Skip to content

Instantly share code, notes, and snippets.

@smsharma
Created November 14, 2023 03:26
Show Gist options
  • Save smsharma/09ea6128a6bae4886ee2cb6552797f63 to your computer and use it in GitHub Desktop.
Save smsharma/09ea6128a6bae4886ee2cb6552797f63 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import corner"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate fake data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def random_covariance_matrix(n_dim, min_correlation, max_correlation):\n",
" \"\"\" Generate a random covariance matrix with the specified dimensions and correlation range.\n",
" \"\"\"\n",
" # Initialize a matrix of zeros\n",
" A = np.zeros((n_dim, n_dim))\n",
"\n",
" # Populate the matrix with random correlations within the specified range\n",
" for i in range(n_dim):\n",
" for j in range(i, n_dim):\n",
" if i == j:\n",
" A[i, j] = 1 # Variance of 1 along the diagonal\n",
" else:\n",
" A[i, j] = A[j, i] = np.random.uniform(min_correlation, max_correlation)\n",
"\n",
" # Ensure the matrix is positive definite\n",
" A = A.T.dot(A)\n",
" return A"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"n_dim = 14\n",
"min_correlation = -1\n",
"max_correlation = 1\n",
"\n",
"A_cov = random_covariance_matrix(n_dim, min_correlation, max_correlation)\n",
"A_mean = np.random.uniform(-2, 2, n_dim) # Random mean offset\n",
"\n",
"# Train and val sets\n",
"X_samples = np.random.multivariate_normal(A_mean, A_cov, 100000)\n",
"X_samples_val = np.random.multivariate_normal(A_mean, A_cov, 1000)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment