conceptual way to think about yield $y$ is that it's the prevailing market interest rate for the maturity of the bond. The more opaque (computational) way to think about yield $y$ is that it's the rate at which we *discount* this collection of Interest and Principal payments in order to arrive at the Bond Price $P$. The calculation involves taking the future cash flows (Interest and Principal) and discounting it back to present time to arrive at current *Fair Value* of those future cash flows, and this current fair value is the Price, i.e., the money SVB Bank would give to the bond-issuer (upon bond purchase) as a fair (current) value for future Interest and Principal payments SVB bank would receive from the bond-issuer. There is a different (equivalent) way of thinking about it - instead of working back in time, move forward in time. SVB Bank is investing $P$ in the bond, and the bond-issuer gives SVB Bank cash flows in the future (Interest and Principal payments) which on average fetch an investment-growth rate (often refered to as *return*) equal to the yield $y$. Mathematically, this translates to:\n",
"\n",
"$$P = \\frac {B \\cdot C} {1+y} + \\frac {B \\cdot C} {(1+y)^2} + \\frac {B \\cdot C} {(1 + y)^3} + \\ldots + \\frac {B \\cdot C} {(1 + y)^{T-1}} + \\frac {B \\cdot C + B} {(1 + y)^T}$$\n",
"\n",
"The powers of $(1+y)$ in the denominator are due to the fact that $y$ is considered to be an annualized yield.\n",
"\n",
"**So much for the math, but intuitively remember that the yield on a bond at any point in time is just a reflection of the prevailing market interest rate for the maturity of that bond. Each maturity has it's own market interest rate, and so it gets it's own yield, which is what drives the Price of the bond for that maturity**."
],
"metadata": {
"id": "BQAUhJPJnFnV"
}
},
{
"cell_type": "markdown",
"source": [
"The specific concept we are interested in now is the relationship between the yield $y$ and the Price $P$. We can see from the above equation that as yield $y$ increases, Price $P$ decreases. Let us write some code for this and plot this relationship."
],
"metadata": {
"id": "hJ2aIhwjyeBt"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "V1LnJbqVeazz"
},
"outputs": [],
"source": [
"\n",
"def price_from_yield(\n",
" yield_: float,\n",
" coupon: float,\n",
" maturity: int,\n",
" principal: float\n",
") -> float:\n",
" # Note that yield is a special keyword in Python for generators\n",
" # so we use variants like yield_ in the code below\n",
" pv_of_interest: float = sum(principal * coupon / (1+ yield_) ** (i + 1)\n",
" for i in range(maturity))\n",
" pv_of_principal: float = principal / (1 + yield_) ** maturity\n",
" return pv_of_interest + pv_of_principal"
]
},
{
"cell_type": "code",
"source": [
"coupon: float = 0.05\n",
"maturity: int = 30\n",
"principal: float = 100.0\n",
"\n",
"yields = [0.01 * n for n in range(1, 11)]\n",
"prices = [price_from_yield(y, coupon, maturity, principal) for y in yields]\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.ticker as mtick\n",
"\n",
"fig, ax = plt.subplots(figsize=(15, 10))\n",
"plt.plot(yields, prices)\n",
"plt.xlabel(\"Yield\", fontsize=20)\n",
"plt.ylabel(\"Price\", fontsize=20)\n",
"plt.title(\"Bond Yield to Price Relationship\", fontsize=25)\n",
"ax.xaxis.set_major_formatter(mtick.PercentFormatter(xmax=1, decimals=0))\n",
"plt.xticks(fontsize=15)\n",
"plt.grid(True)\n",
"plt.legend(fontsize=15)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 943
},
"id": "OnKk4kmv0HNC",
"outputId": "5ce50dbe-93d6-4b73-cc9c-2a56cea6a17f"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1500x1000 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOQAAAN4CAYAAABjwjeqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUEElEQVR4nOzdd3xT9eL/8XfSpgs6KKtQpgxZZchGZQnIVIYCCjIdKC5wcr2u63V7xYWbrchQUFwoKlAUZJe9ZbVQKBY6aZs25/eHX/JrgZa0pD1N+no+Hn08Mj7n5H3SfFLy5uQci2EYhgAAAAAAAACUCKvZAQAAAAAAAICyhEIOAAAAAAAAKEEUcgAAAAAAAEAJopADAAAAAAAAShCFHAAAAAAAAFCCKOQAAAAAAACAEkQhBwAAAAAAAJQgCjkAAAAAAACgBFHIAQAAAAAAACWIQg4AADc5fPiwLBaL86c0GjNmjDPfc8895xWP/dxzzznXO2bMGLetF0U3a9Ys5++ka9euZsfBJaxcudL5O6pTp47ZcVzStWtXZ+ZZs2aZHadUqVOnjvO5WblypdvWy3MOAMWHQg4AkEfu0iS/Hz8/P1WuXFlt2rTRvffeq5UrV8owDLOje43cv4OwsDDFxcUVeh2PPvqocx2BgYHau3dvMSRFaXO5uVu+fHnVqlVLffv21SuvvKL4+HizI3uNCwv5C3+sVqtCQkJUu3Zt9e3bVy+99JJiY2PNjg0AAExCIQcAKDS73a7Tp09r06ZN+vDDD9WtWzd169ZNhw4dMjuaV5g6daqqVasmSUpKStLdd99dqOXXr1+vt956y3n9ueee09VXX+3OiF7NE/Z0LKq0tDQdO3ZMP/74o6ZMmaJatWrpP//5j3JycsyO5vUMw1BKSoqOHj2qH3/8UU899ZTq1KmjJ554QllZWWbHK1Hs1QoAgORrdgAAQOlVoUIFtWvX7qLb09PTdezYMR0+fNh526pVq9S5c2etXbtWNWrUKMGU3qdChQp6//33NWjQIEnSDz/8oDlz5mjUqFGXXTYrK0tjx451Fixt2rTRo48+Wqx5UTo1a9ZMkZGReW5LSkrSjh07lJqaKumfcv3ZZ5/V0aNH9emnn5oR02u1bdtW4eHhzuuGYSgpKUk7d+50Pv85OTl67bXXdOTIEX3xxRdeVwADAID8UcgBAPLVvHlzLVu2LN/79+/fr8cee0zffPONJCk2NlYPP/ywvvzyy5KK6LUGDhyoYcOGacGCBZKkhx9+WL169VJERESBy73wwgvatWuXJMlms2nGjBny8fFx3j9r1iyOA1RGPPLII5fc+8hut2vOnDmaNGmSUlJSJEnTp0/XjTfeqFtvvdUtjz1mzJgyv+fTa6+9dsnj52VnZ2v+/Pl66KGHlJiYKElasGCBBg0apGHDhpVwSs/izmOjwTU85wBQfPjKKgCgyBo0aKDFixfn+dD59ddf6++//zYvlBd59913VblyZUnSmTNnNGHChALHb926Va+++qrz+r///W9FRUUVa0Z4HpvNpvHjx+u7776T1fr//yn40ksvmZiq7PD19dXIkSP1448/5nn+33zzTRNTAQCAkkYhBwC4IlarVQ8//LDzek5OjjZu3GheIC9SuXJlvfvuu87r33zzjebNm3fJsdnZ2Ro7dqzsdrskqUWLFpoyZUqJ5IRn6ty5s/Nr0ZIUExOjEydOmJiobGnXrp369+/vvL5p0yYlJyebmAgAAJQkCjkAwBVr1KhRnuuu7iG3b98+PfXUU2rbtq2qVq0qf39/VatWTZ06ddILL7ygY8eOubSerl27Og8Qfv7rmA6HQ19++aX69eunWrVqyd/fX1WrVlXPnj01Y8aMQh/EPiYmRvfee68aNGigoKAg51lm//vf/xbrmSqHDRumgQMHOq8/+OCDOnXq1EXjXnvtNW3ZskXSP3vgzJgxQzab7aJxuc/g+txzz7mUITU1VR999JFuuukmXXXVVSpXrpyCg4PVoEEDjR07Vj///HORtu1yHA6HPvvsM/Xu3VvVq1dXQECA8wyVCxYscPuJCGbNmiWLxaK6devmuT2/s2YW9Pzl5OTo888/16233prnOatfv75GjhypJUuWlIozE/fp0yfP9R07duS5XqdOHef2nv/qWkpKij766CP16NFDtWvXlr+/f577pf//XFoslkt+bfNSDMPQDz/8oAkTJigqKkqVK1eWzWZTWFiYWrZsqXHjxmnRokXKzMx0aX2//PKL7rvvPkVFRalSpUry9/dXZGSkevbsqXfeeUdpaWkurac4XXfddc7LOTk5Onr0qEvLlfS22e12LV++XE888YS6d++uyMhIBQYGKjAwUJGRkerRo4deeuklJSQkFLie8+/Vzz//vPO22bNn5zvHch+nNPfyud/rL2flypWaMGGCmjRpogoVKigwMND5PvLBBx+4/FxdKldycrLeeecdderUSVWrVlVAQIBq1qyp4cOH67fffnNpvdI/c+qDDz5Qv379VLNmTQUFBTlf+02aNNHAgQP18ssva/v27S6vU5IyMzM1c+ZM5+/M399f1atX180336zFixe7tA5XnvOVK1c6x9SpU8d5+7Zt2zRx4kQ1adJEISEhCg0NVYsWLfT000/r+PHjhdoWAPBKBgAAuYwePdqQZEgyunTp4tIy27Ztcy4jyfjmm28KHJ+dnW08/vjjhs1my7PchT+BgYHGyy+/fNnH79Kli3OZmTNnGidPnjS6d+9e4LqvvfZa4+zZsy5t3zPPPGP4+Pjku66KFSsaP//8s3Ho0KE8t7vLiRMnjAoVKjjXO2TIkDz379q1y/D393feP2XKlHzXlfv3++yzz172sT///HMjIiKiwOdSktGrVy8jISGhwHUV5rHj4uKMa6+9tsDH7N69u5GQkGA8++yzzttGjx592W3Kz8yZMy+7nbl/8tuGjRs3Gk2bNr3s8u3btzf27dtX5LyXknv9M2fOvOz4n376Kc8yX3zxRZ77a9eu7bxvxYoVxvr16426detecntWrFjhXC73c+nK+8jGjRuN1q1bu/S8165du8B1HThwwOjWrdtl11OtWjVj2bJll83mqgvnf+7nIz+ffPJJnmV+//33Ase7c9tWrFjh0nO6YsUKo2LFii79bsqVK2d8/PHH+a4r93u1Kz+HDh3Kd/nLvb4TEhKM/v37X/YxIiMjje+//77AdRmGcVGuDRs2GHXq1Clw3ffff7/hcDgKXO+vv/5qVKtWzeXnZN26dZdcz4Vzdf/+/UbLli0LXNegQYOMzMzMAvO58pxf6rX06quvFvh3MywszFi4cOFln3cA8Gac1AEAcMXWrl2b53qzZs3yHetwOHTbbbdp0aJFztssFosaN26sKlWq6Pjx49q3b58k6dy5c5oyZYpiY2P13nvvuZQlLS1NPXv21LZt2yT9s4dP7dq1de7cOcXExCgrK0uS9Mcff2jEiBH67rvvClzfk08+mee4bJJUr1491axZUwkJCdq1a5f+/vtv9e/fX/Pnz3cpY2FFRERo6tSpzoPkf/XVV1q0aJFuvfVWORwOjRs3zrnXUOPGjfXss8+65XFfeOEFPfPMM3luq1OnjmrVqqWcnBzt3r3beVD6n3/+Wddff71Wr16tSpUqXdHjJiYmqmfPns6TU0iSn5+foqKiVK5cOe3bt0/x8fH67bffdNNNN6l79+5X9HjnRUZG6sYbb9S5c+cUHR3tvP3GG2+85Pj69etfdNuaNWvUp0+fPF89rFChgho3biyHw6Fdu3Y571u3bp2uv/56/frrr2ratKlbtqGwzs+H8/z8/PIde+DAAT3yyCPO/PXr11eNGjV09uxZ7dmzp8gZvvvuOw0bNkzp6enO22w2m5o0aaKKFSsqLS1N+/fvd77Wzp49m++6Nm/erD59+uTZizQkJESNGzdWUFCQYmNjtX//fknSiRMnNGDAAOcJFcxw4d7EwcHB+Y41a9tiY2Pz5KxQoYLq1aunkJAQZWVl6eDBg86vOqelpenuu+9WVlaWJk6ceNG62rVrp4CAAB04cEAHDx6UJFWvXj3fY10GBgYWKfPJkyfVvXv3PO8h/v7+atasmcqVK6f9+/c7M8fFxenmm2/W3LlzNXz4cJfWv2vXLg0fPlwpKSmyWCxq2rSpKleurISEBO3cudO59+t7772n2rVr53um623btqlfv37KyMhw3la5cmXnntipqak6duyY4uLinPc7HI7L5ouPj9fIkSOdyzVs2FCRkZE6e/astm3b5ty7eMmSJZo8ebLLf19dNW3aND3xxBOS/nneo6KiFBQU5Hzvlv6Zx7fddpt8fHw0ePBgtz4+AHgMsxtBAEDpUtg95BISEvLsMdOhQ4cCx7/22mt5/pe8d+/exsGDB/OM2b59u9GhQ4c84+bMmZPvOnP/D/75PTmuvfZaY/PmzXnGJSYmGkOHDs2z3l9++SXf9f7yyy95xjZv3tzYuHFjnjEHDx40evbsaUgyKlWqlGe8u/Xp08e57ipVqhgJCQnGm2++6bzNarUaa9euLXAdru6lNn/+/DzbMmLEiIv25srJyTEWLlyYZ7sHDhx4xY89cuTIi/YySUxMzPO4ixcvNqpUqXLR834le8idV9Q9Hc+cOWNERkY6lwsODjamT59uZGVlOcecO3fOePPNN/Ps0dikSRMjIyPjinMbRuH3kHvjjTfyLLN69eo89+fe6yY4ONiQZPTs2dPYvXt3nnGJiYl5fkeu7iG3c+dOIygoyDm2QoUKxjvvvGMkJydfNHbr1q3GE088ke/eXKdPn87z/F999dXG0qVLjezs7Dzjdu/ebfTo0cM5LjQ01Dh8+PBlnqnLK8oecn379nWOt9lsxrlz50ps21zdQ27u3LlG8+bNjbfffvui9+rztm7dmuf9KSAgwPjrr7/yXWdR92p1dQ+5fv36OcdZLBbj0UcfNc6cOeO83+FwGN9++61RvXp157jAwEBj7969+a4z9+/2/N+Z8ePHG8ePH88zbvfu3UZUVJRzbLly5YykpKRLrjP3HnyNGzfOdw/JkydPGtOnTzfat2+f73t87rl6Pt9NN91k7N+/P8+4Y8eO5dnL0mq1FrinbmH3kCtfvrwREBBgSDImTZqU53nPyckxvvrqK6Ny5cp5XqMXPocAUFZQyAEA8nClkDt37pyxb98+Y9q0aUbNmjXzfPDYtGlTvus+efKk8x/qkoy+ffte9IHyvLS0NKNdu3bOseHh4UZ6evolx174NaguXbrkW3BkZ2fn+RrPHXfckW/e3F87bNiwYZ7CIbesrKxLfo3M3Y4dO2aEhIQ419+zZ888ZcbkyZMvuw5XSrHExEQjNDTUOe6VV14pcJ27d+92ljWSjOjo6CI/9vr16/M8h48++mi+jxsTE2OUK1cuz3gzC7lJkyblKVdWrVqV79hFixbleYzLPceuKmwh17Zt2zyZ09LS8tyf+0O+JKNPnz6G3W6/7HpdLeRyP36VKlWMnTt3XnbdKSkpl7x91KhRznW1bdv2kqXeeXa7PU+BNG7cuMs+7uUUtpD7448/DIvF4hxfUJldHNvmaiGXmppa4Hacl5OTYwwePNiluVuchdw333yT5/dQ0GEP9u7da4SHhzvH9u7dO9+xF76/P/nkk/mOPXr0aJ735unTp180xm63O4t5i8Xi8tfX8/ubeeFcvf322/P9umxKSkqeMvLpp5/O9/EKW8id//n3v/+d7zovfO92x/wDAE9EIQcAyCN3aVKYn65duxpbtmwpcN0vvfRSnvIuLi6uwPHbt2/PcwyaTz/99JLjcn9g8PHxKXDPDMMwjBkzZjjHX3XVVZcc8/vvv+fZvp9++qnAdR44cOCiY+IVh48++uiSz3/9+vXzLSxzc6UUe+WVV5xjunfv7lKuV1991bnM8OHDi/zYd955p3NMnTp1Lrvn2PPPP18qCrm0tDQjLCzMucykSZMuu0zuvTVr166d7wftwihMIff666/nGT9gwICLxuT+kO/n52fExsa6lMOVQu7XX3/N8/hff/21S+u+lGPHjhm+vr7OnAcOHHBpmfNzNiAgwOVjSubH1ULObrcbc+bMyXNcSH9/f2Pbtm355iyObXO1kCuMAwcOONfZoEGDfMcVZyHXq1cv55jWrVtf9hhu77//vnN8QcVY7t9tw4YNL1tM5y5RL1U4HT9+3Hl/1apVC1yXK3LP1bCwsHz3yjvvmWeecel9viiF3NVXX33Z5yf3e3dQUNAVzz8A8EScZRUAcMU6d+6siRMnqnnz5gWO+/rrr52Xb731VlWvXr3A8c2aNVOPHj0uuXx+evbsedFZMi+U+8yGhw4duug4Whc+VoMGDdSrV68C11mvXj317t37svmu1N13333RMdMsFoumT59e5OMtXWju3LnOyw8//LBLy4wYMcJ5ecWKFUV+7G+++cZ5+c4775S/v3+B4ydMmCAfH58iP567rFq1ynlsM4vFogcffPCyy0yaNMl5+ciRI4qJiSmmdP9fcnKyoqOjNXz4cD322GPO2202W54zX15Kv379FBkZ6bYsX3zxhfNy8+bNdfPNNxd5XfPnz1d2drYkqX///qpXr95ll6lRo4a6dOkiScrIyNCaNWuK/PiX8vjjj6t3797OnxtvvFEdO3ZUeHi4Ro0apTNnzkj65zhp8+fPz/c4aqVx2/JTr1495zEkDxw4UODx/opDamqqfvnlF+f1Bx54QBaLpcBlxo4dq9DQUEmSYRhaunTpZR9n3Lhx8vUt+FDcuf/OXOoYiwEBAc7Lp06dcuvZuocPH66QkJArynclJkyYcNnnJ/d7d3p6erGdrRsASjNO6gAAyFeFChXUrl27i27PyclRYmKi9uzZo/T0dEVHRys6Olpt27bVokWLVLt27YuWyczMzFM49OnTx6UM/fv3108//STpn4PgX07Hjh0vOyZ3qWAYhpKSklS5cuU8YzZs2OC8fLky7rw+ffro22+/dWnslfj000911VVXOa+PGjVKnTt3dsu6ExMT8xwIvVu3bi4tFxkZqbCwMJ09e1YnT55UXFxcocubw4cPKyEhwXk9v5Mp5FalShW1bt1a69evL9RjuVvu12ajRo1Up06dyy7ToUMHVaxY0XnA/HXr1ql169ZuyzR27FiNHTv2suN8fHz06aefqlWrVgWOy/0B3h1Wr17tvHylB3XPva7CnOSjWbNmzgLn/EkT3CX3e8ilWCwW3XnnnfrXv/5V4OulNG3byZMn9dNPP2nr1q06ceKEUlJSZLfb84xJTU2V9M976/HjxxUWFnbFj+uqjRs35jnpgSvbHBAQoB49euirr76SVDx/Zy5VTFaoUEF169bVoUOHZBiGBg4cqE8++STfYrYw3JHvSrjyn1MXvndv2LBBt956q1tzAEBpRyEHAMhX8+bNtWzZsnzvt9vt+vrrrzV58mTFxsZqw4YN6tatmzZu3Kjw8PA8Y48dO5ZnTzRXP3TkHpeQkKDk5OQC/+c/IiLisusMCgrKcz332R3PO3DggPNyQWeNza2kzpR54R6ArpQ/rsp9hkBfX1/dcsstLi+b+0yBp0+fLnQhl/s5l1x/Pps2bWp6IZc7e2E+UEdFRWnlypUXraOktG3bVm+99ZY6dep02bGu7JnlKofD4TybsqQrLiJ37NjhvDx9+nSXi/Hcz/np06evKENhGYah1atXKy0trcBxpWHb4uLiNHnyZH311VfOM3S6Iikp6Yoet7Byb3OVKlVUpUoVl5aLiopyFnKuzMPC/p251N8Y6Z89kB966CFJ/xSBzZs3V4sWLdSrVy917txZ1157rSpUqODKJhRLvqLw8/NTgwYNXBqb+737/BmCAaAsoZADABSZzWbTrbfeqjZt2qhFixZKSUnRoUOH9OSTT+rjjz/OM/bC/4GvWLGiS49x/utP5505c6bAQs7Pz8+18LmcL6AufJzzXM3q6rjS7PzeWpKUnZ3t3DuxsIryQTz3cx4UFOTyV3BLw/Oe+/VdmDy5X9+5t98dmjVrlqcUtVgsKleunMLDw9WsWTN16dJFLVq0cHl9wcHBbst25syZPPPuwj1UCyv363bLli1FWoe7y6MVK1aoa9euedZ/5MgRzZ8/X9OmTVNycrL27Nmjbt26ad26dfl+1d7sbdu1a5e6du2aZ+9VV2VmZhb5cYuipOZhYf/OXOpvjPTPV2r37t2r999/33nb1q1btXXrVr3++uuyWq1q06aNhg8frnHjxjm/WuvufO4UFhbm8mEEcv+OSvrrzQBQGnAMOQDAFatbt26er8bNnTvX+bWl8y78YObqB4YLx5XUB7zce/O5mvVyxzvzBJfbW8dVub825qqiPOdS6Xjec78uC5M991h3v7YfeeQRLVu2zPnz448/6ssvv9THH3+sBx98sFBlnCRZre77Z+OF23qlv0N3vG6L8potjNDQUDVv3lwvvfSS1qxZ4/wqZ0JCgkaOHJnvnmdmbltOTo6GDh3qLOP8/f01fvx4LV68WHv27FFSUpKysrJk/HOiOBmGcclDFpSU0jgPC2KxWDRt2jStWrVKgwYNumgeOBwOrV+/XpMnT1bdunU1b968EstWVEV97y7p8hYASgMKOQCAW+Q+vlRGRoY2btyY5/4L/2c/JSXFpfVeOK6kjkeUey+8omb1RLl/T+XKlcvzQbswP7n3DHJV7uf8wkK3IKXhec/9vBUmT+6xJXmsLbNduK1Xunda7ud/0aJFRXrNzpo164oyFEbTpk310UcfOa+vWbNG06dPv+RYM7ft22+/1c6dOyX9s0f0b7/9pk8//VSDBg3S1VdfrZCQENlstjzLmDkfPXUedu7cWYsXL9bZs2f1yy+/6Omnn1bnzp3znBjhzJkzGjFihBYvXlzi+QqjqM/75U5CAQDeiEIOAOAWF36IOXHiRJ7rF34l7dChQy6t9+DBg87LPj4+RTqeTlHkPvbQ4cOHXVrG1W0qzapWreq8nJaW5rY95lyR+znPzs5WbGysS8uVhuc99+u7MHlyv76v9GubniQoKCjPV2Cv9PhRuV+3p06duqJ1lZShQ4fmKa6ff/75Sx7Ly8xtW758ufPyiBEjLnuswfT0dFO/eph7DsXGxjrPTns5pWUeBgQE6IYbbtB//vMfrVq1SidPntSrr76a53hvuc+OXBolJSW5/PX73O+Vrh7vDwC8CYUcAMAtLvwH+IXH/6pataqqV6/uvO7qQfhzn/EuKirqor0xikvuM066mtXsEwu4Q4sWLfL87lw546C7REVF5Tn2kCvPp2EYF+2NeaUu/Gpmfsd/yu2aa65xXt6yZctFZ568lLNnz2rv3r2XXEdZ0KFDB+fl6Ohot63rzz//vKJ1laT//ve/zsvHjx/Ps9fceWZu29GjR52X27Rpc9nx69atc+nrsbnnmCvzy1W551BWVlaeM3sXJPf7XGmah+Hh4Xr88cc1bdo0521//fVXngKxNCrKe3dpet4BoKRQyAEA3OLCD9SXOo7Q9ddf77z8xRdfXHad2dnZWrBgwSWXL265H2v58uWX3evD4XBo0aJFxZyq+Pn5+eXZa2f27Nkl9thBQUF5zra5cOHCyy6zatWqi/bGvFLlypXLc/3cuXOXXSb36+Xs2bMFnp34vPnz5zuPG+bj46OOHTsWMqln69mzp/PyV199pcTExCKv68Ybb3Re/uabb0r87J5Fde2116pbt27O66+//nqesxVL5m6bK8Vybq5+NTb3HHNlfrmqQYMGec4w6srfmT179mjTpk3O6yX5d8ZVAwcOzHP95MmT5gRxUe6/2/m58L0792EvAKCsoJADAFyxAwcO5PkgVq1aNbVs2fKicePGjXNe3rx5s7788ssC1/v222/n+dri+PHjrzirq4YOHeo8OHVGRoZeeOGFAsdPnz5df/31V0lEK3aTJk1yXv7888+1cuXKEnvsO+64w3l50aJFBe7hYhiGnn76abdnCAsLU0BAgPP6gQMHLrtMo0aN8hRqzzzzTIFfl0tJScnzmhowYECZ+8rWuHHjnF/FS09P10MPPVTkdQ0ePNj5nwDJycl65JFH3JKxJOR+DZ84cUKffvppnvvN3LZq1ao5L//xxx8Fjl23bp0+++wzl9abuzRzZX4VRu4TDH344Yd59vK7lMcff9x5uUqVKurfv79b8+SnMHsGXnhctvDwcHfHcau5c+dq9+7d+d5/4Xt306ZNXdoDEwC8DYUcAKDI7Ha7Fi5cqK5du+Y51tiUKVNksVguGt+zZ0+1a9fOeX38+PFau3btJdf9zTffaMqUKc7r/fv3L/RZIa9ExYoVdddddzmvT506Nd+9xVauXHlFZUJp07NnT/Xp00fSP2dZHDhwoEsHEj906JAeffRRvfjii0V+7NGjRztLAIfDocGDB+vIkSMXjcvJydGDDz6o33//vciPlR8fHx81b97cef2dd95x6Wt4Tz31lPNyTEyMxowZk+fMseclJydr8ODBOn78uPPxcr/Wy4qKFSvmKUM+++wzTZw48aI9xHI7c+aM3njjjYtu9/X11auvvuq8Pn36dE2YMOGSx2TLLS0tTbNmzdINN9xQhC1wj27duuU5Nttrr72W53Vj5rZ16dLFeXnhwoX69ddfLzlu8+bNuummm1w+m2vuryfGxMRoxYoVRc54ofvvv995cof09HT1799f8fHxF40zDENTpkzRt99+67zt8ccfL9RZQq9EdHS0+vfvr5UrVxZYzuXk5OjJJ590Xo+IiFDDhg1LImKRZWdn6+abb77kcUBzcnL0wAMP5Hnvzr19AFCW+F5+CACgrNq2bZt69+590e05OTk6e/asdu3addGHwiFDhui+++675PosFotmzZqlNm3aKD09XcnJybr++ut1xx13qH///qpcubJOnDihr776Ks/XPytWrHjJYysVtxdffFFLly7VsWPHZBiGxowZo6+++krDhw9XjRo1lJCQoO+++05z585VTk6Ohg0b5tJXdTzBZ599pnbt2ungwYNKSkrSkCFD1LZtWw0aNEjNmzdXaGio0tPTderUKcXExGjVqlXO4wE98cQTRX7c4OBgvffeexoyZIikf0q+5s2ba8KECercubPKlSunPXv26NNPP9WmTZvk7++v3r1765tvvnHLdp93++23O4+DNH36dH3//fdq1qxZnq/aDR8+XMOHD3de79evn8aOHauZM2dK+mfvwk2bNunuu+9WVFSUHA6HNm3adNFeO48//nieoros+fe//63o6Gj99ttvkqT3339f3377rUaOHKn27durYsWKSk1N1b59+7Rq1Sr98MMP8vf316OPPnrRuoYNG6Z169Zp6tSpkqSPPvpIX331lW6//XZ16tTJeXKEM2fOaM+ePVq3bp2WL1+u9PT0PCdOMMPTTz/tLMGPHTumWbNm6e6773beb9a2DRs2TFOmTFF8fLxycnLUp08f3Xnnnerdu7cqVKigEydO6IcfftDnn3+u7Oxs3Xjjjdq1a5eOHTtW4HobN26sli1bKiYmRoZhqHv37mrevLlq1qyZ58yiH3/8caH3HK1evbreeecdjR49WpK0fft2NW3aVPfcc4+uu+46BQUFad++fZoxY0aeY8ddd911efYOLm6GYej777/X999/r5o1a6pPnz5q06aNatasqeDgYKWkpGj79u2aPXu280y30j//4XXhcS5Lkxo1aqhWrVpas2aNoqKiNGHCBF1//fUKDAzU3r17ne/d5/Xq1UsjR440MTEAmMgAACCX0aNHG5IK/ePn52c8++yzRlZW1mUfY/Xq1UZoaKhL642IiDC2b99e4Pq6dOniHD9z5kyXtjP3Yxw6dCjfcbt27TIqV6582Zzdu3c39u3bl+e24pT7cZ599lmXl8v9+73ccidPnjSuu+66Qr8WnnjiiSt+7DfeeOOyj2O1Wo2PP/7YePbZZ523jR492uXnoiBZWVlGt27dCnz8S21DVlaWMXz4cJefqwceeMBwOBxuyWwYeV8Xrs6FgtSuXdu5vhUrVri83MyZM53LdenSpcCx6enpxsCBA11+zkJDQwtc33//+1/DYrEU6jVbtWpVl7ctP4cOHcqzzsI8X4ZhGG3atHEuW7duXcNutxfrtq1YscI5pnbt2vnm+vXXXw0/P7/LPk6TJk2MU6dOufya2bBhgxEWFlbgOi98by7Me/3bb7/t8nN17bXXGmfPni1wfQXlupTLPb+573f1Z8KECfm+XxR2rl74es2PK8/5hdt6+PBho0aNGpfdnjZt2hhJSUmXzQoA3qr0/vcKAKDUslgsCg4OVt26dXXzzTdr6tSpOnbsmJ577jmXzoJ63XXXaceOHRo5cmS+Xw8KDAzUfffdp+3bt6tZs2bu3gSXNW7cWDExMRo0aNAl90ooX768HnvsMf30008ldgbYklKlShWtXLlSc+bMuezvwN/fXzfccIM++eSTPF/dLKpHHnlEP/zwg+rVq3fJ+xs0aKDvv/8+z9eK3clms2n58uWaNWuW+vfvr5o1a1505uD8lps3b54+++yzfLNLUrNmzbR06VK98847l/x6d1kSGBioxYsXa8GCBZd9nTVv3lwvvfRSgWOeeuopxcTE6JZbbpG/v3+BYxs1aqQnnniiRI+TmJ/cx9Q6dOiQ5s6de9EYM7ate/fuWrlypaKioi55f1BQkCZMmKD169ercuXKLq+3TZs22rFjh5566il16NBB4eHhefaOu1IPPvig1qxZU+BJGqpWrar//e9/WrFihfNrriUlKipKzz33nNq0aZPn7NKXcs0112jx4sX64IMPPOL9onbt2tq0aZMGDhx4yW0LDAzUI488oujoaIWEhJiQEABKB4thuPFc4wAAFFJKSopWrlypo0ePKikpSRUqVFDdunXVpUsXlwqQkhQXF6cVK1YoLi5O5cqVU61atdS9e3eVL1/e7GglIjY2VmvXrlV8fLySkpIUGBioypUrq2HDhmrRokWx/L4Mw9DatWu1fft2JSYmqmrVqmrSpIk6dOjg9scqDtu3b9fmzZt16tQpWSwWVa1aVR06dFCDBg3MjlZqHTp0SH/++adOnjyp1NRUZ/nfunVrRUZGFmpd586d0x9//KFDhw7p77//liSFhobqqquuUlRUlKpXr14cm1AiSnrbDMPQxo0btXHjRp05c0YVKlRQzZo11bVr11L/HhgXF6fVq1frxIkTyszMVOXKldW0aVO1a9euVHz9MzU1VTExMTpw4IASEhKUmZmp8uXLKzIyUm3atFHdunXNjliglStXOs8WXLt2bR0+fNh5X1xcnH7//XfFxsbKYrGoTp066tmzp4KDg01KCwClB4UcAAAAAKBICirkAAD5M/+/hAAAAAAAAIAyhEIOAAAAAAAAKEEUcgAAAAAAAEAJopADAAAAAAAAShCFHAAAAAAAAFCCOMvqFXA4HDp+/LiCg4NlsVjMjgMAAAAAAACTGIahlJQUVa9eXVZrwfvA+ZZQJq90/Phx1axZ0+wYAAAAAAAAKCWOHTumGjVqFDiGQu4KBAcHS/rniQ4JCTE5DXBpdrtdP//8s3r16iWbzWZ2HAD5YK4CnoG5CngG5ipQ+nnjPE1OTlbNmjWdfVFBKOSuwPmvqYaEhFDIodSy2+0KCgpSSEiI17zJAd6IuQp4BuYq4BmYq0Dp583z1JXDmnFSBwAAAAAAAKAEUcgBAAAAAAAAJYhCDgAAAAAAAChBFHIAAAAAAABACaKQAwAAAAAAAEoQhRwAAAAAAABQgnzNDgAAAAAAAACUBLvdrpycHJfG+vj4yGazFUsOCjkAAAAAAAB4teTkZJ0+fVqZmZmFWs7f31+VKlVSSEiIW/NQyAEAAAAAAMBrJScnKy4uTuXLl1elSpVks9lksVgKXMYwDNntdiUlJSkuLk6S3FrKUcgBAAAAAADAa50+fVrly5dXjRo1LlvE5RYYGKjg4GDFxsbq9OnTbi3kOKkDAAAAAAAAvJLdbldmZqZCQ0MLVcadZ7FYFBoaqszMTNntdrflopADAAAAAACAVzp/AocrOTnD+WVdPRmEKyjkAAAAAAAA4NWKsnecO5bND4UcAAAAAAAAUIIo5AAAAAAAAIASRCEHAAAAAAAAlCAKOQAAAAAAAKAEUcgBAAAAAAAAJYhCDgAAAAAAAChBFHIAAAAAAABACaKQAwAAAAAAgFczDMOUZfNDIQcAAAAAAACv5OPjI0my2+1FXsf5Zc+vyx0o5AAAAAAAAOCVbDab/P39lZSUVKQ93QzDUFJSkvz9/WWz2dyWy9dtawIAAAAAAABKmUqVKikuLk6xsbEKDQ2VzWaTxWIpcBnDMGS325WUlKTU1FRFRka6NROFHAAAAAAAALxWSEiIJOn06dOKi4sr1LL+/v6KjIx0rsNdKOQAAAAAAADg1UJCQhQSEiK73a6cnByXlvHx8XHr11Rzo5ADAAAAAABAmWCz2YqtZCsMTuoAAAAAAAAAlCAKOQAAAAAAAKAEUcgBAAAAAAAAJYhCDk45DkOfRP+l+KQMs6MAAAAAAAB4LQo5OD23dKde/GG3Hl20VQ6HYXYcAAAAAAAAr0QhB6cx19ZRgM2q3w+c1qw1h82OAwAAAAAA4JUo5OBUr3J5PdWviSTplWV7tO9kismJAAAAAAAAvA+FHPIY2b6Wul1dWVnZDj08P0ZZ2Q6zIwEAAAAAAHgVCjnkYbFY9OotzRVezk+7TiTrzeX7zI4EAAAAAADgVSjkcJEqwQF6eXCUJOmj6INa99ffJicCAAAAAADwHhRyuKQbm0ZoaJsaMgxp8sKtSs6wmx0JAAAAAADAK1DIIV/PDGiqWuFBijt7Ts99s9PsOAAAAAAAAF6BQg75Ku/vq6nDWspqkRZvidP3206YHQkAAAAAAMDjUcihQK1rV9DEbvUlSf9asl3xSRkmJwIAAAAAAPBsFHK4rAdvaKDmNUKVdM6ux77cKofDMDsSAAAAAACAx6KQw2XZfKyaOqylAmxWrd5/WrPXHjY7EgAAAAAAgMfyyELu5ZdfVtu2bRUcHKwqVapo4MCB2rt3b54xGRkZmjhxoipWrKjy5ctryJAhOnnyZJ4xR48eVb9+/RQUFKQqVaroscceU3Z2dkluiseoV7m8nurbWJL08o97tO9kismJAAAAAAAAPJNHFnKrVq3SxIkT9eeff2r58uWy2+3q1auX0tLSnGMmTZqkb7/9VosWLdKqVat0/PhxDR482Hl/Tk6O+vXrp6ysLK1Zs0azZ8/WrFmz9Mwzz5ixSR5hZIfa6np1ZWVlO/Tw/BhlZTvMjgQAAAAAAOBxPLKQW7ZsmcaMGaOmTZuqRYsWmjVrlo4ePapNmzZJkpKSkjR9+nS9+eab6t69u1q3bq2ZM2dqzZo1+vPPPyVJP//8s3bt2qXPPvtMLVu2VJ8+ffTCCy9o2rRpysrKMnPzSi2LxaLXbmmu8HJ+2nUiWW8u32d2JAAAAAAAAI/ja3YAd0hKSpIkhYeHS5I2bdoku92uHj16OMc0atRItWrV0tq1a9WhQwetXbtWUVFRqlq1qnPMjTfeqHvvvVc7d+5Uq1atLnqczMxMZWZmOq8nJydLkux2u+x2e7FsW2lTIcBH/72pie77IkYfRR/U9fUrqF2dcLNjoQDnX5tl5TUKeCrmKuAZmKuAZ2CuAqWfN87TwmyLxxdyDodDDz/8sK699lo1a9ZMkhQfHy8/Pz+FhYXlGVu1alXFx8c7x+Qu487ff/6+S3n55Zf1/PPPX3T7zz//rKCgoCvdFI/SvrJV6xKseuCzDXq8eY4CPf6V5P2WL19udgQALmCuAp6BuQp4BuYqUPp50zxNT093eazH1ygTJ07Ujh079Pvvvxf7Y02ZMkWTJ092Xk9OTlbNmjXVq1cvhYSEFPvjlyadM7N107S1OnbmnNbZa+q1m6LMjoR82O12LV++XD179pTNZjM7DoB8MFcBz8BcBTwDcxUo/bxxnp7/JqUrPLqQu//++/Xdd98pOjpaNWrUcN4eERGhrKwsnT17Ns9ecidPnlRERIRzzPr16/Os7/xZWM+PuZC/v7/8/f0vut1ms3nNi8dVFWw2vTW8pW79cK2WxJxQjybV1K95NbNjoQBl8XUKeCLmKuAZmKuAZ2CuAqWfN83TwmyHR57UwTAM3X///VqyZIl+++031a1bN8/9rVu3ls1m06+//uq8be/evTp69Kg6duwoSerYsaO2b9+uU6dOOccsX75cISEhatKkSclsiIdrXTtc93WtL0n615Ltik/KMDkRAAAAAABA6eeRhdzEiRP12Wefad68eQoODlZ8fLzi4+N17tw5SVJoaKjGjx+vyZMna8WKFdq0aZPGjh2rjh07qkOHDpKkXr16qUmTJrrjjju0detW/fTTT/r3v/+tiRMnXnIvOFzaQz0aqHmNUCWds+uxL7fK4TDMjgQAAAAAAFCqeWQh98EHHygpKUldu3ZVtWrVnD8LFixwjpk6dar69++vIUOGqHPnzoqIiNDixYud9/v4+Oi7776Tj4+POnbsqJEjR2rUqFH6z3/+Y8YmeSybj1VTh7VUgM2q1ftPa/baw2ZHAgAAAAAAKNU88hhyhnH5vbACAgI0bdo0TZs2Ld8xtWvX1g8//ODOaGVSvcrl9VTfxnr6m5165cc9uq5+JTWoGmx2LAAAAAAAgFLJI/eQQ+kzskNtdb26sjKzHXpofoyysh1mRwIAAAAAACiVKOTgFhaLRa8Naa4KQTbtOpGsN5fvMzsSAAAAAABAqUQhB7epEhKglwc3lyR9FH1Q6/762+REAAAAAAAApQ+FHNyqd7MIDW1TQ4YhTV64VckZdrMjAQAAAAAAlCoUcnC7ZwY0Va3wIMWdPafnlu40Ow4AAAAAAECpQiEHtyvv76upw1rIapEWb47TD9tPmB0JAAAAAACg1KCQQ7FoXTtc93WtL0n615Ltik/KMDkRAAAAAABA6UAhh2LzUI8GiooM1dl0ux77cqscDsPsSAAAAAAAAKajkEOxsflYNXVYSwXYrFq9/7Rmrz1sdiQAAAAAAADTUcihWNWvUl5P9W0sSXrlxz3afzLF5EQAAAAAAADmopBDsRvZoba6Xl1ZmdkOPTQ/RlnZDrMjAQAAAAAAmIZCDsXOYrHotSHNVSHIpl0nkjX1l31mRwIAAAAAADANhRxKRJWQAL08uLkk6cNVB7X+UKLJiQAAAAAAAMxBIYcS07tZhG5tXUOGIU1aEKPkDLvZkQAAAAAAAEochRxK1LM3NVXN8EDFnT2n55buNDsOAAAAAABAiaOQQ4kq7++rqUNbymqRFm+O0w/bT5gdCQAAAAAAoERRyKHEtakTrvu61pck/WvJdp1MzjA5EQAAAAAAQMmhkIMpHurRQFGRoTqbbteji7bK4TDMjgQAAAAAAFAiKORgCpuPVVOHtVSAzarV+09rztrDZkcCAAAAAAAoERRyME39KuX1r76NJUkv/7hH+0+mmJwIAAAAAACg+FHIwVR3dKitLg0rKzPboYfmxygr22F2JAAAAAAAgGJFIQdTWSwWvX5Lc1UIsmnXiWRN/WWf2ZEAAAAAAACKFYUcTFclJEAvD24uSfpw1UGtP5RociIAAAAAAIDiQyGHUqF3swjd2rqGDEOatCBGKRl2syMBAAAAAAAUCwo5lBrP3tRUNcMDFXf2nJ5busvsOAAAAAAAAMWCQg6lRnl/X00d2lJWi/TV5lj9sP2E2ZEAAAAAAADcjkIOpUqbOuG6t2s9SdK/lmzXyeQMkxMBAAAAAAC4F4UcSp2HbmioZpEhOptu16OLtsrhMMyOBAAAAAAA4DYUcih1/HytemtYKwXYrFq9/7TmrD1sdiQAAAAAAAC3oZBDqVS/Snn9q29jSdLLP+7R/pMpJicCAAAAAABwDwo5lFp3dKitLg0rKzPboYcXxCgr22F2JAAAAAAAgCtGIYdSy2Kx6PVbmqtCkE07jydr6i/7zI4EAAAAAABwxSjkUKpVCQnQy4OjJEkfrjqo9YcSTU4EAAAAAABwZSjkUOr1blZNt7SuIcOQJi2IUUqG3exIAAAAAAAARUYhB4/w7IAmqhkeqLiz5/Tc0l1mxwEAAAAAACgyCjl4hOAAm6YObSmrRfpqc6x+3H7C7EgAAAAAAABFQiEHj9GmTrju7VpPkjRlyXadTM4wOREAAAAAAEDhUcjBozx0Q0M1iwzR2XS7Hl20VQ6HYXYkAAAAAACAQqGQg0fx87XqrWEt5e9r1er9pzVn7WGzIwEAAAAAABQKhRw8Tv0qwfpX38aSpJd/3KP9J1NMTgQAAAAAAOA6Cjl4pFEda6tLw8rKzHbo4QUxysp2mB0JAAAAAADAJRRy8EgWi0Wv39JcFYJs2nk8WW/9ss/sSAAAAAAAAC6hkIPHqhISoJcHR0mSPlh1UOsPJZqcCAAAAAAA4PIo5ODRejerplta15BhSJMWxCglw252JAAAAAAAgAJRyMHjPTugiWpUCFTc2XN6bukus+MAAAAAAAAUiEIOHi84wKapw1rKapG+2hyrH7efMDsSAAAAAABAvijk4BXa1gnXvV3rSZKmLNmuk8kZJicCAAAAAAC4NAo5eI2HbmioZpEhOptu12NfbpNhGGZHAgAAAAAAuAiFHLyGn69Vbw1rKX9fq6L3JWjO2iNmRwIAAAAAALgIhRy8Sv0qwfpX38aSpJd+2K39J1NMTgQAAAAAAJAXhRy8zqiOtdW5YWVlZjv08IIYZWU7zI4EAAAAAADgRCEHr2OxWPT6Lc0VFmTTzuPJeuuXfWZHAgAAAAAAcKKQg1eqGhKgVwZHSZI+XHVQGw4nmpwIAAAAAADgHxRy8Fq9m1XTLa1ryGFIkxbEKCXDbnYkAAAAAAAACjl4t2cHNFGNCoGKPXNOz3+7y+w4AAAAAAAAFHLwbsEBNk0d1lJWi/Tlplj9uP2E2ZEAAAAAAEAZRyEHr9e2TrgmdKknSZqyZLtOJmeYnAgAAAAAAJRlFHIoEx7u0VDNIkN0Nt2ux77cJsMwzI4EAAAAAADKKAo5lAl+vla9Nayl/H2tit6XoDlrj5gdCQAAAAAAlFEUcigz6lcJ1r/6NpYkvfTDbh04lWJyIgAAAAAAUBZRyKFMGdWxtjo3rKzMbIceXhCjrGyH2ZEAAAAAAEAZQyGHMsVisej1W5orLMimHXHJeuuXfWZHAgAAAAAAZQyFHMqcqiEBenlQlCTpw1UHteFwosmJAAAAAABAWUIhhzKpT1Q1DbmmhhyGNGlBjFIy7GZHAgAAAAAAZQSFHMqs525qohoVAhV75pye/3aX2XEAAAAAAEAZQSGHMis4wKY3h7aU1SJ9uSlWy3acMDsSAAAAAAAoAyjkUKa1qxuuCV3qSZKeXLxdJ5MzTE4EAAAAAAC8HYUcyryHezRUs8gQnU2367Evt8kwDLMjAQAAAAAAL0YhhzLPz9eqt4a1lL+vVdH7EjRn7RGzIwEAAAAAAC9GIQdIql8lWFP6NJIkvfTDbh04lWJyIgAAAAAA4K0o5ID/M6pjHV3foJIysx16eEGMsrIdZkcCAAAAAABeiEIO+D9Wq0Vv3NpCYUE27YhL1tu/7jM7EgAAAAAA8EIUckAuVUMC9PKgKEnSBysPasPhRJMTAQAAAAAAb0MhB1ygT1Q1DbmmhhyGNGlBjFIy7GZHAgAAAAAAXoRCDriE525qohoVAhV75pye/3aX2XEAAAAAAIAXoZADLiE4wKY3h7aUxSJ9uSlWy3acMDsSAAAAAADwEhRyQD7a1Q3XhC71JElTFm/XqeQMkxMBAAAAAABvQCEHFGBSj4ZqWj1EZ9LteuzLbTIMw+xIAAAAAADAw1HIAQXw87Xq7eEt5e9r1ap9CZr75xGzIwEAAAAAAA9HIQdcRv0qwZrSp5Ek6cXvd+vAqRSTEwEAAAAAAE9GIQe4YFTHOrq+QSVlZjv08IIYZWU7zI4EAAAAAAA8FIUc4AKr1aI3bm2hsCCbdsQl6+1f95kdCQAAAAAAeCiPLOSio6M1YMAAVa9eXRaLRV9//XWe+1NTU3X//ferRo0aCgwMVJMmTfThhx/mGZORkaGJEyeqYsWKKl++vIYMGaKTJ0+W4FbA01QNCdBLg6IkSR+sPKiNhxNNTgQAAAAAADyRRxZyaWlpatGihaZNm3bJ+ydPnqxly5bps88+0+7du/Xwww/r/vvv19KlS51jJk2apG+//VaLFi3SqlWrdPz4cQ0ePLikNgEeqm9UNQ25poYchjRpYYxSMuxmRwIAAAAAAB7GIwu5Pn366L///a8GDRp0yfvXrFmj0aNHq2vXrqpTp47uvvtutWjRQuvXr5ckJSUlafr06XrzzTfVvXt3tW7dWjNnztSaNWv0559/luSmwAM9d1MT1agQqGOJ5/Sfb3eZHQcAAAAAAHgYX7MDFIdOnTpp6dKlGjdunKpXr66VK1dq3759mjp1qiRp06ZNstvt6tGjh3OZRo0aqVatWlq7dq06dOhwyfVmZmYqMzPTeT05OVmSZLfbZbezp1RZEeAjvTa4mUbM2KBFm2LVpUFF3di0qtmx8nX+tclrFCjdmKuAZ2CuAp6BuQqUft44TwuzLV5ZyL377ru6++67VaNGDfn6+spqteqTTz5R586dJUnx8fHy8/NTWFhYnuWqVq2q+Pj4fNf78ssv6/nnn7/o9p9//llBQUFu3QaUfjdUs+qX41Y98WWMEvfnKNTP7EQFW758udkRALiAuQp4BuYq4BmYq0Dp503zND093eWxXlvI/fnnn1q6dKlq166t6OhoTZw4UdWrV8+zV1xhTZkyRZMnT3ZeT05OVs2aNdWrVy+FhIS4Izo8SI9sh279eJ12nUjRL8lV9ekd18hisZgd6yJ2u13Lly9Xz549ZbPZzI4DIB/MVcAzMFcBz8BcBUo/b5yn579J6QqvK+TOnTunf/3rX1qyZIn69esnSWrevLliYmL0xhtvqEePHoqIiFBWVpbOnj2bZy+5kydPKiIiIt91+/v7y9/f/6LbbTab17x44DqbTXp7eCv1f/d3Re//W/M3HdeojnXMjpUvXqeAZ2CuAp6BuQp4BuYqUPp50zwtzHZ45EkdCnL+eG5Wa95N8/HxkcPhkCS1bt1aNptNv/76q/P+vXv36ujRo+rYsWOJ5oVna1A1WFP6NJIkvfj9bh04lWpyIgAAAAAAUNp55B5yqampOnDggPP6oUOHFBMTo/DwcNWqVUtdunTRY489psDAQNWuXVurVq3SnDlz9Oabb0qSQkNDNX78eE2ePFnh4eEKCQnRAw88oI4dO+Z7QgcgP6M61tGve05p9f7TmrQgRl/d20l+vl7XdQMAAAAAADfxyNZg48aNatWqlVq1aiVJmjx5slq1aqVnnnlGkjR//ny1bdtWI0aMUJMmTfTKK6/oxRdf1IQJE5zrmDp1qvr3768hQ4aoc+fOioiI0OLFi03ZHng2q9WiN25tobAgm7bHJemdX/ebHQkAAAAAAJRiHrmHXNeuXWUYRr73R0REaObMmQWuIyAgQNOmTdO0adPcHQ9lUNWQAL00KEr3fb5Z7688oK5XV1abOuFmxwIAAAAAAKWQR+4hB5RGfaOqafA1kXIY0qSFMUrJsJsdCQAAAAAAlEIUcoAbPXdTU0WGBepY4jn959tdZscBAAAAAAClEIUc4EYhATZNHdZSFou0aFOslu04YXYkAAAAAABQylDIAW7Wrm64JnSpJ0masni7TiVnmJwIAAAAAACUJhRyQDGY1KOhmlYP0Zl0ux77cluBJyEBAAAAAABlC4UcUAz8fK16a1hL+ftatWpfgub+ecTsSAAAAAAAoJSgkAOKSYOqwXqyTyNJ0ovf79aBU6kmJwIAAAAAAKUBhRxQjEZ3rKPrG1RSZrZDkxbEKCvbYXYkAAAAAABgMgo5oBhZrRa9fksLhQbatD0uSe/8ut/sSAAAAAAAwGQUckAxiwgN0MuDoyRJ7688oE1HEk1OBAAAAAAAzEQhB5SAvlHVNPiaSDkM6eEFMUrNzDY7EgAAAAAAMAmFHFBCnrupqSLDAnUs8ZyeX7rT7DgAAAAAAMAkFHJACQkJsGnqsJayWKRFm2K1bMcJsyMBAAAAAAATUMgBJahd3XDd07meJGnK4u06lZxhciIAAAAAAFDSKOSAEja5Z0M1qRaiM+l2Pf7VNhmGYXYkAAAAAABQgijkgBLm52vV28Nbyt/XqpV7E/TZn0fMjgQAAAAAAEoQhRxgggZVg/Vkn0aSpBd/2K0Dp1JNTgQAAAAAAEoKhRxgktEd6+j6BpWUYXdo0oIYZWU7zI4EAAAAAABKAIUcYBKr1aLXb2mh0ECbtscl6Z1f95sdCQAAAAAAlAAKOcBEEaEBemlQlCTp/ZUHtOlIosmJAAAAAABAcaOQA0zWr3k1DW4VKYchTVqwVamZ2WZHAgAAAAAAxYhCDigFnru5qSLDAnU0MV3/+Xan2XEAAAAAAEAxopADSoGQAJumDmspi0VauDFWy3bEmx0JAAAAAAAUEwo5oJRoVzdc93SuJ0masnibTiVnmJwIAAAAAAAUBwo5oBSZ3LOhmlQL0Zl0ux7/apsMwzA7EgAAAAAAcDMKOaAU8fO16q3hLeXna9XKvQn67M8jZkcCAAAAAABuRiEHlDINqwbryd6NJEkv/rBbBxNSTU4EAAAAAADciUIOKIXGdKqj6xtUUobdoUkLYmTPcZgdCQAAAAAAuAmFHFAKWa0WvX5LC4UG2rQtNknv/Lrf7EgAAAAAAMBNKOSAUioiNEAvDYqSJE1bcUCbjiSanAgAAAAAALgDhRxQivVrXk2DW0XKYUiTFmxVama22ZEAAAAAAMAVopADSrnnbm6qyLBAHU1M13++3Wl2HAAAAAAAcIUo5IBSLiTApjeHtpDFIi3cGKufdsabHQkAAAAAAFwBCjnAA7S/qqLu6VxPkjRl8XadSskwOREAAAAAACgqCjnAQ0zu2VBNqoUoMS1Lj3+5TYZhmB0JAAAAAAAUAYUc4CH8fK16a3hL+flatXJvgj7784jZkQAAAAAAQBFQyAEepGHVYD3Zu5Ek6cUfdutgQqrJiQAAAAAAQGFRyAEeZkynOrqufiVl2B2atCBG9hyH2ZEAAAAAAEAhUMgBHsZqteiNW1soNNCmbbFJeufX/WZHAgAAAAAAhUAhB3igiNAAvTiomSRp2ooD2nQk0eREAAAAAADAVRRygIfq37y6BreKlMOQJi3YqtTMbLMjAQAAAAAAF1DIAR7suZubKjIsUEcT0/Wfb3eaHQcAAAAAALiAQg7wYCEBNr05tIUsFmnhxlj9tDPe7EgAAAAAAOAyKOQAD9f+qoq6u/NVkqQpi7frVEqGyYkAAAAAAEBBKOQALzC5Z0M1rhaixLQsPf7lNhmGYXYkAAAAAACQDwo5wAv4+/ro7eEt5edr1cq9Cfps3VGzIwEAAAAAgHxQyAFeomHVYD3Zu5Ek6cXvd+lgQqrJiQAAAAAAwKVQyAFeZEynOrqufiVl2B2atCBG9hyH2ZEAAAAAAMAFKOQAL2K1WvTGrS0UGmjTttgkvfPrfrMjAQAAAACAC1DIAV4mIjRALw5qJkmatuKANh89a24gAAAAAACQB4Uc4IX6N6+uQa0i5TCkR7/crowcsxMBAAAAAIDzKOQAL/X8zU0VGRaoY2fOafEhpjoAAAAAAKUFn9IBLxUSYNP/hraQxSKtS7Bq5pojZkcCAAAAAACikAO8WoerKuqRHg0kSS/9uFffxMSZnAgAAAAAAFDIAV7u7uvrqHOEQ5L06KKtWr0/weREAAAAAACUbRRygJezWCwaVMehfs0iZM8xNGHuJm2PTTI7FgAAAAAAZRaFHFAGWC3Sq0OaqVO9ikrLytHYWet15O80s2MBAAAAAFAmUcgBZYS/r1Uf3dFaTaqF6HRqlkbNWK+ElEyzYwEAAAAAUOZQyAFlSHCATbPGtVXN8EAd+TtdY2etV2pmttmxAAAAAAAoUyjkgDKmSnCA5oxrr4rl/LQjLlkT5m5SVrbD7FgAAAAAAJQZFHJAGVS3UjnNGNNWQX4++v3AaT325VY5HIbZsQAAAAAAKBMo5IAyqkXNMH0wsrV8rRZ9E3NcL/2w2+xIAAAAAACUCRRyQBnWpWFlvX5rc0nSp78f0sfRB01OBAAAAACA96OQA8q4Qa1q6F99G0mSXvphj5ZsiTU5EQAAAAAA3o1CDoDuuv4qjb+uriTpsUXbtGpfgsmJAAAAAADwXhRyAGSxWPRU38a6uWV1ZTsM3fvZJm09dtbsWAAAAAAAeCUKOQCSJKvVotdvaaHrG1RSelaOxs3aoEOn08yOBQAAAACA16GQA+Dk52vVByNbq1lkiP5Oy9KoGet0KiXD7FgAAAAAAHgVCjkAeZT399XMMe1Uu2KQjiWe05gZG5SSYTc7FgAAAAAAXoNCDsBFKgf7a864dqpU3k+7TiTrnrmblJmdY3YsAAAAAAC8AoUcgEuqXbGcZo5pp3J+Plpz8G89snCrHA7D7FgAAAAAAHg8CjkA+YqqEaoP72gtm49F3207oRe+3yXDoJQDAAAAAOBKUMgBKND1DSrrjVtbSJJm/nFYH676y+REAAAAAAB4Ngo5AJd1c8tI/btfY0nSq8v26MtNsSYnAgAAAADAc1HIAXDJnddfpXs6XyVJeuKrbVqx95TJiQAAAAAA8EwUcgBc9kTvRhrUKlI5DkP3fbZZW46eMTsSAAAAAAAeh0IOgMusVoteu6W5OjesrHP2HI2btUEHE1LNjgUAAAAAgEehkANQKDYfqz4YcY2a1wjVmXS7Rk1fr5PJGWbHAgAAAADAY1DIASi0cv6+mjGmrepUDFLc2XMaM3ODkjPsZscCAAAAAMAjUMgBKJJK5f01Z1x7VSrvr90nknX3nI3KsOeYHQsAAAAAgFKPQg5AkdWqGKRZY9uqvL+v/vwrUZMXxijHYZgdCwAAAACAUo1CDsAVaRYZqo/vaC2bj0U/bI/Xf77dKcOglAMAAAAAID8eWchFR0drwIABql69uiwWi77++uuLxuzevVs33XSTQkNDVa5cObVt21ZHjx513p+RkaGJEyeqYsWKKl++vIYMGaKTJ0+W4FYA3qNT/Up6c2hLWSzS7LVH9P7Kg2ZHAgAAAACg1PLIQi4tLU0tWrTQtGnTLnn/wYMHdd1116lRo0ZauXKltm3bpqeffloBAQHOMZMmTdK3336rRYsWadWqVTp+/LgGDx5cUpsAeJ0BLarrmf5NJEmv/7RXCzccMzkRAAAAAAClk6/ZAYqiT58+6tOnT773P/XUU+rbt69ee+0152316tVzXk5KStL06dM1b948de/eXZI0c+ZMNW7cWH/++ac6dOhQfOEBLzb22ro6lZKpD1Ye1JQl21WxvJ9uaFzV7FgAAAAAAJQqHlnIFcThcOj777/X448/rhtvvFFbtmxR3bp1NWXKFA0cOFCStGnTJtntdvXo0cO5XKNGjVSrVi2tXbs230IuMzNTmZmZzuvJycmSJLvdLrvdXnwbBVyB86/NknqNTup+leKTzmnJluOaOG+z5oxpo1a1wkrksQFPVtJzFUDRMFcBz8BcBUo/b5ynhdkWryvkTp06pdTUVL3yyiv673//q1dffVXLli3T4MGDtWLFCnXp0kXx8fHy8/NTWFhYnmWrVq2q+Pj4fNf98ssv6/nnn7/o9p9//llBQUHu3hTArZYvX15ij3W9n7Q3zKpdZ6UxM9fpoaY5imCKAC4pybkKoOiYq4BnYK4CpZ83zdP09HSXx3pdIedwOCRJN998syZNmiRJatmypdasWaMPP/xQXbp0KfK6p0yZosmTJzuvJycnq2bNmurVq5dCQkKuLDhQTOx2u5YvX66ePXvKZrOV2OPe0Ctbo2Zu0tbYJM0+XF4L7m6niJCAyy8IlFFmzVUAhcNcBTwDcxUo/bxxnp7/JqUrvK6Qq1Spknx9fdWkSZM8tzdu3Fi///67JCkiIkJZWVk6e/Zsnr3kTp48qYiIiHzX7e/vL39//4tut9lsXvPigfcq6ddpqM2mmWPb6ZYP1uiv02m6c84WLZzQUaGBzBWgIPxNATwDcxXwDMxVoPTzpnlamO3wyLOsFsTPz09t27bV3r1789y+b98+1a5dW5LUunVr2Ww2/frrr8779+7dq6NHj6pjx44lmhfwZuHl/DR7XDtVCfbX3pMpumvORmXYc8yOBQAAAACAqTxyD7nU1FQdOHDAef3QoUOKiYlReHi4atWqpccee0zDhg1T586d1a1bNy1btkzffvutVq5cKUkKDQ3V+PHjNXnyZIWHhyskJEQPPPCAOnbsyBlWATerGR6k2ePaaeiHa7X+UKIenh+jaSOukY/VYnY0AAAAAABM4ZF7yG3cuFGtWrVSq1atJEmTJ09Wq1at9Mwzz0iSBg0apA8//FCvvfaaoqKi9Omnn+qrr77Sdddd51zH1KlT1b9/fw0ZMkSdO3dWRESEFi9ebMr2AN6ucbUQfTyqjfx8rFq2M17PLt0hwzDMjgUAAAAAgCk8cg+5rl27XvbD/Lhx4zRu3Lh87w8ICNC0adM0bdo0d8cDcAkd61XUW8NbauK8zfrsz6OqEhygB29oYHYsAAAAAABKnEfuIQfAM/WNqqbnb2oqSXpz+T59sf6oyYkAAAAAACh5FHIAStSojnV0f7f6kqSnlmzX8l0nTU4EAAAAAEDJopADUOIe6dVQQ9vUkMOQ7p+3WRsPJ5odCQAAAACAEkMhB6DEWSwWvTQoSjc0qqLMbIfGz96ofSdTzI4FAAAAAECJoJADYApfH6veu/0aXVMrTEnn7Bo9Y71OJJ0zOxYAAAAAAMWOQg6AaQL9fDR9dFvVq1xOJ5IyNHrGeiWl282OBQAAAABAsaKQA2CqCuX8NGd8e1UN8de+k6m6c84GZdhzzI4FAAAAAECxoZADYLrIsEDNHtdOwQG+2nD4jB74YouycxxmxwIAAAAAoFhQyAEoFRpFhOjTUW3k52vV8l0n9fQ3O2UYhtmxAAAAAABwOwo5AKVG+6sq6p3hrWS1SF+sP6q3ftlvdiQAAAAAANyOQg5AqdK7WYT+c3MzSdLbv+7XZ38eMTkRAAAAAADuRSEHoNQZ2aG2HryhgSTpmW92aNmOeJMTAQAAAADgPhRyAEqlST0a6LZ2NeUwpAfnb9H6Q4lmRwIAAAAAwC0o5ACUShaLRS/c3Ew9GldVVrZDd87eoL3xKWbHAgAAAADgilHIASi1fH2seu/2VmpTu4KSM7I1esZ6xZ09Z3YsAAAAAACuCIUcgFItwOajT0e3UYMq5RWfnKFR09fpTFqW2bEAAAAAACgyCjkApV5YkJ9mj2unaqEBOpiQpvGzN+hcVo7ZsQAAAAAAKBIKOQAeoXpYoGaPa6eQAF9tPnpW98/brOwch9mxAAAAAAAoNAo5AB6jYdVgzRjTVv6+Vv2655SeWrJDhmGYHQsAAAAAgEKhkAPgUdrUCde7t7WS1SIt2HhMby7fZ3YkAAAAAAAKhUIOgMfp1TRCLw6KkiS9+9sBzV172NxAAAAAAAAUAoUcAI90W7tamtSjoSTpmaU79cP2EyYnAgAAAADANRRyADzWgzfU14j2tWQY0sPzY/TnX3+bHQkAAAAAgMuikAPgsSwWi/5zczPd2LSqsnIcumv2Ru0+kWx2LAAAAAAACkQhB8Cj+Vgtent4K7WrE66UzGyNnrFexxLTzY4FAAAAAEC+KOQAeLwAm48+Gd1GV1cN1qmUTI2euV6JaVlmxwIAAAAA4JIo5AB4hdBAm2aPa6fqoQH6KyFN42ZtUHpWttmxAAAAAAC4CIUcAK8RERqgOePbKSzIpphjZzXx882y5zjMjgUAAAAAQB4UcgC8Sv0qwZo+uq0CbFat2JugKYu3yzAMs2MBAAAAAOBEIQfA67SuXUHTbr9GPlaLvtwUq9d/2mt2JAAAAAAAnCjkAHilGxpX1UuDmkmS3l95ULP+OGRyIgAAAAAA/kEhB8BrDWtbS4/2aihJev67Xfpu23GTEwEAAAAAQCEHwMtN7FZfozrWlmFIkxds1ZoDp82OBAAAAAAo4yjkAHg1i8WiZwc0Vd+oCGXlOHT33E3aeTzJ7FgAAAAAgDKMQg6A1/OxWvTm0JZqXzdcqZnZGjNzg44lppsdCwAAAABQRlHIASgTAmw++mR0GzWKCFZCSqZGzVivv1MzzY4FAAAAACiDKOQAlBkhATbNHtdOkWGBOnQ6TeNmbVBaZrbZsQAAAAAAZQyFHIAypWpIgOaMb6cKQTZtjU3SvZ9vlj3HYXYsAAAAAEAZQiEHoMypV7m8Zoxpq0Cbj6L3JeiJL7fJ4TDMjgUAAAAAKCMo5ACUSa1qVdD7I6+Rj9WixVvi9OpPe8yOBAAAAAAoIyjkAJRZ3a6uoleHNJckfbTqL03//ZDJiQAAAAAAZQGFHIAy7ZbWNfR476slSS98t0vfxMSZnAgAAAAA4O0o5ACUefd2qacxnepIkh5dtFW/7z9tbiAAAAAAgFejkANQ5lksFj3Tv4n6Na8me46he+Zu1I64JLNjAQAAAAC8FIUcAEiyWi16c2gLdapXUWlZORozc72O/J1mdiwAAAAAgBeikAOA/+Pv66OP7mitJtVCdDo1S6NmrFdCSqbZsQAAAAAAXoZCDgByCQ6wada4tqoZHqgjf6dr3KwNSs3MNjsWAAAAAMCLUMgBwAWqBAdozrj2Ci/np+1xSbr3s03KynaYHQsAAAAA4CUo5ADgEupWKqeZY9oqyM9Hq/ef1mNfbpXDYZgdCwAAAADgBSjkACAfLWqG6YORreVrteibmON6+cfdZkcCAAAAAHgBCjkAKECXhpX12i3NJUmfrD6kT6L/MjkRAAAAAMDTUcgBwGUMvqaGpvRpJEl68YfdWrIl1uREAAAAAABPRiEHAC64u/NVGn9dXUnSY4u2KXpfgsmJAAAAAACeikIOAFxgsVj0VN/GurlldWU7DE34bJO2xZ41OxYAAAAAwANRyAGAi6xWi16/pYWuq19J6Vk5Gjtzgw6dTjM7FgAAAADAw1DIAUAh+Pla9eEdrdUsMkR/p2Vp1Ix1OpWSYXYsAAAAAIAHoZADgEIq7++rmWPaqXbFIB1LPKexMzcoJcNudiwAAAAAgIegkAOAIqgc7K8549qpUnk/7TyerAmfbVJmdo7ZsQAAAAAAHoBCDgCKqHbFcpo5pp3K+fnojwN/65GFW+VwGGbHAgAAAACUchRyAHAFomqE6sM7WsvmY9F3207ohe93yTAo5QAAAAAA+aOQA4ArdH2Dynrj1haSpJl/HNZH0X+ZnAgAAAAAUJpRyAGAG9zcMlL/7tdYkvTKj3v01aZYkxMBAAAAAEorCjkAcJM7r79Kd3e+SpL0+FfbtGLvKZMTAQAAAABKIwo5AHCjJ3s30qBWkcpxGLrvs82KOXbW7EgAAAAAgFKGQg4A3Mhqtei1W5qrc8PKOmfP0bhZG/RXQqrZsQAAAAAApQiFHAC4mc3Hqg9GXKPmNUKVmJalUTPW61RyhtmxAAAAAAClBIUcABSDcv6+mjGmrepUDFLsmXMaPXODkjPsZscCAAAAAJQCFHIAUEwqlffXnHHtVam8v3afSNbdczYqMzvH7FgAAAAAAJNRyAFAMapVMUizxrZVeX9f/flXoiYv2Koch2F2LAAAAACAiSjkAKCYNYsM1cd3tJbNx6Lvt5/Qf77dKcOglAMAAACAsopCDgBKQKf6lfTm0JayWKTZa4/o/ZUHzY4EAAAAADAJhRwAlJABLarrmf5NJEmv/7RXCzceMzkRAAAAAMAMFHIAUILGXltXE7rUkyRNWbxdv+4+aXIiAAAAAEBJo5ADgBL2RO+rNeSaGspxGJo4b7M2Hz1jdiQAAAAAQAmikAOAEmaxWPTKkCh1vbqyMuwOjZu1QQdOpZodCwAAAABQQijkAMAENh+r3h9xjVrUDNPZdLtGz1iv+KQMs2MBAAAAAEoAhRwAmCTIz1czx7TVVZXKKe7sOY2ZuV5J5+xmxwIAAAAAFDMKOQAwUXg5P80e105Vgv21Jz5Fd83ZqAx7jtmxAAAAAADFiEIOAExWMzxIs8a2U7C/r9YfStTD82OU4zDMjgUAAAAAKCYUcgBQCjSpHqKPR7WRn49Vy3bG69mlO2QYlHIAAAAA4I0o5ACglOhYr6LeGt5SFov02Z9H9d5vB8yOBAAAAAAoBhRyAFCK9I2qpucGNJUk/W/5Ps1ff9TkRAAAAAAAd/PIQi46OloDBgxQ9erVZbFY9PXXX+c7dsKECbJYLHrrrbfy3J6YmKgRI0YoJCREYWFhGj9+vFJTU4s3OAC4YHSnOprYrZ4k6V9Ltmv5rpMmJwIAAAAAuJNHFnJpaWlq0aKFpk2bVuC4JUuW6M8//1T16tUvum/EiBHauXOnli9fru+++07R0dG6++67iysyABTKo72u1tA2NeQwpPvnbdamI4lmRwIAAAAAuImv2QGKok+fPurTp0+BY+Li4vTAAw/op59+Ur9+/fLct3v3bi1btkwbNmxQmzZtJEnvvvuu+vbtqzfeeOOSBR4AlCSLxaKXBkXp79Qs/brnlMbN2qgvJ3RUg6rBZkcDAAAAAFwhjyzkLsfhcOiOO+7QY489pqZNm150/9q1axUWFuYs4ySpR48eslqtWrdunQYNGnTJ9WZmZiozM9N5PTk5WZJkt9tlt9vdvBWAe5x/bfIa9UxTb43SqFkbFXMsSXdMX6eFd7dXtdAAs2OhGDBXAc/AXAU8A3MVKP28cZ4WZlu8spB79dVX5evrqwcffPCS98fHx6tKlSp5bvP19VV4eLji4+PzXe/LL7+s559//qLbf/75ZwUFBV1ZaKCYLV++3OwIKKKhVaUTp30Un5ypodNW6aFmOQryyndvSMxVwFMwVwHPwFwFSj9vmqfp6ekuj/W6j3SbNm3S22+/rc2bN8tisbh13VOmTNHkyZOd15OTk1WzZk316tVLISEhbn0swF3sdruWL1+unj17ymazmR0HRXRtl3Ma+vF6xadk6qtTlTRzdGsF2HzMjgU3Yq4CnoG5CngG5ipQ+nnjPD3/TUpXeF0ht3r1ap06dUq1atVy3paTk6NHHnlEb731lg4fPqyIiAidOnUqz3LZ2dlKTExUREREvuv29/eXv7//RbfbbDavefHAe/E69Wy1K9s0e3w73frhWm08claPfLlD74+4Rr4+HnluHhSAuQp4BuYq4BmYq0Dp503ztDDb4XWf5O644w5t27ZNMTExzp/q1avrscce008//SRJ6tixo86ePatNmzY5l/vtt9/kcDjUvn17s6IDQIEaRYTo01Ft5Odr1c+7Tur+eVuUYc8xOxYAAAAAoJA8cg+51NRUHThwwHn90KFDiomJUXh4uGrVqqWKFSvmGW+z2RQREaGrr75aktS4cWP17t1bd911lz788EPZ7Xbdf//9Gj58OGdYBVCqtb+qot69rZUemLdFy3bG67ZP/tQno9qoUvmL994FAAAAAJROHrmH3MaNG9WqVSu1atVKkjR58mS1atVKzzzzjMvr+Pzzz9WoUSPdcMMN6tu3r6677jp9/PHHxRUZANzmxqYRmju+nUIDbdpy9KwGv79GfyWkmh0LAAAAAOAij9xDrmvXrjIMw+Xxhw8fvui28PBwzZs3z42pAKDktL+qohbf10ljZq7X0cR0Df5gjT6+o43a1Q03OxoAAAAA4DI8cg85AIBUr3J5LbnvWrWsGaaz6XaN/HSdlm49bnYsAAAAAMBlUMgBgAerVN5fX9zVQTc2raqsHIce/GKL3l95oFB7EQMAAAAAShaFHAB4uEA/H70/orXGX1dXkvTasr3615Ltys5xmJwMAAAAAHApFHIA4AV8rBY93b+JnhvQRFaL9MX6Yxo/e6NSM7PNjgYAAAAAuACFHAB4kTHX1tVHd7RRgM2qVfsSdOuHa3Ui6ZzZsQAAAAAAuVDIAYCX6dmkqhbc3VGVyvtr94lkDZq2RruOJ5sdCwAAAADwfyjkAMALtagZpiX3dVL9KuUVn5yhoR+t1ap9CWbHAgAAAACIQg4AvFbN8CB9NaGTOlwVrtTMbI2btUHz1x81OxYAAAAAlHkUcgDgxUKDbJozrr0Gt4pUjsPQk4u36/Wf9sjhMMyOBgAAAABlFoUcAHg5P1+r/je0hR68oYEkadqKg3p4QYwys3NMTgYAAAAAZROFHACUARaLRZN7NtTrtzSXr9WipVuP645P1+tsepbZ0QAAAACgzKGQA4Ay5NY2NTV7XDsF+/tq/eFEDf5gjY7+nW52LAAAAAAoUyjkAKCMubZ+JX15bydVDw3QXwlpGvT+H9p89IzZsQAAAACgzKCQA4Ay6OqIYC2ZeK2aRYbo77Qs3fbxn1q244TZsQAAAACgTKCQA4AyqmpIgBbc3VHdG1VRZrZD936+WZ+u/kuGwRlYAQAAAKA4UcgBQBlWzt9XH9/RWiM71JJhSP/9free/3aXchyUcgAAAABQXCjkAKCM8/Wx6oWbm+lffRtJkmatOax75m5Uela2yckAAAAAwDtRyAEAZLFYdHfnepp2+zXy87Xql92nNOyjP3UqJcPsaAAAAADgdSjkAABO/ZpX0xd3tVd4OT9tj0vSoGlrtP9kitmxAAAAAMCrUMgBAPJoXTtci+/tpDoVgxR39pwGf7BGaw6eNjsWAAAAAHiNYi3kYmNjtXHjRkVHR+vcuXPF+VAAADeqU6mcFt93rdrUrqCUjGyNnrFeX22KNTsWAAAAAHgFtxdyKSkpevrpp1WzZk3Vrl1b7du3V7du3XTo0KE84+bPn6+hQ4fqrrvucncEAIAbhJfz02d3tle/5tVkzzH0yKKtevuX/TIMzsAKAAAAAFfC150r279/v/r27au//vorzwc2i8Vy0dgOHTpo5MiRMgxDo0eP1nXXXefOKAAANwiw+ejd4a1Us0KQPlx1UFN/2adjZ9L10qAo+fly1AMAAAAAKAq3fZrKyMhQv379dPDgQQUFBenxxx/Xd999l+/4OnXqqFu3bpKkpUuXuisGAMDNrFaLnuzTSC8OaiarRfpyU6zGzlqvpHN2s6MBAAAAgEdyWyH3wQcf6MCBAypXrpxWr16tV155RX379i1wmT59+sgwDK1du9ZdMQAAxWRE+9qaPrqtgvx89MeBv3Xrh2sUeybd7FgAAAAA4HHcVsgtXrxYFotFDz30kFq2bOnSMi1atJD0z1ddAQClX7dGVbTwno6qGuKvfSdTNej9NdoRl2R2LAAAAADwKG4r5Hbv3i1J6tWrl8vLVKxYUZJ09uxZd8UAABSzZpGhWnLftWoUEayElEwN/Witft190uxYAAAAAOAx3FbIpaamSpLKly/v8jKZmZmSJJvN5q4YAIASUD0sUAsndNT1DSopPStHd83ZqLlrD5sdCwAAAAA8gtsKufN7ux0+fNjlZXbu3ClJioiIcFcMAEAJCQmwacaYthrapoYchvT0Nzv10g+75XAYl18YAAAAAMowtxVy11xzjSQpOjra5WXmzJkji8Wijh07uisGAKAE2XysenVIcz3aq6Ek6ePov3T/F5uVYc8xORkAAAAAlF5uK+RuueUWGYahjz/+WEePHr3s+LfeestZ3t12223uigEAKGEWi0X3d2+gt4a1lM3Hoh+2x+v2T/7U36mZZkcDAAAAgFLJbYXcHXfcoebNmysjI0Ndu3bVjz/+KMP4/19bslgsMgxDGzZs0IgRI/TII4/IYrHo+uuvV58+fdwVAwBgkoGtIjV3fHuFBPhq89GzGvzBGv2VkGp2LAAAAAAoddxWyFmtVi1dulQ1atTQ4cOH1b9/f4WEhMhisUiSunbtqnLlyqlDhw6aP3++DMPQVVddpYULF7orAgDAZB2uqqjF93VSjQqBOvJ3ugZ/sEYbDieaHQsAAAAAShW3FXKSVKtWLcXExOi2226T1WpVWlqaDMOQYRhKSEhQRkaGc6+5oUOHav369apSpYo7IwAATFa/SrCW3HetWtQM09l0u0Z8uk7fbj1udiwAAAAAKDV83b3C8PBwff7553rppZf0/fffa+PGjTp16pRycnJUsWJFtWrVSgMGDFDDhg3d/dAAgFKicrC/5t/VQQ/O36Llu07qgS+2KPbMOU3ocpVzz2kAAAAAKKvcXsidV7t2bd13333FtXoAQCkX6OejD0e21n+/36WZfxzWq8v26NiZdP3npqby9XHrDtoAAAAA4FH4RAQAKDY+VoueHdBUz/RvIotFmrfuqMbP3qjUzGyzowEAAACAaSjkAADFbtx1dfXRyNYKsFm1al+Chn64VvFJGWbHAgAAAABTuK2QW7NmjXx8fBQYGKi4uLjLjo+Li1NAQIB8fX21adMmd8UAAJRSvZpGaP7dHVWpvJ92nUjWoPf/0O4TyWbHAgAAAIAS57ZCbv78+TIMQ/3791dkZORlx0dGRmrAgAFyOByaN2+eu2IAAEqxljXDtOS+a1WvcjmdSMrQrR+uVfS+BLNjAQAAAECJclsh9/vvv8tisahPnz4uL9OvXz9JUnR0tLtiAABKuZrhQVp877VqXzdcqZnZGjtrgxZsOGp2LAAAAAAoMW4r5A4ePChJatKkicvLNGrUSJJ04MABd8UAAHiA0CCb5oxvp4EtqyvHYeiJr7brjZ/2yjAMs6MBAAAAQLFzWyGXkfHPwbkDAgJcXsbf31+SlJaW5q4YAAAP4e/ro6nDWuqB7vUlSe+tOKCHF8QoMzvH5GQAAAAAULzcVsiFh4dLko4edf1rR7GxsZKksLAwd8UAAHgQi8WiR3pdrdeGNJev1aJvYo7rjunrdTY9y+xoAAAAAFBs3FbInf+q6tKlS11e5uuvv5YkXX311e6KAQDwQEPb1tTMsW0V7O+r9YcSNfiDNTr6d7rZsQAAAACgWLitkOvbt68Mw9CcOXO0evXqy46Pjo7W3LlzZbFY1L9/f3fFAAB4qOsbVNaiezuqWmiA/kpI0+AP/lDMsbNmxwIAAAAAt3NbIXfPPfeoUqVKysnJUd++ffXee+85jyuXW0ZGht555x3169dP2dnZqlChgu699153xQAAeLBGESH6euK1alItRKdTszT847VatiPe7FgAAAAA4FZuK+TKly+vefPmycfHR+np6XrooYdUpUoVdevWTbfffrtuv/12devWTZUrV9akSZOUlpYmX19fffHFFwoJCXFXDACAh6saEqCFEzqq29WVlWF36N7PN2n674fMjgUAAAAAbuPrzpX16NFDP/30k+644w4dP35cqampio6OzjPGMAxJUmRkpObOnauuXbu6MwIAwAuU9/fVJ6Pa6NmlO/X5uqN64btdOpaYrqf7N5GP1WJ2PAAAAAC4Im4t5CSpW7duOnjwoObMmaPvvvtOW7Zs0enTpyVJlSpV0jXXXKMBAwZo5MiR8vf3d/fDAwC8hK+PVf8d2Ew1w4P0yo97NGvNYcWdPae3h7dUkJ/b/3wBAAAAQIkplk80/v7+uuuuu3TXXXcVx+oBAGWExWLRhC71VKNCoCYv3Krlu07qto//1Kej26pyMP+pAwAAAMAzue0YcgAAFJf+zatr3p3tVSHIpq2xSRr0/h86cCrF7FgAAAAAUCQUcgAAj9CmTrgW33etalcMUuyZcxr8/hqtPfi32bEAAAAAoNAo5AAAHqNupXJafG8nXVMrTMkZ2Ro1Y52WbIk1OxYAAAAAFEqhjyF31VVXSfrnuD4HDx686PaiuHBdAADkp2J5f827q4MeWbhV328/oUkLtupY4jk90L2+LBbOwAoAAACg9Ct0IXf48GFJuuhDz/nbi4IPUACAwgiw+ejd21qpRoVAfRT9l95cvk/HEtP10uAo2XzY+RsAAABA6VboQm706NGFuh0AgOJgtVo0pW9j1QgP0rPf7NCiTbE6kZSh90deo5AAm9nxAAAAACBfhS7kZs6cWajbAQAoTnd0qK3IsADdP2+Lfj9wWrd+sFYzxrZVZFig2dEAAAAA4JL4Xg8AwON1b1RVC+/pqCrB/tp7MkWDpv2hHXFJZscCAAAAgEtyWyE3btw4jRs3TosWLXLXKgEAcFmzyFAtmXitrq4arFMpmRr60Vr9tuek2bEAAAAA4CJuK+Rmz56t2bNnKyQkxF2rBACgUCLDArXo3o66rn4lpWfl6M7ZGzX3zyNmxwIAAACAPNxWyFWuXFmSVLVqVXetEgCAQgsJsGnGmLa6pXUNOQzp6a936OUfdsvhMMyOBgAAAACS3FjINWnSRJJ05Ah7IgAAzOXna9XrtzTX5J4NJUkfRf+lB77Yogx7jsnJAAAAAMCNhdzIkSNlGIZmz57trlUCAFBkFotFD97QQFOHtZDNx6Lvt5/QiE/XKTEty+xoAAAAAMo4txVyY8eO1Q033KBvvvlGzz33nAyDrwYBAMw3qFUNzR7XTsEBvtp05IwGv/+HDp1OMzsWAAAAgDLM110rWr16tR599FElJCTohRde0IIFCzRs2DA1b95cFSpUkI+PT4HLd+7c2V1RAADIo1O9Slp8byeNmblBh/9O1+D3/9Ano9qoTZ1ws6MBAAAAKIPcVsh17dpVFovFeX3fvn164YUXXFrWYrEoOzvbXVEAALhIg6rBWjKxk+6cvVHbYpN0+6fr9ObQFurfvLrZ0QAAAACUMW77yqokGYZR5B8AAIpbleAAzb+7g3o0rqqsbIfun7dFH646yN8hAAAAACXKbXvIrVixwl2rAgCg2AT5+eqjO1rrhe92adaaw3rlxz06lpiu529qKl8ft/4/FQAAAABcktsKuS5durhrVQAAFCsfq0XP3dRUNcOD9N/vd+nzdUd1/Ow5vXf7NSrn77Y/jQAAAABwSVf8qeP777/XsmXLdOTIEeXk5Kh69erq2rWrhg4dKpvN5o6MAAAUi/HX1VVkWKAeXrBFK/YmaOhHazVjTFtVDQkwOxoAAAAAL1bkQu7kyZMaOHCg1q9ff9F9M2bM0DPPPKOvv/5aUVFRVxQQAIDi1LtZhL4I6aA7Z2/UzuPJGjjtD80c21aNIkLMjgYAAADASxXpYDk5OTm66aabtG7dunxP0nDo0CHdeOONOn36tLszAwDgVq1qVdCS+67VVZXL6URShm79YK1+38/fLwAAAADFo0iF3MKFC7VhwwZZLBbVr19f06dP1/bt27Vnzx4tWrRIHTp0kPTPXnT/+9//3BoYAIDiUKtikBbf20nt6oYrJTNbY2au18INx8yOBQAAAMALFbmQk6Q6depo/fr1Gjt2rJo2baqGDRtqyJAhWr16tbp06SLDMLRo0SK3BgYAoLiEBflp7vh2urlldWU7DD3+1Tb97+e9MgzD7GgAAAAAvEiRCrktW7bIYrHokUceUVhY2EX3+/j46Pnnn5ckHTp0SCkpKVcUEgCAkuLv66OpQ1vq/m71JUnv/nZAkxbEKDM7x+RkAAAAALxFkQq5hIQESVKbNm3yHZP7Po4jBwDwJFarRY/eeLVeGRwlH6tFX8cc1+gZ65WUbjc7GgAAAAAvUKRC7ty5c5Kk8uXL5zsmKCjIeTkjI6MoDwMAgKmGt6ulmWPaqry/r/78K1GDP/hDxxLTzY4FAAAAwMMVqZArLI69AwDwVJ0bVtaiCR0VERKggwlpGvT+H4o5dtbsWAAAAAA8WIkUcgAAeLLG1UL09cRr1bhaiE6nZmn4x2v18854s2MBAAAA8FC+V7Lw+++/rypVqrhl3DPPPHMlUQAAKFYRoQFaNKGjJn6+Wav2Jeiezzbpmf5NNPbaumZHAwAAAOBhrqiQ++CDDwq832KxuDROopADAJR+5f19NX10Gz39zU59sf6onv92l44mpuvf/ZrIx2oxOx4AAAAAD1Hkr6wahuG2n8KKjo7WgAEDVL16dVksFn399dfO++x2u5544glFRUWpXLlyql69ukaNGqXjx4/nWUdiYqJGjBihkJAQhYWFafz48UpNTS3q0wEAKCN8fax6aVAzPdG7kSRp5h+Hde9nm3QuK8fkZAAAAAA8RZH2kFuxYoW7cxRKWlqaWrRooXHjxmnw4MF57ktPT9fmzZv19NNPq0WLFjpz5oweeugh3XTTTdq4caNz3IgRI3TixAktX75cdrtdY8eO1d1336158+aV9OYAADyMxWLRvV3rqUaFQD2ycKt+3nVSwz9eq09Ht1XlYH+z4wEAAAAo5YpUyHXp0sXdOQqlT58+6tOnzyXvCw0N1fLly/Pc9t5776ldu3Y6evSoatWqpd27d2vZsmXasGGD2rRpI0l699131bdvX73xxhuqXr16sW8DAMDzDWhRXRGhAbprzkZtjU3S4A/+0Mwx7VS/SnmzowEAAAAoxa7oGHKeIikpSRaLRWFhYZKktWvXKiwszFnGSVKPHj1ktVq1bt06DRo06JLryczMVGZmpvN6cnKypH++Jmu324tvA4ArcP61yWsUKB4tI4O18K52Gj9ns44lntPg9//Q+7e3VPu64YVaD3MV8AzMVcAzMFeB0s8b52lhtsXrC7mMjAw98cQTuu222xQSEiJJio+Pv+isr76+vgoPD1d8fHy+63r55Zf1/PPPX3T7zz//rKCgIPcGB9zswj1HAbjXhHrSJ3t8dDg1W6NnbtDt9RxqU7nwx0llrgKegbkKeAbmKlD6edM8TU9Pd3msVxdydrtdQ4cOlWEYLp3p9XKmTJmiyZMnO68nJyerZs2a6tWrl7PsA0obu92u5cuXq2fPnrLZbGbHAbzaTX1z9OiX2/XTrlOae8BHFWvX131d6jrPOl4Q5irgGZirgGdgrgKlnzfO0/PfpHSF1xZy58u4I0eO6LfffstTmEVEROjUqVN5xmdnZysxMVERERH5rtPf31/+/hcfrNtms3nNiwfei9cpUPxsNps+GNlGryzbo4+j/9Jbvx7Q8aQMvTgoSjYf105szlwFPANzFfAMzFWg9POmeVqY7XDt04GHOV/G7d+/X7/88osqVqyY5/6OHTvq7Nmz2rRpk/O23377TQ6HQ+3bty/puAAAL2K1WvSvvo31ws1NZbVICzfGatysDUrO8J5jYwAAAAC4Mh5ZyKWmpiomJkYxMTGSpEOHDikmJkZHjx6V3W7XLbfcoo0bN+rzzz9XTk6O4uPjFR8fr6ysLElS48aN1bt3b911111av369/vjjD91///0aPnw4Z1gFALjFHR3r6JNRbRRo89Hq/ac19MO1On72nNmxAAAAAJQCHlnIbdy4Ua1atVKrVq0kSZMnT1arVq30zDPPKC4uTkuXLlVsbKxatmypatWqOX/WrFnjXMfnn3+uRo0a6YYbblDfvn113XXX6eOPPzZrkwAAXuiGxlW18J6Oqhzsrz3xKRo47Q/tiEsyOxYAAAAAk3nkMeS6du0qw8j/zHUF3XdeeHi45s2b585YAABcJKpGqJbc10njZm3QvpOpGvbRWr034hp1u7rK5RcGAAAA4JU8cg85AAA8SY0KQVo0oZM61auotKwc3Tl7oz5fd8TsWAAAAABMQiEHAEAJCA20adbYdhpyTQ3lOAw9tWSHXv5xtxyOy+/VDQAAAMC7UMgBAFBC/HyteuPW5prUo6Ek6aNVf+mB+VuUYc8xORkAAACAkkQhBwBACbJYLHqoRwP979YWsvlY9P22Exr56TolpmWZHQ0AAABACaGQAwDABENa19Dsse0UHOCrjUfOaNgn65VwzuxUAAAAAEoChRwAACbpVL+Svrq3kyLDAnX473S9sd1Hi7fEuXS2cAAAAACei0IOAAATNawarCUTO6lVzVBl5Fj0xOKdumfuJp1OzTQ7GgAAAIBiQiEHAIDJqgQHaN74tupXM0e+Vot+3nVSN06N1k87482OBgAAAKAYUMgBAFAK+PpY1auGoS/vaa+rqwbr77Qs3TN3kx5ZuFXJGXaz4wEAAABwIwo5AABKkabVQ7T0gWt1T5erZLFIX22OVe+p0frjwGmzowEAAABwEwo5AABKGX9fH03p01gL7+moWuFBOp6UoRGfrtNzS3fqXFaO2fEAAAAAXCEKOQAASqm2dcL140PXa0T7WpKkWWsOq987q7Xl6BmTkwEAAAC4EhRyAACUYuX8ffXioCjNHNtWVYL99dfpNA35YI3+9/NeZWU7zI4HAAAAoAgo5AAA8ADdrq6inyd11k0tqsthSO/+dkCD3v9De+NTzI4GAAAAoJAo5AAA8BBhQX5657ZWeu/2VgoLsmnn8WQNePd3fbTqoHIchtnxAAAAALiIQg4AAA/Tv3l1/fxwZ3W7urKychx6+cc9Gv7xWh39O93saAAAAABcQCEHAIAHqhISoBlj2uqVwVEq5+ejDYfPqPfb0Zq37qgMg73lAAAAgNKMQg4AAA9lsVg0vF0tLXu4s9rVDVd6Vo7+tWS7xs7aoJPJGWbHAwAAAJAPCjkAADxczfAgzb+rg/7dr7H8fK1auTdBvaZGa+nW42ZHAwAAAHAJFHIAAHgBq9WiO6+/St89cJ2aRYYo6ZxdD36xRffP26wzaVlmxwMAAACQC4UcAABepGHVYC2571o9eEMD+Vgt+m7bCfV6K1or9pwyOxoAAACA/0MhBwCAl7H5WDW5Z0MtvreTrqpcTgkpmRo7a4OmLN6m1Mxss+MBAAAAZR6FHAAAXqpFzTD98OD1GnttHUnSF+uPqc/b0Vp/KNHcYAAAAEAZRyEHAIAXC7D56NkBTTXvrvaKDAvUscRzGvbxWr30w25l2HPMjgcAAACUSRRyAACUAZ3qVdKPD1+vW1vXkGFIH0f/pZve+1074pLMjgYAAACUORRyAACUESEBNr1+awt9MqqNKpX3076TqRo47Q+98+t+Zec4zI4HAAAAlBkUcgAAlDE9m1TVTw93Vu+mEcp2GHpz+T4N+XCtDiakmh0NAAAAKBMo5AAAKIMqlvfXByOv0dRhLRQc4Kutx86q79urNfOPQ3I4DLPjAQAAAF6NQg4AgDLKYrFoUKsa+unhzrqufiVlZjv0/Le7NOLTdYo7e87seAAAAIDXopADAKCMqx4WqDnj2uk/NzdVgM2qtX/9rd5To/XlplgZBnvLAQAAAO5GIQcAAGS1WjSqYx39+FBntaoVppTMbD26aKvunrtJp1MzzY4HAAAAeBUKOQAA4FS3UjktuqejHrvxatl8LFq+66R6TY3Wsh3xZkcDAAAAvAaFHAAAyMPXx6qJ3errm4nXqVFEsBLTsjThs02avCBGSefsZscDAAAAPB6FHAAAuKQm1UP0zf3XakKXerJapMVb4tT7rWj9vv+02dEAAAAAj0YhBwAA8uXv66Mn+zTSwns6qnbFIJ1IytDI6ev07Dc7dC4rx+x4AAAAgEeikAMAAJfVpk64fnjweo3sUEuSNHvtEfV7Z7U2Hz1jcjIAAADA81DIAQAAl5Tz99V/B0Zp9rh2qhrir79Op+mWD9bojZ/2KivbYXY8AAAAwGNQyAEAgELp0rCyfn64iwa2rC6HIb234oAGTvtDe+KTzY4GAAAAeAQKOQAAUGihQTa9NbyV3h9xjSoE2bTrRLJuevcPfbjqoHIchtnxAAAAgFKNQg4AABRZ36hq+un/tXff0VVV6RvHn3Nveu+90kIndOlFumhQR+xdcWyIWH72GVHHrqjj6Nh1FJyxgcqAAtJ7C72TUNJDEhISCIHs3x/AnclQBIXc5Ob7WStrkXP2OXm3ZufmPjnnvPf31oXNI3ToSLVemLpJV/59kXbuLXd2aQAAAECdRSAHAAB+lwh/L31wYye9dHlb+XrYtXxnsYa+MU+fL94pY7haDgAAAPhfBHIAAOB3syxLIzvHa9qY3uqaHKKKQ0f0xKR1uunjZcrdd9DZ5QEAAAB1CoEcAAA4Z+JDfDTx9gv0xEUt5OFm05wtBRo8fq4mp2dxtRwAAABwDIEcAAA4p2w2S7f1aqQp9/ZUm9hA7TtQpfu+TNc9E1epuPyQs8sDAAAAnI5ADgAAnBdNI/317V3dNWZAU9ltlqasydGg8XP1y6Y8Z5cGAAAAOBWBHAAAOG/c7TaNGdBM393VXU0i/FRQVqlbPlmuR75Zo/2Vh51dHgAAAOAUBHIAAOC8axsXpB/v7albeybLsqQvl+3WkPFztWTHXmeXBgAAANQ6AjkAAFArvNztenJ4S0247QLFBnlrT/EBXfX+Yj374wYdrDri7PIAAACAWkMgBwAAalW3xqGaNqaXRnaKkzHSB/MzdPFb87V2zz5nlwYAAADUCgI5AABQ6/y93PXSH9rpgxs6KczPU1vz9+vSvy3QGzO2qupItbPLAwAAAM4rAjkAAOA0A1pG6uf7e2tYmygdrjZ6fcYWXf7OQm3L3+/s0gAAAIDzhkAOAAA4VYivh96+poPeuCpVAV5uWrNnny56c54+mp+h6mrj7PIAAACAc45ADgAAOJ1lWUpLjdVP9/dWr6ZhqjxcrXE/btC1HyzRnuIKZ5cHAAAAnFMEcgAAoM6IDvTWZ7d00TMjWsvb3a5FO/ZqyPh5+tfy3TKGq+UAAADgGgjkAABAnWJZlq6/IFFT7+ulDglB2l95WA9/vUa3f7ZCBWWVzi4PAAAA+N0I5AAAQJ2UFOarr/7YXQ8PSZG73dKMjXkaPH6upq7NcXZpAAAAwO9CIAcAAOosu83SXX2b6Pt7eqp5lL+Kyg/pzi9W6v5/pmvfgSpnlwcAAAD8JgRyAACgzmsRHaDJ9/TQXX0by2ZJ363K0pDxczVva4GzSwMAAADOGoEcAACoFzzd7Hp4SHN99cfuSgr1Uc6+g7r+w6V6avI6VRw67OzyAAAAgDNGIAcAAOqVjonB+vd9vXRDt0RJ0meLdmrYG/O0YmexkysDAAAAzgyBHAAAqHd8PNw0Lq21/nFrF0UFeClzb4WueHehXpq2SYcOVzu7PAAAAOC0COQAAEC91atpuH4a01uXto9VtZH+Nnu70t5eoI05pc4uDQAAADglAjkAAFCvBfq46/UrU/XOtR0U7OOujTmluuSv8/XO7O06Um2cXR4AAABwAgI5AADgEoa2idbP9/fRgBYRqjpi9OK0TRr590XKLCx3dmkAAABADQRyAADAZYT7e+r9GzrppT+0lZ+nm1bsLNbQN+bpH4t3yhiulgMAAEDdQCAHAABcimVZGtkpXtPG9NIFjUJ0oOqInpy0Tjd+vEy5+w46uzwAAACAQA4AALimuGAfTbjtAj01vKU83Wyau6VAg16fo8npWVwtBwAAAKcikAMAAC7LZrN0S89kTRndS23jAlV68LDu+zJdd09YqaLyQ84uDwAAAA0UgRwAAHB5TSL89M2d3XX/gGZys1n699pcDXp9rmZuzHN2aQAAAGiACOQAAECD4G636b4BTfXdXT3UNMJPhfsrdeuny/V/X69R2cEqZ5cHAACABoRADgAANCht4gL1w709dXuvZFmW9M/luzVk/Dwt3rHX2aUBAACggSCQAwAADY6Xu12PX9RSE2+/QHHB3soqOaCr31+sZ37coINVR5xdHgAAAFwcgRwAAGiwLmgUqmljeuuqzvEyRvpwfoaGvzVfa/aUOLs0AAAAuDACOQAA0KD5ebrphcvb6qObOinc31Pb8vfr0r8t1PgZW1R1pNrZ5QEAAMAFEcgBAABI6t88Uj+P6a2L2kTrSLXR+Blbdfk7C7Utv8zZpQEAAMDFEMgBAAAcE+zrob9e015vXJWqAC83rdmzT8PenK8P5u1QdbVxdnkAAABwEQRyAAAA/8WyLKWlxurn+/uod7NwHTpcrWenbNQ1HyzW7qIKZ5cHAAAAF0AgBwAAcBJRgV769ObOeu7S1vJ2t2vxjiINfWOe/rVst4zhajkAAAD8dgRyAAAAp2BZlq7tmqhpY3qpU2Kw9lce1sPfrNHtny1XftlBZ5cHAACAeopADgAA4Fckhvrqn3d00yNDm8vDbtOMjfka/Ppc/XttjrNLAwAAQD1EIAcAAHAG7DZLf+zTWN/f20MtogNUXFGlu75YqTFfrtK+iipnlwcAAIB6hEAOAADgLDSPCtDku3vonn5NZLOkSenZGjx+ruZuKXB2aQAAAKgn6mUgN3fuXF188cWKiYmRZVmaNGlSjf3GGD311FOKjo6Wt7e3BgwYoK1bt9YYU1RUpGuvvVYBAQEKCgrSrbfeqv3799fiLAAAQH3l4WbTg4NT9PWd3ZUc5qvc0oO64aOlemLSWlUcOuzs8gAAAFDH1ctArry8XO3atdPbb7990v0vvfSS3nzzTb377rtasmSJfH19NXjwYB08+J+HL1977bVav369pk+frh9//FFz587VqFGjamsKAADABXRICNaU0T11Y7dESdLni3dp2BvztGJnkZMrAwAAQF3m5uwCfouhQ4dq6NChJ91njNH48eP1xBNPKC0tTZL02WefKTIyUpMmTdJVV12ljRs3atq0aVq2bJk6deokSXrrrbc0bNgwvfLKK4qJiam1uQAAgPrNx8NNT6e11sCWUXro69XK3FuhK95dpDv6NNaYAU3l6WZ3dokAAACoY+plIHc6GRkZys3N1YABAxzbAgMD1bVrVy1atEhXXXWVFi1apKCgIEcYJ0kDBgyQzWbTkiVLdOmll5703JWVlaqsrHR8XlpaKkmqqqpSVRUPc0bddPx7k+9RoG5jrdZ/XZMC9ePd3fTsvzfpu/QcvTN7u37ZmKcnL2qurskhzi4P5whrFagfWKtA3eeK6/Rs5uJygVxubq4kKTIyssb2yMhIx77c3FxFRETU2O/m5qaQkBDHmJN5/vnn9fTTT5+w/eeff5aPj8/vLR04r6ZPn+7sEgCcAdZq/dfXWwpuZumfO2zanLdf1320XK2Cq3VxQrWi+XXBZbBWgfqBtQrUfa60TisqKs54rMsFcufTo48+qrFjxzo+Ly0tVXx8vAYNGqSAgAAnVgacWlVVlaZPn66BAwfK3d3d2eUAOAXWqmsZJmnU/kq9NWuHvly+R+uLbdpYYtPlHWI1un9jRQV4ObtE/EasVaB+YK0CdZ8rrtPjd1KeCZcL5KKioiRJeXl5io6OdmzPy8tTamqqY0x+fn6N4w4fPqyioiLH8Sfj6ekpT0/PE7a7u7u7zDcPXBffp0D9wFp1HVHB7nrusra6pVcjvTxts6atz9VXK7L0w5oc3dazke7o00j+Xvy/rq9Yq0D9wFoF6j5XWqdnM4962WX1dJKTkxUVFaWZM2c6tpWWlmrJkiXq1q2bJKlbt24qKSnRihUrHGN++eUXVVdXq2vXrrVeMwAAcF2Nw/307vUd9c2d3dQpMVgHq6r111nb1Ofl2fpkQYYOHa52dokAAACoZfUykNu/f7/S09OVnp4u6Wgjh/T0dO3atUuWZWnMmDF69tln9f3332vt2rW64YYbFBMToxEjRkiSWrRooSFDhuj222/X0qVLtWDBAt1zzz266qqr6LAKAADOi46JIfrqj9309+s7qlG4r4rKD+nPP2zQwNfn6Mc12TLGOLtEAAAA1JJ6ecvq8uXL1a9fP8fnx5/rduONN+qTTz7Rww8/rPLyco0aNUolJSXq2bOnpk2bJi+v/zyv5YsvvtA999yjCy+8UDabTZdffrnefPPNWp8LAABoOCzL0uBWUbqweYT+uXy3Xp++VTv3VuieCav0fnyGHh3aXBc0CnV2mQAAADjP6mUg17dv39P+FdmyLI0bN07jxo075ZiQkBBNmDDhfJQHAABwWm52m67tmqgRqbF6f94OvTd3h1bvLtFV7y3Whc0j9H9Dm6tZpL+zywQAAMB5Ui9vWQUAAHAFvp5uGjOgmWY/1FfXXZAgu83SzE35GjJ+rh75Zo3ySg86u0QAAACcBwRyAAAAThbh76VnR7TRz/f31uBWkao20pfLdqvPy7P0yk+bVXawytklAgAA4BwikAMAAKgjGof76e/Xd9LXf+ymjv/TkfXThZl0ZAUAAHARBHIAAAB1TKekEH19vCNr2NGOrH/6fr0GvT5HU9bk0JEVAACgniOQAwAAqIOOd2T96f7eenZEa4X5eSpzb4XunrBSl/5toZbs2OvsEgEAAPAbEcgBAADUYe52m667IFFzHuqrMQOaysfDrvTdJbryvcW67dNl2ppX5uwSAQAAcJYI5AAAAOqB/+7Iem3Xox1ZZ2zM12A6sgIAANQ7BHIAAAD1SIS/l5679OQdWV/9mY6sAAAA9QGBHAAAQD303x1ZOyQE6WBVtd76ZZv60pEVAACgziOQAwAAqMc6JYXomzu7693rOqhRmK/2/ldH1n+vpSMrAABAXUQgBwAAUM9ZlqUhraP10/299cyI1grz81Dm3grd9cXRjqxLM4qcXSIAAAD+C4EcAACAi3C323T9BYma/VA/3Xfhfzqyjvz7It326XJty6cjKwAAQF1AIAcAAOBi/DzddP/A/+3ImqdBr8/Vo9/SkRUAAMDZCOQAAABc1PGOrD+N6a1BLY92ZJ24dLf6vjybjqwAAABORCAHAADg4ppE+Om9G/7TkfVA1RFHR9bPFmWq6ggdWQEAAGoTgRwAAEAD8d8dWZOPdWR9avJ6DXp9Lh1ZAQAAahGBHAAAQANyvCPrz/f31jNprRTm56GMwnLd9cVKXfYOHVkBAABqA4EcAABAA+Rut+n6bkma/VA/jb6wqbzd7Vq162hH1ts/oyMrAADA+UQgBwAA0ID5ebpp7MBmmvNQX11zrCPr9A3HO7KuVT4dWQEAAM45AjkAAAAoIsBLf7m0jX4a00sDHR1Zd6nPy7P12s+btb/ysLNLBAAAcBkEcgAAAHBoEuGv92/opK/+2E3tj3VkffOXberz0iw6sgIAAJwjBHIAAAA4QeekEH17Z3e9c+2JHVmn0pEVAADgdyGQAwAAwElZlqWhbf7TkTXU92hH1juPdWRdlklHVgAAgN+CQA4AAACndbwj65yH+2l0/yaOjqxXvHu8I+t+Z5cIAABQrxDIAQAA4Iz4ebpp7KAUzXmor67ukiCbJU3fkKfB4+fqse/oyAoAAHCmCOQAAABwViICvPT8ZW308/29NbBlpI5UG01Ycqwj6/QtdGQFAAD4FQRyAAAA+E2Od2T91x3dlBp/rCPrzK3q+/Is/WPxTjqyAgAAnAKBHAAAAH6XLskh+u6u7vrbtR2UFOqjwv2H9OSkdRr8+lxNW0dHVgAAgP9FIAcAAIDfzbIsDWsTrelj+2jcsY6sOwrL9cfPV+pyOrICAADUQCAHAACAc8bdbtMN3ZI0+6G+jo6sK491ZB1FR1YAAABJBHIAAAA4D/y93DV2UIpmP9RXV3eJl82Sfv7vjqxldGQFAAANF4EcAAAAzpvIAC89f1lb/TSmtwa0+E9H1r4vz9brdGQFAAANFIEcAAAAzrumkf764MZO+ueoC9QuPkgVh47oDTqyAgCABopADgAAALWma6NQTTplR9ZcOrICAIAGgUAOAAAAtep4R9af7++jpy/5746sK/SHdxdpOR1ZAQCAiyOQAwAAgFN4uNl0Y/ejHVnv7d9EXu42rdhZrD/QkRUAALg4AjkAAAA4lb+Xux4YlKI5D/XTVZ1rdmR9nI6sAADABRHIAQAAoE6IDPDSC5cf78gaoSPVRl/8V0fWcjqyAgAAF0EgBwAAgDrlaEfWzid0ZO3z8mx9TkdWAADgAgjkAAAAUCcd78j69jUdlBjqo8L9lXqCjqwAAMAFEMgBAACgzrIsSxe1jdb0Yx1ZQ/6nI+uKnXRkBQAA9Q+BHAAAAOq84x1Z5zzUV/f0+09H1svfWaQ7/rFc2wvoyAoAAOoPAjkAAADUG/5e7npwcIpmP/ifjqw/rc/ToNfpyAoAAOoPAjkAAADUO1GBRzuyThvTWxc2r9mRdfwMOrICAIC6jUAOAAAA9VazSH99eFNnfTnqArWLC1TFoSMaP4OOrAAAoG4jkAMAAEC9d0GjUE26u4f+ek37mh1Zx8/VT+vpyAoAAOoWAjkAAAC4BMuyNLxtjKbf30d/vrjl0Y6sBeW64x90ZAUAAHULgRwAAABcioebTTf1SD5pR9Y//mOFdtCRFQAAOBmBHAAAAFzSf3dkvbLT0Y6s09bnauDrc/XEpLUqKKt0dokAAKCBIpADAACAS4sK9NKLf6jZkfXzxbvU9+VZemPGVjqyAgCAWkcgBwAAgAbheEfWibcf7chafuiIXp+xRX1enq0vluzUYTqyAgCAWkIgBwAAgAalW+P/dGRNCDnakfXx79ZpEB1ZAQBALSGQAwAAQINzvCPrjLF99KeLWyrYx93RkfWKdxdpxc5iZ5cIAABcGIEcAAAAGiwPN5tu7pGsOQ/30939GsvTzablO4t1+TsL6cgKAADOGwI5AAAANHgBXu56aHBzzX6or0Z2iqvRkfXJSevoyAoAAM4pAjkAAADgmOhAb730h3aael9v9T/WkfUfi3fSkRUAAJxTBHIAAADA/0iJ8tdHxzqytv2vjqwDx8/X7BxL+wnmAADA70AgBwAAAJxCt8ahmnRXD711dXvFh3irYP8hfZdpV6+X5+qZHzdod1GFs0sEAAD1EIEcAAAAcBo2m6WL28Vo5ti+evriForwMtpfeVgfzs9Qn5dn6Y5/LNeSHXtljHF2qQAAoJ5wc3YBAAAAQH3g4WbTNV3iFVCwVv5NO+vTxbs1b2uhflqfp5/W56l1bIBu6ZGsi9pGy9PN7uxyAQBAHcYVcgAAAMBZsFlSn2bh+setXfXz/b11dZcEebrZtC6rVGP/tVo9X5ylN2duVeF+OrMCAICTI5ADAAAAfqNmkf56/rI2WvTohXpocIoiAzxVUFap16ZvUfcXftHDX6/WptxSZ5cJAADqGG5ZBQAAAH6nEF8P3d2viW7v1UhT1+Xow/kZWrNnn/61fI/+tXyPejQJ1S09ktUvJUI2m+XscgEAgJMRyAEAAADniIebTWmpsbqkXYxW7irWh/MzNG1drhZs26sF2/YqOcxXN3VP0h86xsnXk1/FAQBoqPgtAAAAADjHLMtSx8QQdUwM0Z7iCn22aKcmLt2ljMJy/en79Xrl5826ukuCbuiWqLhgH2eXCwAAahnPkAMAAADOo7hgHz02rIUWP3qhxqW1UnKYr8oOHtZ7c3eo90uzdNcXK7Q8s0jGGGeXCgAAaglXyAEAAAC1wNfTTTd0S9J1XRM1e0u+PpyfoQXb9urfa3P177W5ahsXqFt7Jmto62h5uPF3cwAAXBmBHAAAAFCLbDZL/ZtHqn/zSG3KLdXH8zP1XXqW1uzZp/u+TNdfAjbqhm5JurpLgkJ8PZxdLgAAOA/40xsAAADgJM2jAvTiH9pq0SP9NXZgM4X7eyqvtFIv/7RZ3Z6fqUe/XaOteWXOLhMAAJxjBHIAAACAk4X6eWr0hU01///66bWR7dQqJkCVh6s1celuDXx9rq7/cIlmbc5XdTXPmQMAwBVwyyoAAABQR3i62XVZhzhd2j5WyzKL9dH8DP28IVfzthZq3tZCNQ731c09knVZh1j5ePCrPAAA9RWv4gAAAEAdY1mWuiSHqEtyiHYXVeiThZn657Ld2l5QricmrdPLP23W1V0SdEO3RMUEeTu7XAAAcJa4ZRUAAACow+JDfPTk8JZa9Gh//enilkoI8dG+A1V6d8529Xpplu6ZsFIrdxU7u0wAAHAWuEIOAAAAqAf8vdx1c49k3dAtSTM35umjBRlavKNIP67J0Y9rcpQaH6RbeyZrSOsoudv5uzsAAHUZgRwAAABQj9htlga1itKgVlFan71PHy/I1Pfp2UrfXaJ7J65SdKCXbuiWpKu7xCvIx8PZ5QIAgJPgT2cAAABAPdUqJlCvXNFOCx7przEDmirMz0M5+w7qxWmbdMHzM/X4d2u1LX+/s8sEAAD/g0AOAAAAqOfC/T01ZkAzLXikv17+Q1u1iA7QwapqfbFklwa8Nkc3fbxUc7cUyBjj7FIBAIC4ZRUAAABwGZ5udl3RKV5/6BinxTuK9NGCDM3YmKfZmws0e3OBmkb46Zaeybq0fay83O3OLhcAgAaLQA4AAABwMZZlqVvjUHVrHKqde8v18YJMfbV8t7bm79ej367VS9M26ZquCbr+giRFBXo5u1wAABocblkFAAAAXFhiqK/+fEkrLXrsQj1xUQvFBXuruKJKb8/arp4v/qL7vlyl1btLnF0mAAANClfIAQAAAA1AgJe7buvVSDf3SNb0DXn6aEGGlmYUaXJ6tianZ6tjYrBu7ZmsQS0j5Wbn7/YAAJxPBHIAAABAA2K3WRrSOkpDWkdp7Z59+nhBhn5Yk60VO4u1YmexYoO8dWP3RF3ZOUGB3u7OLhcAAJfEn74AAACABqpNXKBeuzJVC/6vv0b3b6IQXw9llRzQX/69Sd2en6k/TV6njMJyZ5cJAIDLcclA7siRI3ryySeVnJwsb29vNW7cWM8880yNNu/GGD311FOKjo6Wt7e3BgwYoK1btzqxagAAAMA5IgK8NHZQihY+0l8vXt5GKZH+qjh0RJ8u2qn+r87WrZ8s04JthTV+nwYAAL+dS96y+uKLL+qdd97Rp59+qlatWmn58uW6+eabFRgYqNGjR0uSXnrpJb355pv69NNPlZycrCeffFKDBw/Whg0b5OVFpykAAAA0PF7udl3ZOUEjO8Vr4fa9+mh+hmZuynd8pET665aeSUpLjZWXu93Z5QIAUG+5ZCC3cOFCpaWl6aKLLpIkJSUlaeLEiVq6dKmko1fHjR8/Xk888YTS0tIkSZ999pkiIyM1adIkXXXVVSc9b2VlpSorKx2fl5aWSpKqqqpUVVV1PqcE/GbHvzf5HgXqNtYqUD80pLXaJTFQXRJTlVFYrn8s3qVvVmVrc16Z/u+btXph6iZd0yVe13SJV4S/p7NLBU7QkNYqUF+54jo9m7lYxgWvO//LX/6i9957Tz///LOaNWum1atXa9CgQXrttdd07bXXaseOHWrcuLFWrVql1NRUx3F9+vRRamqq3njjjZOe989//rOefvrpE7ZPmDBBPj4+52s6AAAAgNNVHJYW51uam2NT8SFLkmS3jDqEGvWJrla8n5MLBADAySoqKnTNNddo3759CggIOO1Yl7xC7pFHHlFpaamaN28uu92uI0eO6LnnntO1114rScrNzZUkRUZG1jguMjLSse9kHn30UY0dO9bxeWlpqeLj4zVo0KBf/Q8NOEtVVZWmT5+ugQMHyt2dTmlAXcVaBeqHhr5W/yDp8JFqTd+Yr08X7dKKXSVaVmhpWaFNnZOCdVO3BF3YPEJ2m+XsUtHANfS1CtQHrrhOj99JeSZcMpD717/+pS+++EITJkxQq1atlJ6erjFjxigmJkY33njjbz6vp6enPD1PvCTf3d3dZb554Lr4PgXqB9YqUD805LXq7i5d0j5el7SPV/ruEn28IENT1uRoWWaxlmUWKy7YWzd1T9LIzvEK8GqY/41QdzTktQrUF660Ts9mHi7ZZfWhhx7SI488oquuukpt2rTR9ddfr/vvv1/PP/+8JCkqKkqSlJeXV+O4vLw8xz4AAAAAp5caH6Q3rmqv+f/XX3f3a6wgH3ftKT6gZ6dsVPfnf9HTP6zXzr3lzi4TAIA6xyUDuYqKCtlsNadmt9tVXV0tSUpOTlZUVJRmzpzp2F9aWqolS5aoW7dutVorAAAAUN9FBXrpocHNteiRC/X8ZW3UNMJP+ysP6+MFmer7ymzd/tlyLdq+Vy74+GoAAH4Tl7xl9eKLL9Zzzz2nhIQEtWrVSqtWrdJrr72mW265RZJkWZbGjBmjZ599Vk2bNlVycrKefPJJxcTEaMSIEc4tHgAAAKinvD3surpLgq7qHK95Wwv10YIMzd5coOkb8jR9Q55aRAfolh5JuiQ1Rp5udmeXCwCA07hkIPfWW2/pySef1F133aX8/HzFxMTojjvu0FNPPeUY8/DDD6u8vFyjRo1SSUmJevbsqWnTpsnLy8uJlQMAAAD1n2VZ6t0sXL2bhWtb/n59sjBDX6/Yo405pXro6zV6cdomXXdBoq7tmqhw/xOf0QwAgKtzyUDO399f48eP1/jx4085xrIsjRs3TuPGjau9wgAAAIAGpkmEn54d0UYPDkrRxKW79dmiTOXsO6jxM7bqb7O265LUGN3SI1ktYwKcXSoAALXGJQM5AAAAAHVLkI+H7uzbWLf1Sta0dbn6aEGGVu0q0dcr9ujrFXvUrVGobumZrP7NI2S3Wc4uFwCA84pADgAAAECtcbfbdHG7GF3cLkYrdxXro/kZmrouV4t27NWiHXuVGOqjm7on6YpO8fLz5O0KAMA18QoHAAAAwCk6JASrwzXByi45oM8W7dTEpbu0c2+Fnv5hg177eYuu7ByvG7snKT7Ex9mlAgBwTtmcXQAAAACAhi0myFuPDG2uRY/217MjWqtRuK/KKg/rg/kZ6vPyLP3xHyu0NKNIxhhnlwoAwDnBFXIAAAAA6gQfDzddd0GirumSoDlbC/TR/AzN21qoaetzNW19rlrHBuiWHska3jZGHm5cWwAAqL94FQMAAABQp9hslvqlROgft3bVz/f31tVdEuTpZtO6rFKN/ddq9XjxF701c6v27q90dqkAAPwmBHIAAAAA6qxmkf56/rI2WvTohXpocIoiAzxVUFapV6dvUbcXftH/fb1Gm3JLnV0mAABnhUAOAAAAQJ0X4uuhu/s10byH++uNq1LVNi5Qhw5X65/Ld2vI+Hm67oMl+mVTnqqrec4cAKDu4xlyAAAAAOoNDzeb0lJjdUm7GK3cVawP52do2rpczd9WqPnbCpUc5qubeyTp8g5x8vXk7Q4AoG7iFQoAAABAvWNZljomhqhjYoj2FFfos0U7NXHpLmUUluupyev18k+bdXWXBN3YPUmxQd7OLhcAgBq4ZRUAAABAvRYX7KPHhrXQ4kcv1Li0VkoO81XZwcN6b+4O9X5plu7+YqVW7CySMdzOCgCoG7hCDgAAAIBL8PV00w3dknRd10TN3pKvD+dnaMG2vZqyNkdT1uaoXVygbumZrGFtouVu59oEAIDz8CoEAAAAwKXYbJb6N4/UF7ddoGljeunKTvHycLNp9Z59uu/LdPV88Re9PWubissPObtUAEADRSAHAAAAwGU1jwrQi39oq0WP9NfYgc0U7u+pvNJKvfzTZnV7YaYe/XattuSVObtMAEADwy2rAAAAAFxeqJ+nRl/YVHf0aaQpa3L04fwMrc8u1cSluzRx6S61jg3QiNRYXdwuRpEBXs4uFwDg4gjkAAAAADQYnm52XdYhTpe2j9WyzGJ9ND9DMzbmaV1WqdZlleq5f29U98ahSmsXqyFtohTg5e7skgEALohADgAAAECDY1mWuiSHqEtyiIrKD2nK2hxNXpWl5TuLtWDbXi3YtldPTF6nC5tHKC01Vv2ah8vTze7ssgEALoJADgAAAECDFuLroesvSNT1FyRqd1GFvl+drUmrsrQ1f7+mrsvV1HW5CvBy07A20UpLjVXX5BDZbJazywYA1GMEcgAAAABwTHyIj+7u10R39W2sDTmlmpyere/Ts5VbelBfLtutL5ftVnSgly5pF6O01Fi1iPaXZRHOAQDODoEcAAAAAPwPy7LUKiZQrWIC9X9DmmtJxl59n56tKWtzlLPvoP4+d4f+PneHmkb4aUT7WF3SLkbxIT7OLhsAUE8QyAEAAADAadhtlro3DlP3xmF6Oq2VZm0q0OT0LM3clK+t+fv18k+b9fJPm9UpMVhp7WN1UZtohfh6OLtsAEAdRiAHAAAAAGfI082uIa2jNKR1lEoPVmna2lxNXp2lhdv3avnOYi3fWaynv1+vPs3CldY+VgNbRMrbg2YQAICaCOQAAAAA4DcI8HLXyM7xGtk5XnmlB/XD6mxNSs/SuqxSzdyUr5mb8uXjYdfgVlFKS41RzyZhcrPbnF02AKAOIJADAAAAgN8pMsBLt/VqpNt6NdK2/DJNTs/W5PRs7Sqq0HersvTdqiyF+XloeNsYpaXGKDU+iGYQANCAEcgBAAAAwDnUJMJfDwxK0diBzbRyV4kmp2fpxzU5Ktx/SJ8szNQnCzOVFOqjS1JjNSI1Ro3C/ZxdMgCglhHIAQAAAMB5YFmWOiYGq2NisJ4c3lLztxVq8qos/bQ+T5l7K/TmzK16c+ZWtY0LVFpqrC5uG62IAC9nlw0AqAUEcgAAAABwnrnbbeqXEqF+KRGqOHRY0zfkadKqLM3dWqg1e/ZpzZ59em7KBnVvHKa01BgNaR0lfy93Z5cNADhPCOQAAAAAoBb5eLgpLTVWaamx2ru/UlPW5mjSqiyt3FWi+dsKNX9boZ6YtE4DWkQqLTVGfVLC5elGp1YAcCUEcgAAAADgJKF+nrqhW5Ju6JakXXsrNDk9S5PSs7S9oFxT1uZoytocBXq7a1ibKKWlxqpLUohsNppBAEB9RyAHAAAAAHVAQqiP7r2wqe7p30Trs0s1OT1L36/OVl5ppSYu3a2JS3crJtBLF6fGaERqrFpEBzi7ZADAb0QgBwAAAAB1iGVZah0bqNaxgXpkaAst2bFXk9KzNHVtrrL3HdTf5+zQ3+fsUEqkv9Lax+iSdjGKC/ZxdtkAgLNAIAcAAAAAdZTdZql7kzB1bxKmcWmtNWtTvialZ2nWpgJtzivTS9M266Vpm9UlKUSXpMboojbRCvb1cHbZAIBfQSAHAAAAAPWAl7tdQ9tEa2ibaO07UKVp63I0aVW2Fmfs1dLMIi3NLNLTP6xXn2bhSkuN1YAWkfL2oBkEANRFBHIAAAAAUM8Eervrys4JurJzgnL2HdAPq7M1aVW2NuSUasbGfM3YmC9fD7sGt47SiNRYdW8cKje7zdllAwCOIZADAAAAgHosOtBbo3o31qjejbU1r0yT07M1KT1Le4oP6NuVWfp2ZZbC/Dx1cbtojUiNVdu4QFkWnVoBwJkI5AAAAADARTSN9NeDg1P0wKBmWrmrWJNWZevHNdkq3F+pjxdk6uMFmUoO89Ul7WI0on2sksN8nV0yADRIBHIAAAAA4GIsy1LHxBB1TAzRUxe31LytBZq0KlvTN+Qpo7Bcb8zcqjdmblW7uEClpcZqeLtoRfh7ObtsAGgwCOQAAAAAwIW5223q3zxS/ZtHqrzysH7ekKvJ6dmat7VQq/fs0+o9+/TslA3q0SRMI1JjNbh1lPw8easIAOcTP2UBAAAAoIHw9XTTpe3jdGn7OBXur9SUNTmalJ6lVbtKNG9roeZtLdRj363VgJaRGpEaqz7NwuXhRjMIADjXCOQAAAAAoAEK8/PUjd2TdGP3JO3cW+5oBrGjoFxT1uRoypocBfm4a1ibo80gOiUGy2ajGQQAnAsEcgAAAADQwCWG+mr0hU11b/8mWpdVqknpWfphdbbyyyo1YckuTViyS7FB3rokNUYjUmOVEuXv7JIBoF4jkAMAAAAASDraDKJNXKDaxAXqsWEttHjHXk1alaVp63KVVXJA78zerndmb1fzKH+NaB+rS9rFKCbI29llA0C9QyAHAAAAADiB3WapR5Mw9WgSpmdGtNYvm/I1aVWWZm8u0KbcMr0wdZNemLpJXZJDNCI1VsPaRCnIx8PZZQNAvUAgBwAAAAA4LS93u4a1idawNtHaV1Glf6/L0aRVWVqSUaSlxz7+9P069U2J0IjUWF3YIkJe7nZnlw0AdRaBHAAAAADgjAX6uOvqLgm6ukuCsksO6IfV2ZqUnq2NOaWaviFP0zfkyc/TTUNaR2lEaqy6NQ6VnWYQAFADgRwAAAAA4DeJCfLWHX0a644+jbUlr0yTVmVpcnq2skoO6OsVe/T1ij0K9/fUxW1jNKJ9jNrEBsqyCOcAgEAOAAAAAPC7NYv018NDmuvBQSlasatYk9OzNGVNjgrKKvXRggx9tCBDjcJ9ldYuViPaxygx1NfZJQOA0xDIAQAAAADOGZvNUuekEHVOCtFTw1tp3tYCTUrP1vQNudpRUK7XZ2zR6zO2KDU+SCNSYzS8XYzC/DydXTYA1CoCOQAAAADAeeHhZtOFLSJ1YYtI7a88rJ/X52pSerbmby1Q+u4Spe8u0TNTNqpnkzClpcZocKso+XryNhWA6+MnHQAAAADgvPPzdNNlHeJ0WYc4FZRV6sc1R5tBrN5dojlbCjRnS4G83NdqYMsojUiNUe9m4XK325xdNgCcFwRyAAAAAIBaFe7vqZt7JOvmHsnKLCzX5PRsTU7P0o7Ccv2wOls/rM5WsI+7LmobrRGpseqYGEwzCAAuhUAOAAAAAOA0SWG+um9AU42+sInWZu3TpFXZ+mFNtgrKKvX54l36fPEuxQV7Ky01RiNSY9U00t/ZJQPA70YgBwAAAABwOsuy1DYuSG3jgvT4RS20cHuhJq3K1k/rc7Wn+IDenrVdb8/arhbRARqRGqNLUmMUHejt7LIB4DchkAMAAAAA1Cl2m6VeTcPVq2m4nqtqrRkb8zQ5PVuzN+drY06pNuaU6oVpm9Q1OUQjUmM1tE20Ar3dnV02AJwxAjkAAAAAQJ3l5W7X8LYxGt42RiUVh/TvtbmalJ6lpRlFWrzj6MdTk9erX/NwjUiNVb/mEbI7u2gA+BUEcgAAAACAeiHIx0PXdE3QNV0TlFVyQN8fawaxKbdMP63P00/r8+Tv6aZBrSIUUm6p76HDCnTnyjkAdQ+BHAAAAACg3okN8tadfRvrzr6NtSm3VJPTs/V9eraySg7om5XZkuz69PnZuqBRqPqnhKtf8wglhvo6u2wAkEQgBwAAAACo55pHBaj5kAA9NChFy3cW6/v0Pfp3+i4VVVZr7pYCzd1SoD//sEGNwnzVNyVC/ZtHqHNysDzduLkVgHMQyAEAAAAAXILNZqlLcojax/mrk5WhlM69NX97sWZtztfSjCLtKCzXjsIMfbQgQz4edvVoEqb+zSPUNyWcjq0AahWBHAAAAADA5ViW1CTCTy1ig3V770YqO1ilBdsKNWtTgWZtzld+WaWmb8jT9A15kqTmUf7q3zxC/ZpHqH18kNzsNifPAIArI5ADAAAAALg8fy93DWkdrSGto2WM0frsUs3enK9Zmwu0alexNuWWaVNumf42e7sCvNzUu1m4+jePUJ9m4Qr183R2+QBcDIEcAAAAAKBBsSxLrWMD1To2UPf0b6ri8kOau7VAszbla86WAhVXVOnHNTn6cU2OLEtqGxek/ikR6tc8XK1jAmWzWc6eAoB6jkAOAAAAANCgBft6KC01VmmpsTpSbZS+u+TY1XP5WpdVqtW7S7R6d4len7FFYX6e6psSrn4pEerZNEyB3u7OLh9APUQgBwAAAADAMXabpY6JweqYGKwHBqUor/Sg5mwu0C+b8jV/W6EK91fq6xV79PWKPY6x/ZtHqF9KhJpF+smyuHoOwK8jkAMAAAAA4BQiA7w0snO8RnaO16HD1Vq+s0izNh199ty2/P1amlGkpRlFemHqJsUGeTuunuveJFQ+HrzlBnBy/HQAAAAAAOAMeLjZ1L1xmLo3DtPjF0m7iyo0e3O+ftmUr4Xb9yqr5IC+WLJLXyzZJQ83my5oFKp+xwK6pDBfZ5cPoA4hkAMAAAAA4DeID/HR9d2SdH23JB2sOqJFO/Zq1qajAd2e4gOau6VAc7cU6OkfNqhRmK/6HmsM0SU5RJ5udmeXD8CJCOQAAAAAAPidvNzt6pdy9FlyT19itL2g/NitrflamlGkHYXl2lGYoY8WZMjHw64eTcLULyVCfVPCFRPk7ezyAdQyAjkAAAAAAM4hy7LUJMJPTSL8dHvvRio7WKUF2wo1a1OBZm3OV35ZpaZvyNP0DXmSpOZR/up3rDFEh4QgudltTp4BgPONQA4AAAAAgPPI38tdQ1pHa0jraBljtCGn1NEYYtWuYm3KLdOm3DK9M3u7Arzc1LvZ0efO9UkJV5ifp7PLB3AeEMgBAAAAAFBLLMtSq5hAtYoJ1D39m6q4/JDmbi3QrE35mrOlQMUVVfpxTY5+XJMjy5LaxgU5GkO0iQ2UzWY5ewoAzgECOQAAAAAAnCTY10NpqbFKS43VkWqj9N0lmr356LPn1mWVavXuEq3eXaLxM7YqzM9DfZodbQzRq2m4Ar3dnV0+gN+IQA4AAAAAgDrAbrPUMTFYHROD9cCgFOWXHtTszUefOzdva6EK9x/SNyv36JuVexxj+6VEqH/zCDWL9JNlcfUcUF8QyAEAAAAAUAdFBHhpZOd4jewcr0OHq7V8Z5Fmby7QL5vytS1/v5ZmFGlpRpFenLZJMYFe6nusMUSPJqHy8eDtPlCXsUIBAAAAAKjjPNxs6t44TN0bh+mxYS20u6ji2K2tBVqwrVDZ+w5qwpJdmrBklzzsNnVtFOK4ei4pzNfZ5QP4HwRyAAAAAADUM/EhPrq+W5Ku75akg1VHtGjHXs3elK9fNudrd9EBzdtaqHlbCzXuxw1KDvNV35Rw9W8eoS7JIfJ0szu7fKDBI5ADAAAAAKAe83K3q1/K0dtV/2yMtheUa/bmfP2yKV/LMouUUViujMJyfbwgUz4ednVvHKZ+zY92bo0J8nZ2+UCDRCAHAAAAAICLsCxLTSL81CTCT7f1aqSyg1VasG2vZm062rk1v6xSMzbmacbGPElS8yh/9T12a2uHhCC52W1OngHQMBDIAQAAAADgovy93DWkdZSGtI6SMUYbckodjSFW7SrWptwybcot07tztivAy029moWrf0qE+qSEK8zP09nlAy6LQA4AAAAAgAbAsiy1iglUq5hA3d2viYrLD2nu1gLN2pSvOVsKVFxRpSlrcjRlTY4sS2obG6h+xzq3tokNlM1mOXsKgMsgkAMAAAAAoAEK9vVQWmqs0lJjdaTaaPWeEsetreuySrV6zz6t3rNP42dsVaivh/ocawzRq2m4Ar3dnV0+UK8RyAEAAAAA0MDZbZY6JASrQ0KwHhiUovzSg5q95ejVc/O2Fmpv+SF9uzJL367Mkt1mqWNC8NGr55qHKyXSX5bF1XPA2XDZpzVmZWXpuuuuU2hoqLy9vdWmTRstX77csd8Yo6eeekrR0dHy9vbWgAEDtHXrVidWDAAAAABA3RAR4KWRneL1znUdtfLJgZp4+wUa1buRmkb46Ui10dLMIr04bZOGjJ+nHi/8ose+W6vpG/JUXnnY2aUD9YJLXiFXXFysHj16qF+/fpo6darCw8O1detWBQcHO8a89NJLevPNN/Xpp58qOTlZTz75pAYPHqwNGzbIy8vLidUDAAAAAFB3eLjZ1K1xqLo1DtVjw1pod1GFZm/O16zNBVq4vVDZ+w5qwpJdmrBklzzsNnVtFKJ+KRHq1zxCyWG+zi4fqJNcMpB78cUXFR8fr48//tixLTk52fFvY4zGjx+vJ554QmlpaZKkzz77TJGRkZo0aZKuuuqqWq8ZAAAAAID6ID7ER9d3S9L13ZJ0sOqIFu3Yq9mb8vXL5nztLjqgeVsLNW9rocb9uEFJoT6OxhBdkkPk5W53dvlAneCSgdz333+vwYMH64orrtCcOXMUGxuru+66S7fffrskKSMjQ7m5uRowYIDjmMDAQHXt2lWLFi06ZSBXWVmpyspKx+elpaWSpKqqKlVVVZ3HGQG/3fHvTb5HgbqNtQrUD6xVoH5grdYeu6SejYLVs1GwHh/aTDsKKzRnS4HmbCnUsp3FytxboY8XZOrjBZnydrepe+NQ9WkWpj5NwxQT5O3s8uFErrhOz2YuljHGnMdanOL4Ladjx47VFVdcoWXLlum+++7Tu+++qxtvvFELFy5Ujx49lJ2drejoaMdxI0eOlGVZ+uc//3nS8/75z3/W008/fcL2CRMmyMfH5/xMBgAAAACAeujgYWnzPksbSyxtKLa0r6pm44dob6OWwUYtg6uV7CfZXfYp92goKioqdM0112jfvn0KCAg47ViXDOQ8PDzUqVMnLVy40LFt9OjRWrZsmRYtWvSbA7mTXSEXHx+vwsLCX/0PDThLVVWVpk+froEDB8rdndbkQF3FWgXqB9YqUD+wVuseY4w25pZpzpZCzdlSqFW7S1T9X2mEv5ebejU5evVc76ZhCvPzdF6xqBWuuE5LS0sVFhZ2RoGcS96yGh0drZYtW9bY1qJFC33zzTeSpKioKElSXl5ejUAuLy9Pqamppzyvp6enPD1P/KHg7u7uMt88cF18nwL1A2sVqB9Yq0D9wFqtW9olhKpdQqhGD0hRcfkhzd1aoNmbCzR7c76KK6r073V5+ve6vKNj4wLV91hjiLaxgbLZrF85O+orV1qnZzMPlwzkevTooc2bN9fYtmXLFiUmJko62uAhKipKM2fOdARwpaWlWrJkie68887aLhcAAAAAgAYl2NdDaamxSkuN1ZFqo9V7ShyNIdZllWr1nn1avWef3pi5VaG+HuqTEq7eTcPVJTmEZ8/BJbhkIHf//fere/fu+stf/qKRI0dq6dKleu+99/Tee+9JkizL0pgxY/Tss8+qadOmSk5O1pNPPqmYmBiNGDHCucUDAAAAANCA2G2WOiQEq0NCsMYOSlF+6UHN3nL0yrl5Wwq1t/yQvl2ZpW9XZkmSYoO81TU5RJ2TQ9Q5KUSNw31lWVxBh/rFJQO5zp0767vvvtOjjz6qcePGKTk5WePHj9e1117rGPPwww+rvLxco0aNUklJiXr27Klp06Y5GkIAAAAAAIDaFxHgpZGd4jWyU7yqjlRreWaxZm3O1+Ide7U+u1RZJQf07aosfbvqaEAX6uuhzklHA7quySFqER0gO7e4oo5zyUBOkoYPH67hw4efcr9lWRo3bpzGjRtXi1UBAAAAAIAz5W63qVvjUHVrHCpJ2l95WCt3FmtZZpGWZhRp1e4S7S0/pGnrczVtfa4kyc/TTR0Sg9UlKVhdkkPVNi5QXu52Z04DOIHLBnIAAAAAAMC1+Hm6qXezcPVuFi5Jqjx8RGv37NPSYwHdisxilVUe1twtBZq7pUCS5GG3qV18oLocu8W1Y2Kw/L1co4kA6i8COQAAAAAAUC95utnVKSlEnZJCdFdf6Ui10abcUi3LKDoW0hWrcH+llmUWa1lmsaTtsllSy5gAdU4KUZdjt7qG+Xk6eypoYAjkAAAAAACAS7DbLLWKCVSrmEDd1CNZxhhl7q3Q0oy9Wppx9FbXXUUVWpdVqnVZpfp4QaYkqVG479FwLilEXZJDFBfsTaMInFcEcgAAAAAAwCVZlqXkMF8lh/nqys4JkqTcfQe1NLNIyzKKtCyzSJtyy7SjoFw7Csr15bLdkqToQC9HONclOURNwv1ko1EEziECOQAAAAAA0GBEBXrpknYxuqRdjCSppOKQlmcevXpuSUaR1mXtU86+g/p+dba+X50tSQryca9xi2urmAC5223OnAbqOQI5AAAAAADQYAX5eGhAy0gNaBkpSao4dFjpu0ocjSJW7ipWSUWVpm/I0/QNeZIkHw+7OiQEq3NSiDonB6t9fLC8PejkijNHIAcAAAAAAHCMj4ebujcJU/cmYZKkqiPVWpe1T0uP3eK6LLNY+w5Uaf62Qs3fVihJcrdbahMbqM7JIeqaHKKOiSEK9KaTK06NQA4AAAAAAOAU3O02tU8IVvuEYN3Rp7Gqq4225u8/2igis1jLMoqUW3pQK3eVaOWuEv19zg5ZlpQS6a+uyUdvce2SFKKIAC9nTwV1CIEcAAAAAADAGbLZLKVE+Sslyl/Xd0uSMUa7iw44GkUszSxSRmG5NuWWaVNumT5dtFOSlBTqc+wW16MBXWKoD51cGzACOQAAAAAAgN/IsiwlhPooIdRHf+gYJ0nKLzuo5ZnFWppx9Dl0G3NLlbm3Qpl7K/TVij2SpAh/T0c41zkpRM2j/Onk2oAQyAEAAAAAAJxDEf5eGtYmWsPaREuSSg9WacXOowHdsowirdmzT/lllZqyJkdT1uRIkgK83NTpWDjXJTlEbWID5eFGJ1dXRSAHAAAAAABwHgV4uatfSoT6pURIkg5WHVH67hLHLa4rdxar9OBh/bIpX79sypckebnblBofpC7JoeqSFKL2CUHy9STGcRX8nwQAAAAAAKhFXu52XdAoVBc0CpUkHT5SrQ05pTU6uRaVH9LiHUVavKNIkmS3WWodE6AuyUevouucFKJgXw9nTgO/A4EcAAAAAACAE7nZbWobF6S2cUG6rVcjGWO0vWC/lmYUa1nm0efQZZUc0Oo9+7R6zz69Py9DktQs0s9xi2vnpBDFBHk7eSY4UwRyAAAAAAAAdYhlWWoS4a8mEf66pmuCJCmr5ICWZRRpybGr6Lbl79eWvKMfXyzZJUmKC/ZWl+MBXXKIGoX50sm1jiKQAwAAAAAAqONig7wV2z5WI9rHSpL27q/UssziY7e4Fml9dqn2FB/QnuIsfbsqS5IU5uehTolHA7ouySFqER0gO51c6wQCOQAAAAAAgHom1M9TQ1pHaUjrKEnS/srDWrnzP7e4pu8uUeH+Q5q2PlfT1udKkvw83dQxMdhxi2vbuEB5ududOY0Gi0AOAAAAAACgnvPzdFPvZuHq3SxcklR5+IjW7tmnpZlFWpZRpOWZxSqrPKw5Wwo0Z0uBJMnDzabUuCB1Tg5Wl+RQdUgIkr+XuzOn0WAQyAEAAAAAALgYTze7OiWFqFNSiNRXOlJttCm3VMsyirQ0s0hLM4pVuL/y6L8zi/T2rO2yWVLLmAB1TgpR1+Sjx4b5eTp7Ki6JQA4AAAAAAMDF2W2WWsUEqlVMoG7qkSxjjDL3Vmhpxl5HN9ddRRVal1WqdVml+nhBpiSpUbivuh67xbVzUojigr1pFHEOEMgBAAAAAAA0MJZlKTnMV8lhvrqy89FOrrn7DjpucV2WWaRNuWXaUVCuHQXlmrh0tyQpJtBLnY8FdF2SQ9Qk3E82GkWcNQI5AAAAAAAAKCrQS5e0i9El7WIkSSUVh7T8WCfXpZlFWrtnn7L3HdTk9GxNTs+WJAX7uKtTUoi6HAvoWsUEyM1uc+Y06gUCOQAAAAAAAJwgyMdDA1pGakDLSElSxaHDSt9VcuwZdEVatatExRVVmr4hT9M35EmSfDzs6pDwn06u7ROC6OR6EgRyAAAAAAAA+FU+Hm7q3iRM3ZuESZKqjlRrXda+o1fQZRRpWWax9h2o0vxthZq/rVCS5G631CY2UF2SQ9UlOVgdE0MU6E0nVwI5AAAAAAAAnDV3u03tE4LVPiFYo3o3VnW10db8/UcbRWQWa1lGkXJLD2rlrhKt3FWid+dIliU1jwpQp4RA2YssdS6rVExIwwvoCOQAAAAAAADwu9lsllKi/JUS5a/ruyXJGKPdRQccjSKWZhYpo7BcG3NKtTGnVJJdmpehP6e1cXbptY5ADgAAAAAAAOecZVlKCPVRQqiP/tAxTpKUX3ZQyzOLtXh7oWau2akuSSFOrtI5COQAAAAAAABQKyL8vTSsTbQGNg9TR2uHBraMcHZJTkEfWgAAAAAAAKAWEcgBAAAAAAAAtYhADgAAAAAAAKhFBHIAAAAAAABALSKQAwAAAAAAAGoRgRwAAAAAAABQiwjkAAAAAAAAgFpEIAcAAAAAAADUIgI5AAAAAAAAoBYRyAEAAAAAAAC1iEAOAAAAAAAAqEUEcgAAAAAAAEAtIpADAAAAAAAAahGBHAAAAAAAAFCLCOQAAAAAAACAWkQgBwAAAAAAANQiAjkAAAAAAACgFhHIAQAAAAAAALWIQA4AAAAAAACoRQRyAAAAAAAAQC0ikAMAAAAAAABqEYEcAAAAAAAAUIsI5AAAAAAAAIBaRCAHAAAAAAAA1CICOQAAAAAAAKAWEcgBAAAAAAAAtYhADgAAAAAAAKhFBHIAAAAAAABALSKQAwAAAAAAAGoRgRwAAAAAAABQiwjkAAAAAAAAgFpEIAcAAAAAAADUIjdnF1CfGWMkSaWlpU6uBDi1qqoqVVRUqLS0VO7u7s4uB8ApsFaB+oG1CtQPrFWg7nPFdXo8HzqeF50OgdzvUFZWJkmKj493ciUAAAAAAACoC8rKyhQYGHjaMZY5k9gOJ1VdXa3s7Gz5+/vLsixnlwOcVGlpqeLj47V7924FBAQ4uxwAp8BaBeoH1ipQP7BWgbrPFdepMUZlZWWKiYmRzXb6p8RxhdzvYLPZFBcX5+wygDMSEBDgMj/kAFfGWgXqB9YqUD+wVoG6z9XW6a9dGXccTR0AAAAAAACAWkQgBwAAAAAAANQiAjnAxXl6eupPf/qTPD09nV0KgNNgrQL1A2sVqB9Yq0Dd19DXKU0dAAAAAAAAgFrEFXIAAAAAAABALSKQAwAAAAAAAGoRgRwAAAAAAABQiwjkgHqioqJCkyZN0q233qqUlBR5eXnJ19dX7dq107hx47R///4TjsnMzNTw4cPl4+Oj8PBw3XvvvTp48OBJz79o0SLZbDb9/e9/P99TARqUvXv3KiIiQpZlqUmTJicdw1oFnKugoEAPPvigUlJS5O3trZCQEHXo0EEPPfRQjXF79+7Vtddeq4CAAAUGBur6669XUVHRSc+ZkZEhb29vPfroo7UxBcDlLVu2TCNHjlRMTIzc3d0VFBSkXr166eOPP9b/PhZ99erV6t27t7y8vBQbG6s///nPqq6uPul5v/zyS1mWpZ9++qk2pgHUeytWrNALL7ygyy67THFxcbIsS5Zl/epxn3zyibp06SI/Pz+FhIRo2LBhWrhw4UnHHjx4UHfffbfCwsLk6+urSy65RDt37jzp2H379ikqKkpXX33175qXUxgA9cL7779vJBlJpkWLFuaKK64wgwcPNv7+/kaSad68ucnLy3OMP3z4sGnRooWxLMsMGTLEtG/f3kgyd9xxxwnnPnLkiGnfvr3p2LGjOXLkSG1OC3B5N954o7Esy0gyjRs3PmE/axVwruXLl5vQ0FAjybRq1cpceeWVZujQoSYxMdHY7fYaYwcNGmQkmd69e5tevXoZSWbw4MEnPe8ll1xi4uLizP79+2tjGoBL+/rrr43dbjeSTIcOHczIkSNNv379jJubm5FkrrnmGsfYffv2mbCwMOPp6Wkuvvhik5KSYiSZ559//oTzlpWVmdjYWDNixIjanA5Qr6WlpTnel/73x+ncd999RpLx9vY2aWlpZvDgwcbNzc3Y7Xbz3XffnTB+1KhRjvU+ePBgY1mWadmypTl8+PAJY0ePHm38/PzMnj17ztUUaw2BHFBPfPLJJ2bUqFFmw4YNNbZnZ2c73sBfffXVju3/+te/jCTzwgsvGGOOvpEfNGiQcXNzM9nZ2TXO8be//c1YlmUWLVp0/icCNCAzZswwkhy/VJwskGOtAs6Tn59vwsLCjI+Pj5k8efIJ+5csWeL499KlS40k88c//tGx7bbbbjOSzLJly2ocN3XqVCPJ/POf/zx/xQMNRFVVlYmIiDCSzBdffFFj34YNG0xISIiRZH755RdjjDEvvfSSkWS+/PJLY4wxBw4cMK1btzZBQUHm0KFDNY5/+OGHjbe3t8nIyKiVuQCu4IUXXjBPPvmk+f77701OTo7x9PQ8bSA3ffp0I8mEhoaaLVu2OLYvXLjQeHh4mKCgIFNcXOzYnp2dbdzc3MywYcNMdXW1McaYZ5991kgyX331VY1zr1mzxri5uZkXX3zx3E6ylhDIAS5g4cKFRpLx9PQ0lZWVxhhjHnvsMSPJ5OTkOMZNmDDBSDLTp093bCssLDQhISHm5ptvrvW6AVdWUVFhGjdubFq2bGm2bNlyykCOtQo4z5133mkkmbfffvtXx7733ntGUo1A/Pjr7/vvv+/YVllZaZo2bWr69+9/XmoGGpq1a9caSSYlJeWk+0ePHm0kOd6QX3PNNcbb29vxRt4YY/7yl78YSWbr1q2ObZs3bzYeHh7m6aefPr8TAFzcrwVyQ4cONZLM66+/fsK+4+v3lVdecWz7+eefjSQzceJEx7bs7GwjyTz++OM1ju/Tp49JSUk5IWyvL3iGHOAC2rVrJ0mqrKzU3r17JUnFxcWSpODgYMe44/8+vk+SHnvsMVVXV+uFF16orXKBBuHpp5/Wjh079O6778rd3f2U41irgHMcOHBAn3/+uXx9fXXzzTf/6vgzXauvvvqqMjIy9NZbb53jioGGydPT84zGhYaGSjq6HgMDA2s80+pka/Xee+9VXFycHn744XNYLYD/duDAAf3yyy+SpD/84Q8n7D++7YcffnBsO9PX24kTJ2rOnDl66623Tvu7dl1GIAe4gB07dkiS3N3dFRISIklKSEiQJG3ZssUxbvPmzTX2LV++XB988IHGjRuniIiI2iwZcGlr1qzRq6++qptvvlm9evU67VjWKuAcy5cvV1lZmdq3by9vb29NnTpVY8eO1V133aXx48crOzu7xvgzWau7d+/Wc889p9GjR6tly5a1NBPAtTVq1EiNGzfW5s2bNWHChBr7Nm7cqM8//1zBwcG69NJLJR1djwUFBSopKXGM+9+1+u233+rnn3/W+PHj5eXlVTsTARqgzZs3q7KyUuHh4YqLizthf4cOHSQd/d35uDN5vd2/f78efPBBXXbZZRo4cOB5q/+8c/YlegB+v+PPsLn44osd29LT041lWWbYsGEmLy/PrFmzxiQmJprY2Fhz4MABU11dbbp27Wratm170odjAvhtjhw5Yjp37mzCwsJMYWGhMcaYjIyMU96yyloFnOPdd981ksxll1120gdUe3t7mwkTJjjG5+TkGG9vb9OxY0eTmZlpMjIyTPv27Y2Pj4/Jzc01xhhzxRVXmOjoaFNaWuqsaQEuaf78+SYoKMjxkPcrr7zS0dShbdu2ZuXKlY6xkydPNpLMrbfeaoqKiszcuXNNUFCQ6dixozHm6CMlEhMTzUUXXeSs6QAu5XS3rB5fj+3btz/l8cfX9vHXzgMHDpjo6GiTnJxs1q5da3Jzcx2NHVavXm2MMeahhx4yPj4+ZufOned+QrWIQA6o56ZMmWIsyzLu7u4mPT29xr7bb7+9xpsLy7IcD7j98MMPjSQzd+7cGsdUVFTUWu2AKxo/fryRZD7++GPHttMFcsawVgFneP75540k4+bmZjw9Pc3bb79t8vPzTWZmpnnwwQeNJOPu7m5WrVrlOOa55547Ibg7/tyqmTNnGknmH//4R42vU15eXpvTAlzW6tWrTaNGjWqsPw8PD/PAAw+YkpKSGmOPd0Q+/uHp6el4HX3yySeNp6en2bZtm2N8dXW1OXDgQK3OB3AVpwvkvvjiCyPJ9OjR45THx8bGGkkmKyvLse3zzz83lmXVWMd33nmnMcaYTZs2GXd3d/PMM8/UOE9FRUWNZ0fWBwRyQD22ceNGExwcbCSZ8ePHn7C/urrafPnll+bOO+80Y8eOdXSLKy4uNhEREea6664zxhy9ouexxx4zgYGBRpJJTEykMxzwG+zcudP4+fmZPn361Nj+a4EcaxWoff8drp2sO9sVV1xhJJlrrrmmxvapU6eae+65x9x7773m559/NsYc7QLZsmVL06tXL8e48ePHOzpDRkREmDfffPP8TghwYRMmTDCenp6mT58+ZsmSJWb//v1my5Ytji7mHTp0MAcPHnSMP3TokHn//ffNHXfcYR555BGzYcMGY4wx27dvN15eXuaJJ54wxhx9Az9q1Cjj4+NjJJmWLVs6urUCODPnI5Az5mjjpPvvv9/ceeed5quvvnKEbQMHDjSNGzd2rPmJEyeaxMREI8kEBgaaxx9/3Bw5cuQcze78IpAD6qk9e/Y4fvCMHTv2rI695557jL+/v6Or46uvvmokmTFjxpjJkyeboUOHGpvNVuOqAAC/bvjw4cbDw8Ns3LixxvZfC+ROhbUKnD9vvPGGI5DLz88/Yf+///1vI8nExsb+6rleeeUVY7fbHbfSfPPNN0aSue6668zkyZPN9ddfbySZyZMnn/N5AK5uy5Ytxt3d3cTGxpqysrIT9g8fPtxIMn/7299+9VzDhw83CQkJjqvM7733XmO32824cePMt99+azp37mx8fX1Ndnb2OZ8H4KrO9S2rp/P1118bSebHH380xhizfPlyY1mWGTJkiJk0aZK5//77jSTzxhtv/LbJ1DICOaAe2rt3r2nZsqWRZG6++eazujR39erVxm63m1dffdWxLTo62vTt29fxeWlpqfH39zfXXnvtOa0bcHWSTFBQkOnTp0+Nj65duxpJxsvLy7HteMh2KqxV4PyaNGmSkWR8fHxOun/Dhg2O21ZPJycnx/j7+5t7773Xsa1bt26mUaNGjr/QHzlyxCQnJ5/2CgEAJzdu3DjHM+FO5rPPPjOSzFVXXXXa80yZMsVIMt98840xxpj9+/cbd3d3c9NNNznG7Nixw0gyjz/++LmbAODiThfIrVq1ykgy4eHhJ92/f/9+I8kEBwf/6tc5/vzH/35u+tVXX238/f1rhHl9+vQ5oz+m1QVuZ9sEAoBz7d+/X0OHDtWGDRt02WWX6f3336/R1v3X3HPPPUpJSdHo0aMlSaWlpcrJydF1113nGOPv76/mzZtrw4YN57x+wNWVlJRozpw5J9138OBBx76DBw+e9jysVeD8at++vSTpwIEDqqyslKenZ439RUVFkiQ/P7/Tnuehhx6St7e3xo0b59i2adMmDRgwQDabTZJks9nUqVMnzZgx41xOAWgQ9uzZI0kKDAw86f7j24uLi095jsrKSt13330aOHCgLrvsMknS9u3bVVVVpc6dOzvGJScnKzw8nNdV4BxJSUmRp6enCgoKlJWVpdjY2Br7V65cKUlq27btr57rL3/5i/Ly8jR+/HjHtk2bNql58+by9/d3bOvSpYvmzJmj0tJSBQQEnJuJnCc2ZxcA4MxVVlYqLS1NS5cu1eDBgzVx4kTZ7fYzPv6LL77QvHnz9NZbb8nNrWYeX1FRUePz8vJyxxsJAGfGHL3y/ISPjIwMSVLjxo0d25KSkk55HtYqcP4lJCSoXbt2MsacNEQ/vu14cHcy8+fP1+eff64XXnhBQUFBNfaxVoFzIyoqSpK0fPnyk+5ftmyZJJ32dfWVV17Rzp079dZbb52w73/XakVFBWsVOEe8vb3Vv39/SdJXX311wv6vv/5aknTxxRef9jzbt2/Xyy+/rIcffliNGjWqse9kr7eSzuqiFadx2rV5AM7K4cOHzaWXXmokmV69ep1117bS0lITHR1tRo4cecK+uLg4Ex8f77jUd+XKlcayLHPDDTeck9qBhu5sniHHWgVqz/GHTbdp06bGM6NWrVplQkJCjCTzr3/966THHj582LRr185ccMEFJzw6omfPnsbX19fs2bPHGHP0ua++vr6md+/e528ygItasWKF43mP//ucuEWLFhlfX18jyUyfPv2kx+/cudP4+PiYhx9+uMb28vJy4+npaTp37mwOHTpkjDHmu+++M5LMU089dX4mA7ig092yaowx06dPN5JMaGio2bJli2P7woULjaenpwkKCjLFxcWn/RoXXXSRSUpKcjz/8bjrrrvOWJZlVq5caYw5+nt0fHy8SUhI+O0TqkUEckA9MX78eMcvI5deeqm58cYbT/pRUFBw0uMfeOAB4+vra3bv3n3Cvr/+9a9GkklKSjKXXnqpCQwMNHa73axbt+58TwtoEM4mkGOtArXrxhtvdDz/cdiwYaZfv36ONxe33377KY976623jM1mM8uXLz9h348//mgkmcjISHPZZZeZyMhII8lMnTr1fE4FcFkPPvig4/fgVq1amSuuuML06NHD2Gw2I8mMGjXqlMdefvnlp2wIcfy8LVu2NGlpacbLy8sEBASYvLy88zkdoF778ccfTdeuXR0flmUZSTW2HW+6cNx9993neG5rWlqaGTp0qHFzczN2u9189913p/16P/zwg5F00nGrV682NpvNBAYGmksvvdQkJSUZSebdd989hzM+fwjkgHriT3/6k+MXkdN9ZGRknHDshg0bjLu7u3n++edPeu7q6mrz/PPPm/j4eOPu7m7atGlzwg9RAL/dmQZyrFWg9lVXV5v33nvPdOzY0fj4+BhfX1/TrVs388knn5zymIKCAhMcHGzuuOOOU4758MMPTdOmTY27u7tp0qSJ+fjjj89D9UDD8e2335pBgwaZ0NBQ4+bmZoKDg02/fv3MhAkTTnnM8StzJk6ceNL9lZWV5oEHHjCRkZHGw8PDdOvWzSxatOh8TQFwCR9//PGvvic92Wvexx9/7HitDQoKMkOGDDELFiw47dc6ePCgady4sRk8ePApx3z//fembdu2xt3d3cTHx5sXXnjh906x1ljGGHM+boUFAAAAAAAAcCKeVgkAAAAAAADUIgI5AAAAAAAAoBYRyAEAAAAAAAC1iEAOAAAAAAAAqEUEcgAAAAAAAEAtIpADAAAAAAAAahGBHAAAAAAAAFCLCOQAAAAAAACAWkQgBwAAAAAAANQiAjkAAABIkj755BNZliXLspSZmXlevsZNN90ky7KUlJT0u86TlJQky7J00003nZO6AAAAahOBHAAAgAu46KKLZFmWbDab5s+ff0bHzJ8/XzabTZZlafjw4ee5QgAAABxHIAcAAOAC/v73vysgIEDGGN122206ePDgacdXVlbqtttukzFGAQEBevfdd2upUgAAABDIAQAAuIC4uDi9+OKLkqTNmzfr6aefPu34cePGafPmzZKkl156SXFxcbrppptkjJEx5nffUgoAAIBTI5ADAABwEXfccYf69OkjSXrllVe0atWqk45bvXq1XnrpJUlS3759NWrUqFqrEQAAAARyAAAALsOyLH3wwQfy9vbW4cOHdeutt+rw4cM1xhw5csSx3dvbWx988IEsy3JSxQAAAA0TgRwAAIALadKkicaNGydJWrVqlV5++eUa+1977TWtWLFCkvTMM8+ocePGjn1n2mX1yJEj+vTTTzV8+HDFxMTI09NToaGh6tmzp1577TUdOHDgd89j6tSpGjZsmMLDw+Xj46NmzZpp7NixysrK+t3nBgAAcDYCOQAAABdz//33q3PnzpKkp59+2vGsuO3bt+tPf/qTJKlz584aM2bMWZ97165d6tixo2666SZNmTJFOTk5OnTokIqKirRgwQI98MADatu2rbZs2fKb6x87dqyGDRumqVOnqrCwUAcOHNDWrVv1+uuvq3379lq+fPlvPjcAAEBdQCAHAADgYux2uz788EO5u7s7uqlWV1fr9ttv14EDB+Tu7q6PPvpIdrv9rM67d+9e9ezZU6tXr5anp6fuueceffXVV1q2bJlmzZqlRx99VD4+Ptq2bZuGDh2qffv2nXXt48eP1+uvvy5JiomJ0VtvvaUlS5Zozpw5evjhh7Vv3z5dccUVqqioOOtzAwAA1BVuzi4AAAAA516bNm306KOPaty4cZo/f74GDRqkWbNmSZIee+wxtW7d+qzPOXr0aO3evVuJiYmaNWuWkpOTa+zv27evrrjiCvXq1Us7duzQSy+9pOeee+6Mz5+fn6/HH39ckpSYmKjFixcrKirKsb93794aPHiwBg8efMKz8QAAAOoTrpADAABwUY8//rhatWolSZo5c6YkqXXr1nrsscfO+lyZmZn65z//KUn661//ekIYd1z79u119913Szr6TLqz8emnnzqufHv11VdrhHHH9e/fX7fffvtZnRcAAKCuIZADAABwUR4eHjVuTT1+K6uHh8dZn2vKlCk6cuSIfHx8NHTo0NOO7d27tyQpOztbu3btOuOvMWPGDElScHCw0tLSTjnulltuOeNzAgAA1EXcsgoAAODCunTpori4OO3cuVNxcXHq0qXLbzrP8UYKFRUVcnM7818hc3NzlZCQcEZj165dK+noVXan+xqpqany8PDQoUOHzrgOAACAuoQr5AAAAPCr8vPzf9NxZ9N8oaioSJIUERFx2nFubm4KCQn5TfUAAADUBVwhBwAAgF915MgRSVJYWJijOcSZONWz5k7HsqyzPgYAAKA+IZADAADArwoNDZUklZWVqUWLFo7n0p1LwcHBys3NVV5e3mnHHT582HE1HQAAQH3ELasAAAD4Ve3bt5ckVVZWOp4nd661adNGkpSenq7Dhw+fctzq1at5fhwAAKjXCOQAAADwqy6++GLHraTjx48/L19jwIABko4+S+6HH3445biPPvrovHx9AACA2kIgBwAAgF+VkpKiK664QpL05Zdf6rXXXjvt+IyMDE2cOPGsvsaNN94ob29vSdLYsWNPeuvqnDlz9N57753VeQEAAOoaAjkAAACckXfeeUeNGjWSJD3wwAPq06ePPvzwQy1evFirVq3SjBkz9Oqrr2rgwIFq0qSJvvnmm7M6f2RkpJ555hlJUmZmpjp27Ki3335by5Yt07x58/Too49q8ODBio2NVXh4+DmfHwAAQG2hqQMAAADOSEhIiBYsWKCRI0dq3rx5mjt3rubOnXvK8QEBAWf9NR544AHt2rVLb775prKysnTPPffU2B8WFqavvvrKcbUeAABAfcQVcgAAADhjUVFRmjt3rn788Udde+21atSokXx8fOTu7q7w8HB1795dDzzwgObMmfObn/X2xhtvaMqUKRo8eLBCQkLk5eWlJk2aaPTo0Vq1apU6d+58jmcFAABQuyxjjHF2EQAAAAAAAEBDwRVyAAAAAAAAQC0ikAMAAAAAAABqEYEcAAAAAAAAUIsI5AAAAAAAAIBaRCAHAAAAAAAA1CICOQAAAAAAAKAWEcgBAAAAAAAAtYhADgAAAAAAAKhFBHIAAAAAAABALSKQAwAAAAAAAGoRgRwAAAAAAABQiwjkAAAAAAAAgFpEIAcAAAAAAADUIgI5AAAAAAAAoBb9P/dCe6f0+UqIAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Now you are ready to understand what happened with SVB. The following is a simplified account, to ease understanding of what happened.\n",
"\n",
"Before 2020, market interest rates were low (read: *yields* were low). The short-term market interest rates were basically zero, and so depositors had to be paid pretty much zero interest on their deposits. The long-term market interest rates (i.e., yields on the bonds we described above) were also low, about 2%. So this meant a bank would collect an interest rate spread of 2% - 0% = 2% on their deposit amount. A few years ago, SVB invested about `$100B` in these bonds (of different maturities), hoping to collect `$2B` (= `$100B * 2%`) annually due to this interest-rate spread.\n",
"\n",
"Cut to 2022 - with the Fed raising interest rates, the yields on bonds rose a lot. They rose a lot more for shorter maturity bonds versus longer maturity bonds, but overall, yields for bonds of all maturities rose considerably.\n",
"\n",
"What this meant for SVB is that if they bought a bond for price $P_1$ at low yield $y_1$ and then two years later, when depositors came in large volumes to take out their deposits, SVB was forced to sell the bond in order to return the depositors' money. But now the yield on this bond is $y_2$, with $y_2$ significantly greater than $y_1$ (and corresponding price $P_2$, at which the sale has to happen, much lower than $P_1$). So they bought a bond for price $P_1$ and now had to sell that bond at a much lower price $P_2$, incuring a big loss of $P_1 - P_2$.\n",
"\n",
"Let's use our `yield_to_price` function above to do this calculation."
],
"metadata": {
"id": "8D_CCcGw24ew"
}
},
{
"cell_type": "code",
"source": [
"coupon: float = 0.02\n",
"maturity_at_purchase: int = 30\n",
"principal: float = 100.0 # in billions of dollars\n",
"maturity_at_sale: int = 28\n",
"\n",
"yield_at_purchase: float = 0.02\n",
"yield_at_sale: float = 0.05\n",
"\n",
"purchase_price: float = price_from_yield(\n",
" yield_at_purchase,\n",
" coupon,\n",
" maturity_at_purchase,\n",
" principal\n",
")\n",
"\n",
"sale_price: float = price_from_yield(\n",
" yield_at_sale,\n",
" coupon,\n",
" maturity_at_sale,\n",
" principal\n",
")\n",
"\n",
"loss: float = purchase_price - sale_price\n",
"loss_percentage: float = loss / purchase_price\n",
"\n",
"print(f\"Purchase Price was {purchase_price:.0f} Billion Dollars\")\n",
"print(f\"Sale Price was {sale_price:.0f} Billion Dollars\")\n",
"print(f\"Loss was {loss:.0f} Billion Dollars\")\n",
"print(f\"Loss Percentage was {(loss_percentage * 100):.0f}%\")\n",
"\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "p1MdFHUW5sCD",
"outputId": "ee210b20-38a8-4c7c-ef9f-e0d08de8a320"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Purchase Price was 100 Billion Dollars\n",
"Sale Price was 55 Billion Dollars\n",
"Loss was 45 Billion Dollars\n",
"Loss Percentage was 45%\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"To compound matters, the short-term interest rates rose a lot over the past couple of years. I can now earn 5% annual return on a Treasury bond of maturity only 6 months. So a depositor can deposit a `$1M` and have `$1M` + Interest of `$25K` returned in just 6 months. Neat way to make `$25K` in just 6 months. If you are an early-stage startup who just raised some money, you can do exactly this because not all the money you raised would need to be consumed in the first 6 months. What this meant for SVB is that in the last few years, they had to pay the new depositors high interest rate on their deposits. In fact, higher than the coupons on the long-term bonds they invested in a few years ago. This is a double-whammy. Firstly, with interest rates rising, SVB's bond investments lost significantly on falling bond prices (as the above calculations showed). Secondly, we are now in an environment where short-term interest rates are actually higher than long-term interest rates, which makes it very painful for banks (having to give their depositors more interest than the interest they earn on their long-maturity investments). This phenonomenon of short-term interest rates being higher than long-term interest rates goes by the catchy term [*inverted yield curve*](https://www.weforum.org/agenda/2022/12/inverted-yield-curve-signal-economy-euro-dollar/)."
],
"metadata": {
"id": "Nl3-hFlgHMHb"
}
},
{
"cell_type": "markdown",
"source": [
"**Disclaimer**: I have been super-busy the past few days developing code for my early-stage startup, and teaching my RL course at Stanford (and being a soccer-dad to a teenage girl!). As a result, I haven't had a chance to dig into SVB's exact investments and get into precise numbers. I just wanted to shed some light on the big picture here, and use these somewhat-simplified assumptions and calculations to illustrate the key concepts of what happened. In reality, there is a lot more detail to what happened with SVB. But what I wrote above is the foundation that caused this crisis for them.\n",
"\n",
"This is the end of the SVB story. If you are mathematically inclined and want to understand Bond Math a bit more, I have a little treat for you below."
],
"metadata": {
"id": "W6sthkYIJ88S"
}
},
{
"cell_type": "markdown",
"source": [
"## Understanding Bond Risk with High-School Calculus\n",
"\n",
"If you are mathematically inclined, you'd have said that I wrote Price as a function of yield, so why don't I take the derivative of Price with respect to yield, so as to give us a precise calculation of sensitivity of Bond Price with respect to changes in the yield?\n",
"\n",
"This is exactly what we do now, except we will do this for a more general case of arbitrary cash flows, and not just for the specific case of a Treasury bond above where the interest payments are constant each year, and the entire Principal is paid back only at maturity. So here we assume that over the $T$ years, our cash flows are arbitrary, denoted: $C_1, C_2, \\ldots, C_T$ respectively for years $1, 2, \\ldots, T$. So then, the price formula (as a function of yield $y$) is:\n",
"\n",
"$$P(y) = \\sum_{i=1}^T \\frac{C_i} {(1+y)^i}$$\n",
"\n",
"Now take the derivative of $P$ with respect to $y$.\n",
"\n",
"$$\\frac {dP}{dy} = - \\sum_{i=1}^T \\frac {i \\cdot C_i} {(1+y)^{i+1}}$$\n",
"\n",
"But actually we are interested in the fractional decline in price per unit of increase in yield (since we are typically interested in the percentage change in the value, i.e., price of our investment). So we are talking about:\n",
"\n",
"$$- \\frac 1 P \\cdot \\frac {dP} {dy}$$\n",
"\n",
"Let us calculate this:\n",
"\n",
"$$- \\frac 1 P \\cdot \\frac {dP} {dy} = \\frac {\\sum_{i=1}^T \\frac {i \\cdot C_i} {(1+y)^{i+1}}} {\\sum_{i=1}^T \\frac {C_i} {(1+y)^i}}$$\n",
"\n",
"Let us write $\\frac {C_i} {(1+y)^i}$ as $u_i$, so we get:\n",
"\n",
"$$ - \\frac 1 P \\cdot \\frac {dP} {dy} = \\frac 1 {1+y} \\cdot \\frac {\\sum_{i=1}^T u_i \\cdot i} {\\sum_{i=1}^T u_i}$$\n",
"\n",
"Now we write $\\frac {u_i} {\\sum_{u=1}^T u_i}$ as $w_i$, meaning $w_i, 1 \\leq i \\leq T$, can be treated as weights between 0 and 1, adding up to 1. So,\n",
"\n",
"$$ - \\frac 1 P \\cdot \\frac {dP} {dy} = \\frac 1 {1+y} \\cdot \\sum_{i=1}^T w_i \\cdot i$$\n",
"\n",
"So, if we ignore the factor $\\frac 1 {1+y}$ (ok to ignore since it is $\\approx 1$), the above expression can be conceptualized as the weighted average of the cashflow timings, with the weights being proportional to the discounted-to-current-time value of the cash flows (often refered to as *Present Value of the Cashflows*, abbreviated to PV).\n",
"\n",
"With this interpretation as the weighted average of the cashflow timings, we refer to $- \\frac 1 P \\frac {dP} {dy}$ (\"percentage\" decline in price per unit of yield increase) as **Duration** of a bond (with arbitrary cashflows).\n",
"\n",
"We can visualize this as a plank of length 30 meters, and at each meter of the plank, we place a weight proportional to the PV of the cashflow of that year. Then, the duration is the position on the plank where the plank can be balanced with a wedge, i.e., the \"center of mass\".\n",
"\n",
"Let us visualize this \"plank with weights\" for two types of bonds - first for a treasury bond (the one we discussed above), and then for a mortgage bond where some of the principal is paid together with the interest each year in a way such that the sum of the principal and interest payments is held constant across the years."
],
"metadata": {
"id": "FOtwOEHvFBZf"
}
},
{
"cell_type": "markdown",
"source": [
"Let us write a function to calculate the duration according to the formula above, and let us write a function to plot the PV of cashflows to conceptualize them as weights along a plank (so you can visualize where the center of mass might be)."
],
"metadata": {
"id": "T7MSnERFFMb5"
}
},
{
"cell_type": "code",
"source": [
"from typing import Sequence, List\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def duration(cash_flow: Sequence[float], yield_: float) -> float:\n",
" pvs: Sequence[float] = [c / (1 + yield_) ** i for i, c in enumerate(cash_flow)]\n",
" return sum(i * p for i, p in enumerate(pvs)) / sum(pvs) / (1 + yield_)\n",
"\n",
"def plank_weights_plot(cash_flow: Sequence[float], yield_: float):\n",
" pvs: Sequence[float] = [c / (1 + yield_) ** i for i, c in enumerate(cash_flow)]\n",
" timings = [i for i in range(1, len(cash_flow) + 1)]\n",
" ticks = [f\"{i:d}\" for i in timings]\n",
" fig, ax = plt.subplots(figsize=(15, 10))\n",
" plt.bar(timings, pvs)\n",
" plt.xticks(timings, ticks)\n",
" plt.grid(axis='y')\n",
" plt.xlabel(\"Timing of Cashflows\")\n",
" plt.ylabel(\"PV of Cashflows\")\n",
" plt.title(\"Weights on a Plank\")\n",
" plt.show()"
],
"metadata": {
"id": "zP70uuAOFPp8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now let's apply these functions to the case of a treasury bond."
],
"metadata": {
"id": "iJVqpRkAFTOa"
}
},
{
"cell_type": "code",
"source": [
"bond_coupon: float = 0.04\n",
"num_years: int = 30\n",
"yield_: float = 0.05\n",
"bond_cash_flow: List[float] = [bond_coupon] * num_years\n",
"bond_cash_flow[-1] += 1\n",
"bond_duration: float = duration(bond_cash_flow, yield_)\n",
"\n",
"print(f\"Bond Duration = {bond_duration:.2f}\")\n",
"plank_weights_plot(bond_cash_flow, yield_)\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 890
},
"id": "MUSYdP_ZFX7C",
"outputId": "48365d6f-332e-4f14-ecc5-5d60bdcc2d0f"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Bond Duration = 15.14\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1500x1000 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAANXCAYAAADjAjLCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABozklEQVR4nOzdebhd86E//vdJZJ5EEhnIgCCmiDFNKEqaRH0RtDG0NV7KNQclLcLVNuZScrncIooWLaqXxpCKMaghLa55qCEDMeRUQpLmrN8ffjnXkUROWGfi9Xqe/fTstdden/faaZZ93vmstSqKoigCAAAAAHwpzRo6AAAAAAB8FSjaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAEq0//77p1+/fl/4ve3bty830NfQa6+9loqKilx11VV1Ok5FRUWOOOKIOh0DAGhaFG0AwFfeDTfckIqKitx8881LvLbxxhunoqIi99xzzxKv9enTJ0OHDq2PiCtk3rx5Oe200zJlypSGjlKvpkyZkoqKiupHixYtsuaaa2bffffNK6+80tDxAAAUbQDAV9/WW2+dJHnggQdqLK+srMzTTz+dlVZaKQ8++GCN195444288cYb1e+trcsvvzzPP//8lwu8HPPmzcvpp5/+tSvaFjvqqKPym9/8Jpdddll22mmnXH/99dliiy0yffr0ho4GAHzNKdoAgK+8Xr16ZY011liiaJs6dWqKosj3vve9JV5b/HxFi7YWLVqkVatWXy4wn+ub3/xmfvCDH+SAAw7IRRddlHPPPTfvvfdeJk6c2NDRAICvOUUbAPC1sPXWW+fJJ5/MRx99VL3swQcfzAYbbJAdd9wxDz/8cKqqqmq8VlFRka222qp62TXXXJPNNtssbdq0ySqrrJK99torb7zxRo1xlnaNtnfffTc//OEP07Fjx6y88srZb7/98re//W2Z1xF76623MmrUqLRv3z7dunXL8ccfn0WLFiX55Ppj3bp1S5Kcfvrp1adRnnbaaUmSmTNn5oADDsjqq6+eVq1apWfPntl1113z2muvLfcz+stf/pJvfvObadeuXVZeeeXsuuuuefbZZ2usc9ppp6WioiIvvfRS9t9//6y88srp1KlTDjjggMybN2+5Y9x///353ve+lz59+qRVq1bp3bt3jj322Bp/Litq++23T5K8+uqry1zn73//e/bff/+sueaaad26dXr06JEDDzww7777bqn797Of/SzNmjXLRRdd9IX3BwBoulZq6AAAAPVh6623zm9+85s88sgj2W677ZJ8UqYNHTo0Q4cOzZw5c/L0009n4MCB1a8NGDAgXbp0SZL8/Oc/zymnnJLRo0fn3/7t3/LOO+/koosuyjbbbJMnn3wyK6+88lLHraqqys4775xHH300hx12WAYMGJA//vGP2W+//Za6/qJFizJixIgMHjw45557bu6+++6cd955WWuttXLYYYelW7duueSSS3LYYYdlt912y+67754k1bn32GOPPPPMMznyyCPTr1+/vP3227nrrrvy+uuvf+5NGu6+++7suOOOWXPNNXPaaaflo48+ykUXXZStttoqTzzxxBLvHT16dNZYY42MHz8+TzzxRP77v/87q666as4666zP/XO48cYbM2/evBx22GHp0qVLHn300Vx00UV58803c+ONN37ue5fl5ZdfTpLqP6ulueuuu/LKK6/kgAMOSI8ePfLMM8/ksssuyzPPPJOHH344FRUVX3r/Tj755PziF7/If/3Xf+Xggw/+QvsCADRxBQDA18AzzzxTJCnOOOOMoiiKYuHChUW7du2KiRMnFkVRFN27dy8mTJhQFEVRVFZWFs2bNy8OPvjgoiiK4rXXXiuaN29e/PznP6+xzaeeeqpYaaWVaizfb7/9ir59+1Y//8Mf/lAkKS644ILqZYsWLSq23377Iklx5ZVX1nhvkuI//uM/aoyzySabFJtttln183feeadIUowbN67Geu+//36RpDjnnHNW8NMpikGDBhWrrrpq8e6771Yv+9vf/lY0a9as2HfffauXjRs3rkhSHHjggTXev9tuuxVdunRZ7jjz5s1bYtn48eOLioqK4h//+Mfnvveee+4pkhRXXHFF8c477xTTp08vbrvttqJfv35FRUVF8de//rUoiqJ49dVXl/hslzbub3/72yJJcd99932h/UtSHH744UVRFMVxxx1XNGvWrLjqqqs+/wMAAL7SnDoKAHwtrLfeeunSpUv1tdf+9re/Ze7cudV3FR06dGj1DRGmTp2aRYsWVV+f7aabbkpVVVVGjx6d2bNnVz969OiRtddee6l3LF1s0qRJadGiRY0ZTs2aNcvhhx++zPcceuihNZ5/85vfrNVdNdu0aZOWLVtmypQpef/995e7/mIzZszItGnTsv/++2eVVVapXj5w4MB8+9vfzu23316rjO+++24qKyuXm3GxuXPnZvbs2Rk6dGiKosiTTz5Zq7wHHnhgunXrll69emWnnXbK3LlzM3HixGy++ea1Gvfjjz/O7Nmz841vfCNJ8sQTT3zh/SuKIkcccUQuvPDCXHPNNcucqQgAfD04dRQA+FqoqKjI0KFDc99996WqqioPPvhgVl111fTv3z/JJ0XbxRdfnCTVhdviou3FF19MURRZe+21l7rtFi1aLHPcf/zjH+nZs2fatm1bY/nicT+rdevW1ddgW6xz5861Ks5atWqVs846K8cdd1y6d++eb3zjG/l//+//Zd99902PHj0+N2OSrLvuuku8tt566+WOO+7I3Llz065du+rlffr0WSJjkrz//vvp2LHjMsd6/fXXc+qpp+bWW29dYp/mzJmz3H1MklNPPTXf/OY307x583Tt2jXrrbdeVlrp87/Wvvfeezn99NPzu9/9Lm+//fZyx63t/l199dX58MMPc8kll2TvvfeuVX4A4KtL0QYAfG1svfXW+dOf/pSnnnqq+vpsiw0dOjQnnHBC3nrrrTzwwAPp1atX1lxzzSSfXGetoqIif/7zn9O8efMlttu+ffvSMi5t+yvimGOOyc4775xbbrkld9xxR0455ZSMHz8+f/nLX7LJJpuUlHLZOYuiWOZ7Fi1alG9/+9t57733cuKJJ2bAgAFp165d3nrrrey///41bkbxeTbaaKMMGzZshfKOHj06Dz30UE444YQMGjQo7du3T1VVVUaOHLnUcWu7f1tttVWmTZuWiy++OKNHj64xIxAA+PpRtAEAXxuLZ6g98MADefDBB3PMMcdUv7bZZpulVatWmTJlSh555JF85zvfqX5trbXWSlEUWWONNbLOOuus0Jh9+/bNPffck3nz5tWY1fbSSy994f347IX7P2uttdbKcccdl+OOOy4vvvhiBg0alPPOOy/XXHPNMjMmyfPPP7/Ea88991y6du1aYzbbF/XUU0/lhRdeyMSJE7PvvvtWL7/rrru+9LY/z/vvv5/Jkyfn9NNPz6mnnlq9/MUXX/zS2+7fv3/OPvvsbLfddhk5cmQmT56cDh06fOntAgBNk2u0AQBfG5tvvnlat26da6+9Nm+99VaNGW2tWrXKpptumgkTJmTu3LnVpVyS7L777mnevHlOP/30JWY0FUWRd999d5ljjhgxIgsXLszll19evayqqioTJkz4wvuxuLD74IMPaiyfN29ePv744xrL1lprrXTo0CHz589f5vZ69uyZQYMGZeLEiTW2+fTTT+fOO++sUTp+GYtniX36MyyKIhdeeGEp21+RcZPkggsuKGX7AwcOzO23355nn302O++8cz766KNStgsAND1mtAEAXxstW7bMFltskfvvvz+tWrXKZpttVuP1oUOH5rzzzkuSGkXbWmutlZ/97GcZO3ZsXnvttYwaNSodOnTIq6++mptvvjmHHHJIjj/++KWOOWrUqGy55ZY57rjj8tJLL2XAgAG59dZb89577yVZ/uy0pWnTpk3WX3/9XH/99VlnnXWyyiqrZMMNN8y//vWv7LDDDhk9enTWX3/9rLTSSrn55psza9as7LXXXp+7zXPOOSc77rhjhgwZkoMOOigfffRRLrroonTq1CmnnXbaCmdcmgEDBmSttdbK8ccfn7feeisdO3bMH/7whxW6ccMX0bFjx2yzzTY5++yzs3Dhwqy22mq588478+qrr5Y2xje+8Y388Y9/zHe+851897vfzS233PK51+4DAL6azGgDAL5WFhdoi08V/bStttoqSdKhQ4dsvPHGNV476aST8oc//CHNmjXL6aefnuOPPz633nprhg8fnl122WWZ4zVv3jy33XZb9txzz0ycODE//elP06tXr+oZba1bt/5C+/Hf//3fWW211XLsscdm7733zu9///v07t07e++9d6ZMmZKxY8dm7NixqayszA033JA99tjjc7c3bNiwTJo0KV26dMmpp56ac889N9/4xjfy4IMPZo011vhCGT+rRYsW+dOf/pRBgwZl/PjxOf3007P22mvn6quvLmX7n+e6667LiBEjMmHChIwdOzYtWrTIn//851LH2H777XPDDTfkzjvvzA9/+MNaX3MOAPjqqCg+74q1AADUiVtuuSW77bZbHnjggeqCDwCApk3RBgBQxz766KO0adOm+vmiRYsyfPjwPPbYY5k5c2aN1wAAaLpcow0AoI4deeSR+eijjzJkyJDMnz8/N910Ux566KH84he/ULIBAHyFmNEGAFDHrrvuupx33nl56aWX8vHHH6d///457LDDcsQRRzR0NAAASqRoAwAAAIASuOsoAAAAAJRA0QYAAAAAJXAzhKWoqqrK9OnT06FDh1RUVDR0HAAAAAAaUFEU+ec//5levXqlWbNlz1tTtC3F9OnT07t374aOAQAAAEAj8sYbb2T11Vdf5uuKtqXo0KFDkk8+vI4dOzZwGgAAAAAaUmVlZXr37l3dGS2Lom0pFp8u2rFjR0UbAAAAAEmy3EuMuRkCAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlGClhg4AAAAAQN3pd9Jt9T7ma2fuVO9jNgZmtAEAAABACRRtAAAAAFACRRsAAAAAlKBRFG0TJkxIv3790rp16wwePDiPPvroMte9/PLL881vfjOdO3dO586dM2zYsCXW33///VNRUVHjMXLkyLreDQAAAAC+xhq8aLv++uszZsyYjBs3Lk888UQ23njjjBgxIm+//fZS158yZUr23nvv3HPPPZk6dWp69+6d4cOH56233qqx3siRIzNjxozqx29/+9v62B0AAAAAvqYavGg7//zzc/DBB+eAAw7I+uuvn0svvTRt27bNFVdcsdT1r7322vz7v/97Bg0alAEDBuS///u/U1VVlcmTJ9dYr1WrVunRo0f1o3PnzvWxOwAAAAB8Ta3UkIMvWLAgjz/+eMaOHVu9rFmzZhk2bFimTp1aq23MmzcvCxcuzCqrrFJj+ZQpU7Lqqqumc+fO2X777fOzn/0sXbp0Weo25s+fn/nz51c/r6ysTJIsXLgwCxcuXNHdAgAAAGg0WjUv6n3Mr1qfUtv9adCibfbs2Vm0aFG6d+9eY3n37t3z3HPP1WobJ554Ynr16pVhw4ZVLxs5cmR23333rLHGGnn55Zfzk5/8JDvuuGOmTp2a5s2bL7GN8ePH5/TTT19i+Z133pm2bduu4F4BAAAANB5nb1n/Y95+++31P2gdmjdvXq3Wa9Ci7cs688wz87vf/S5TpkxJ69atq5fvtdde1T9vtNFGGThwYNZaa61MmTIlO+ywwxLbGTt2bMaMGVP9vLKysvrabx07dqzbnQAAAACoQxuedke9j/n0aSPqfcy6tPjsx+Vp0KKta9euad68eWbNmlVj+axZs9KjR4/Pfe+5556bM888M3fffXcGDhz4ueuuueaa6dq1a1566aWlFm2tWrVKq1atlljeokWLtGjRohZ7AgAAANA4zV9UUe9jftX6lNruT4PeDKFly5bZbLPNatzIYPGNDYYMGbLM95199tk544wzMmnSpGy++ebLHefNN9/Mu+++m549e5aSGwAAAAA+q8HvOjpmzJhcfvnlmThxYp599tkcdthhmTt3bg444IAkyb777lvjZglnnXVWTjnllFxxxRXp169fZs6cmZkzZ+bDDz9Mknz44Yc54YQT8vDDD+e1117L5MmTs+uuu6Z///4ZMeKrNW0RAAAAgMajwa/Rtueee+add97JqaeempkzZ2bQoEGZNGlS9Q0SXn/99TRr9n994CWXXJIFCxbku9/9bo3tjBs3LqeddlqaN2+ev//975k4cWI++OCD9OrVK8OHD88ZZ5yx1NNDAQAAAKAMFUVR1P89Xhu5ysrKdOrUKXPmzHEzBAAAAKBJ63fSbfU+5mtn7lTvY9al2nZFDX7qKAAAAAB8FSjaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEjaJomzBhQvr165fWrVtn8ODBefTRR5e57uWXX55vfvOb6dy5czp37pxhw4YtsX5RFDn11FPTs2fPtGnTJsOGDcuLL75Y17sBAAAAwNdYgxdt119/fcaMGZNx48bliSeeyMYbb5wRI0bk7bffXur6U6ZMyd5775177rknU6dOTe/evTN8+PC89dZb1eucffbZ+dWvfpVLL700jzzySNq1a5cRI0bk448/rq/dAgAAAOBrpqIoiqIhAwwePDhbbLFFLr744iRJVVVVevfunSOPPDInnXTSct+/aNGidO7cORdffHH23XffFEWRXr165bjjjsvxxx+fJJkzZ066d++eq666Knvttddyt1lZWZlOnTplzpw56dix45fbQQAAAIAG1O+k2+p9zNfO3Knex6xLte2KVqrHTEtYsGBBHn/88YwdO7Z6WbNmzTJs2LBMnTq1VtuYN29eFi5cmFVWWSVJ8uqrr2bmzJkZNmxY9TqdOnXK4MGDM3Xq1KUWbfPnz8/8+fOrn1dWViZJFi5cmIULF36hfQMAAABoDFo1r/85Vl+1PqW2+9OgRdvs2bOzaNGidO/evcby7t2757nnnqvVNk488cT06tWrulibOXNm9TY+u83Fr33W+PHjc/rppy+x/M4770zbtm1rlQMAAACgMTp7y/of8/bbb6//QevQvHnzarVegxZtX9aZZ56Z3/3ud5kyZUpat279hbczduzYjBkzpvp5ZWVl9bXfnDoKAAAANGUbnnZHvY/59Gkj6n3MurT47MfladCirWvXrmnevHlmzZpVY/msWbPSo0ePz33vueeemzPPPDN33313Bg4cWL188ftmzZqVnj171tjmoEGDlrqtVq1apVWrVkssb9GiRVq0aFHb3QEAAABodOYvqqj3Mb9qfUpt96dB7zrasmXLbLbZZpk8eXL1sqqqqkyePDlDhgxZ5vvOPvvsnHHGGZk0aVI233zzGq+tscYa6dGjR41tVlZW5pFHHvncbQIAAADAl9Hgp46OGTMm++23XzbffPNsueWWueCCCzJ37twccMABSZJ99903q622WsaPH58kOeuss3LqqafmuuuuS79+/aqvu9a+ffu0b98+FRUVOeaYY/Kzn/0sa6+9dtZYY42ccsop6dWrV0aNGtVQuwkAAADAV1yDF2177rln3nnnnZx66qmZOXNmBg0alEmTJlXfzOD1119Ps2b/N/HukksuyYIFC/Ld7363xnbGjRuX0047LUny4x//OHPnzs0hhxySDz74IFtvvXUmTZr0pa7jBgAAAACfp6Ioivq/x2sjV1lZmU6dOmXOnDluhgAAAAA0af1Ouq3ex3ztzJ3qfcy6VNuuqEGv0QYAAAAAXxWKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAoQYMXbRMmTEi/fv3SunXrDB48OI8++ugy133mmWeyxx57pF+/fqmoqMgFF1ywxDqnnXZaKioqajwGDBhQh3sAAAAAAF+gaHvjjTfy5ptvVj9/9NFHc8wxx+Syyy5b4cGvv/76jBkzJuPGjcsTTzyRjTfeOCNGjMjbb7+91PXnzZuXNddcM2eeeWZ69OixzO1usMEGmTFjRvXjgQceWOFsAAAAALAiVrho22effXLPPfckSWbOnJlvf/vbefTRR/PTn/40//Ef/7FC2zr//PNz8MEH54ADDsj666+fSy+9NG3bts0VV1yx1PW32GKLnHPOOdlrr73SqlWrZW53pZVWSo8ePaofXbt2XaFcAAAAALCiVlrRNzz99NPZcsstkyQ33HBDNtxwwzz44IO58847c+ihh+bUU0+t1XYWLFiQxx9/PGPHjq1e1qxZswwbNixTp05d0Vg1vPjii+nVq1dat26dIUOGZPz48enTp88y158/f37mz59f/byysjJJsnDhwixcuPBLZQEAAABoSK2aF/U+5letT6nt/qxw0bZw4cLq2WR33313dtlllyTJgAEDMmPGjFpvZ/bs2Vm0aFG6d+9eY3n37t3z3HPPrWisaoMHD85VV12VddddNzNmzMjpp5+eb37zm3n66afToUOHpb5n/PjxOf3005dYfuedd6Zt27ZfOAsAAABAQzt7y/of8/bbb6//QevQvHnzarXeChdtG2ywQS699NLstNNOueuuu3LGGWckSaZPn54uXbqs6OZKt+OOO1b/PHDgwAwePDh9+/bNDTfckIMOOmip7xk7dmzGjBlT/byysjK9e/fO8OHD07FjxzrPDAAAAFBXNjztjnof8+nTRtT7mHVp8dmPy7PCRdtZZ52V3XbbLeecc07222+/bLzxxkmSW2+9tfqU0tro2rVrmjdvnlmzZtVYPmvWrM+90cGKWnnllbPOOuvkpZdeWuY6rVq1Wuo131q0aJEWLVqUlgUAAACgvs1fVFHvY37V+pTa7s8K3wxhu+22y+zZszN79uwaNy045JBDcumll9Z6Oy1btsxmm22WyZMnVy+rqqrK5MmTM2TIkBWNtUwffvhhXn755fTs2bO0bQIAAADAZ61w0XbFFVfk9ddfT+fOnWss79evX1ZdddUV2taYMWNy+eWXZ+LEiXn22Wdz2GGHZe7cuTnggAOSJPvuu2+NmyUsWLAg06ZNy7Rp07JgwYK89dZbmTZtWo3Zascff3zuvffevPbaa3nooYey2267pXnz5tl7771XdFcBAAAAoNZW+NTR8ePH5+CDD85qq62WbbfdNttuu22222679O/ff4UH33PPPfPOO+/k1FNPzcyZMzNo0KBMmjSp+gYJr7/+epo1+78ucPr06dlkk02qn5977rk599xzs+2222bKlClJkjfffDN777133n333XTr1i1bb711Hn744XTr1m2F8wEAAABAbVUURbHC93h96623MmXKlNx3332599578+KLL6Znz57Zbrvtcs0119RFznpVWVmZTp06Zc6cOW6GAAAAADRp/U66rd7HfO3Mnep9zLpU267oCxVti82bNy/3339/fvvb3+baa69NURT517/+9UU312go2gAAAICvCkXbl1fbrmiFTx298847M2XKlEyZMiVPPvlk1ltvvWy77bb5/e9/n2222eZLhQYAAACApmqFi7aRI0emW7duOe6443L77bdn5ZVXroNYAAAAANC0rPBdR88///xstdVWOfvss7PBBhtkn332yWWXXZYXXnihLvIBAAAAQJOwwkXbMccck5tuuimzZ8/OpEmTMnTo0EyaNCkbbrhhVl999brICAAAAACN3gqfOpokRVHkySefzJQpU3LPPffkgQceSFVVVbp161Z2PgAAAABoEla4aNt5553z4IMPprKyMhtvvHG22267HHzwwdlmm21crw0AAACAr60VLtoGDBiQH/3oR/nmN7+ZTp061UUmAAAAAGhyVrhoO+ecc+oiBwAAAAA0aSt8M4Qkuffee7Pzzjunf//+6d+/f3bZZZfcf//9ZWcDAAAAgCZjhYu2a665JsOGDUvbtm1z1FFH5aijjkqbNm2yww475LrrrquLjAAAAADQ6FUURVGsyBvWW2+9HHLIITn22GNrLD///PNz+eWX59lnny01YEOorKxMp06dMmfOnHTs2LGh4wAAAAB8Yf1Ouq3ex3ztzJ3qfcy6VNuuaIVntL3yyivZeeedl1i+yy675NVXX13RzQEAAADAV8IKF229e/fO5MmTl1h+9913p3fv3qWEAgAAAICmZoXvOnrcccflqKOOyrRp0zJ06NAkyYMPPpirrroqF154YekBAQAAAKApWOGi7bDDDkuPHj1y3nnn5YYbbkjyyXXbrr/++uy6666lBwQAAACApmCFi7Yk2W233bLbbruVnQUAAAAAmqwVvkYbAAAAALCkWs1o69y5cyoqKmq1wffee+9LBQIAAACApqhWRdsFF1xQxzEAAAAAoGmrVdH2t7/9LWeccUbatWuX++67L0OHDs1KK32hy7sBAAAAwFdSra7RdtFFF+XDDz9MknzrW99yeigAAAAAfEatpqX169cvv/rVrzJ8+PAURZGpU6emc+fOS113m222KTUgAAAAADQFtSrazjnnnBx66KEZP358Kioqsttuuy11vYqKiixatKjUgAAAAADQFNSqaBs1alRGjRqVDz/8MB07dszzzz+fVVddta6zAQAAAECTsUJ3NGjfvn3uueeerLHGGm6GAAAAAACfssJt2bbbbpuqqqq88MILefvtt1NVVVXjdddoAwAAAODraIWLtocffjj77LNP/vGPf6QoihqvuUYbAAAAAF9XK1y0HXroodl8881z2223pWfPnqmoqKiLXAAAAADQpKxw0fbiiy/m97//ffr3718XeQAAAACgSWq2om8YPHhwXnrppbrIAgAAAABNVq1mtP3973+v/vnII4/Mcccdl5kzZ2ajjTZKixYtaqw7cODAchMCAAAAQBNQq6Jt0KBBqaioqHHzgwMPPLD658WvuRkCAAAAAF9XtSraXn311brOAQAAAABNWq2Ktr59+9Z1DgAAAABo0lb4ZggTJ07MbbfdVv38xz/+cVZeeeUMHTo0//jHP0oNBwAAAABNxQoXbb/4xS/Spk2bJMnUqVNz8cUX5+yzz07Xrl1z7LHHlh4QAAAAAJqCWp06+mlvvPFG+vfvnyS55ZZb8t3vfjeHHHJIttpqq2y33XZl5wMAAACAJmGFZ7S1b98+7777bpLkzjvvzLe//e0kSevWrfPRRx+Vmw4AAAAAmogVntH27W9/O//2b/+WTTbZJC+88EK+853vJEmeeeaZ9OvXr+x8AAAAANAkrPCMtgkTJmTIkCF555138oc//CFdunRJkjz++OPZe++9Sw8IAAAAAE3BCs9oW3nllXPxxRcvsfz0008vJRAAAAAANEUrXLQtNm/evLz++utZsGBBjeUDBw780qEAAAAAoKlZ4aLtnXfeyf77759JkyYt9fVFixZ96VAAAAAA0NSs8DXajjnmmMyZMyePPPJI2rRpk0mTJmXixIlZe+21c+utt9ZFRgAAAABo9FZ4Rttf/vKX/PGPf8zmm2+eZs2apW/fvvn2t7+djh07Zvz48dlpp53qIicAAAAANGorPKNt7ty5WXXVVZMknTt3zjvvvJMk2WijjfLEE0+Umw4AAAAAmogVLtrWXXfdPP/880mSjTfeOP/1X/+Vt956K5deeml69uxZekAAAAAAaApW+NTRo48+OjNmzEiSjBs3LiNHjsy1116bli1b5qqrrio7HwAAAAA0CStctP3gBz+o/nmzzTbLP/7xjzz33HPp06dPunbtWmo4AAAAAGgqVujU0crKylRVVdVY1rZt2wwaNCgtW7YsNRgAAAAANCW1LtpuvvnmbL755vn444+XeO2jjz7KFltskT/96U+lhgMAAACApqLWRdsll1ySH//4x2nbtu0Sr7Vr1y4nnnhiLr744lLDAQAAAEBTUeui7emnn8522223zNe32WabPPXUU2VkAgAAAIAmp9ZF2/vvv59//etfy3x94cKFef/990sJBQAAAABNTa2Ltn79+uWxxx5b5uuPPfZY+vbtW0ooAAAAAGhqal207b777vnpT3+aWbNmLfHazJkzc/LJJ2ePPfYoNRwAAAAANBUr1XbFk046KX/84x+z9tpr5wc/+EHWXXfdJMlzzz2Xa6+9Nr17985JJ51UZ0EBAAAAoDGrddHWoUOHPPjggxk7dmyuv/766uuxrbzyyvnBD36Qn//85+nQoUOdBQUAAACAxqzWRVuSdOrUKf/5n/+ZCRMmZPbs2SmKIt26dUtFRUVd5QMAAACAJmGFirbFKioq0q1bt7KzAAAAAECTVeubIQAAAAAAy6ZoAwAAAIASKNoAAAAAoAS1KtpWWWWVzJ49O0ly4IEH5p///GedhgIAAACApqZWRduCBQtSWVmZJJk4cWI+/vjjOg0FAAAAAE1Nre46OmTIkIwaNSqbbbZZiqLIUUcdlTZt2ix13SuuuKLUgAAAAADQFNSqaLvmmmvyy1/+Mi+//HIqKioyZ84cs9oAAAAA4FNqVbR17949Z555ZpJkjTXWyG9+85t06dKlToMBAAAAQFNSq6Lt01599dW6yAEAAAAATVqtbobwWffee2923nnn9O/fP/37988uu+yS+++/v+xsAAAAANBkrHDRds0112TYsGFp27ZtjjrqqOobI+ywww657rrr6iIjAAAAADR6FUVRFCvyhvXWWy+HHHJIjj322BrLzz///Fx++eV59tlnSw3YECorK9OpU6fMmTMnHTt2bOg4AAAAAF9Yv5Nuq/cxXztzp3ofsy7Vtita4Rltr7zySnbeeecllu+yyy6u3wYAAADA19YKF229e/fO5MmTl1h+9913p3fv3qWEAgAAAICmZoXvOnrcccflqKOOyrRp0zJ06NAkyYMPPpirrroqF154YekBAQAAAKApWOGi7bDDDkuPHj1y3nnn5YYbbkjyyXXbrr/++uy6666lBwQAAACApmCFi7Yk2W233bLbbruVnQUAAAAAmqwVvkYbAAAAALAkRRsAAAAAlEDRBgAAAAAlULQBAAAAQAlqXbQdf/zxee655+oyCwAAAAA0WbUu2v74xz9mgw02yNChQ3PFFVdk7ty5dZkLAAAAAJqUWhdtL774Yu65556ss846Ofroo9OjR48ceOCBeeihh+oyHwAAAAA0CSt0jbZtttkmV111VWbOnJkLL7wwL774Yrbeeuust956OffcczNr1qy6ygkAAAAAjdoXuhlCu3btcuCBB+b+++/PCy+8kN133z3jx49Pnz59ys4HAAAAAE3Cl7rr6Ny5c3P//ffn3nvvzfvvv58111yzrFwAAAAA0KR8oaLtgQceyIEHHpiePXvmqKOOyjrrrJP7778/zz77bNn5AAAAAKBJWKm2K86YMSMTJ07MVVddlRdeeCHf+MY3cv7552evvfZK+/bt6zIjAAAAADR6tS7aevfunS5duuSHP/xhDjrooKy33np1mQsAAAAAmpRaF2033HBDdtlll6y0Uq3fAgAAAABfG7W+Rtuuu+6a8847L1tttVW22GKLnHTSSfnoo4/qMhsAAAAANBm1Ltp+8Ytf5Cc/+Unat2+f1VZbLRdeeGEOP/zwuswGAAAAAE1GrYu2q6++Ov/5n/+ZO+64I7fcckv+9Kc/5dprr01VVVVd5gMAAACAJqHWRdvrr7+e73znO9XPhw0bloqKikyfPr1OggEAAABAU1Lrou1f//pXWrduXWNZixYtsnDhwtJDAQAAAEBTU+tbiBZFkf333z+tWrWqXvbxxx/n0EMPTbt27aqX3XTTTeUmBAAAAIAmoNZF23777bfEsh/84AelhgEAAACApqrWRduVV15ZlzkAAAAAoEmr9TXaAAAAAIBlU7QBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFCCBi/aJkyYkH79+qV169YZPHhwHn300WWu+8wzz2SPPfZIv379UlFRkQsuuOBLbxMAAAAAytCgRdv111+fMWPGZNy4cXniiSey8cYbZ8SIEXn77beXuv68efOy5ppr5swzz0yPHj1K2SYAAAAAlKGiKIqioQYfPHhwtthii1x88cVJkqqqqvTu3TtHHnlkTjrppM99b79+/XLMMcfkmGOO+dLbnD9/fubPn1/9vLKyMr17987s2bPTsWPHL7GHAAAAAA1rw9PuqPcxnz5tRL2PWZcqKyvTtWvXzJkz53O7opXqMVMNCxYsyOOPP56xY8dWL2vWrFmGDRuWqVOn1us2x48fn9NPP32J5XfeeWfatm37hbIAAAAANAZnb1n/Y95+++31P2gdmjdvXq3Wa7Cibfbs2Vm0aFG6d+9eY3n37t3z3HPP1es2x44dmzFjxlQ/Xzyjbfjw4Wa0AQAAAE2aGW1fXmVlZa3Wa7CirTFp1apVWrVqtcTyFi1apEWLFg2QCAAAAKAc8xdV1PuYX7U+pbb702A3Q+jatWuaN2+eWbNm1Vg+a9asZd7ooCG2CQAAAAC10WBFW8uWLbPZZptl8uTJ1cuqqqoyefLkDBkypNFsEwAAAABqo0FPHR0zZkz222+/bL755tlyyy1zwQUXZO7cuTnggAOSJPvuu29WW221jB8/PsknNzv43//93+qf33rrrUybNi3t27dP//79a7VNAAAAAKgLDVq07bnnnnnnnXdy6qmnZubMmRk0aFAmTZpUfTOD119/Pc2a/d+ku+nTp2eTTTapfn7uuefm3HPPzbbbbpspU6bUapsAAAAAUBcqiqIoGjpEY1NZWZlOnTplzpw57joKAAAANGn9Trqt3sd87cyd6n3MulTbrqjBrtEGAAAAAF8lijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGiDQAAAABKoGgDAAAAgBIo2gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKEGjKNomTJiQfv36pXXr1hk8eHAeffTRz13/xhtvzIABA9K6detstNFGuf3222u8vv/++6eioqLGY+TIkXW5CwAAAAB8zTV40Xb99ddnzJgxGTduXJ544olsvPHGGTFiRN5+++2lrv/QQw9l7733zkEHHZQnn3wyo0aNyqhRo/L000/XWG/kyJGZMWNG9eO3v/1tfewOAAAAAF9TDV60nX/++Tn44INzwAEHZP3118+ll16atm3b5oorrljq+hdeeGFGjhyZE044Ieutt17OOOOMbLrpprn44otrrNeqVav06NGj+tG5c+f62B0AAAAAvqZWasjBFyxYkMcffzxjx46tXtasWbMMGzYsU6dOXep7pk6dmjFjxtRYNmLEiNxyyy01lk2ZMiWrrrpqOnfunO233z4/+9nP0qVLl6Vuc/78+Zk/f37188rKyiTJwoULs3Dhwi+yawAAAACNQqvmRb2P+VXrU2q7Pw1atM2ePTuLFi1K9+7dayzv3r17nnvuuaW+Z+bMmUtdf+bMmdXPR44cmd133z1rrLFGXn755fzkJz/JjjvumKlTp6Z58+ZLbHP8+PE5/fTTl1h+5513pm3btl9k1wAAAAAahbO3rP8xP3s9/aZu3rx5tVqvQYu2urLXXntV/7zRRhtl4MCBWWuttTJlypTssMMOS6w/duzYGrPkKisr07t37wwfPjwdO3asl8wAAAAAdWHD0+6o9zGfPm1EvY9Zlxaf/bg8DVq0de3aNc2bN8+sWbNqLJ81a1Z69Oix1Pf06NFjhdZPkjXXXDNdu3bNSy+9tNSirVWrVmnVqtUSy1u0aJEWLVrUZlcAAAAAGqX5iyrqfcyvWp9S2/1p0JshtGzZMptttlkmT55cvayqqiqTJ0/OkCFDlvqeIUOG1Fg/Se66665lrp8kb775Zt5999307NmznOAAAAAA8BkNftfRMWPG5PLLL8/EiRPz7LPP5rDDDsvcuXNzwAEHJEn23XffGjdLOProozNp0qScd955ee6553LaaaflscceyxFHHJEk+fDDD3PCCSfk4YcfzmuvvZbJkydn1113Tf/+/TNixFdr2iIAAAAAjUeDX6Ntzz33zDvvvJNTTz01M2fOzKBBgzJp0qTqGx68/vrradbs//rAoUOH5rrrrsvJJ5+cn/zkJ1l77bVzyy23ZMMNN0ySNG/ePH//+98zceLEfPDBB+nVq1eGDx+eM844Y6mnhwIAAABAGSqKoqj/e7w2cpWVlenUqVPmzJnjZggAAABAk9bvpNvqfczXztyp3sesS7Xtihr81FEAAAAA+CpQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJVmroANSffifdVq/jvXbmTvU6HgAAAEBDMqMNAAAAAEqgaAMAAACAEijaAAAAAKAEijYAAAAAKIGbIdAg6vvGDImbMwAAAAB1y4w2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoARuhgCp/5szuDEDAAAAfPWY0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUwM0QoJGp7xszJG7OAAAAAGUwow0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogZshAJ+rvm/O4MYMAAAANFVmtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlcDMEoMmo7xszJG7OAAAAQO2Z0QYAAAAAJVC0AQAAAEAJFG0AAAAAUALXaAP4gur7mnGuFwcAANC4mdEGAAAAACVQtAEAAABACRRtAAAAAFAC12gD+ApwvTgAAICGZ0YbAAAAAJRA0QYAAAAAJVC0AQAAAEAJXKMNgNK5ZhwAAPB1ZEYbAAAAAJRA0QYAAAAAJVC0AQAAAEAJXKMNgK8014sDAADqixltAAAAAFACRRsAAAAAlMCpowBQj5zKCgAAX11mtAEAAABACRRtAAAAAFACRRsAAAAAlMA12gDga8r14gAAoFxmtAEAAABACRRtAAAAAFACp44CAA2uvk9jTZzKCgBA+cxoAwAAAIASKNoAAAAAoAROHQUA+Ax3ZAUA4Iswow0AAAAASqBoAwAAAIASOHUUAKARc0dWAICmw4w2AAAAACiBog0AAAAASuDUUQAAas0dWQEAls2MNgAAAAAogaINAAAAAErg1FEAAJokd2QFABobM9oAAAAAoARmtAEAQAncKAIAMKMNAAAAAEpgRhsAAHzFuH4dADQMM9oAAAAAoASKNgAAAAAogVNHAQCAOuVGEQB8XZjRBgAAAAAlMKMNAAD42nCjCADqkhltAAAAAFACM9oAAAAaiOvXAXy1mNEGAAAAACUwow0AAACz6wBKYEYbAAAAAJTAjDYAAAAaHTPsgKbIjDYAAAAAKIEZbQAAAPA5zK4DakvRBgAAAE1EfZd+ieIPVoRTRwEAAACgBGa0AQAAAF+I02qhJjPaAAAAAKAEZrQBAAAATZ7r19EYKNoAAAAASua02q8np44CAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkUbQAAAABQAkUbAAAAAJRA0QYAAAAAJVC0AQAAAEAJFG0AAAAAUAJFGwAAAACUQNEGAAAAACVQtAEAAABACRRtAAAAAFACRRsAAAAAlEDRBgAAAAAlULQBAAAAQAkaRdE2YcKE9OvXL61bt87gwYPz6KOPfu76N954YwYMGJDWrVtno402yu23317j9aIocuqpp6Znz55p06ZNhg0blhdffLEudwEAAACAr7kGL9quv/76jBkzJuPGjcsTTzyRjTfeOCNGjMjbb7+91PUfeuih7L333jnooIPy5JNPZtSoURk1alSefvrp6nXOPvvs/OpXv8qll16aRx55JO3atcuIESPy8ccf19duAQAAAPA10+BF2/nnn5+DDz44BxxwQNZff/1ceumladu2ba644oqlrn/hhRdm5MiROeGEE7LeeuvljDPOyKabbpqLL744ySez2S644IKcfPLJ2XXXXTNw4MBcffXVmT59em655ZZ63DMAAAAAvk5WasjBFyxYkMcffzxjx46tXtasWbMMGzYsU6dOXep7pk6dmjFjxtRYNmLEiOoS7dVXX83MmTMzbNiw6tc7deqUwYMHZ+rUqdlrr72W2Ob8+fMzf/786udz5sxJkrz33ntZuHDhF96/xmalf82t1/HefffdZb5W31mSxpWnMWVJGleexpQlaVx5mkqWpHHlaUxZksaV5+ucJWlceRpTlqRx5WlMWZLGlacxZUkaV57GlCVpXHmaSpakceX5OmdJGleexpQlaVx5GlOWZPl/x5uaf/7zn0k+meD1uYoG9NZbbxVJioceeqjG8hNOOKHYcsstl/qeFi1aFNddd12NZRMmTChWXXXVoiiK4sEHHyySFNOnT6+xzve+971i9OjRS93muHHjiiQeHh4eHh4eHh4eHh4eHh4eHh7LfLzxxhuf23U16Iy2xmLs2LE1ZslVVVXlvffeS5cuXVJRUdGAyRpeZWVlevfunTfeeCMdO3Zs6DiNKo8sTSNPY8rS2PI0piyNLU9jytLY8jSmLI0tT2PK0tjyyNI08jSmLI0tT2PK0tjyNKYsjS1PY8rS2PI0piyNLU9jytIY8zSkoijyz3/+M7169frc9Rq0aOvatWuaN2+eWbNm1Vg+a9as9OjRY6nv6dGjx+euv/h/Z82alZ49e9ZYZ9CgQUvdZqtWrdKqVasay1ZeeeUV2ZWvvI4dOzaqv1SNKY8sy9aY8jSmLEnjytOYsiSNK09jypI0rjyNKUvSuPI0pixJ48ojy7I1pjyNKUvSuPI0pixJ48rTmLIkjStPY8qSNK48jSlL0rjyNKYsSePL01A6deq03HUa9GYILVu2zGabbZbJkydXL6uqqsrkyZMzZMiQpb5nyJAhNdZPkrvuuqt6/TXWWCM9evSosU5lZWUeeeSRZW4TAAAAAL6sBj91dMyYMdlvv/2y+eabZ8stt8wFF1yQuXPn5oADDkiS7LvvvllttdUyfvz4JMnRRx+dbbfdNuedd1522mmn/O53v8tjjz2Wyy67LElSUVGRY445Jj/72c+y9tprZ4011sgpp5ySXr16ZdSoUQ21mwAAAAB8xTV40bbnnnvmnXfeyamnnpqZM2dm0KBBmTRpUrp3754kef3119Os2f9NvBs6dGiuu+66nHzyyfnJT36StddeO7fccks23HDD6nV+/OMfZ+7cuTnkkEPywQcfZOutt86kSZPSunXret+/pq5Vq1YZN27cEqfWNpTGlEeWZWtMeRpTlqRx5WlMWZLGlacxZUkaV57GlCVpXHkaU5akceWRZdkaU57GlCVpXHkaU5akceVpTFmSxpWnMWVJGleexpQlaVx5GlOWpPHlaQoqimJ59yUFAAAAAJanQa/RBgAAAABfFYo2AAAAACiBog0AAAAASqBoAwAAAIASKNpYqvvuuy8777xzevXqlYqKitxyyy0NlmX8+PHZYost0qFDh6y66qoZNWpUnn/++QbLc8kll2TgwIHp2LFjOnbsmCFDhuTPf/5zg+X5tDPPPDMVFRU55phjGmT80047LRUVFTUeAwYMaJAsSfLWW2/lBz/4Qbp06ZI2bdpko402ymOPPdYgWfr167fEZ1NRUZHDDz+83rMsWrQop5xyStZYY420adMma621Vs4444w01L1x/vnPf+aYY45J375906ZNmwwdOjR//etf62Xs5R3riqLIqaeemp49e6ZNmzYZNmxYXnzxxQbJctNNN2X48OHp0qVLKioqMm3atDrJUZs8CxcuzIknnpiNNtoo7dq1S69evbLvvvtm+vTp9Z4l+eTYM2DAgLRr1y6dO3fOsGHD8sgjj9RJltrk+bRDDz00FRUVueCCCxoky/7777/EcWfkyJF1kqU2eZLk2WefzS677JJOnTqlXbt22WKLLfL666/Xe5alHZMrKipyzjnnlJ6lNnk+/PDDHHHEEVl99dXTpk2brL/++rn00ksbJMusWbOy//77p1evXmnbtm1GjhxZZ8e+2nzP+/jjj3P44YenS5cuad++ffbYY4/MmjWrwfJcdtll2W677dKxY8dUVFTkgw8+aJAs7733Xo488sisu+66adOmTfr06ZOjjjoqc+bMaZA8SfKjH/0oa621Vtq0aZNu3bpl1113zXPPPdcgWRYriiI77rhjnf1OU5ss22233RLHmkMPPbT0LLXNkyRTp07N9ttvn3bt2qVjx47ZZptt8tFHH9Vrltdee22Zx+Ibb7yx1Cy1yZMkM2fOzA9/+MP06NEj7dq1y6abbpo//OEPDZLl5Zdfzm677ZZu3bqlY8eOGT16dJ0d+5b3O259Hoe/ChRtLNXcuXOz8cYbZ8KECQ0dJffee28OP/zwPPzww7nrrruycOHCDB8+PHPnzm2QPKuvvnrOPPPMPP7443nsscey/fbbZ9ddd80zzzzTIHkW++tf/5r/+q//ysCBAxs0xwYbbJAZM2ZUPx544IEGyfH+++9nq622SosWLfLnP/85//u//5vzzjsvnTt3bpA8f/3rX2t8LnfddVeS5Hvf+169ZznrrLNyySWX5OKLL86zzz6bs846K2effXYuuuiies+SJP/2b/+Wu+66K7/5zW/y1FNPZfjw4Rk2bFjeeuutOh97ece6s88+O7/61a9y6aWX5pFHHkm7du0yYsSIfPzxx/WeZe7cudl6661z1llnlT72iuaZN29ennjiiZxyyil54oknctNNN+X555/PLrvsUu9ZkmSdddbJxRdfnKeeeioPPPBA+vXrl+HDh+edd95pkDyL3XzzzXn44YfTq1evOslR2ywjR46scfz57W9/22B5Xn755Wy99dYZMGBApkyZkr///e855ZRT0rp163rP8unPZMaMGbniiitSUVGRPfbYo/QstckzZsyYTJo0Kddcc02effbZHHPMMTniiCNy66231muWoigyatSovPLKK/njH/+YJ598Mn379s2wYcPq5LtXbb7nHXvssfnTn/6UG2+8Mffee2+mT5+e3XffvfQstc0zb968jBw5Mj/5yU/qJENts0yfPj3Tp0/Pueeem6effjpXXXVVJk2alIMOOqhB8iTJZpttliuvvDLPPvts7rjjjhRFkeHDh2fRokX1nmWxCy64IBUVFaWO/0WyHHzwwTWOOWeffXaD5Zk6dWpGjhyZ4cOH59FHH81f//rXHHHEEWnWrNx6YHlZevfuvcSx+PTTT0/79u2z4447lpqlNnmSZN99983zzz+fW2+9NU899VR23333jB49Ok8++WS9Zpk7d26GDx+eioqK/OUvf8mDDz6YBQsWZOedd05VVVWpWZLl/45bn8fhr4QCliNJcfPNNzd0jGpvv/12kaS49957GzpKtc6dOxf//d//3WDj//Of/yzWXnvt4q677iq23Xbb4uijj26QHOPGjSs23njjBhn7s0488cRi6623bugYy3T00UcXa621VlFVVVXvY++0007FgQceWGPZ7rvvXnz/+9+v9yzz5s0rmjdvXvzP//xPjeWbbrpp8dOf/rRes3z2WFdVVVX06NGjOOecc6qXffDBB0WrVq2K3/72t/Wa5dNeffXVIknx5JNP1mmG2uZZ7NFHHy2SFP/4xz8aPMucOXOKJMXdd99dp1k+L8+bb75ZrLbaasXTTz9d9O3bt/jlL3/ZIFn222+/Ytddd63zsWubZ8899yx+8IMfNIosn7XrrrsW22+/fYPl2WCDDYr/+I//qLGsPo6Fn83y/PPPF0mKp59+unrZokWLim7duhWXX355nWYpiiW/533wwQdFixYtihtvvLF6nWeffbZIUkydOrXe83zaPffcUyQp3n///TrPsbwsi91www1Fy5Yti4ULFzaKPH/729+KJMVLL73UIFmefPLJYrXVVitmzJhRb7/TLC1LQ34/X1qewYMHFyeffHKjyPJZgwYNWuJ7an3madeuXXH11VfXWG+VVVap8+PfZ7PccccdRbNmzYo5c+ZUr/PBBx8UFRUVxV133VWnWRZb/DtuQx+HmyIz2mhyFk+HX2WVVRo4ySen4P3ud7/L3LlzM2TIkAbLcfjhh2ennXbKsGHDGizDYi+++GJ69eqVNddcM9///vfr5HSg2rj11luz+eab53vf+15WXXXVbLLJJrn88ssbJMtnLViwINdcc00OPPDAOv0X1mUZOnRoJk+enBdeeCFJ8re//S0PPPBAnfzL4fL861//yqJFi5aYzdKmTZsGmw252KuvvpqZM2fW+HvVqVOnDB48OFOnTm3AZI3TnDlzUlFRkZVXXrlBcyxYsCCXXXZZOnXqlI033rhBMlRVVeWHP/xhTjjhhGywwQYNkuHTpkyZklVXXTXrrrtuDjvssLz77rsNkqOqqiq33XZb1llnnYwYMSKrrrpqBg8e3KCXp1hs1qxZue222+psJlBtDB06NLfeemveeuutFEWRe+65Jy+88EKGDx9erznmz5+fJDWOy82aNUurVq3q5bj82e95jz/+eBYuXFjjWDxgwID06dOnXo7Fjel7Z22yzJkzJx07dsxKK63U4Hnmzp2bK6+8MmussUZ69+5d71nmzZuXffbZJxMmTEiPHj3qdPzlZUmSa6+9Nl27ds2GG26YsWPHZt68eQ2S5+23384jjzySVVddNUOHDk337t2z7bbbNsjf7896/PHHM23atHo7Fi8tz9ChQ3P99dfnvffeS1VVVX73u9/l448/znbbbVevWebPn5+Kioq0atWqep3WrVunWbNmdf5n9dnfcRv6ONwUKdpoUqqqqnLMMcdkq622yoYbbthgOZ566qm0b98+rVq1yqGHHpqbb74566+/foNk+d3vfpcnnngi48ePb5DxP23w4MHVpy1ccsklefXVV/PNb34z//znP+s9yyuvvJJLLrkka6+9du64444cdthhOeqoozJx4sR6z/JZt9xySz744IPsv//+DTL+SSedlL322isDBgxIixYtsskmm+SYY47J97///XrP0qFDhwwZMiRnnHFGpk+fnkWLFuWaa67J1KlTM2PGjHrP82kzZ85MknTv3r3G8u7du1e/xic+/vjjnHjiidl7773TsWPHBsnwP//zP2nfvn1at26dX/7yl7nrrrvStWvXBsly1llnZaWVVspRRx3VION/2siRI3P11Vdn8uTJOeuss3Lvvfdmxx13LP00rtp4++238+GHH+bMM8/MyJEjc+edd2a33XbL7rvvnnvvvbfe83zaxIkT06FDhwY9Deaiiy7K+uuvn9VXXz0tW7bMyJEjM2HChGyzzTb1mmPxL09jx47N+++/nwULFuSss87Km2++WefH5aV9z5s5c2Zatmy5RIlfH8fixvK9s7ZZZs+enTPOOCOHHHJIg+b5z//8z7Rv3z7t27fPn//859x1111p2bJlvWc59thjM3To0Oy66651NnZts+yzzz655pprcs8992Ts2LH5zW9+kx/84AcNkueVV15J8sn1TQ8++OBMmjQpm266aXbYYYc6uxbjsrJ81q9//eust956GTp0aJ3lWF6eG264IQsXLkyXLl3SqlWr/OhHP8rNN9+c/v3712uWb3zjG2nXrl1OPPHEzJs3L3Pnzs3xxx+fRYsW1dmxeFm/4zbkcbipqvt/6oASHX744Xn66acbfKbLuuuum2nTpmXOnDn5/e9/n/322y/33ntvvZdtb7zxRo4++ujcdddddXJ9mxX16RlRAwcOzODBg9O3b9/ccMMN9T5LoKqqKptvvnl+8YtfJEk22WSTPP3007n00kuz33771WuWz/r1r3+dHXfcsU6v2/R5brjhhlx77bW57rrrssEGG2TatGk55phj0qtXrwb5bH7zm9/kwAMPzGqrrZbmzZtn0003zd57753HH3+83rOw4hYuXJjRo0enKIpccsklDZbjW9/6VqZNm5bZs2fn8ssvz+jRo6v/xb4+Pf7447nwwgvzxBNPNMiM1c/aa6+9qn/eaKONMnDgwKy11lqZMmVKdthhh3rNsviaMrvuumuOPfbYJMmgQYPy0EMP5dJLL822225br3k+7Yorrsj3v//9Bv1v6UUXXZSHH344t956a/r27Zv77rsvhx9+eHr16lWvM9ZbtGiRm266KQcddFBWWWWVNG/ePMOGDcuOO+5Y5zfNaSzf8xZrTHmWl6WysjI77bRT1l9//Zx22mkNmuf73/9+vv3tb2fGjBk599xzM3r06Dz44IN19vdraVluvfXW/OUvfyn9ulpfJEuSGuXnRhttlJ49e2aHHXbIyy+/nLXWWqte8yw+Fv/oRz/KAQcckOST78mTJ0/OFVdcUWf/eL+8/w9/9NFHue6663LKKafUyfi1zXPKKafkgw8+yN13352uXbvmlltuyejRo3P//fdno402qrcs3bp1y4033pjDDjssv/rVr9KsWbPsvffe2XTTTUu/lt5iy/odly+ggU9dpQlII7lG2+GHH16svvrqxSuvvNLQUZawww47FIcccki9j3vzzTcXSYrmzZtXP5IUFRUVRfPmzYt//etf9Z7pszbffPPipJNOqvdx+/TpUxx00EE1lv3nf/5n0atXr3rP8mmvvfZa0axZs+KWW25psAyrr756cfHFF9dYdsYZZxTrrrtuAyX6xIcfflhMnz69KIqiGD16dPGd73ynXsf/7LHu5ZdfXuq10LbZZpviqKOOqtcsn9aYrtG2YMGCYtSoUcXAgQOL2bNnN2iWz+rfv3/xi1/8ot7z/PKXv6w+Bn/6uNysWbOib9++9ZplWbp27VpceumldZplaXnmz59frLTSSsUZZ5xRY70f//jHxdChQ+s1y6fdd999RZJi2rRpdZrh8/LMmzevaNGixRLXqzzooIOKESNG1GuWT/vggw+Kt99+uyiKothyyy2Lf//3f6+zHMv6njd58uSlXgetT58+xfnnn1/veT6tvq7RtrwslZWVxZAhQ4oddtih+Oijj+o0S23yfNr8+fOLtm3bFtddd129Zjn66KOXeSzedttt6zXL0nz44YdFkmLSpEl1kuXz8rzyyitFkuI3v/lNjeWjR48u9tlnn3rN8mlXX3110aJFi+pjTl1aVp6XXnppiWtUFsUnv+v96Ec/qtcsn/bOO+9UH2e6d+9enH322XWS5bMW/47bUMfhpsypozR6RVHkiCOOyM0335y//OUvWWONNRo60hKqqqqqr2lSn3bYYYc89dRTmTZtWvVj8803z/e///1MmzYtzZs3r/dMn/bhhx/m5ZdfTs+ePet97K222mqJW2S/8MIL6du3b71n+bQrr7wyq666anbaaacGyzBv3rwl/iWsefPmdXIHoxXRrl279OzZM++//37uuOOOej3VY2nWWGON9OjRI5MnT65eVllZmUceeaRBr8nYWCyeyfbiiy/m7rvvTpcuXRo6Ug0NdVz+4Q9/mL///e81jsu9evXKCSeckDvuuKPe83zWm2++mXfffbdBjsstW7bMFlts0eiOzb/+9a+z2WabNdg1/ZJP/j4tXLiw0R2bO3XqlG7duuXFF1/MY489VifH5eV9z9tss83SokWLGsfi559/Pq+//nqdHIsb0/fO2mSprKzM8OHD07Jly9x66611Oivzi3w2RVGkKIrSj8fLy3LSSSctcSxOkl/+8pe58sor6zXL0izOUxfH4uXl6devX3r16lUvx+IV+Wx+/etfZ5dddkm3bt1KzbAieRZfN68+jsUr8tl07do1K6+8cv7yl7/k7bffrrO7vH/W4u9S9X0c/ipw6ihL9eGHH+all16qfv7qq69m2rRpWWWVVdKnT596zXL44Yfnuuuuyx//+Md06NCh+jzwTp06pU2bNvWaJUnGjh2bHXfcMX369Mk///nPXHfddZkyZUqD/ALVoUOHJa5x0K5du3Tp0qVBriVy/PHHZ+edd07fvn0zffr0jBs3Ls2bN8/ee+9d71kWX5fjF7/4RUaPHp1HH300l112WS677LJ6z7JYVVVVrrzyyuy33371cpHiZdl5553z85//PH369MkGG2yQJ598Mueff34OPPDABslzxx13pCiKrLvuunnppZdywgknZMCAAdWnM9Sl5R3rjjnmmPzsZz/L2muvnTXWWCOnnHJKevXqlVGjRtV7lvfeey+vv/56pk+fniTVX5B79OhRJxd5/rw8PXv2zHe/+9088cQT+Z//+Z8sWrSo+ti8yiqrlH4tns/L0qVLl/z85z/PLrvskp49e2b27NmZMGFC3nrrrXzve98rNUdt8vTp02eJ0rFFixbp0aNH1l133XrNssoqq+T000/PHnvskR49euTll1/Oj3/84/Tv3z8jRowoPcvy8vTp0ycnnHBC9txzz2yzzTb51re+lUmTJuVPf/pTpkyZUu9Zkk9KihtvvDHnnXde6eOvaJ5tt902J5xwQtq0aZO+ffvm3nvvzdVXX53zzz+/3rPceOON6datW/r06ZOnnnoqRx99dEaNGlUnN2ZY3ve8Tp065aCDDsqYMWOyyiqrpGPHjjnyyCMzZMiQfOMb36j3PMkn142bOXNm9Wf41FNPpUOHDunTp0+pN01YXpbFJdu8efNyzTXXpLKyMpWVlUk+Oe2s7H9wXV6eV155Jddff32GDx+ebt265c0338yZZ56ZNm3a5Dvf+U69ZlnWfxv79OlTenm6vCwvv/xyrrvuunznO99Jly5d8ve//z3HHntsttlmmwwcOLDULLXJU1FRkRNOOCHjxo3LxhtvnEGDBmXixIl57rnn8vvf/75esyz20ksv5b777svtt99e6vgrmmfAgAHp379/fvSjH+Xcc89Nly5dcsstt+Suu+7K//zP/9RrluSTf6Bfb7310q1bt0ydOjVHH310jj322Dr5PvF5v+PW93H4K6EhptHR+C2eCv/Zx3777VfvWZaWI0lx5ZVX1nuWoiiKAw88sOjbt2/RsmXLolu3bsUOO+xQ3HnnnQ2SZWka8vbhe+65Z9GzZ8+iZcuWxWqrrVbsueeedX4798/zpz/9qdhwww2LVq1aFQMGDCguu+yyBstSFJ/cpjtJ8fzzzzdojsrKyuLoo48u+vTpU7Ru3bpYc801i5/+9KfF/PnzGyTP9ddfX6y55ppFy5Ytix49ehSHH3548cEHH9TL2Ms71lVVVRWnnHJK0b1796JVq1bFDjvsUGd/fsvLcuWVVy719XHjxtV7nsWnry7tcc8999Rrlo8++qjYbbfdil69ehUtW7YsevbsWeyyyy7Fo48+WnqO2uRZmr59+xa//OUv6z3LvHnziuHDhxfdunUrWrRoUfTt27c4+OCDi5kzZ9ZJluXlWezXv/510b9//6J169bFxhtvXGen0tcmy3/9138Vbdq0qZdjzvLyzJgxo9h///2LXr16Fa1bty7WXXfd4rzzziuqqqrqPcuFF15YrL766kWLFi2KPn36FCeffHKd/TeiNt/zPvroo+Lf//3fi86dOxdt27Ytdtttt2LGjBkNlmfcuHH18t10eVmW9eeYpHj11VdLzVKbPG+99Vax4447FquuumrRokWLYvXVVy/22Wef4rnnnqv3LMt6T11cDmd5WV5//fVim222KVZZZZWiVatWRf/+/YsTTjihmDNnTulZapNnsfHjxxerr7560bZt22LIkCHF/fff32BZxo4dW/Tu3btYtGhR6RlWNM8LL7xQ7L777sWqq65atG3bthg4cGBx9dVXN0iWE088sejevXvRokWLYu21166z/yYUxfJ/x63P4/BXQUVR1PFVTQEAAADga8A12gAAAACgBIo2AAAAACiBog0AAAAASqBoAwAAAIASKNoAAAAAoASKNgAAAAAogaINAAAAAEqgaAMAAACAEijaAABWwP77759Ro0Z9qW1MmTIlFRUV+eCDD0rJ9GXMmzcve+yxRzp27NjgmSoqKnLLLbd87joPPvhgNtpoo7Ro0SKjRo1qVJ8lAICiDQDg/1dRUfG5j9NOOy0XXnhhrrrqqi81ztChQzNjxox06tSpnOBfwsSJE3P//ffnoYce+txMCxYsyNlnn52NN944bdu2TdeuXbPVVlvlyiuvzMKFC+st75gxYzJo0KC8+uqrX/rPAQCgbCs1dAAAgMZixowZ1T9ff/31OfXUU/P8889XL2vfvn3at2//pcdp2bJlevTo8aW3U4aXX3456623XjbccMNlrrNgwYKMGDEif/vb33LGGWdkq622SseOHfPwww/n3HPPzSabbJJBgwbVW95DDz00q6++er2MBwCwIsxoAwD4//Xo0aP60alTp1RUVNRY1r59+yVOHd1uu+1y5JFH5phjjknnzp3TvXv3XH755Zk7d24OOOCAdOjQIf3798+f//zn6vd89nTHq666KiuvvHLuuOOOrLfeemnfvn1GjhxZo/j717/+laOOOiorr7xyunTpkhNPPDH77bffck9j/cMf/pANNtggrVq1Sr9+/XLeeefVyH7eeeflvvvuS0VFRbbbbrulbuOCCy7Ifffdl8mTJ+fwww/PoEGDsuaaa2afffbJI488krXXXjtJMmnSpGy99dbVGf/f//t/efnll6u3s2DBghxxxBHp2bNnWrdunb59+2b8+PE1xpo9e3Z22223tG3bNmuvvXZuvfXWJMlrr72WioqKvPvuuznwwANTUVGxzBltn7fPF198cY1S8ZZbbklFRUUuvfTS6mXDhg3LySefnCT529/+lm9961vp0KFDOnbsmM022yyPPfbY537mAMDXl6INAOBLmjhxYrp27ZpHH300Rx55ZA477LB873vfy9ChQ/PEE09k+PDh+eEPf5h58+Ytcxvz5s3Lueeem9/85je577778vrrr+f444+vfv2ss87KtddemyuvvDIPPvhgKisrl3s9s8cffzyjR4/OXnvtlaeeeiqnnXZaTjnllOqC6qabbsrBBx+cIUOGZMaMGbnpppuWup1rr702w4YNyyabbLLEay1atEi7du2SJHPnzs2YMWPy2GOPZfLkyWnWrFl22223VFVVJUl+9atf5dZbb80NN9yQ559/Ptdee2369etXY3unn356Ro8enb///e/5zne+k+9///t577330rt378yYMSMdO3bMBRdckBkzZmTPPfdc4X3edttt87//+7955513kiT33ntvunbtmilTpiRJFi5cmKlTp1aXjt///vez+uqr569//Wsef/zxnHTSSWnRosXnfu4AwNdYAQDAEq688sqiU6dOSyzfb7/9il133bX6+bbbbltsvfXW1c//9a9/Fe3atSt++MMfVi+bMWNGkaSYOnVqURRFcc899xRJivfff796rCTFSy+9VP2eCRMmFN27d69+3r179+Kcc86pMU6fPn1qZPmsffbZp/j2t79dY9kJJ5xQrL/++tXPjz766GLbbbdd5jaKoijatGlTHHXUUZ+7ztK88847RZLiqaeeKoqiKI488shi++23L6qqqpa6fpLi5JNPrn7+4YcfFkmKP//5z9XLOnXqVFx55ZXVzz/7WS5vn6uqqoouXboUN954Y1EURTFo0KBi/PjxRY8ePYqiKIoHHnigaNGiRTF37tyiKIqiQ4cOxVVXXbXC+w4AfD2Z0QYA8CUNHDiw+ufmzZunS5cu2WijjaqXde/ePUny9ttvL3Mbbdu2zVprrVX9vGfPntXrz5kzJ7NmzcqWW25ZY5zNNtvsc3M9++yz2WqrrWos22qrrfLiiy9m0aJFtdizTxRFUav1Xnzxxey9995Zc80107Fjx+rZaq+//nqST+7YOm3atKy77ro56qijcueddy6xjU9/lu3atUvHjh0/93P7rOXtc0VFRbbZZptMmTIlH3zwQf73f/83//7v/5758+fnueeey7333pstttgibdu2TfLJzRf+7d/+LcOGDcuZZ55Z41RYAIDPUrQBAHxJnz2VsKKiosayioqKJKk+hbK226htwVXX1llnnTz33HPLXW/nnXfOe++9l8svvzyPPPJIHnnkkSSfXJstSTbddNO8+uqrOeOMM/LRRx9l9OjR+e53v1tjG0v7HD7vc/sitttuu0yZMiX3339/Ntlkk3Ts2LG6fLv33nuz7bbbVq972mmn5ZlnnslOO+2Uv/zlL1l//fVz8803l5oHAPjqULQBADRynTp1Svfu3fPXv/61etmiRYvyxBNPfO771ltvvTz44IM1lj344INZZ5110rx581qPv88+++Tuu+/Ok08+ucRrCxcuzNy5c/Puu+/m+eefz8knn5wddtgh6623Xt5///0l1u/YsWP23HPPXH755bn++uvzhz/8Ie+9916tsyxPbfZ58XXabvz/2rt/l9TCOI7jH8+5EARFUkP9A8mBaAgEwaKgod2hoUGanEr7BW5CnSFoKAgbaqmWCl1qqME0WpycxMU0CjcbolFcune4F0Hu5d5uPFDG+7Wd5Zzvc8bP832+TzrdmsU2NTWlbDarfD7/26UQw8PDWl5eViaTUSgU0uHhobF6AQDA10LQBgAA0AEWFxe1ubmpi4sL3d3dKRaL6eXlpdUt9yerq6vK5XJyXVeVSkXHx8dKJpNtlyy8xdLSkoLBoKanp7W3t6disaiHhwelUikFAgFVq1V5vV719/fr4OBA9/f3urm50crKStt7tre3dXp6qnK5rEqlonQ6rcHBQfX19b3nl7x7zaOjo/J6vTo5OWkL2s7Pz9VsNltHTxuNhhYWFnR7e6taraZ8Pq9CoSDHcYzVCwAAvpZvH10AAAAA/i0ej6teryscDsu2bUUiEc3MzPy1M21sbEypVEqJREKu62poaEgbGxuan5//r293dXXp+vpaOzs72t/f19ramrq7u+U4jqLRqEZGRmRZls7OzlrPPp9Pu7u7bd1hPT092traUrValW3b8vv9urq6kmWZ2/t9y5o9Ho8mJiZ0eXmp8fFxST/Dt97eXvl8vtYtqrZt6/n5WeFwWE9PTxoYGFAoFNL6+rqxegEAwNfi+f5Zhn8AAADgzV5fX+U4jmZnZ+W67keXAwAAANHRBgAA0BFqtZoymYwmJyfVbDaVTCb1+Pioubm5jy4NAAAAvzCjDQAAoANYlqWjoyP5/X4Fg0GVSiVls1nmhQEAAHwiHB0FAAAAAAAADKCjDQAAAAAAADCAoA0AAAAAAAAwgKANAAAAAAAAMICgDQAAAAAAADCAoA0AAAAAAAAwgKANAAAAAAAAMICgDQAAAAAAADCAoA0AAAAAAAAw4AcGJV0FmrgQ5gAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Next, let's apply these functions to the case of a mortgage bond."
