Last active
September 18, 2019 08:05
-
-
Save shoyer/c8bb9e4d689b297a170296426a08aef7 to your computer and use it in GitHub Desktop.
scipy vs numba interp1d.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "scipy vs numba interp1d.ipynb", | |
"version": "0.3.2", | |
"views": {}, | |
"default_view": {}, | |
"provenance": [], | |
"collapsed_sections": [] | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"metadata": { | |
"id": "f97hCEt8qUWG", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
}, | |
"base_uri": "https://localhost:8080/", | |
"height": 68 | |
}, | |
"outputId": "99ab9033-4800-4d50-9319-482b81e787a6", | |
"executionInfo": { | |
"status": "ok", | |
"timestamp": 1528420189439, | |
"user_tz": 420, | |
"elapsed": 2477, | |
"user": { | |
"displayName": "Stephan Hoyer", | |
"photoUrl": "//lh4.googleusercontent.com/-bwQVXpRw0z8/AAAAAAAAAAI/AAAAAAAAACQ/obT9z9YnNnc/s50-c-k-no/photo.jpg", | |
"userId": "100105766565685654482" | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"! pip install numba" | |
], | |
"execution_count": 29, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Requirement already satisfied: numba in /usr/local/lib/python3.6/dist-packages (0.38.1)\r\n", | |
"Requirement already satisfied: llvmlite>=0.23.0dev0 in /usr/local/lib/python3.6/dist-packages (from numba) (0.23.2)\r\n", | |
"Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from numba) (1.14.3)\r\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "8JxQ0wO8qrZ7", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"from numba import guvectorize\n", | |
"import numpy as np\n", | |
"import scipy.interpolate\n", | |
"\n", | |
"\n", | |
"def _interp1d(xnew, xvals, yvals, ynew):\n", | |
" i = 0\n", | |
" N = len(xvals)\n", | |
" if xnew[0] < xvals[0]:\n", | |
" x_a = 0.0\n", | |
" y_a = 0.0\n", | |
" x_b = xvals[0]\n", | |
" y_b = yvals[0]\n", | |
" else:\n", | |
" while xnew[0] >= xvals[i] and i < N:\n", | |
" i += 1\n", | |
" if xnew[0] == xvals[i]:\n", | |
" ynew[0] = yvals[i]\n", | |
" return\n", | |
" if i == N:\n", | |
" i = N-1\n", | |
" x_a = xvals[i-1]\n", | |
" y_a = yvals[i-1]\n", | |
" x_b = xvals[i]\n", | |
" y_b = yvals[i]\n", | |
" slope = (xnew[0] - x_a)/(x_b - x_a)\n", | |
" ynew[0] = slope * (y_b-y_a) + y_a\n", | |
" return\n", | |
"\n", | |
" \n", | |
"interp1d_numba = guvectorize(\n", | |
" ['float64[:], float64[:], float64[:], float64[:]'],\n", | |
" \"(),(n),(n) -> ()\", nopython=True)(_interp1d)\n", | |
"\n", | |
"\n", | |
"def _interp1d_np(xnew, xvals, yvals):\n", | |
" xnew = np.asarray(xnew)[..., np.newaxis]\n", | |
" out = np.empty_like(xnew)\n", | |
" _interp1d(xnew, xvals, yvals, out)\n", | |
" return out.squeeze(axis=-1)\n", | |
"\n", | |
"interp1d_numpy = np.vectorize(_interp1d_np, signature='(),(n),(n)->()')" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "nqHSTRSHqxR5", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"xnew = np.arange(900) / 900\n", | |
"xvals = yvals = np.arange(1000.0) / 1000" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "FtlNs5Qorxzg", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"np.testing.assert_allclose(interp1d_numpy(xnew, xvals, yvals), scipy.interpolate.interp1d(xvals, yvals)(xnew))\n", | |
"np.testing.assert_allclose(interp1d_numba(xnew, xvals, yvals), scipy.interpolate.interp1d(xvals, yvals)(xnew))" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"id": "K1HvMlcQq8sh", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
}, | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
}, | |
"outputId": "f5f42e58-899b-46f6-b011-e24cf7ca75d2", | |
"executionInfo": { | |
"status": "ok", | |
"timestamp": 1528420813197, | |
"user_tz": 420, | |
"elapsed": 6096, | |
"user": { | |
"displayName": "Stephan Hoyer", | |
"photoUrl": "//lh4.googleusercontent.com/-bwQVXpRw0z8/AAAAAAAAAAI/AAAAAAAAACQ/obT9z9YnNnc/s50-c-k-no/photo.jpg", | |
"userId": "100105766565685654482" | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"%timeit interp1d_numpy(xnew, xvals, yvals)" | |
], | |
"execution_count": 67, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"10 loops, best of 3: 133 ms per loop\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "PjXt7_Ay87Y2", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
}, | |
"base_uri": "https://localhost:8080/", | |
"height": 51 | |
}, | |
"outputId": "1525d6fa-9e04-4d7a-c37e-3708f2fa8d3a", | |
"executionInfo": { | |
"status": "ok", | |
"timestamp": 1528420816086, | |
"user_tz": 420, | |
"elapsed": 2095, | |
"user": { | |
"displayName": "Stephan Hoyer", | |
"photoUrl": "//lh4.googleusercontent.com/-bwQVXpRw0z8/AAAAAAAAAAI/AAAAAAAAACQ/obT9z9YnNnc/s50-c-k-no/photo.jpg", | |
"userId": "100105766565685654482" | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"%timeit interp1d_numba(xnew, xvals, yvals)" | |
], | |
"execution_count": 68, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 13.55 times longer than the fastest. This could mean that an intermediate result is being cached.\n", | |
"1000 loops, best of 3: 384 µs per loop\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "pNZz374orr6f", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
}, | |
"base_uri": "https://localhost:8080/", | |
"height": 51 | |
}, | |
"outputId": "8bf28ed5-2219-4cd4-f7e8-044e61da766f", | |
"executionInfo": { | |
"status": "ok", | |
"timestamp": 1528420823759, | |
"user_tz": 420, | |
"elapsed": 4294, | |
"user": { | |
"displayName": "Stephan Hoyer", | |
"photoUrl": "//lh4.googleusercontent.com/-bwQVXpRw0z8/AAAAAAAAAAI/AAAAAAAAACQ/obT9z9YnNnc/s50-c-k-no/photo.jpg", | |
"userId": "100105766565685654482" | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"%timeit scipy.interpolate.interp1d(xvals, yvals)(xnew)" | |
], | |
"execution_count": 69, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 51.79 times longer than the fastest. This could mean that an intermediate result is being cached.\n", | |
"10000 loops, best of 3: 89.1 µs per loop\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"id": "pvdv6DYA-kuw", | |
"colab_type": "code", | |
"colab": { | |
"autoexec": { | |
"startup": false, | |
"wait_interval": 0 | |
} | |
} | |
}, | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is very helpful. Definitely binary-search would be much better for large N. In my case, N was about 10 with most interpolations being done in the first 2-3 and so binary-search didn't really help. But, in general, of course it's much better.
In my use-case, also scipy.interpolate.interp1d doesn't do what I needed for the situation where yvals.shape = (len(xnew), len(xvals)) with both xvals and xnew being 1-d. I needed the output to be 1-d with length the same as xnew. But, the output of scipy.interpolate.interp1d would have shape (yvals.shape[0], len(xnew)) --- i.e. an cross-product instead of a "zip" operation.