],
"metadata": {
"id": "TqkXM0zJFb5S"
}
},
{
"cell_type": "code",
"source": [
"mortgage_principal_plus_interest: float = 0.08\n",
"mortgage_cash_flow: Sequence[float] = [mortgage_principal_plus_interest] * num_years\n",
"mortgage_duration: float = duration(mortgage_cash_flow, yield_)\n",
"\n",
"print(f\"Mortgage Duration = {mortgage_duration:.2f}\")\n",
"plank_weights_plot(mortgage_cash_flow, yield_)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 890
},
"id": "S2YJHm2JFgNF",
"outputId": "3b825728-b8d3-4481-dbc7-052e8085c79b"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mortgage Duration = 10.45\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1500x1000 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAANXCAYAAADjAjLCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4gUlEQVR4nOzdebiVZaE3/u9m2gyKGigIopiSqCAkTqCpJQHGq6IdUZzRY+lPcsA0MAc4VKiFaYKSnTxSSg6lZGEYkZgKagqW9DorYSI4Q4Iisdfvj173ccvgRh/2Xls+n+taV677ude6v88Klnt/fYaKUqlUCgAAAADwiTSq7wAAAAAA8GmgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAo0EknnZTOnTt/7NdusskmxQbaCM2fPz8VFRW54YYbNug6FRUVGTZs2AZdAwBoWBRtAMCn3q233pqKiorccccdq23r0aNHKioqcs8996y2bdttt02fPn3qIuJ6Wb58eUaNGpWZM2fWd5Q6NXPmzFRUVFQ/mjZtms9+9rM54YQT8vzzz9d3PAAARRsA8Om33377JUnuv//+GuNLly7NvHnz0qRJkzzwwAM1tr344ot58cUXq19bWz/5yU/y1FNPfbLAH2H58uUZPXr0Rle0ve/MM8/Mz3/+81x33XUZOHBgbrnlluy5555ZuHBhfUcDADZyijYA4FOvQ4cO2X777Vcr2mbPnp1SqZQjjzxytW3vP1/foq1p06aprKz8ZIFZpy984Qs57rjjMnTo0Fx99dX5wQ9+kDfeeCOTJk2q72gAwEZO0QYAbBT222+/zJ07N++880712AMPPJBdd901Bx98cB588MFUVVXV2FZRUZF99923euzGG29Mr1690qJFi3zmM5/J0UcfnRdffLHGOmu6Rtvrr7+e448/Pq1bt87mm2+eE088MX/5y1/Weh2xl156KYMGDcomm2ySLbfcMt/85jezatWqJP++/tiWW26ZJBk9enT1aZSjRo1KkixatChDhw7NNttsk8rKymy99dY57LDDMn/+/I/8jP74xz/mC1/4Qlq1apXNN988hx12WJ544okac0aNGpWKioo8++yzOemkk7L55ptns802y9ChQ7N8+fKPXOO+++7LkUcemW233TaVlZXp1KlTzjnnnBr/v6yvL33pS0mSF154Ya1z/vrXv+akk07KZz/72TRv3jzt27fPySefnNdff73Q/fvOd76TRo0a5eqrr/7Y+wMANFxN6jsAAEBd2G+//fLzn/88Dz30UA488MAk/y7T+vTpkz59+mTJkiWZN29edtttt+ptXbt2TZs2bZIk3/3ud3PRRRdl8ODB+c///M+8+uqrufrqq7P//vtn7ty52Xzzzde4blVVVQ455JA8/PDDOf3009O1a9f8+te/zoknnrjG+atWrUr//v2z99575wc/+EH+8Ic/ZNy4cdlhhx1y+umnZ8stt8y1116b008/PYcffniOOOKIJKnO/dWvfjV/+9vf8o1vfCOdO3fOK6+8kunTp2fBggXrvEnDH/7whxx88MH57Gc/m1GjRuWdd97J1VdfnX333Tdz5sxZ7bWDBw/O9ttvn7Fjx2bOnDn57//+72y11Va57LLL1vn/w2233Zbly5fn9NNPT5s2bfLwww/n6quvzj/+8Y/cdttt63zt2jz33HNJUv3/1ZpMnz49zz//fIYOHZr27dvnb3/7W6677rr87W9/y4MPPpiKiopPvH8XXnhhvve97+XHP/5xTj311I+1LwBAA1cCANgI/O1vfyslKY0ZM6ZUKpVKK1euLLVq1ao0adKkUqlUKrVr1640YcKEUqlUKi1durTUuHHj0qmnnloqlUql+fPnlxo3blz67ne/W+M9H3/88VKTJk1qjJ944oml7bbbrvr5r371q1KS0pVXXlk9tmrVqtKXvvSlUpLS//zP/9R4bZLSf/3Xf9VY5/Of/3ypV69e1c9fffXVUpLSJZdcUmPem2++WUpS+v73v7+en06p1LNnz9JWW21Vev3116vH/vKXv5QaNWpUOuGEE6rHLrnkklKS0sknn1zj9YcffnipTZs2H7nO8uXLVxsbO3ZsqaKiovT3v/99na+95557SklK119/fenVV18tLVy4sDR16tRS586dSxUVFaU///nPpVKpVHrhhRdW+2zXtO4vfvGLUpLSn/70p4+1f0lKZ5xxRqlUKpXOPffcUqNGjUo33HDDuj8AAOBTzamjAMBGYeedd06bNm2qr732l7/8JcuWLau+q2ifPn2qb4gwe/bsrFq1qvr6bLfffnuqqqoyePDgvPbaa9WP9u3bp0uXLmu8Y+n7pk2blqZNm9Y4wqlRo0Y544wz1vqa0047rcbzL3zhC7W6q2aLFi3SrFmzzJw5M2+++eZHzn/fyy+/nMceeywnnXRSPvOZz1SP77bbbvnyl7+cu+66q1YZX3/99SxduvQjM75v2bJlee2119KnT5+USqXMnTu3VnlPPvnkbLnllunQoUMGDhyYZcuWZdKkSdljjz1qte67776b1157Lfvss0+SZM6cOR97/0qlUoYNG5arrroqN95441qPVAQANg5OHQUANgoVFRXp06dP/vSnP6WqqioPPPBAttpqq+y4445J/l20jR8/PkmqC7f3i7ZnnnkmpVIpXbp0WeN7N23adK3r/v3vf8/WW2+dli1b1hh/f90Pa968efU12N63xRZb1Ko4q6yszGWXXZZzzz037dq1yz777JP/83/+T0444YS0b99+nRmTZKeddlpt284775y77747y5YtS6tWrarHt91229UyJsmbb76Z1q1br3WtBQsW5OKLL86dd9652j4tWbLkI/cxSS6++OJ84QtfSOPGjdO2bdvsvPPOadJk3T/WvvHGGxk9enRuvvnmvPLKKx+5bm3372c/+1nefvvtXHvttRkyZEit8gMAn16KNgBgo7HffvvlN7/5TR5//PHq67O9r0+fPjnvvPPy0ksv5f7770+HDh3y2c9+Nsm/r7NWUVGR3/3ud2ncuPFq77vJJpsUlnFN778+zj777BxyyCGZMmVK7r777lx00UUZO3Zs/vjHP+bzn/98QSnXnrNUKq31NatWrcqXv/zlvPHGG/nWt76Vrl27plWrVnnppZdy0kkn1bgZxbp07949ffv2Xa+8gwcPzqxZs3LeeeelZ8+e2WSTTVJVVZUBAwascd3a7t++++6bxx57LOPHj8/gwYNrHBEIAGx8FG0AwEbj/SPU7r///jzwwAM5++yzq7f16tUrlZWVmTlzZh566KF85Stfqd62ww47pFQqZfvtt8/nPve59Vpzu+22yz333JPly5fXOKrt2Wef/dj78eEL93/YDjvskHPPPTfnnntunnnmmfTs2TPjxo3LjTfeuNaMSfLUU0+ttu3JJ59M27ZtaxzN9nE9/vjjefrppzNp0qSccMIJ1ePTp0//xO+9Lm+++WZmzJiR0aNH5+KLL64ef+aZZz7xe++44465/PLLc+CBB2bAgAGZMWNGNt1000/8vgBAw+QabQDARmOPPfZI8+bNc9NNN+Wll16qcURbZWVldt9990yYMCHLli2rLuWS5Igjjkjjxo0zevTo1Y5oKpVKef3119e6Zv/+/bNy5cr85Cc/qR6rqqrKhAkTPvZ+vF/YvfXWWzXGly9fnnfffbfG2A477JBNN900K1asWOv7bb311unZs2cmTZpU4z3nzZuX3//+9zVKx0/i/aPEPvgZlkqlXHXVVYW8//qsmyRXXnllIe+/22675a677soTTzyRQw45JO+8804h7wsANDyOaAMANhrNmjXLnnvumfvuuy+VlZXp1atXje19+vTJuHHjkqRG0bbDDjvkO9/5TkaOHJn58+dn0KBB2XTTTfPCCy/kjjvuyNe+9rV885vfXOOagwYNyl577ZVzzz03zz77bLp27Zo777wzb7zxRpKPPjptTVq0aJFddtklt9xySz73uc/lM5/5TLp165Z//etfOeiggzJ48ODssssuadKkSe64444sXrw4Rx999Drf8/vf/34OPvjg9O7dO6ecckreeeedXH311dlss80yatSo9c64Jl27ds0OO+yQb37zm3nppZfSunXr/OpXv1qvGzd8HK1bt87++++fyy+/PCtXrkzHjh3z+9//Pi+88EJha+yzzz759a9/na985Sv5j//4j0yZMmWd1+4DAD6dHNEGAGxU3i/Q3j9V9IP23XffJMmmm26aHj161Ng2YsSI/OpXv0qjRo0yevTofPOb38ydd96Zfv365dBDD13reo0bN87UqVNz1FFHZdKkSfn2t7+dDh06VB/R1rx584+1H//93/+djh075pxzzsmQIUPyy1/+Mp06dcqQIUMyc+bMjBw5MiNHjszSpUtz66235qtf/eo6369v376ZNm1a2rRpk4svvjg/+MEPss8+++SBBx7I9ttv/7EyfljTpk3zm9/8Jj179szYsWMzevTodOnSJT/72c8Kef91mTx5cvr3758JEyZk5MiRadq0aX73u98VusaXvvSl3Hrrrfn973+f448/vtbXnAMAPj0qSuu6Yi0AABvElClTcvjhh+f++++vLvgAAGjYFG0AABvYO++8kxYtWlQ/X7VqVfr165dHHnkkixYtqrENAICGyzXaAAA2sG984xt555130rt376xYsSK33357Zs2ale9973tKNgCATxFHtAEAbGCTJ0/OuHHj8uyzz+bdd9/NjjvumNNPPz3Dhg2r72gAABRI0QYAAAAABXDXUQAAAAAogKINAAAAAArgZghrUFVVlYULF2bTTTdNRUVFfccBAAAAoB6VSqX885//TIcOHdKo0dqPW1O0rcHChQvTqVOn+o4BAAAAQBl58cUXs80226x1u6JtDTbddNMk//7wWrduXc9pAAAAAKhPS5cuTadOnao7o7VRtK3B+6eLtm7dWtEGAAAAQJJ85CXG3AwBAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKUO9F24QJE9K5c+c0b948e++9dx5++OF1zr/tttvStWvXNG/ePN27d89dd91VY/vbb7+dYcOGZZtttkmLFi2yyy67ZOLEiRtyFwAAAACgfou2W265JcOHD88ll1ySOXPmpEePHunfv39eeeWVNc6fNWtWhgwZklNOOSVz587NoEGDMmjQoMybN696zvDhwzNt2rTceOONeeKJJ3L22Wdn2LBhufPOO+tqtwAAAADYCFWUSqVSfS2+9957Z88998z48eOTJFVVVenUqVO+8Y1vZMSIEavNP+qoo7Js2bL89re/rR7bZ5990rNnz+qj1rp165ajjjoqF110UfWcXr165eCDD853vvOdWuVaunRpNttssyxZsiStW7f+JLsIAAAAQANX266oSR1mquG9997Lo48+mpEjR1aPNWrUKH379s3s2bPX+JrZs2dn+PDhNcb69++fKVOmVD/v06dP7rzzzpx88snp0KFDZs6cmaeffjo//OEP15plxYoVWbFiRfXzpUuXJklWrlyZlStXfpzdAwAAAOBTorb9UL0Vba+99lpWrVqVdu3a1Rhv165dnnzyyTW+ZtGiRWucv2jRournV199db72ta9lm222SZMmTdKoUaP85Cc/yf7777/WLGPHjs3o0aNXG//973+fli1brs9uAQAAAPAps3z58lrNq7eibUO5+uqr8+CDD+bOO+/Mdtttlz/96U8544wz0qFDh/Tt23eNrxk5cmSNI+WWLl2aTp06pV+/fp+qU0e7jbq7TtebN6p/na4HAAAAsCG8f/bjR6m3oq1t27Zp3LhxFi9eXGN88eLFad++/Rpf0759+3XOf+edd3LBBRfkjjvuyMCBA5Mku+22Wx577LH84Ac/WGvRVllZmcrKytXGmzZtmqZNm673vpWrFasq6nS9T9NnBwAAAGy8attx1NtdR5s1a5ZevXplxowZ1WNVVVWZMWNGevfuvcbX9O7du8b8JJk+fXr1/PevqdaoUc3daty4caqqqgreAwAAAAD4X/V66ujw4cNz4oknZo899shee+2VK6+8MsuWLcvQoUOTJCeccEI6duyYsWPHJknOOuusHHDAARk3blwGDhyYm2++OY888kiuu+66JEnr1q1zwAEH5LzzzkuLFi2y3Xbb5d57783PfvazXHHFFfW2nwAAAAB8+tVr0XbUUUfl1VdfzcUXX5xFixalZ8+emTZtWvUNDxYsWFDj6LQ+ffpk8uTJufDCC3PBBRekS5cumTJlSrp161Y95+abb87IkSNz7LHH5o033sh2222X7373uznttNPqfP8AAAAA2HhUlEqlUn2HKDdLly7NZpttliVLlnyqbobQecTUOl1v/qUD63Q9AAAAgA2htl1RvV2jDQAAAAA+TRRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFaFLfAdg4dR4xtc7XnH/pwDpfEwAAANh4OKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACtCkvgNAOeg8Ymqdrjf/0oF1uh4AAACw4TmiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIAClEXRNmHChHTu3DnNmzfP3nvvnYcffnid82+77bZ07do1zZs3T/fu3XPXXXfV2F5RUbHGx/e///0NuRsAAAAAbMTqvWi75ZZbMnz48FxyySWZM2dOevTokf79++eVV15Z4/xZs2ZlyJAhOeWUUzJ37twMGjQogwYNyrx586rnvPzyyzUe119/fSoqKvLVr361rnYLAAAAgI1MvRdtV1xxRU499dQMHTo0u+yySyZOnJiWLVvm+uuvX+P8q666KgMGDMh5552XnXfeOWPGjMnuu++e8ePHV89p3759jcevf/3rfPGLX8xnP/vZutotAAAAADYyTepz8ffeey+PPvpoRo4cWT3WqFGj9O3bN7Nnz17ja2bPnp3hw4fXGOvfv3+mTJmyxvmLFy/O1KlTM2nSpLXmWLFiRVasWFH9fOnSpUmSlStXZuXKlbXdnbJX2bhUp+ut67Or6yxJeeX5NP25AgAAgE+72v4eX69F22uvvZZVq1alXbt2NcbbtWuXJ598co2vWbRo0RrnL1q0aI3zJ02alE033TRHHHHEWnOMHTs2o0ePXm3897//fVq2bPlRu9FgXL5X3a734WvnfVBdZ0nKK8+6sgAAAADlZfny5bWaV69FW124/vrrc+yxx6Z58+ZrnTNy5MgaR8ktXbo0nTp1Sr9+/dK6deu6iFknuo26u07Xmzeq/1q31XWWpLzyrCsLAAAAUF7eP/vxo9Rr0da2bds0btw4ixcvrjG+ePHitG/ffo2vad++fa3n33fffXnqqadyyy23rDNHZWVlKisrVxtv2rRpmjZt+lG70WCsWFVRp+ut67Or6yxJeeX5NP25AgAAgE+72v4eX683Q2jWrFl69eqVGTNmVI9VVVVlxowZ6d279xpf07t37xrzk2T69OlrnP/Tn/40vXr1So8ePYoNDgAAAAAfUu+njg4fPjwnnnhi9thjj+y111658sors2zZsgwdOjRJcsIJJ6Rjx44ZO3ZskuSss87KAQcckHHjxmXgwIG5+eab88gjj+S6666r8b5Lly7NbbfdlnHjxtX5PgEAAACw8an3ou2oo47Kq6++mosvvjiLFi1Kz549M23atOobHixYsCCNGv3vgXd9+vTJ5MmTc+GFF+aCCy5Ily5dMmXKlHTr1q3G+958880plUoZMmRIne4PAAAAABunilKpVKrvEOVm6dKl2WyzzbJkyZJP1c0QOo+YWqfrzb904Fq31XWWpLzyrCsLAAAAUF5q2xXV6zXaAAAAAODTot5PHQVqKrej/QAAAIDacUQbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUoEl9BwDKW+cRU+t0vfmXDqzT9QAAAKAojmgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACtCkvgMA1FbnEVPrfM35lw6s8zUBAABomBzRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUoN6LtgkTJqRz585p3rx59t577zz88MPrnH/bbbela9euad68ebp375677rprtTlPPPFEDj300Gy22WZp1apV9txzzyxYsGBD7QIAAAAA1G/Rdsstt2T48OG55JJLMmfOnPTo0SP9+/fPK6+8ssb5s2bNypAhQ3LKKadk7ty5GTRoUAYNGpR58+ZVz3nuueey3377pWvXrpk5c2b++te/5qKLLkrz5s3rarcAAAAA2AjVa9F2xRVX5NRTT83QoUOzyy67ZOLEiWnZsmWuv/76Nc6/6qqrMmDAgJx33nnZeeedM2bMmOy+++4ZP3589Zxvf/vb+cpXvpLLL788n//857PDDjvk0EMPzVZbbVVXuwUAAADARqhJfS383nvv5dFHH83IkSOrxxo1apS+fftm9uzZa3zN7NmzM3z48Bpj/fv3z5QpU5IkVVVVmTp1as4///z0798/c+fOzfbbb5+RI0dm0KBBa82yYsWKrFixovr50qVLkyQrV67MypUrP+Yelp/KxqU6XW9dn11dZ0nKK085ZUnKK085ZUnWnQcAAICNQ21/N6wolUp1/5trkoULF6Zjx46ZNWtWevfuXT1+/vnn5957781DDz202muaNWuWSZMmZciQIdVj11xzTUaPHp3Fixdn0aJF2XrrrdOyZct85zvfyRe/+MVMmzYtF1xwQe65554ccMABa8wyatSojB49erXxyZMnp2XLlgXsLQAAAAAN1fLly3PMMcdkyZIlad269Vrn1dsRbRtCVVVVkuSwww7LOeeckyTp2bNnZs2alYkTJ661aBs5cmSNI+WWLl2aTp06pV+/fuv88BqabqPurtP15o3qv9ZtdZ0lKa885ZQlKa885ZQlWXceAAAANg7vn/34UeqtaGvbtm0aN26cxYsX1xhfvHhx2rdvv8bXtG/ffp3z27ZtmyZNmmSXXXapMWfnnXfO/fffv9YslZWVqaysXG28adOmadq0aa32pyFYsaqiTtdb12dX11mS8spTTlmS8spTTlmSdefpPGJqHSZJ5l86sE7XAwAA4N9q2w/V280QmjVrll69emXGjBnVY1VVVZkxY0aNU0k/qHfv3jXmJ8n06dOr5zdr1ix77rlnnnrqqRpznn766Wy33XYF7wEAAAAA/K96PXV0+PDhOfHEE7PHHntkr732ypVXXplly5Zl6NChSZITTjghHTt2zNixY5MkZ511Vg444ICMGzcuAwcOzM0335xHHnkk1113XfV7nnfeeTnqqKOy//77V1+j7Te/+U1mzpxZH7sIAAAAwEaiXou2o446Kq+++mouvvjiLFq0KD179sy0adPSrl27JMmCBQvSqNH/HnTXp0+fTJ48ORdeeGEuuOCCdOnSJVOmTEm3bt2q5xx++OGZOHFixo4dmzPPPDM77bRTfvWrX2W//far8/0DAAAAYONR7zdDGDZsWIYNG7bGbWs6Cu3II4/MkUceuc73PPnkk3PyyScXEQ8AAAAAaqXertEGAAAAAJ8mijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAoQJP6DgDAJ9d5xNQ6XW/+pQPrdD0AAICGwBFtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVoUt8BAPj06Txiap2uN//SgXW6HgAAwJo4og0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAE3qOwAAbEidR0yt0/XmXzqwTtcDAADKhyPaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAoQFkUbRMmTEjnzp3TvHnz7L333nn44YfXOf+2225L165d07x583Tv3j133XVXje0nnXRSKioqajwGDBiwIXcBAAAAgI1cvRdtt9xyS4YPH55LLrkkc+bMSY8ePdK/f/+88sora5w/a9asDBkyJKecckrmzp2bQYMGZdCgQZk3b16NeQMGDMjLL79c/fjFL35RF7sDAAAAwEaqSX0HuOKKK3Lqqadm6NChSZKJEydm6tSpuf766zNixIjV5l911VUZMGBAzjvvvCTJmDFjMn369IwfPz4TJ06snldZWZn27dvXKsOKFSuyYsWK6udLly5NkqxcuTIrV6782PtWbiobl+p0vXV9dnWdJSmvPOWUJSmvPOWUJSmvPA0lS1JeecopCwAA0DDV9uf8ilKpVPe/uf4/7733Xlq2bJlf/vKXGTRoUPX4iSeemLfeeiu//vWvV3vNtttum+HDh+fss8+uHrvkkksyZcqU/OUvf0ny71NHp0yZkmbNmmWLLbbIl770pXznO99JmzZt1phj1KhRGT169GrjkydPTsuWLT/ZTgIAAADQoC1fvjzHHHNMlixZktatW691Xr0e0fbaa69l1apVadeuXY3xdu3a5cknn1zjaxYtWrTG+YsWLap+PmDAgBxxxBHZfvvt89xzz+WCCy7IwQcfnNmzZ6dx48arvefIkSMzfPjw6udLly5Np06d0q9fv3V+eA1Nt1F31+l680b1X+u2us6SlFeecsqSlFeecsqSlFeehpIlKa885ZQFAABomN4/+/Gj1PupoxvC0UcfXf3P3bt3z2677ZYddtghM2fOzEEHHbTa/MrKylRWVq423rRp0zRt2nSDZq1LK1ZV1Ol66/rs6jpLUl55yilLUl55yilLUl55GkqWpLzylFMWAACgYartz/n1ejOEtm3bpnHjxlm8eHGN8cWLF6/1+mrt27dfr/lJ8tnPfjZt27bNs88++8lDAwAAAMAa1GvR1qxZs/Tq1SszZsyoHquqqsqMGTPSu3fvNb6md+/eNeYnyfTp09c6P0n+8Y9/5PXXX8/WW29dTHAAAAAA+JB6LdqSZPjw4fnJT36SSZMm5Yknnsjpp5+eZcuWVd+F9IQTTsjIkSOr55911lmZNm1axo0blyeffDKjRo3KI488kmHDhiVJ3n777Zx33nl58MEHM3/+/MyYMSOHHXZYdtxxx/Tv77o5AAAAAGwY9X6NtqOOOiqvvvpqLr744ixatCg9e/bMtGnTqm94sGDBgjRq9L99YJ8+fTJ58uRceOGFueCCC9KlS5dMmTIl3bp1S5I0btw4f/3rXzNp0qS89dZb6dChQ/r165cxY8as8TpsAAAAAFCEei/akmTYsGHVR6R92MyZM1cbO/LII3PkkUeucX6LFi1y9911f2dCAAAAADZu9X7qKAAAAAB8GpTFEW0AsLHoPGJqna43/9KBdboeAABszBzRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAAda7aHvxxRfzj3/8o/r5ww8/nLPPPjvXXXddocEAAAAAoCFZ76LtmGOOyT333JMkWbRoUb785S/n4Ycfzre//e3813/9V+EBAQAAAKAhWO+ibd68edlrr72SJLfeemu6deuWWbNm5aabbsoNN9xQdD4AAAAAaBDWu2hbuXJlKisrkyR/+MMfcuihhyZJunbtmpdffrnYdAAAAADQQKx30bbrrrtm4sSJue+++zJ9+vQMGDAgSbJw4cK0adOm8IAAAAAA0BCsd9F22WWX5cc//nEOPPDADBkyJD169EiS3HnnndWnlAIAAADAxqbJ+r7gwAMPzGuvvZalS5dmiy22qB7/2te+lpYtWxYaDgAAAAAaivU+ou3666/PggULapRsSdK5c+dstdVWhQUDAAAAgIZkvYu2sWPHZscdd8y2226b448/Pv/93/+dZ599dkNkAwAAAIAGY72LtmeeeSYLFizI2LFj07Jly/zgBz/ITjvtlG222SbHHXfchsgIAAAAAGVvva/RliQdO3bMsccem8MPPzz33XdffvGLX+Smm27KzTffnBtvvLHojADABtB5xNQ6XW/+pQPrdD0AAKhr6120/f73v8/MmTMzc+bMzJ07NzvvvHMOOOCA/PKXv8z++++/ITICAAAAQNlb76JtwIAB2XLLLXPuuefmrrvuyuabb74BYgEAAABAw7Le12i74oorsu++++byyy/PrrvummOOOSbXXXddnn766Q2RDwAAAAAahPUu2s4+++zcfvvtee211zJt2rT06dMn06ZNS7du3bLNNttsiIwAAAAAUPY+1s0QSqVS5s6dm5kzZ+aee+7J/fffn6qqqmy55ZZF5wMAAACABmG9i7ZDDjkkDzzwQJYuXZoePXrkwAMPzKmnnpr999/f9doAAAAA2Gitd9HWtWvXfP3rX88XvvCFbLbZZhsiEwAAAAA0OOtdtH3/+9/fEDkAAAAAoEFb75shJMm9996bQw45JDvuuGN23HHHHHroobnvvvuKzgYAAAAADcZ6F2033nhj+vbtm5YtW+bMM8/MmWeemRYtWuSggw7K5MmTN0RGAAAAACh7633q6He/+91cfvnlOeecc6rHzjzzzFxxxRUZM2ZMjjnmmEIDAgAAAEBDsN5HtD3//PM55JBDVhs/9NBD88ILLxQSCgAAAAAamvUu2jp16pQZM2asNv6HP/whnTp1KiQUAAAAADQ0633q6Lnnnpszzzwzjz32WPr06ZMkeeCBB3LDDTfkqquuKjwgAAAAADQE6120nX766Wnfvn3GjRuXW2+9NUmy884755Zbbslhhx1WeEAAAAAAaAjWu2hLksMPPzyHH3540VkAAAAAoMFa72u0AQAAAACrq9URbVtssUUqKipq9YZvvPHGJwoEAAAAAA1RrYq2K6+8cgPHAAAAAICGrVZF21/+8peMGTMmrVq1yp/+9Kf06dMnTZp8rMu7AQCspvOIqXW+5vxLB9b5mgAAfLrV6hptV199dd5+++0kyRe/+EWnhwIAAADAh9TqsLTOnTvnRz/6Ufr165dSqZTZs2dniy22WOPc/fffv9CAAAAAANAQ1Kpo+/73v5/TTjstY8eOTUVFRQ4//PA1zquoqMiqVasKDQgAAAAADUGtirZBgwZl0KBBefvtt9O6des89dRT2WqrrTZ0NgAAAABoMNbrjgabbLJJ7rnnnmy//fZuhgAAAAAAH7DebdkBBxyQqqqqPP3003nllVdSVVVVY7trtAEAAACwMVrvou3BBx/MMccck7///e8plUo1trlGGwAAAAAbq/Uu2k477bTssccemTp1arbeeutUVFRsiFwAAAAA0KCsd9H2zDPP5Je//GV23HHHDZEHAAAAABqkRuv7gr333jvPPvvshsgCAAAAAA1WrY5o++tf/1r9z9/4xjdy7rnnZtGiRenevXuaNm1aY+5uu+1WbEIAAAAAaABqVbT17NkzFRUVNW5+cPLJJ1f/8/vb3AwBAAAAgI1VrYq2F154YUPnAAAAAIAGrVZF23bbbbehcwAAAABAg7beN0OYNGlSpk6dWv38/PPPz+abb54+ffrk73//e6HhAAAAAKChWO+i7Xvf+15atGiRJJk9e3bGjx+fyy+/PG3bts0555xTeEAAAAAAaAhqderoB7344ovZcccdkyRTpkzJf/zHf+RrX/ta9t133xx44IFF5wMAAACABmG9j2jbZJNN8vrrrydJfv/73+fLX/5ykqR58+Z55513ik0HAAAAAA3Eeh/R9uUvfzn/+Z//mc9//vN5+umn85WvfCVJ8re//S2dO3cuOh8AAAAANAjrXbRNmDAhF154YV588cX86le/Sps2bZIkjz76aIYMGVJ4QACAutZ5xNSPnlSg+ZcOrNP1AADYMNa7aNt8880zfvz41cZHjx5dSCAAAAAAaIjWu2h73/Lly7NgwYK89957NcZ32223TxwKAAAAABqa9S7aXn311Zx00kmZNm3aGrevWrXqE4cCAAAAgIZmve86evbZZ2fJkiV56KGH0qJFi0ybNi2TJk1Kly5dcuedd26IjAAAAABQ9tb7iLY//vGP+fWvf5099tgjjRo1ynbbbZcvf/nLad26dcaOHZuBA13MFwAAAICNz3of0bZs2bJstdVWSZItttgir776apKke/fumTNnTrHpAAAAAKCBWO+ibaeddspTTz2VJOnRo0d+/OMf56WXXsrEiROz9dZbFx4QAAAAABqC9T519KyzzsrLL7+cJLnkkksyYMCA3HTTTWnWrFluuOGGovMBAAAAQIOw3kXbcccdV/3PvXr1yt///vc8+eST2XbbbdO2bdtCwwEAAABAQ7Fep44uXbo0VVVVNcZatmyZnj17plmzZoUGAwAAAICGpNZF2x133JE99tgj77777mrb3nnnney55575zW9+U2g4AAAAAGgoal20XXvttTn//PPTsmXL1ba1atUq3/rWtzJ+/PhCwwEAAABAQ1Hrom3evHk58MAD17p9//33z+OPP15EJgAAAABocGpdtL355pv517/+tdbtK1euzJtvvllIKAAAAABoaGpdtHXu3DmPPPLIWrc/8sgj2W677QoJBQAAAAANTa2LtiOOOCLf/va3s3jx4tW2LVq0KBdeeGG++tWvFhoOAAAAABqKJrWdOGLEiPz6179Oly5dctxxx2WnnXZKkjz55JO56aab0qlTp4wYMWKDBQUAAACAclbrom3TTTfNAw88kJEjR+aWW26pvh7b5ptvnuOOOy7f/e53s+mmm36sEBMmTMj3v//9LFq0KD169MjVV1+dvfbaa63zb7vttlx00UWZP39+unTpkssuuyxf+cpX1jj3tNNOy49//OP88Ic/zNlnn/2x8gEA1JfOI6bW+ZrzLx1Y52sCAHwa1PrU0STZbLPNcs011+S1117L4sWLs2jRorz++uu55pprssUWW3ysALfcckuGDx+eSy65JHPmzEmPHj3Sv3//vPLKK2ucP2vWrAwZMiSnnHJK5s6dm0GDBmXQoEGZN2/eanPvuOOOPPjgg+nQocPHygYAAAAAtbVeRdv7KioqsuWWW2arrbZKRUXFJwpwxRVX5NRTT83QoUOzyy67ZOLEiWnZsmWuv/76Nc6/6qqrMmDAgJx33nnZeeedM2bMmOy+++4ZP358jXkvvfRSvvGNb+Smm25K06ZNP1FGAAAAAPgotT51dEN477338uijj2bkyJHVY40aNUrfvn0ze/bsNb5m9uzZGT58eI2x/v37Z8qUKdXPq6qqcvzxx+e8887Lrrvu+pE5VqxYkRUrVlQ/X7p0aZJk5cqVWbly5frsUlmrbFyq0/XW9dnVdZakvPKUU5akvPKUU5akvPI0lCxJeeUppyxJeeXZmLMk5ZWnnLIkH/3nGABgY1Pbn48qSqVS3f/09v8sXLgwHTt2zKxZs9K7d+/q8fPPPz/33ntvHnroodVe06xZs0yaNClDhgypHrvmmmsyevTo6juijh07Nvfcc0/uvvvuVFRUpHPnzjn77LPXeo22UaNGZfTo0auNT548OS1btvyEewkAAABAQ7Z8+fIcc8wxWbJkSVq3br3WefV6RNuG8Oijj+aqq67KnDlzan1a68iRI2scJbd06dJ06tQp/fr1W+eH19B0G3V3na43b1T/tW6r6yxJeeUppyxJeeUppyxJeeVpKFmS8spTTlmS8sqzMWdJyitPOWVJPvrPMQDAxub9sx8/Sq2Kts985jN5+umn07Zt25x88sm56qqrPvYdRj+obdu2ady4cfWRaO9bvHhx2rdvv8bXtG/ffp3z77vvvrzyyivZdtttq7evWrUq5557bq688srMnz9/tfesrKxMZWXlauNNmzb9VF3fbcWqT3Y9vfW1rs+urrMk5ZWnnLIk5ZWnnLIk5ZWnoWRJyitPOWVJyivPxpwlKa885ZQl+eg/xwAAG5va/nxUq5shvPfee9XN3aRJk/Luu+9+/GQf0KxZs/Tq1SszZsyoHquqqsqMGTNqnEr6Qb17964xP0mmT59ePf/444/PX//61zz22GPVjw4dOuS8887L3XfX/X8RBgAAAGDjUKsj2nr37p1BgwalV69eKZVKOfPMM9OiRYs1zl3b3ULXZvjw4TnxxBOzxx57ZK+99sqVV16ZZcuWZejQoUmSE044IR07dszYsWOTJGeddVYOOOCAjBs3LgMHDszNN9+cRx55JNddd12SpE2bNmnTpk2NNZo2bZr27dtnp512Wq9sAAAAAFBbtSrabrzxxvzwhz/Mc889l4qKiixZsqSwo9qOOuqovPrqq7n44ouzaNGi9OzZM9OmTUu7du2SJAsWLEijRv974F2fPn0yefLkXHjhhbngggvSpUuXTJkyJd26dSskDwAAAAB8HLUq2tq1a5dLL700SbL99tvn5z//+WpHjX0Sw4YNy7Bhw9a4bebMmauNHXnkkTnyyCNr/f5rui4bAAAAABRpve86+sILL2yIHAAAAADQoNXqZggfdu+99+aQQw7JjjvumB133DGHHnpo7rvvvqKzAQAAAECDsd5F24033pi+ffumZcuWOfPMM6tvjHDQQQdl8uTJGyIjAAAAAJS99T519Lvf/W4uv/zynHPOOdVjZ555Zq644oqMGTMmxxxzTKEBAQAAAKAhWO8j2p5//vkccsghq40feuihrt8GAAAAwEZrvYu2Tp06ZcaMGauN/+EPf0inTp0KCQUAAAAADc16nzp67rnn5swzz8xjjz2WPn36JEkeeOCB3HDDDbnqqqsKDwgAAAAADcF6F22nn3562rdvn3HjxuXWW29Nkuy888655ZZbcthhhxUeEACA8tF5xNQ6XW/+pQPrdD0AgE9ivYu2JDn88MNz+OGHF50FAAAAABqs9b5GGwAAAACwOkUbAAAAABRA0QYAAAAABVC0AQAAAEABal20ffOb38yTTz65IbMAAAAAQINV66Lt17/+dXbdddf06dMn119/fZYtW7YhcwEAAABAg1Lrou2ZZ57JPffck8997nM566yz0r59+5x88smZNWvWhswHAAAAAA3Cel2jbf/9988NN9yQRYsW5aqrrsozzzyT/fbbLzvvvHN+8IMfZPHixRsqJwAAAACUtY91M4RWrVrl5JNPzn333Zenn346RxxxRMaOHZttt9226HwAAAAA0CB8oruOLlu2LPfdd1/uvffevPnmm/nsZz9bVC4AAAAAaFA+VtF2//335+STT87WW2+dM888M5/73Ody33335Yknnig6HwAAAAA0CE1qO/Hll1/OpEmTcsMNN+Tpp5/OPvvskyuuuCJHH310Ntlkkw2ZEQAAAADKXq2Ltk6dOqVNmzY5/vjjc8opp2TnnXfekLkAAAAAoEGpddF266235tBDD02TJrV+CQAAAABsNGp9jbbDDjss48aNy7777ps999wzI0aMyDvvvLMhswEAAABAg1Hrw9O+973vZdSoUenbt29atGiRq666Kq+88kquv/76DZkPAADWqPOIqXW+5vxLB9b5mgBAw1HrI9p+9rOf5Zprrsndd9+dKVOm5De/+U1uuummVFVVbch8AAAAANAg1LpoW7BgQb7yla9UP+/bt28qKiqycOHCDRIMAAAAABqSWhdt//rXv9K8efMaY02bNs3KlSsLDwUAAAAADU2tr9FWKpVy0kknpbKysnrs3XffzWmnnZZWrVpVj91+++3FJgQAAACABqDWRduJJ5642thxxx1XaBgAAAAAaKhqXbT9z//8z4bMAQAAAAANWq2v0QYAAAAArJ2iDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAoQJP6DgAAAJ8GnUdMrdP15l86sE7XAwA+miPaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKECT+g4AAAAUq/OIqXW+5vxLB9b5mgBQbhzRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAGa1HcAAADg063ziKl1ut78SwfW6XoA8D5HtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUICyKNomTJiQzp07p3nz5tl7773z8MMPr3P+bbfdlq5du6Z58+bp3r177rrrrhrbR40ala5du6ZVq1bZYost0rdv3zz00EMbchcAAAAA2MjVe9F2yy23ZPjw4bnkkksyZ86c9OjRI/37988rr7yyxvmzZs3KkCFDcsopp2Tu3LkZNGhQBg0alHnz5lXP+dznPpfx48fn8ccfz/3335/OnTunX79+efXVV+tqtwAAAADYyDSp7wBXXHFFTj311AwdOjRJMnHixEydOjXXX399RowYsdr8q666KgMGDMh5552XJBkzZkymT5+e8ePHZ+LEiUmSY445ZrU1fvrTn+avf/1rDjrooA28RwAAQLnqPGJqna85/9KBdb4mAPWjXou29957L48++mhGjhxZPdaoUaP07ds3s2fPXuNrZs+eneHDh9cY69+/f6ZMmbLWNa677rpsttlm6dGjxxrnrFixIitWrKh+vnTp0iTJypUrs3LlyvXZpbJW2bhUp+ut67Or6yxJeeUppyxJeeUppyxJeeVpKFmS8spTTlmS8sqzMWdJyitPOWVJyitPOWVJyitPOWVJyitPOWVJPvrfDQCUv9p+l1eUSqW6/zfN/7Nw4cJ07Ngxs2bNSu/evavHzz///Nx7771rvK5as2bNMmnSpAwZMqR67Jprrsno0aOzePHi6rHf/va3Ofroo7N8+fJsvfXWmTJlSvbcc8815hg1alRGjx692vjkyZPTsmXLT7KLAAAAADRwy5cvzzHHHJMlS5akdevWa51X76eObihf/OIX89hjj+W1117LT37ykwwePDgPPfRQttpqq9Xmjhw5ssZRckuXLk2nTp3Sr1+/dX54DU23UXfX6XrzRvVf67a6zpKUV55yypKUV55yypKUV56GkiUprzzllCUprzwbc5akvPKUU5akvPKUU5akvPKUU5akvPKUU5bko//dAED5e//sx49Sr0Vb27Zt07hx4xpHoiXJ4sWL0759+zW+pn379rWa36pVq+y4447Zcccds88++6RLly756U9/WuM01fdVVlamsrJytfGmTZumadOm67tbZWvFqoo6XW9dn11dZ0nKK085ZUnKK085ZUnKK09DyZKUV55yypKUV56NOUtSXnnKKUtSXnnKKUtSXnnKKUtSXnnKKUvy0f9uAKD81fa7vF7vOtqsWbP06tUrM2bMqB6rqqrKjBkzapxK+kG9e/euMT9Jpk+fvtb5H3zfD16HDQAAAACKVO+njg4fPjwnnnhi9thjj+y111658sors2zZsuq7kJ5wwgnp2LFjxo4dmyQ566yzcsABB2TcuHEZOHBgbr755jzyyCO57rrrkiTLli3Ld7/73Rx66KHZeuut89prr2XChAl56aWXcuSRR9bbfgIAAADw6VbvRdtRRx2VV199NRdffHEWLVqUnj17Ztq0aWnXrl2SZMGCBWnU6H8PvOvTp08mT56cCy+8MBdccEG6dOmSKVOmpFu3bkmSxo0b58knn8ykSZPy2muvpU2bNtlzzz1z3333Zdddd62XfQQAAADg06/ei7YkGTZsWIYNG7bGbTNnzlxt7Mgjj1zr0WnNmzfP7bffXmQ8AAAAAPhI9XqNNgAAAAD4tFC0AQAAAEABFG0AAAAAUABFGwAAAAAUoCxuhgAAALAx6jxiap2uN//SgXW6HsDGxhFtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAAZrUdwAAAADqX+cRU+t0vfmXDqzT9QDqgiPaAAAAAKAAijYAAAAAKICiDQAAAAAKoGgDAAAAgAIo2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAArQpL4DAAAAwId1HjG1Ttebf+nAOl0P+HRyRBsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVoUt8BAAAAoJx1HjG1Ttebf+nAOl0PKI4j2gAAAACgAIo2AAAAACiAog0AAAAACqBoAwAAAIACKNoAAAAAoACKNgAAAAAogKINAAAAAAqgaAMAAACAAijaAAAAAKAAijYAAAAAKECT+g4AAAAA1E7nEVPrfM35lw6s8zWhoXJEGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABSgSX0HAAAAABqmziOm1ul68y8dWKfrwfpyRBsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUoEl9BwAAAAD4pDqPmFrna86/dGCdr0l5c0QbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFCAsijaJkyYkM6dO6d58+bZe++98/DDD69z/m233ZauXbumefPm6d69e+66667qbStXrsy3vvWtdO/ePa1atUqHDh1ywgknZOHChRt6NwAAAADYiDWp7wC33HJLhg8fnokTJ2bvvffOlVdemf79++epp57KVltttdr8WbNmZciQIRk7dmz+z//5P5k8eXIGDRqUOXPmpFu3blm+fHnmzJmTiy66KD169Mibb76Zs846K4ceemgeeeSRethDAAAAYGPTecTUOl1v/qUD63Q91qzej2i74oorcuqpp2bo0KHZZZddMnHixLRs2TLXX3/9GudfddVVGTBgQM4777zsvPPOGTNmTHbfffeMHz8+SbLZZptl+vTpGTx4cHbaaafss88+GT9+fB599NEsWLCgLncNAAAAgI1IvR7R9t577+XRRx/NyJEjq8caNWqUvn37Zvbs2Wt8zezZszN8+PAaY/3798+UKVPWus6SJUtSUVGRzTfffI3bV6xYkRUrVlQ/X7p0aZJ/n4a6cuXKWu5N+atsXKrT9db12dV1lqS88pRTlqS88pRTlqS88jSULEl55SmnLEl55dmYsyTllaecsiTllaecsiTllaecsiTllaecsiTllaehZEnKK8/GnCUprzzllCUprzyfpv6iHNX2860olUp1/yfx/1m4cGE6duyYWbNmpXfv3tXj559/fu6999489NBDq72mWbNmmTRpUoYMGVI9ds0112T06NFZvHjxavPffffd7LvvvunatWtuuummNeYYNWpURo8evdr45MmT07Jly4+zawAAAAB8SixfvjzHHHNMlixZktatW691Xr1fo21DWrlyZQYPHpxSqZRrr712rfNGjhxZ4yi5pUuXplOnTunXr986P7yGptuou+t0vXmj+q91W11nScorTzllScorTzllScorT0PJkpRXnnLKkpRXno05S1JeecopS1JeecopS1JeecopS1JeecopS1JeeRpKlqS88mzMWZLyylNOWZLyyvNRf6f4ZN4/+/Gj1GvR1rZt2zRu3Hi1I9EWL16c9u3br/E17du3r9X890u2v//97/njH/+4zsKssrIylZWVq403bdo0TZs2re3ulL0VqyrqdL11fXZ1nSUprzzllCUprzzllCUprzwNJUtSXnnKKUtSXnk25ixJeeUppyxJeeUppyxJeeUppyxJeeUppyxJeeVpKFmS8sqzMWdJyitPOWVJyivPp6m/KEe1/Xzr9WYIzZo1S69evTJjxozqsaqqqsyYMaPGqaQf1Lt37xrzk2T69Ok15r9fsj3zzDP5wx/+kDZt2myYHQAAAACA/6feTx0dPnx4TjzxxOyxxx7Za6+9cuWVV2bZsmUZOnRokuSEE05Ix44dM3bs2CTJWWedlQMOOCDjxo3LwIEDc/PNN+eRRx7Jddddl+TfJdt//Md/ZM6cOfntb3+bVatWZdGiRUmSz3zmM2nWrFn97CgAAAAAn2r1XrQdddRRefXVV3PxxRdn0aJF6dmzZ6ZNm5Z27dolSRYsWJBGjf73wLs+ffpk8uTJufDCC3PBBRekS5cumTJlSrp165Ykeemll3LnnXcmSXr27FljrXvuuScHHnhgnewXAAAAABuXei/akmTYsGEZNmzYGrfNnDlztbEjjzwyRx555Brnd+7cOfV4I1UAAACAstJ5xNQ6X3P+pQPrfM1yUK/XaAMAAACATwtFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQgHov2iZMmJDOnTunefPm2XvvvfPwww+vc/5tt92Wrl27pnnz5unevXvuuuuuGttvv/329OvXL23atElFRUUee+yxDZgeAAAAAP6tXou2W265JcOHD88ll1ySOXPmpEePHunfv39eeeWVNc6fNWtWhgwZklNOOSVz587NoEGDMmjQoMybN696zrJly7Lffvvlsssuq6vdAAAAAID6LdquuOKKnHrqqRk6dGh22WWXTJw4MS1btsz111+/xvlXXXVVBgwYkPPOOy8777xzxowZk9133z3jx4+vnnP88cfn4osvTt++fetqNwAAAAAgTepr4ffeey+PPvpoRo4cWT3WqFGj9O3bN7Nnz17ja2bPnp3hw4fXGOvfv3+mTJnyibKsWLEiK1asqH6+dOnSJMnKlSuzcuXKT/Te5aSycalO11vXZ1fXWZLyylNOWZLyylNOWZLyytNQsiTllaecsiTllWdjzpKUV55yypKUV55yypKUV55yypKUV55yypKUV56GkiUprzwbc5akvPKUU5akvPKUU5bko/+ONzS13Z+KUqlU9592koULF6Zjx46ZNWtWevfuXT1+/vnn5957781DDz202muaNWuWSZMmZciQIdVj11xzTUaPHp3FixfXmDt//vxsv/32mTt3bnr27LnOLKNGjcro0aNXG588eXJatmy5nnsGAAAAwKfJ8uXLc8wxx2TJkiVp3br1WufV2xFt5WTkyJE1jpRbunRpOnXqlH79+q3zw2touo26u07Xmzeq/1q31XWWpLzylFOWpLzylFOWpLzyNJQsSXnlKacsSXnl2ZizJOWVp5yyJOWVp5yyJOWVp5yyJOWVp5yyJOWVp6FkScorz8acJSmvPOWUJSmvPOWUJfnov+MNzftnP36Ueiva2rZtm8aNG692JNrixYvTvn37Nb6mffv26zW/tiorK1NZWbnaeNOmTdO0adNP9N7lZMWqijpdb12fXV1nScorTzllScorTzllScorT0PJkpRXnnLKkpRXno05S1JeecopS1JeecopS1JeecopS1JeecopS1JeeRpKlqS88mzMWZLyylNOWZLyylNOWZKP/jve0NR2f+rtZgjNmjVLr169MmPGjOqxqqqqzJgxo8appB/Uu3fvGvOTZPr06WudDwAAAAB1pV5PHR0+fHhOPPHE7LHHHtlrr71y5ZVXZtmyZRk6dGiS5IQTTkjHjh0zduzYJMlZZ52VAw44IOPGjcvAgQNz880355FHHsl1111X/Z5vvPFGFixYkIULFyZJnnrqqST/Phrukx75BgAAAABrU69F21FHHZVXX301F198cRYtWpSePXtm2rRpadeuXZJkwYIFadTofw+669OnTyZPnpwLL7wwF1xwQbp06ZIpU6akW7du1XPuvPPO6qIuSY4++ugkySWXXJJRo0bVzY4BAAAAsNGp95shDBs2LMOGDVvjtpkzZ642duSRR+bII49c6/uddNJJOemkkwpKBwAAAAC1U2/XaAMAAACATxNFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQAEUbAAAAABRA0QYAAAAABVC0AQAAAEABFG0AAAAAUABFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtAAAAAFAARRsAAAAAFEDRBgAAAAAFULQBAAAAQAEUbQAAAABQgLIo2iZMmJDOnTunefPm2XvvvfPwww+vc/5tt92Wrl27pnnz5unevXvuuuuuGttLpVIuvvjibL311mnRokX69u2bZ555ZkPuAgAAAAAbuXov2m655ZYMHz48l1xySebMmZMePXqkf//+eeWVV9Y4f9asWRkyZEhOOeWUzJ07N4MGDcqgQYMyb9686jmXX355fvSjH2XixIl56KGH0qpVq/Tv3z/vvvtuXe0WAAAAABuZei/arrjiipx66qkZOnRodtlll0ycODEtW7bM9ddfv8b5V111VQYMGJDzzjsvO++8c8aMGZPdd98948ePT/Lvo9muvPLKXHjhhTnssMOy22675Wc/+1kWLlyYKVOm1OGeAQAAALAxaVKfi7/33nt59NFHM3LkyOqxRo0apW/fvpk9e/YaXzN79uwMHz68xlj//v2rS7QXXnghixYtSt++fau3b7bZZtl7770ze/bsHH300au954oVK7JixYrq50uWLEmSvPHGG1m5cuXH3r9y0+Rfy+p0vddff32t2+o6S1JeecopS1JeecopS1JeeRpKlqS88pRTlqS88mzMWZLyylNOWZLyylNOWZLyylNOWZLyylNOWZLyytNQsiTllWdjzpKUV55yypKUV55yypJ89N/xhuaf//xnkn8f4LVOpXr00ksvlZKUZs2aVWP8vPPOK+21115rfE3Tpk1LkydPrjE2YcKE0lZbbVUqlUqlBx54oJSktHDhwhpzjjzyyNLgwYPX+J6XXHJJKYmHh4eHh4eHh4eHh4eHh4eHh8daHy+++OI6u656PaKtXIwcObLGUXJVVVV544030qZNm1RUVNRjsvq3dOnSdOrUKS+++GJat25d33HKKo8sDSNPOWUptzzllKXc8pRTlnLLU05Zyi1POWUptzyyNIw85ZSl3PKUU5Zyy1NOWcotTzllKbc85ZSl3PKUU5ZyzFOfSqVS/vnPf6ZDhw7rnFevRVvbtm3TuHHjLF68uMb44sWL0759+zW+pn379uuc//7/Ll68OFtvvXWNOT179lzje1ZWVqaysrLG2Oabb74+u/Kp17p167L6S1VOeWRZu3LKU05ZkvLKU05ZkvLKU05ZkvLKU05ZkvLKU05ZkvLKI8valVOecsqSlFeecsqSlFeecsqSlFeecsqSlFeecsqSlFeecsqSlF+e+rLZZpt95Jx6vRlCs2bN0qtXr8yYMaN6rKqqKjNmzEjv3r3X+JrevXvXmJ8k06dPr56//fbbp3379jXmLF26NA899NBa3xMAAAAAPql6P3V0+PDhOfHEE7PHHntkr732ypVXXplly5Zl6NChSZITTjghHTt2zNixY5MkZ511Vg444ICMGzcuAwcOzM0335xHHnkk1113XZKkoqIiZ599dr7zne+kS5cu2X777XPRRRelQ4cOGTRoUH3tJgAAAACfcvVetB111FF59dVXc/HFF2fRokXp2bNnpk2blnbt2iVJFixYkEaN/vfAuz59+mTy5Mm58MILc8EFF6RLly6ZMmVKunXrVj3n/PPPz7Jly/K1r30tb731Vvbbb79MmzYtzZs3r/P9a+gqKytzySWXrHZqbX0ppzyyrF055SmnLEl55SmnLEl55SmnLEl55SmnLEl55SmnLEl55ZFl7copTzllScorTzllScorTzllScorTzllScorTzllScorTzllScovT0NQUSp91H1JAQAAAICPUq/XaAMAAACATwtFGwAAAAAUQNEGAAAAAAVQtAEAAABAARRtrNGf/vSnHHLIIenQoUMqKioyZcqUessyduzY7Lnnntl0002z1VZbZdCgQXnqqafqLc+1116b3XbbLa1bt07r1q3Tu3fv/O53v6u3PB906aWXpqKiImeffXa9rD9q1KhUVFTUeHTt2rVesiTJSy+9lOOOOy5t2rRJixYt0r179zzyyCP1kqVz586rfTYVFRU544wz6jzLqlWrctFFF2X77bdPixYtssMOO2TMmDGpr3vj/POf/8zZZ5+d7bbbLi1atEifPn3y5z//uU7W/qjvulKplIsvvjhbb711WrRokb59++aZZ56plyy33357+vXrlzZt2qSioiKPPfbYBslRmzwrV67Mt771rXTv3j2tWrVKhw4dcsIJJ2ThwoV1niX593dP165d06pVq2yxxRbp27dvHnrooQ2SpTZ5Pui0005LRUVFrrzyynrJctJJJ632vTNgwIANkqU2eZLkiSeeyKGHHprNNtssrVq1yp577pkFCxbUeZY1fSdXVFTk+9//fuFZapPn7bffzrBhw7LNNtukRYsW2WWXXTJx4sR6ybJ48eKcdNJJ6dChQ1q2bJkBAwZssO++2vyc9+677+aMM85ImzZtsskmm+SrX/1qFi9eXG95rrvuuhx44IFp3bp1Kioq8tZbb9VLljfeeCPf+MY3stNOO6VFixbZdtttc+aZZ2bJkiX1kidJvv71r2eHHXZIixYtsuWWW+awww7Lk08+WS9Z3lcqlXLwwQdvsN9papPlwAMPXO275rTTTis8S23zJMns2bPzpS99Ka1atUrr1q2z//7755133qnTLPPnz1/rd/Ftt91WaJba5EmSRYsW5fjjj0/79u3TqlWr7L777vnVr35VL1mee+65HH744dlyyy3TunXrDB48eIN9933U77h1+T38aaBoY42WLVuWHj16ZMKECfUdJffee2/OOOOMPPjgg5k+fXpWrlyZfv36ZdmyZfWSZ5tttsmll16aRx99NI888ki+9KUv5bDDDsvf/va3esnzvj//+c/58Y9/nN12261ec+y66655+eWXqx/3339/veR48803s++++6Zp06b53e9+l//7f/9vxo0bly222KJe8vz5z3+u8blMnz49SXLkkUfWeZbLLrss1157bcaPH58nnngil112WS6//PJcffXVdZ4lSf7zP/8z06dPz89//vM8/vjj6devX/r27ZuXXnppg6/9Ud91l19+eX70ox9l4sSJeeihh9KqVav0798/7777bp1nWbZsWfbbb79cdtllha+9vnmWL1+eOXPm5KKLLsqcOXNy++2356mnnsqhhx5a51mS5HOf+1zGjx+fxx9/PPfff386d+6cfv365dVXX62XPO+744478uCDD6ZDhw4bJEdtswwYMKDG988vfvGLesvz3HPPZb/99kvXrl0zc+bM/PWvf81FF12U5s2b13mWD34mL7/8cq6//vpUVFTkq1/9auFZapNn+PDhmTZtWm688cY88cQTOfvsszNs2LDceeeddZqlVCpl0KBBef755/PrX/86c+fOzXbbbZe+fftukJ+9avNz3jnnnJPf/OY3ue2223Lvvfdm4cKFOeKIIwrPUts8y5cvz4ABA3LBBRdskAy1zbJw4cIsXLgwP/jBDzJv3rzccMMNmTZtWk455ZR6yZMkvXr1yv/8z//kiSeeyN13351SqZR+/fpl1apVdZ7lfVdeeWUqKioKXf/jZDn11FNrfOdcfvnl9ZZn9uzZGTBgQPr165eHH344f/7znzNs2LA0alRsPfBRWTp16rTad/Ho0aOzySab5OCDDy40S23yJMkJJ5yQp556KnfeeWcef/zxHHHEERk8eHDmzp1bp1mWLVuWfv36paKiIn/84x/zwAMP5L333sshhxySqqqqQrMkH/07bl1+D38qlOAjJCndcccd9R2j2iuvvFJKUrr33nvrO0q1LbbYovTf//3f9bb+P//5z1KXLl1K06dPLx1wwAGls846q15yXHLJJaUePXrUy9of9q1vfau033771XeMtTrrrLNKO+ywQ6mqqqrO1x44cGDp5JNPrjF2xBFHlI499tg6z7J8+fJS48aNS7/97W9rjO++++6lb3/723Wa5cPfdVVVVaX27duXvv/971ePvfXWW6XKysrSL37xizrN8kEvvPBCKUlp7ty5GzRDbfO87+GHHy4lKf3973+v9yxLliwpJSn94Q9/2KBZ1pXnH//4R6ljx46lefPmlbbbbrvSD3/4w3rJcuKJJ5YOO+ywDb52bfMcddRRpeOOO64ssnzYYYcdVvrSl75Ub3l23XXX0n/913/VGKuL78IPZ3nqqadKSUrz5s2rHlu1alVpyy23LP3kJz/ZoFlKpdV/znvrrbdKTZs2Ld12223Vc5544olSktLs2bPrPM8H3XPPPaUkpTfffHOD5/ioLO+79dZbS82aNSutXLmyLPL85S9/KSUpPfvss/WSZe7cuaWOHTuWXn755Tr7nWZNWerz5/M15dl7771LF154YVlk+bCePXuu9nNqXeZp1apV6Wc/+1mNeZ/5zGc2+Pffh7PcfffdpUaNGpWWLFlSPeett94qVVRUlKZPn75Bs7zv/d9x6/t7uCFyRBsNzvuHw3/mM5+p5yT/PgXv5ptvzrJly9K7d+96y3HGGWdk4MCB6du3b71leN8zzzyTDh065LOf/WyOPfbYDXI6UG3ceeed2WOPPXLkkUdmq622yuc///n85Cc/qZcsH/bee+/lxhtvzMknn7xB/wvr2vTp0yczZszI008/nST5y1/+kvvvv3+D/JfDj/Kvf/0rq1atWu1olhYtWtTb0ZDve+GFF7Jo0aIaf68222yz7L333pk9e3Y9JitPS5YsSUVFRTbffPN6zfHee+/luuuuy2abbZYePXrUS4aqqqocf/zxOe+887LrrrvWS4YPmjlzZrbaaqvstNNOOf300/P666/XS46qqqpMnTo1n/vc59K/f/9stdVW2Xvvvev18hTvW7x4caZOnbrBjgSqjT59+uTOO+/MSy+9lFKplHvuuSdPP/10+vXrV6c5VqxYkSQ1vpcbNWqUysrKOvle/vDPeY8++mhWrlxZ47u4a9eu2Xbbbevku7icfu6sTZYlS5akdevWadKkSb3nWbZsWf7nf/4n22+/fTp16lTnWZYvX55jjjkmEyZMSPv27Tfo+h+VJUluuummtG3bNt26dcvIkSOzfPnyesnzyiuv5KGHHspWW22VPn36pF27djnggAPq5e/3hz366KN57LHH6uy7eE15+vTpk1tuuSVvvPFGqqqqcvPNN+fdd9/NgQceWKdZVqxYkYqKilRWVlbPad68eRo1arTB/7/68O+49f093BAp2mhQqqqqcvbZZ2ffffdNt27d6i3H448/nk022SSVlZU57bTTcscdd2SXXXaplyw333xz5syZk7Fjx9bL+h+09957V5+2cO211+aFF17IF77whfzzn/+s8yzPP/98rr322nTp0iV33313Tj/99Jx55pmZNGlSnWf5sClTpuStt97KSSedVC/rjxgxIkcffXS6du2apk2b5vOf/3zOPvvsHHvssXWeZdNNN03v3r0zZsyYLFy4MKtWrcqNN96Y2bNn5+WXX67zPB+0aNGiJEm7du1qjLdr1656G//27rvv5lvf+laGDBmS1q1b10uG3/72t9lkk03SvHnz/PCHP8z06dPTtm3besly2WWXpUmTJjnzzDPrZf0PGjBgQH72s59lxowZueyyy3Lvvffm4IMPLvw0rtp45ZVX8vbbb+fSSy/NgAED8vvf/z6HH354jjjiiNx77711nueDJk2alE033bReT4O5+uqrs8suu2SbbbZJs2bNMmDAgEyYMCH7779/neZ4/5enkSNH5s0338x7772Xyy67LP/4xz82+Pfymn7OW7RoUZo1a7ZaiV8X38Xl8nNnbbO89tprGTNmTL72ta/Va55rrrkmm2yySTbZZJP87ne/y/Tp09OsWbM6z3LOOeekT58+OeywwzbY2rXNcswxx+TGG2/MPffck5EjR+bnP/95jjvuuHrJ8/zzzyf59/VNTz311EybNi277757DjrooA12Lca1Zfmwn/70p9l5553Tp0+fDZbjo/LceuutWblyZdq0aZPKysp8/etfzx133JEdd9yxTrPss88+adWqVb71rW9l+fLlWbZsWb75zW9m1apVG+y7eG2/49bn93BDteH/UwcU6Iwzzsi8efPq/UiXnXbaKY899liWLFmSX/7ylznxxBNz77331nnZ9uKLL+ass87K9OnTN8j1bdbXB4+I2m233bL33ntnu+22y6233lrnRwlUVVVljz32yPe+970kyec///nMmzcvEydOzIknnlinWT7spz/9aQ4++OANet2mdbn11ltz0003ZfLkydl1113z2GOP5eyzz06HDh3q5bP5+c9/npNPPjkdO3ZM48aNs/vuu2fIkCF59NFH6zwL62/lypUZPHhwSqVSrr322nrL8cUvfjGPPfZYXnvttfzkJz/J4MGDq/+LfV169NFHc9VVV2XOnDn1csTqhx199NHV/9y9e/fstttu2WGHHTJz5swcdNBBdZrl/WvKHHbYYTnnnHOSJD179sysWbMyceLEHHDAAXWa54Ouv/76HHvssfX679Krr746Dz74YO68885st912+dOf/pQzzjgjHTp0qNMj1ps2bZrbb789p5xySj7zmc+kcePG6du3bw4++OANftOccvk5733llOejsixdujQDBw7MLrvsklGjRtVrnmOPPTZf/vKX8/LLL+cHP/hBBg8enAceeGCD/f1aU5Y777wzf/zjHwu/rtbHyZKkRvnZvXv3bL311jnooIPy3HPPZYcddqjTPO9/F3/961/P0KFDk/z75+QZM2bk+uuv32D/8f6j/gy/8847mTx5ci666KINsn5t81x00UV566238oc//CFt27bNlClTMnjw4Nx3333p3r17nWXZcsstc9ttt+X000/Pj370ozRq1ChDhgzJ7rvvXvi19N63tt9x+Rjq+dRVGoCUyTXazjjjjNI222xTev755+s7ymoOOuig0te+9rU6X/eOO+4oJSk1bty4+pGkVFFRUWrcuHHpX//6V51n+rA99tijNGLEiDpfd9ttty2dcsopNcauueaaUocOHeo8ywfNnz+/1KhRo9KUKVPqLcM222xTGj9+fI2xMWPGlHbaaad6SvRvb7/9dmnhwoWlUqlUGjx4cOkrX/lKna7/4e+65557bo3XQtt///1LZ555Zp1m+aByukbbe++9Vxo0aFBpt912K7322mv1muXDdtxxx9L3vve9Os/zwx/+sPo7+IPfy40aNSptt912dZplbdq2bVuaOHHiBs2ypjwrVqwoNWnSpDRmzJga884///xSnz596jTLB/3pT38qJSk99thjGzTDuvIsX7681LRp09WuV3nKKaeU+vfvX6dZPuitt94qvfLKK6VSqVTaa6+9Sv/f//f/bbAca/s5b8aMGWu8Dtq2225buuKKK+o8zwfV1TXaPirL0qVLS7179y4ddNBBpXfeeWeDZqlNng9asWJFqWXLlqXJkyfXaZazzjprrd/FBxxwQJ1mWZO33367lKQ0bdq0DZJlXXmef/75UpLSz3/+8xrjgwcPLh1zzDF1muWDfvazn5WaNm1a/Z2zIa0tz7PPPrvaNSpLpX//rvf1r3+9TrN80Kuvvlr9PdOuXbvS5ZdfvkGyfNj7v+PW1/dwQ+bUUcpeqVTKsGHDcscdd+SPf/xjtt9++/qOtJqqqqrqa5rUpYMOOiiPP/54HnvsserHHnvskWOPPTaPPfZYGjduXOeZPujtt9/Oc889l623/v/bu/egqMo+DuDflXdBFliQBdklXJRQXC+IMjYqBhiGqWngBRJHMcsuKqIkqROKvlSYibfRmdRxFiwpJA0vqSAoYGR4VybjKsmoeAOUBMYLPO8fxs6LIJdcFrPvZ2ZnPGfPPud7DuPD4bfneY7K4Pv28PBo9Ijs/Px8ODo6GjzL/9NqtejatSvGjh3bYRmqq6sbfRNmZGTULk8wagszMzOoVCpUVFQgOTnZoEM9mtKjRw8olUqkpaXp1lVWViI7O7tD52R8XtTfyVZQUIDU1FQoFIqOjtRAR/XL06ZNw4ULFxr0y/b29ggPD0dycrLB8zzpypUrKCsr65B+2djYGIMHD37u+uZt27bB3d29w+b0Ax7/f3r48OFz1zdbWlrC1tYWBQUFOHXqVLv0yy1d57m7u0MqlTboi/Py8lBSUtIuffHzdN3ZmiyVlZXw9fWFsbEx9u7d2653Zf6dcyOEgBBC7/1xS1kWL17cqC8GgLVr10Kr1Ro0S1Pq87RHX9xSnu7du8Pe3t4gfXFbzs22bdswfvx42Nra6jVDW/LUz5tniL64LefGxsYGVlZWOHLkCG7evNluT3l/Uv21lKH74RcBh45Sk+7du4fCwkLdcnFxMc6dOwdra2uo1WqDZpkzZw7i4+OxZ88eWFhY6MaBW1pawtTU1KBZAGDJkiUYPXo01Go1/vzzT8THxyM9Pb1D/oCysLBoNMeBmZkZFApFh8wlsnDhQowbNw6Ojo64du0aIiMjYWRkhClTphg8S/28HF988QUCAgJw4sQJbNmyBVu2bDF4lnp1dXXQarUIDg42yCTFTzNu3Dh8/vnnUKvV6Nu3L86ePYs1a9Zg5syZHZInOTkZQgi4uLigsLAQ4eHh6N27t244Q3tqqa+bP38+PvvsM/Ts2RM9evTA0qVLYW9vDz8/P4NnKS8vR0lJCa5duwYAugtkpVLZLpM8N5dHpVJh0qRJOHPmDPbv34/a2lpd32xtba33uXiay6JQKPD5559j/PjxUKlUuH37NjZt2oSrV69i8uTJes3RmjxqtbpR0VEqlUKpVMLFxcWgWaytrbFixQpMnDgRSqUSRUVF+OSTT+Ds7IxRo0bpPUtLedRqNcLDwxEYGAhPT0+MGDEChw4dwr59+5Cenm7wLMDjIkViYiJiYmL0vv+25vHy8kJ4eDhMTU3h6OiIjIwMbN++HWvWrDF4lsTERNja2kKtViMnJwehoaHw8/NrlwcztHSdZ2lpiXfffRdhYWGwtraGXC5HSEgIhg4diiFDhhg8D/B43rjr16/rzmFOTg4sLCygVqv1+tCElrLUF9mqq6vx7bfforKyEpWVlQAeDzvT9xeuLeW5dOkSEhIS4OvrC1tbW1y5cgUrV66EqakpxowZY9AsT/vdqFar9V48bSlLUVER4uPjMWbMGCgUCly4cAELFiyAp6cnXF1d9ZqlNXkkEgnCw8MRGRmJAQMGwM3NDXFxccjNzcUPP/xg0Cz1CgsLkZmZiQMHDuh1/23N07t3bzg7O+ODDz7A6tWroVAokJSUhMOHD2P//v0GzQI8/oJeo9HA1tYWx48fR2hoKBYsWNAu1xPN/Y1r6H74hdARt9HR86/+VvgnX8HBwQbP0lQOAEKr1Ro8ixBCzJw5Uzg6OgpjY2Nha2srfHx8REpKSodkaUpHPj48MDBQqFQqYWxsLF566SURGBjY7o9zb86+fftEv379hImJiejdu7fYsmVLh2UR4vFjugGIvLy8Ds1RWVkpQkNDhVqtFp07dxZOTk7i008/Fffv3++QPAkJCcLJyUkYGxsLpVIp5syZI+7cuWOQfbfU19XV1YmlS5cKOzs7YWJiInx8fNrt59dSFq1W2+T7kZGRBs9TP3y1qdfRo0cNmqWmpkb4+/sLe3t7YWxsLFQqlRg/frw4ceKE3nO0Jk9THB0dxdq1aw2epbq6Wvj6+gpbW1shlUqFo6OjmDVrlrh+/Xq7ZGkpT71t27YJZ2dn0blzZzFgwIB2G0rfmiybN28WpqamBulzWspTWloqZsyYIezt7UXnzp2Fi4uLiImJEXV1dQbPsn79euHg4CCkUqlQq9UiIiKi3X5HtOY6r6amRsyePVt06dJFyGQy4e/vL0pLSzssT2RkpEGuTVvK8rSfIwBRXFys1yytyXP16lUxevRo0bVrVyGVSoWDg4MICgoSubm5Bs/ytM+0x3Q4LWUpKSkRnp6ewtraWpiYmAhnZ2cRHh4u7t69q/csrclTLzo6Wjg4OAiZTCaGDh0qjh071mFZlixZIrp16yZqa2v1nqGtefLz88WECRNE165dhUwmE66urmL79u0dkmXRokXCzs5OSKVS0bNnz3b7nSBEy3/jGrIffhFIhGjnWU2JiIiIiIiIiIj+BThHGxERERERERERkR6w0EZERERERERERKQHLLQRERERERERERHpAQttREREREREREREesBCGxERERERERERkR6w0EZERERERERERKQHLLQRERERERERERHpAQttREREREREREREesBCGxEREVEbzJgxA35+fs/URnp6OiQSCe7cuaOXTM+iuroaEydOhFwu7/BMEokESUlJzW6TlZWF/v37QyqVws/P77k6l0REREQstBERERH9RSKRNPtavnw51q9fj9jY2Gfaz7Bhw1BaWgpLS0v9BH8GcXFxOHbsGH755ZdmMz148ACrVq3CgAEDIJPJYGNjAw8PD2i1Wjx8+NBgecPCwuDm5obi4uJn/jkQERER6dt/OjoAERER0fOitLRU9++EhAQsW7YMeXl5unXm5uYwNzd/5v0YGxtDqVQ+czv6UFRUBI1Gg379+j11mwcPHmDUqFE4f/48oqKi4OHhAblcjl9//RWrV6/GwIED4ebmZrC8H374IRwcHAyyPyIiIqK24B1tRERERH9RKpW6l6WlJSQSSYN15ubmjYaOent7IyQkBPPnz0eXLl1gZ2eHrVu3oqqqCu+88w4sLCzg7OyMgwcP6j7z5HDH2NhYWFlZITk5GRqNBubm5njjjTcaFP4ePXqEefPmwcrKCgqFAosWLUJwcHCLw1h37dqFvn37wsTEBN27d0dMTEyD7DExMcjMzIREIoG3t3eTbaxbtw6ZmZlIS0vDnDlz4ObmBicnJwQFBSE7Oxs9e/YEABw6dAjDhw/XZXzzzTdRVFSka+fBgweYO3cuVCoVOnfuDEdHR0RHRzfY1+3bt+Hv7w+ZTIaePXti7969AIA//vgDEokEZWVlmDlzJiQSyVPvaGvumDdu3NigqJiUlASJRIKvv/5at27kyJGIiIgAAJw/fx4jRoyAhYUF5HI53N3dcerUqWbPOREREf17sdBGRERE9Izi4uJgY2ODEydOICQkBB999BEmT56MYcOG4cyZM/D19cW0adNQXV391Daqq6uxevVqfPPNN8jMzERJSQkWLlyoe//LL7/Ejh07oNVqkZWVhcrKyhbnMzt9+jQCAgLw9ttvIycnB8uXL8fSpUt1Bardu3dj1qxZGDp0KEpLS7F79+4m29mxYwdGjhyJgQMHNnpPKpXCzMwMAFBVVYWwsDCcOnUKaWlp6NSpE/z9/VFXVwcA2LBhA/bu3YudO3ciLy8PO3bsQPfu3Ru0t2LFCgQEBODChQsYM2YMpk6divLycnTr1g2lpaWQy+VYt24dSktLERgY2OZj9vLywsWLF3Hr1i0AQEZGBmxsbJCeng4AePjwIY4fP64rOk6dOhUODg44efIkTp8+jcWLF0MqlTZ73omIiOhfTBARERFRI1qtVlhaWjZaHxwcLN566y3dspeXlxg+fLhu+dGjR8LMzExMmzZNt660tFQAEMePHxdCCHH06FEBQFRUVOj2BUAUFhbqPrNp0yZhZ2enW7azsxNfffVVg/2o1eoGWZ4UFBQkXn/99QbrwsPDRZ8+fXTLoaGhwsvL66ltCCGEqampmDdvXrPbNOXWrVsCgMjJyRFCCBESEiJee+01UVdX1+T2AERERIRu+d69ewKAOHjwoG6dpaWl0Gq1uuUnz2VLx1xXVycUCoVITEwUQgjh5uYmoqOjhVKpFEII8fPPPwupVCqqqqqEEEJYWFiI2NjYNh87ERER/TvxjjYiIiKiZ+Tq6qr7t5GRERQKBfr3769bZ2dnBwC4efPmU9uQyWR4+eWXdcsqlUq3/d27d3Hjxg288sorDfbj7u7ebK7ff/8dHh4eDdZ5eHigoKAAtbW1rTiyx4QQrdquoKAAU6ZMgZOTE+Ryue5utZKSEgCPn9h67tw5uLi4YN68eUhJSWnUxv+fSzMzM8jl8mbP25NaOmaJRAJPT0+kp6fjzp07uHjxImbPno379+8jNzcXGRkZGDx4MGQyGYDHD1947733MHLkSKxcubLBUFgiIiKiJ7HQRkRERPSMnhxKKJFIGqyTSCQAoBtC2do2Wlvgam+9evVCbm5ui9uNGzcO5eXl2Lp1K7Kzs5GdnQ3g8dxsADBo0CAUFxcjKioKNTU1CAgIwKRJkxq00dR5aO68/R3e3t5IT0/HsWPHMHDgQMjlcl3xLSMjA15eXrptly9fjt9++w1jx47FkSNH0KdPH/z44496zUNEREQvDhbaiIiIiJ5zlpaWsLOzw8mTJ3XramtrcebMmWY/p9FokJWV1WBdVlYWevXqBSMjo1bvPygoCKmpqTh79myj9x4+fIiqqiqUlZUhLy8PERER8PHxgUajQUVFRaPt5XI5AgMDsXXrViQkJGDXrl0oLy9vdZaWtOaY6+dpS0xM1M3F5u3tjdTUVGRlZTV6KESvXr2wYMECpKSkYMKECdBqtXrLS0RERC8WFtqIiIiI/gFCQkIQHR2NPXv2IC8vD6GhoaioqNDdLdeUjz/+GGlpaYiKikJ+fj7i4uKwcePGBg9ZaI358+fDw8MDPj4+2LRpE86fP49Lly5h586dGDJkCAoKCtClSxcoFAps2bIFhYWFOHLkCMLCwhq0s2bNGnz33XfIzc1Ffn4+EhMToVQqYWVl9XdOyd8+ZldXV3Tp0gXx8fENCm1JSUm4f/++buhpTU0N5s6di/T0dFy+fBlZWVk4efIkNBqN3vISERHRi+U/HR2AiIiIiFq2aNEiXL9+HdOnT4eRkRHef/99jBo1qtk70wYNGoSdO3di2bJliIqKgkqlwn//+1/MmDGjTfs2MTHB4cOHsXbtWmzevBkLFy6ETCaDRqPBvHnz0K9fP3Tq1Anff/+9btnFxQUbNmxocHeYhYUFVq1ahYKCAhgZGWHw4ME4cOAAOnXS33e/rTlmiUSCV199FT/99BOGDx8O4HHxTS6Xw8XFRfcUVSMjI5SVlWH69Om4ceMGbGxsMGHCBKxYsUJveYmIiOjFIhHPy+QfRERERNRqdXV10Gg0CAgIQFRUVEfHISIiIiLwjjYiIiKif4TLly8jJSUFXl5euH//PjZu3Iji4mIEBQV1dDQiIiIi+gvnaCMiIiL6B+jUqRNiY2MxePBgeHh4ICcnB6mpqZwvjIiIiOg5wqGjREREREREREREesA72oiIiIiIiIiIiPSAhTYiIiIiIiIiIiI9YKGNiIiIiIiIiIhID1hoIyIiIiIiIiIi0gMW2oiIiIiIiIiIiPSAhTYiIiIiIiIiIiI9YKGNiIiIiIiIiIhID1hoIyIiIiIiIiIi0oP/Ac0en/TucEt6AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Thus, we see that the treasury duration is higher than mortgage duration because the \"weights\" (PV of cashflows) are loaded more to the back-end (as you can see in the plots). We also see that the typical duration of a treasury bond of 30-years maturity is about 15. This means, we will experience a 15% decline in the value of this Treasury bond for a sudden increase by 1% in the prevailing market interest rate (i.e, if the yield rises from say 4% to 5%). This intuition helps us quickly conceptualize what happened to SVB in the calculation we did earlier where the market interest rate jumped from 2% to 5%. A back-of-the-envelope calculation here tells us that the bond price should fall by about 15% times 3 = 45%, which is exactly what we got above in the detailed calculation earlier.\n",
"\n",
"**If you've gotten this far, you have understood the nuanced topic of *Bond Risk*, specifically *Bond Duration*, quite well. So if anyone tells you bonds are \"safe and boring\" investments, you can pull out the above plank-plot and explain to them how risky bonds are, that a spike in the prevailing market interest rate can seriously diminish the value of their bond investment. I'm sure SVB was well aware of this Bond Math, but perhaps they did not expect the speed of the increase in market interest rates and surely did not expect to have to sell bonds so quickly and in such high volumes on account of the flood of bank runs their depositors made to withdraw their money**."
],
"metadata": {
"id": "UzVJM03tFjPS"
}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment