Created
February 4, 2018 21:35
-
-
Save soravux/33a8cf411a80e1620d0f709b075514ef to your computer and use it in GitHub Desktop.
Simulateur du robot de GEL-3014 / GLO-3013
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import csv\n", | |
"\n", | |
"import numpy as np\n", | |
"from numpy import maximum as max, minimum as min, cos, sin, ones, zeros\n", | |
"from matplotlib.pyplot import figure, plot, subplot, grid, xlabel, ylabel, show\n", | |
"from scipy.integrate import ode, odeint" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def eqns_diff(x, t, U1, U2, U3, U4):\n", | |
"\n", | |
" # La sortie doit être un vecteur colonne\n", | |
" d_x = zeros((8,))\n", | |
"\n", | |
" # Paramètres\n", | |
" R = 0.032\n", | |
" Ktheta = 8\n", | |
" tautheta = .0025\n", | |
" J = Ktheta*tautheta # inertie du robot en rotation\n", | |
" Kth = 1/Ktheta # coeff friction en rotation\n", | |
" K1 = 0.14 # gain de (vit ang roue 1)/(PWM 1) \n", | |
" K2 = 0.16 # gain de (vit ang roue 2)/(PWM 2) \n", | |
" K3 = 0.14 # gain de (vit ang roue 3)/(PWM 3) \n", | |
" K4 = 0.15 # gain de (vit ang roue 4)/(PWM 4) \n", | |
" Tau1 = 0.22 # constante de temps de (vit ang roue 1)/(PWM 1) \n", | |
" Tau2 = 0.24 # constante de temps de (vit ang roue 2)/(PWM 2) \n", | |
" Tau3 = 0.25 # constante de temps de (vit ang roue 3)/(PWM 3) \n", | |
" Tau4 = 0.24 # constante de temps de (vit ang roue 4)/(PWM 4) \n", | |
" Kw = 1e-2 # coefficient définissant la force appliqué par les roues sur le robot: Fi = Kw*wi\n", | |
" usat = 100 # niveau de saturation des signaux PWM\n", | |
"\n", | |
" # Saturation des signaux PWM\n", | |
" U1 = max(min(U1, usat), -usat)\n", | |
" U2 = max(min(U2, usat), -usat)\n", | |
" U3 = max(min(U3, usat), -usat)\n", | |
" U4 = max(min(U4, usat), -usat)\n", | |
"\n", | |
" # Équations d'états\n", | |
" d_x[0]=(1/Tau1)*(K1*U1-x[0])\n", | |
" d_x[1]=(1/Tau2)*(K2*U2-x[1])\n", | |
" d_x[2]=(1/Tau3)*(K3*U3-x[2])\n", | |
" d_x[3]=(1/Tau4)*(K4*U4-x[3])\n", | |
" Vt = 0.5*R*(-x[0] + x[2])\n", | |
" Vn = 0.5*R*(x[3] - x[1])\n", | |
" d_x[4] = x[5]\n", | |
" d_x[5] = Kw*(x[0] + x[1] + x[2] + x[3])/J - Kth*x[5]/J;\n", | |
" d_x[6] = Vt*cos(x[4]) - Vn*sin(x[4])\n", | |
" d_x[7] = Vt*sin(x[4]) + Vn*cos(x[4])\n", | |
"\n", | |
" return d_x" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def simuler():\n", | |
"\n", | |
" # Paramètres de simulation\n", | |
" Ts = 0.01 # Période D'échantillonnage [s]\n", | |
" Tf = 10 # Durée de la simulation [s]\n", | |
" temps = np.arange(0, Tf + Ts, Ts) # Vecteur temps\n", | |
" N = len(temps) # Nombre de points de la simulation\n", | |
" R = 0.032 # Rayon des roues\n", | |
"\n", | |
" # Signaux PWM [%]\n", | |
" u1 = np.concatenate((zeros((5,)), -50*ones((N-5,))))\n", | |
" u2 = np.concatenate((zeros((5,)), 0*ones((N-5,))))\n", | |
" u3 = np.concatenate((zeros((5,)), 50*ones((N-5,))))\n", | |
" u4 = np.concatenate((zeros((5,)), 0*ones((N-5,))))\n", | |
" \n", | |
" # Initialisation\n", | |
" CI = zeros((8,))\n", | |
" data = zeros((8, N))\n", | |
"\n", | |
" # Boucle de simulation\n", | |
" for i in range(N):\n", | |
" U1, U2, U3, U4 = u1[i], u2[i], u3[i], u4[i]\n", | |
"\n", | |
" #solver = ode(fun).set_integrator('dopri5') # Utiliser Runge-Kutta ordre (4)5\n", | |
"\n", | |
" sol = odeint(eqns_diff, CI, temps[i:i+2], args=(U1, U2, U3, U4))\n", | |
" CI = sol[-1,:]\n", | |
" data[:, i] = CI\n", | |
"\n", | |
" return temps, u1, u2, u3, u4, data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def figures(temps, u1, u2, u3, u4, data):\n", | |
"\n", | |
" posx = data[6,:]\n", | |
" posy = data[7,:]\n", | |
" theta = data[4,:]\n", | |
" theta_point = data[5,:]\n", | |
" w1 = data[0,:]\n", | |
" w2 = data[1,:]\n", | |
" w3 = data[2,:]\n", | |
" w4 = data[3,:]\n", | |
"\n", | |
" figure(1)\n", | |
" subplot(4,1,1); plot(temps,u1); grid(); xlabel('Temps'); ylabel('U1')\n", | |
" subplot(4,1,2); plot(temps,u2); grid(); xlabel('Temps'); ylabel('U2')\n", | |
" subplot(4,1,3); plot(temps,u3); grid(); xlabel('Temps'); ylabel('U3')\n", | |
" subplot(4,1,4); plot(temps,u4); grid(); xlabel('Temps'); ylabel('U4')\n", | |
"\n", | |
" figure(2)\n", | |
" subplot(4,1,1); plot(temps,w1); grid(); xlabel('Temps'); ylabel('w1')\n", | |
" subplot(4,1,2); plot(temps,w2); grid(); xlabel('Temps'); ylabel('w2')\n", | |
" subplot(4,1,3); plot(temps,w3); grid(); xlabel('Temps'); ylabel('w3')\n", | |
" subplot(4,1,4); plot(temps,w4); grid(); xlabel('Temps'); ylabel('w4')\n", | |
"\n", | |
" figure(3)\n", | |
" subplot(3,1,1); plot(temps,theta); grid(); xlabel('Temps'); ylabel('theta')\n", | |
" subplot(3,1,2); plot(temps,posx); grid(); xlabel('Temps'); ylabel('x')\n", | |
" subplot(3,1,3); plot(temps,posy); grid(); xlabel('Temps'); ylabel('y')\n", | |
"\n", | |
" figure(4)\n", | |
" plot(posx,posy); grid(); xlabel('x'); ylabel('y')\n", | |
"\n", | |
" show()\n", | |
"\n", | |
"\n", | |
"def ecrire_csv(temps, u1, u2, u3, u4, data):\n", | |
"\n", | |
" with open('simulation.csv', 'w', newline='') as csvfile:\n", | |
" w = csv.writer(csvfile)\n", | |
" w.writerow([\"temps\", \"u1\", \"u2\", \"u3\", \"u4\", \"w1\", \"w2\", \"w3\", \"w4\", \"theta\", \"theta_point\", \"posx\", \"posy\"])\n", | |
" for i in range(len(temps)):\n", | |
" w.writerow([temps[i], u1[i], u2[i], u3[i], u4[i]] + data[:,i].tolist())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAH5RJREFUeJzt3X2UXHWd5/H3Jx15Cg8hBBtNkA5jGA0cBewFHHc9zYMS1DXOObAbdDRnR0+GXRgZxz2eMD4BDiuOrq7roG6UCLIDkYFRIycQCVCDziCkm+CQECMReWiIQkgCJMuDSb77x70NRae6qrrq1r1dfT+vc/p03Vv31u/7JU1/+3d/9/5+igjMzMzaNaXoAMzMbHJwQTEzs0y4oJiZWSZcUMzMLBMuKGZmlgkXFDMzy4QLipmZZcIFxczMMtHVBUXSfEkbJW2StKToeMzMykzd+qS8pB7g18C7gGFgDXBuRDww1jkzZ86Mvr6+ltrbuXMn06ZNa+ncbuWcy6FsOZctX2g/56GhoS0RcXij46a23ELxTgI2RcRDAJKWAwuAMQtKX18fg4OD427o34a3c9c9Qyw4/R0ccch+rcbbdSqVCgMDA0WHkSvnPPmVLV9oP2dJjzRzXDdf8poFPFa1PZzuy9wnr/8lX7znBf7syrs78fFmZpNCN/dQVGPfXtfvJC0GFgP09vZSqVTG3dDCo3dz4x+Czc/sbOn8brVjx45S5QvOuQzKli/kl3M3F5Rh4Miq7dnAE6MPioilwFKA/v7+aKXbNwDc+fer2LKrp1RdZV8aKIey5Vy2fCG/nLv5ktcaYK6kOZL2ARYCKzrVmAR7uvP+BTOzXHRtDyUidkm6AFgF9ADLImJ9p9pT0manPt7MrOt1bUEBiIiVwMo82kp6KC4oZmZj6eZLXrkSNUb8zczsZS4oTZoi2ONBFDOzMbmgNCkZQyk6CjOzicsFpUnCYyhmZvW4oDTJtw2bmdXngtIkSYSH5c3MxuSC0qTkklfRUZiZTVwuKE2aIj/YaGZWjwtKk9xDMTOrzwWlWX5S3sysLheUJk3Bz6GYmdXjgtIkpauveBzFzKy2jhcUSTd3uo08jKzm5XEUM7PaMpltWNKJY70FHJ9FG0Ub6aHsiaCn5mKRZmblltX09WuAf6b2srzTM2qjUK/0UNxFMTOrJauCsgH4i4h4cPQbkh7LqI1CvTKGUmwcZmYTVVZjKBfX+ay/zKiNQo0k54JiZlZbVj2Uo4A3SHpvuh3AFuDnEfGjjNoolNIuii95mZnVllUP5UDgoKqvg4F+4GZJCzNqo1AeQzEzqy+THkpEXFJrv6QZwGpgeRbtFOmVu7yKjcPMbKLq6HMoEbGV2nd+dZ2Xk3BBMTOrqaMFRdJpwLZOtpGX6udQzMxsb1k92Hg/e//tPgN4AvhIFm0UzWMoZmb1ZXWX1/tGbQfwdETszOjzCzfFYyhmZnVlNSj/SBafM5GN9FA8OaSZWW2ebbhJLz8pX2wYZmYTlgtKkzyGYmZWnwtKk/wciplZfS4oTXq5h+KKYmZWkwtKk6Z4tmEzs7pcUJo0MjlkeFjezKwmF5Rx8hUvM7PaXFCaNPIfynd5mZnV5oLSpFdWbHRBMTOrZUIXFEkXS3pc0n3p13uq3rtI0iZJGyWd2flYku++5GVmVltWc3l10tci4ivVOyTNAxYCxwKvB1ZLOiYidncqiFemXulUC2Zm3a0bCkotC4DlEfEi8FtJm4CTgLs61eDIbcODj2zlyede6FQzE8q6LbvpefCposPIlXOe/MqWLyQ5/4c9Qc+Uzi5P1Q0F5QJJHwEGgU9GxDZgFvCLqmOG0317kbQYWAzQ29tLpVJpLYo/vACIT/9wXWvnd6vBe4qOIH/OefIrW77AMYdW2KdnkhcUSauBI2q89WngW8AXSOZk/ALwP4E/p/YqkDUvRkXEUmApQH9/fwwMDLQUZ9xxBzedeiIv/KFjV9UmnLVr13LCCScUHUaunPPkV7Z8Icn5jFMHmDLZeygRcUYzx0n6DnBTujkMHFn19mySxbw6RhLHzTqkk01MODse7qG/b0bRYeTKOU9+ZcsXkpw7XUwANJFvg5X0uojYnL7+BHByRCyUdCxwLcm4yeuB24C5jQblJT0FtLp2y0xgS4vndivnXA5ly7ls+UL7OR8VEYc3OqjwHkoDfyfpeJLLWQ8DfwEQEeslXQ88AOwCzm/mDq9m/oOMRdJgRPS3en43cs7lULacy5Yv5JfzhC4oEfHhOu9dBlyWYzhmZlbHhH6w0czMuocLSvOWFh1AAZxzOZQt57LlCznlPKEH5c3MrHu4h2JmZplwQWlA0vx0AspNkpYUHU+nSTpS0h2SNkhaL+nComPKi6QeSWsl3dT46O4nabqkGyT9Kv33fnvRMXWapE+kP9frJF0nab+iY8qapGWSnpS0rmrfDEm3Snow/X5oJ9outKA0+mUtaV9JP0jfv1tSX7q/T9LzVbMQf7tD8fUAVwBnAfOAc9OJKSezXSRT3LwZOAU4vwQ5j7gQ2FB0EDn6OnBLRLwJeCuTPHdJs4CPA/0RcRzQQzLJ7GRzFTB/1L4lwG0RMZfkub2O/HFc2BhK+sv618C7SJ58XwOcGxEPVB3z34C3RMR5khYCfxoR/zktLDelPxRNmzlzZvT19bUU786dO5k2bVpL53Yr51wOZcu5bPlC+zkPDQ1tmegPNp4EbIqIhwAkLSeZRfiBqmMWABenr28A/l4ji7u3oK+vj8HBwZbOrVQqtDoPWLdyzuVQtpzLli+0n7OkpmYYKbKgzAIeq9oeBk4e65iI2CXpGeCw9L05ktYCzwKfiYif1Wokq9mGd+zY0fpMxV3KOZdD2XIuW76QX85FFpRmZgwe65jNwBsi4mlJbwN+JOnYiHh2r4Mzmm3Yf9WUg3Oe/MqWL+SXc5GD8s3MGPzyMZKmAocAWyPixYh4GiAihoDfAMd0PGIzMxtTkQVlDTBX0hxJ+5DcbbFi1DErgEXp67OB2yMiJB2eDuoj6WhgLvBQTnGbmVkNhV3ySsdELgBWkdy+tyydRfhSYDAiVgBXAtekS/xu5ZVb/N4JXCppF7AbOC8ituafhZmZjSh0tuGIWAmsHLXvc1WvXwDOqXHejcCNHQ/QzMya5iflzcwsEy4oZmaWCRcUMzPLhAuKmZllwgXFzMwy4YJiZmaZcEExM7NMuKCYmVkmXFDMzCwTLihmZpYJFxQzM8uEC4qZmWWibkGRdLCkL0q6RtIHR733zXYblzRf0kZJmyQtqfH+vpJ+kL5/d7qW/Mh7F6X7N0o6s91YzMysPY16KN8jWTXxRmChpBsl7Zu+d0o7DafrmVwBnAXMA86VNG/UYR8FtkXEG4GvAV9Kz51HMpX9scB84Jsj66OYmVkxGhWUP4qIJRHxo4h4P3AvcLukwxqc14yTgE0R8VBEvAQsBxaMOmYBcHX6+gbgdElK9y9PV278LbAp/TwzMytIo/VQ9pU0JSL2AETEZZKGgTuBA9tsexbwWNX2MHDyWMekC3I9AxyW7v/FqHNntRnPmC75yXr+9YHn+dbGuzrVxIS0fbtzLoOy5Vy2fAEO3vMiOSwp37Cg/AQ4DVg9siMirpb0e+AbbbatGvuiyWOaOTf5AGkxsBigt7eXSqUyjhATw8Mvsnv3brZv3z7uc7uZcy6HsuVctnwB9t9/d0u/+8arUUH5PfAWSW9JtwPYAvw8Iua22fYwcGTV9mzgiTGOGZY0FTiEZCngZs5NAo5YCiwF6O/vj4EWyvTAAFQqFVo5t5s553IoW85lyxfyy7nRGMqBwEFVXwcD/cDNkhbWO7EJa4C5kuZI2odkkH3FqGNWAIvS12cDt0dEpPsXpneBzQHmAve0GY+ZmbWhbg8lIi6ptV/SDJLLYMtbbTgdE7kAWAX0AMsiYr2kS4HBiFgBXAlcI2kTSc9kYXrueknXAw8Au4DzI2J3q7GYmVn7Gl3yqikitqZ3W7UlIlYCK0ft+1zV6xeAc8Y49zLgsnZjMDOzbLT0pLyk04BtGcdiZmZdrG4PRdL97H331AySAfCPdCooMzPrPo0ueb1v1HYAT0fEzg7FY2ZmXarRoPwjeQViZmbdzbMNm5lZJlxQzMwsEy4oZmaWCRcUMzPLhAuKmZllwgXFzMwy4YJiZmaZcEExM7NMuKCYmVkmCikokmZIulXSg+n3Q8c4blF6zIOSFlXtr0jaKOm+9Ou1+UVvZma1FNVDWQLclq76eFu6/SrpmiufJ1ln/iTg86MKz4ci4vj068k8gjYzs7EVVVAWAFenr68GPlDjmDOBWyNia0RsA24F5ucUn5mZjZOSFXVzblTaHhHTq7a3RcSho47578B+EfG36fZngecj4iuSKsBhwG7gRuBvY4xEJC0GFgP09va+bfny1haZ3LFjBwceeGBL53Yr51wOZcu5bPlC+zmfeuqpQxHR3+i4llZsbIak1cARNd76dLMfUWPfSNH4UEQ8LukgkoLyYeD7tT4kIpYCSwH6+/tjYGCgyeZfrVKp0Oq53co5l0PZci5bvpBfzh0rKBFxxljvSfq9pNdFxGZJrwNqjYEMAwNV27OBSvrZj6ffn5N0LckYS82CUm1oaGiLpFan5J8JbGnx3G7lnMuhbDmXLV9oP+ejmjmoqEteXyZZqOtySUuAGRHxqVHHzACGgBPTXfcCbwOeBaZHxBZJrwGuA1ZHxLc7HPNgM12+ycQ5l0PZci5bvpBfzkUNyl8OvEvSg8C70m0k9Uv6LkBEbAW+AKxJvy5N9+0LrJL0b8B9wOPAd/JPwczMqnXsklc9EfE0cHqN/YPAx6q2lwHLRh2zk6SnYmZmE4iflG/e0qIDKIBzLoey5Vy2fCGnnAsZQzEzs8nHPRQzM8uEC4qZmWWiKwqKpIcl3Z9OBDmY7mtqgskM2p6fTkS5Kb3FeVKTdKSkOyRtkLRe0oVFx5QXST2S1kq6qehY8iBpuqQbJP0q/fd+e9ExdZqkT6Q/1+skXSdpv6JjypqkZZKelLSual8uvy+7oqCkTk0nghy5l7rhBJPtktQDXAGcBcwDzpU0L+t2JphdwCcj4s3AKcD5Jch5xIXAhqKDyNHXgVsi4k3AW5nkuUuaBXwc6I+I44AeYGGxUXXEVew972HHf19ClwzKS3qY5IdgS9W+jcBA1dP2lYj443qfM3PmzOjr62sphp07dzJt2rSWzu1WzrkcypZz2fKF9nMeGhraEhGHNzqukOdQWhDATyUF8H/S+bl6I2IzQFpUGq6J0tfXx+DgYEsB/OPK2/nHR/fnhV27Wzq/Gz337HMcdPBBRYeRK+c8+ZUtX0hyvuVT72bfqT0tnd/slFXdUlDeERFPpEXjVkm/avbEUbMNU6lUWgrg10/+P+55+HmOOXQK+02tNW/l5HNAz254cUfRYeTKOU9+ZcsXkpx/duedTJ3S2d9dXVFQIuKJ9PuTkn5IMhlkMxNMZjbb8ODy1cCL/O9F7+BNRxzc0md0G8/KWg5ly7ls+UJ+OU/4QXlJ09Jp6pE0DXg3sA5YAYwsC7wI+HEn4xgZaZqicvROzMzGqxt6KL3AD5X8Ip8KXBsRt0haA1wv6aPAo8A5nQxi5N4FlxMzs9omfEGJiIdIbmkcvb/mBJOdsif9LvdQzMxqmvCXvCaKkR5Kh8e0zMy6lgtKkzyGYmZWnwtKk0YeAHVBMTOrzQWlSSM9FNcTM7PaXFCa9PJdXi4oZmY1uaA0aeQuL1/yMjOrzQWlSa/c5eWCYmZWiwvKOPm2YTOz2lxQmrTn5VH5QsMwM5uwXFCa5OdQzMzqc0FpksdQzMzqc0FpkqdeMTOrzwWlSZ4c0sysvlwKiqQjJH1L0hWSDpN0saT7JV2fLo7VNVxPzMxqy6uHchXwAPAYcAfwPPBe4GfAt3OKoS17PIZiZlZXXgWlNyK+ERGXA9Mj4ksR8WhEfAM4KqcY2hKMTA5ZcCBmZhNUXgWlup3vFxRDW3yXl5lZfXn9Mv+xpAMBIuIzIzslvRH4dU4xtMWTQ5qZ1ZfXEsDPAIur7pAKYAvw84g4O6cY2vLyXV5+VN7MrKa8eigHAgdVfR0M9AM3S1qYUwyZ8BiKmVltufRQIuKSWvslzQBWA8vziKMdHkMxM6uv0AHxiNhKl0y3uMdjKGZmdRVaUCSdBmwrMoZmBUkx8ZPyZma15XLJS9L9vDJh74gZwBPAR/KIoV0RXdKVMjMrSF53eb1v1HYAT0fEzpzab1vg8RMzs3ryGpR/JI92OinCBcXMrJ6ueEp9IhgZQzEzs9pcUJq0xz0UM7O6XFCaFIR7KGZmdbigNMljKGZm9bmgNMljKGZm9bmgNMk9FDOz+lxQmpQ8h1J0FGZmE5cLSpMiPO2KmVk9XV1QJM2XtFHSJklLOtnWHtxDMTOrp2sLiqQe4ArgLGAecK6keZ1qzz0UM7P6uragACcBmyLioYh4iWRNlQWdasxjKGZm9XVzQZkFPFa1PZzuy9zi7w8y+LtdXv7XzKyOvGYb7oRav91HT5GPpMXAYoDe3l4qlcq4G4qdLzL3kGDe4XtaOr9b7dixo1T5gnMug7LlC/nl3M0FZRg4smp7Nsn6Kq8SEUuBpQD9/f0xMDAw7oYGBqBSqdDKud3MOZdD2XIuW76QX86K2OuP+q4gaSrwa+B04HFgDfDBiFhf55yngFan0p8JbGnx3G7lnMuhbDmXLV9oP+ejIuLwRgd1bQ8lInZJugBYBfQAy+oVk/Schv9BxiJpMCL6Wz2/GznncihbzmXLF/LLuWsLCkBErARWFh2HmZl1911eZmY2gbigNG9p0QEUwDmXQ9lyLlu+kFPOXTsob2ZmE4t7KGZmlgkXlAbynIByIpB0pKQ7JG2QtF7ShUXHlBdJPZLWSrqp6FjyIGm6pBsk/Sr993570TF1mqRPpD/X6yRdJ2m/omPKmqRlkp6UtK5q3wxJt0p6MP1+aCfaLrSgNPplLWlfST9I379bUl+6v0/S85LuS7++3aH4cp2AcoLYBXwyIt4MnAKcX4KcR1wIbCg6iBx9HbglIt4EvJVJnrukWcDHgf6IOI7kcYOFxUbVEVcB80ftWwLcFhFzgdvS7cwVVlCa/GX9UWBbRLwR+Brwpar3fhMRx6df53UozFwnoJwIImJzRNybvn6O5JdMR+ZIm0gkzQbeC3y36FjyIOlg4J3AlQAR8VJEbC82qlxMBfZPH4w+gBqza3S7iLgT2Dpq9wLg6vT11cAHOtF2YYPyaff64og4M92+CCAivlh1zKr0mLvSH4DfAYcDRwE3pX9lNG3mzJnR19fXUrw7d+5k2rRpLZ3brZxzOZQt57LlC+3nPDQ0tGWiPylfa7bgk8c6Jn0y/hngsPS9OZLWAs8Cn4mInzVqsK+vj8HBwZaC9fw/5eCcJ7+y5Qvt5yypqSmriiwozcwWPNYxm4E3RMTTkt4G/EjSsRHx7F6NZDDbMHiG0rJwzpNf2fKFcsw23MxswSPHDKeXvA4BtkZyne5FgIgYkvQb4Bhgr+5HFrMNg/+qKQvnPPmVLV/IL+ci7/JaA8yVNEfSPiR3W6wYdcwKYFH6+mzg9ogISYeng/pIOhqYCzyUU9xmZlZDYT2UsWYLlnQpMBgRK0juQLlG0iaSuxZGbvF7J3CppF3AbuC8iBh9V4OZmeWo0NmGa80WHBGfq3r9AnBOjfNuBG7seIBmZtY0PylvZmaZcEExM7NMuKCYmVkmXFDMzCwTLihmZpYJFxQzM8uEC4qZmWXCBcXMzDLhgmJmZplwQTEzs0y4oJiZWSbGXVAkvbYTgZiZWXerOzmkpBmjdwH3SDqBZPlgz/BrZmZA4x7KFmCo6muQZFnee6mxmNV4SZovaaOkTZKW1Hh/X0k/SN+/W1Jf1XsXpfs3Sjqz3VjMzKw9jQrKp4CNwPsjYk5EzAGG09dHt9NwukDWFcBZwDzgXEnzRh32UWBbRLwR+BrwpfTceSRroxwLzAe+ObLglpmZFUPJarp1DpBmk/wyHwY+B/yy3WKSfu7bgYsj4sx0+yKAiPhi1TGr0mPuSpcA/h1wOLCk+tjq4+q12d/fH4OD4+9YXfKT9fzrA48yffr0cZ/bzbZv3+6cS6BsOZctX4CD9zzLd/5r6xdyJA1FRH+j4xousBURw8A5kv4jcCtwQMtRvdos4LGq7WHg5LGOSVd4fAY4LN3/i1HnzqrViKTFwGKA3t5eKpXKuAMdHn6R3bt3s3379nGf282cczmULeey5Quw//67W/rdN16NBuX/etSuFUCPpDkR8ds221aNfaO7S2Md08y5yc6IpcBSSHooAwMD4wgxMTAAlUqFVs7tZs65HMqWc9nyhfxybjSGctCor9cAM4GbJS2sd2IThoEjq7ZnA0+MdUx6yesQkrXlmznXzMxyVLeHEhGX1Nqf3k68GljeRttrgLmS5gCPkwyyf3DUMSuARcBdwNnA7RERklYA10r6KvB6YC5wTxuxmJlZmxqOodQSEVsl1brsNJ7P2CXpAmAV0AMsi4j1ki4FBiNiBXAlcI2kTSQ9k4XpueslXQ88AOwCzo+I3e3EY2Zm7WmpoEg6DdjWbuMRsRJYOWrf56pevwCcM8a5lwGXtRuDmZllo9Gg/P3sPdg9g2S84iOdCsrMzLpPox7K+0ZtB/B0ROzsUDxmZtalGg3KP5JXIGZm1t08fb2ZmWXCBcXMzDLhgmJmZplwQTEzs0y4oJiZWSZcUMzMLBMuKGZmlgkXFDMzy4QLipmZZaKQgiJphqRbJT2Yfj90jOMWpcc8KGlR1f6KpI2S7ku/Xptf9GZmVktRPZQlwG0RMRe4Ld1+lXTNlc+TLAt8EvD5UYXnQxFxfPr1ZB5Bm5nZ2IoqKAuAq9PXVwMfqHHMmcCtEbE1IraRrGc/P6f4zMxsnIoqKL0RsRkg/V7rktUs4LGq7eF034jvpZe7PtvuYl9mZta+lhbYaoak1cARNd76dLMfUWPfyNosH4qIxyUdBNwIfBj4/hhxLAYWA/T29lKpVJps/tV27NjR8rndyjmXQ9lyLlu+kF/OHSsoEXHGWO9J+r2k10XEZkmvA2qNgQwDA1Xbs4FK+tmPp9+fk3QtyRhLzYISEUuBpQD9/f0xMDBQ67CGKpUKrZ7brZxzOZQt57LlC/nlrIjRCzJ2nqQvkyzUdbmkJcCMiPjUqGNmAEPAiemue4G3Ac8C0yNii6TXANcBqyPi2020+xTQ6hovM4EtLZ7brZxzOZQt57LlC+3nfFREHN7ooKIKymHA9cAbgEeBcyJiq6R+4LyI+Fh63J8Df5OedllEfE/SNOBO4DVAD7Aa+OuI2N3hmAcjor+TbUw0zrkcypZz2fKF/HLu2CWveiLiaeD0GvsHgY9VbS8Dlo06ZidJT8XMzCYQPylvZmaZcEFp3tKiAyiAcy6HsuVctnwhp5wLGUMxM7PJxz0UMzPLhAtKA5LmpxNRbkpvcZ7UJB0p6Q5JGyStl3Rh0THlRVKPpLWSbio6ljxImi7pBkm/Sv+93150TJ0m6RPpz/U6SddJ2q/omLImaZmkJyWtq9rX1IS87XJBqUNSD3AFcBYwDzhX0rxio+q4XcAnI+LNwCnA+SXIecSFwIaig8jR14FbIuJNwFuZ5LlLmgV8HOiPiONIHjtYWGxUHXEVe8972HBC3iy4oNR3ErApIh6KiJeA5SQTW05aEbE5Iu5NXz9H8ktmVv2zup+k2cB7ge8WHUseJB0MvBO4EiAiXoqI7cVGlYupwP6SpgIHAE8UHE/mIuJOYOuo3c1MyNs2F5T6Gk1QOalJ6gNOAO4uNpJc/C/gU8CeogPJydHAUySTrK6V9N30oeFJK52y6SskD1NvBp6JiJ8WG1VumpmQt20uKPXVm6ByUpN0IMnEm38VEc8WHU8nSXof8GREDBUdS46mkkxr9K2IOAHYSYcug0wU6bjBAmAO8HpgmqQ/KzaqycUFpb5h4Miq7dlMwi7yaOkcaTcC/xAR/1R0PDl4B/B+SQ+TXNY8TdL/LTakjhsGhiNipPd5A6/MmzdZnQH8NiKeiog/AP8E/EnBMeXl9+lEvNSZkLdtLij1rQHmSpojaR+SAbwVBcfUUenaMlcCGyLiq0XHk4eIuCgiZkdEH8m/8e0RMan/co2I3wGPSfrjdNfpwAMFhpSHR4FTJB2Q/pyfziS/EaHKCmBkGfVFwI870Ughc3l1i4jYJekCYBXJHSHLImJ9wWF12jtI1pe5X9J96b6/iYiVBcZknfGXwD+kfyw9BPyXguPpqIi4W9INJDOX7wLWMgmfmpd0HcnSHzMlDZMspX45cL2kj5JOyNuRtv2kvJmZZcGXvMzMLBMuKGZmlgkXFDMzy4QLipmZZcIFxczMMuHbhs3aJOkwkgn3AI4AdpNMawJwUjoPnNmk59uGzTIk6WJgR0R8pehYzPLmS15mHSRpkaR7JN0n6ZuSpkiaKmm7pC9LulfSKkknS/pnSQ9Jek967sck/TB9f6Okz6T7D5J0s6Rfput6nF1slmYJFxSzDpF0HPCnwJ9ExPEkl5hH1t84BPhpRJwIvARcTDIVyDnApVUfc1J6zonAByUdD7wHeDgi3pqu63FrDumYNeQxFLPOOQP4d8BgMnUU+/PKcgjPR8RIIbifZCr1XZLuB/qqPmNVRGwDkPQj4N+TjNdcLuly4CcR8S8dz8SsCS4oZp0jkvnfPvuqncniTtUD9XuAF6teV/9/OXqQMyJig6R+kp7KlyXdFBH/I9vQzcbPl7zMOmc18J8kzYTkbjBJbxjnZ7w7Xfv9AJK1PP4lXcp2R0RcA3yVyT/tvHUJ91DMOiQi7pd0CbBa0hTgD8B5jG9NnZ8D1wJ/BFwTEfelg/aXS9pD0tM5L+PQzVri24bNJihJHwOOi4i/KjoWs2b4kpeZmWXCPRQzM8uEeyhmZpYJFxQzM8uEC4qZmWXCBcXMzDLhgmJmZplwQTEzs0z8f566ytJZ2D4pAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xa7f0925908>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xt0XOV57/HvT5ItG/mGsRG+ADJgILYJBhQgdxFIMGkbk3NCAk1bThrqRRoSStNySHMjNLS0ZOWyWhLqEOfCSXAIJKlDaSgYBIQQsISNYwMONlfZJsbGsi3jm6Tn/DHbiRCyNZJmZs9o/z5rzZrZe9497/PI8jzat/dVRGBmZjZUVWkHYGZmw4MLipmZFYQLipmZFYQLipmZFYQLipmZFYQLipmZFYQLipmZFYQLipmZFURFFxRJ8yStkbRW0lVpx2NmlmWq1DvlJVUDvwXeDbQBy4CLIuKJA20zadKkaGhoGFR/O3fupK6ublDbVirnnA1Zyzlr+cLQc25tbd0cEZP7a1cz6B7SdzqwNiKeAZC0GJgPHLCgNDQ00NLSMuCOVra18/Cjrbzv7LcwZfzowcZbcZqbm2lqako7jJJyzsNf1vKFoecs6fl82lXyIa9pwIs9ltuSdQX3qVsf558f3c0H/+PhYny8mdmwUMl7KOpj3euO30laACwAqK+vp7m5ecAdXXhMF83VwYMbd/Ffd99H3Yi+uh5+Ojo6BvXzqmTOefjLWr5QupwruaC0AUf2WJ4ObOjdKCIWAgsBGhsbYzC7fU3Azh/fw4Mb93D4zJN5U8PEwcRbcXxoIBuylnPW8oXS5VzJh7yWATMlzZA0ErgQWFKszqaNyf2o1ry0o1hdmJlVtIrdQ4mITkmXAXcB1cCiiFhdrP4mjhJjamt4+ncuKGZmfanYggIQEXcCd5aiL0nMrB/DGhcUM7M+VfIhr5I7oX4sT/+uI+0wzMzKkgvKABxfP5YtO/eyacfutEMxMys7LigDMGfaeABWr9+eciRmZuXHBWUAZk8dhwQr27alHYqZWdlxQRmAutoajps8hpVt7WmHYmZWdlxQBuik6eNZuX4blTqopplZsbigDNDJ0yfw8o49/G77nrRDMTMrKy4oA3TS9NyJ+RUvbk05EjOz8uKCMkBzpo6ntqaKR591QTEz68kFZYBG1lRx6lGH8sizW9IOxcysrLigDMIZx0zkiY3b2bZrX9qhmJmVDReUQThjxmFEQMtzr6QdiplZ2UiloEj6fBr9FsopR01gZHUVD6/zYS8zs/3S2kO5JKV+C2LUiGrOOGYi963ZlHYoZmZlo2gFRdL2Azx2AFOL1W+pvOvEw1n38k6e37Iz7VDMzMpCMfdQ2oGZETGu12MssLGI/ZbEu048HIB7n/JeipkZFLegfB84+gDv/bCI/ZbE0YfVcezkOpY+6YJiZgZFLCgR8dmIeFTSzZL+StKJPd77v8Xqt5TOmzOFX63bzMs7PAyLmVkpTsp/B5gC/JukdZJul3R5CfotuvNPmUp3wH+t3JB2KGZmqSt6QYmIe4Frgc8BNwGNwMeK3W8pHHf4WGZNGcfPVrigmJkVvaBIWgo8BHwIWAO8KSJOPPhWleN/nTqNFS+28+RGz+JoZtlWikNeK4G9wBzgjcAcSaNL0G9JfOC06dTWVPH9h59POxQzs1SV4pDXFRHxDuD9wBZy51SGNOWhpKslrZe0Inm8txCxDsaEQ0Zy/txp/HR5G+2v7k0rDDOz1JXikNdlkn4ErADOBxYB5xXgo78aEXOTx50F+LxB+8jbGti9r5tFv3w2zTDMzFJVU4I+RgNfAVojorME/ZXciUeM470nHcGih57jI2+dwaF1I9MOycys5FSJc6NLuhr4P8B2oAX4VET0OeOVpAXAAoD6+vrTFi9ePKg+Ozo6GDNmzAHfX7+jm88+tItzjq7hw2+oHVQf5aa/nIcj5zz8ZS1fGHrOZ511VmtENPbXrmwLiqR7gCP6eOszwK+BzUAA/whMiYi/7O8zGxsbo6WlZVDxNDc309TUdNA2n/vZKn7wyPP8/BNvY/bU8YPqp5zkk/Nw45yHv6zlC0PPWVJeBaVs50OJiHMiYk4fj/+MiN9FRFdEdAPfAk5PO16Avzv3BCbWjeRTtz7O7n1daYdjZlZSZVtQDkbSlB6L7wdWpRVLT+NHj+DLF5zMUy/t4Is/fyLtcMzMSqoiCwrwr5J+I2klcBZwRdoB7dd0wuFc+s5jueXRF7jpwWfSDsfMrGRKcZVXwUXEn6cdw8H8/bkn8PyWnXzpv55k9MhqPnzGgQZdNjMbPip1D6WsVVeJr104l7NOmMxnfrqK6/77Kbq6y/PiBzOzQnFBKZLammoW/kUjf3rGUdx4/zouuPFXrN3UkXZYZmZF44JSRCOqq7j2/Dl87UNzWbupg3O/9gCf/slKXtjyatqhmZkVXEWeQ6kkkjj/lGm89bhJ3HDfWn7wyPPc8uiLvPW4w5g/dxpNx0/m8HGj0g7TzGzIXFBKZPLYWq5+32wufeex3NryIj9a9iJX3rYSgBPqx3LS9PHMmjKOE44Yy7QJo5kyYRS1NdUpR21mlj8XlBI7YvwoPnn2TD7xruN4cuMO7v/ty/z6mS00r3mZ21rbXtN20phaDj1kBBMOGcH40SMYP3okY2qrGVlTRW1NNbU1VcnrKkbWVFNTJSSokqiqyj1Lomr/up6vq0DooLGufLmTeGoT/TQD8mqSa6f+W+bzWXl8zKCs2txF9dMvF+fDy1TWcs5avpDL+e3dQXVVkf7jJFxQUiKJWVPHMWvqOD7WdCwAm7bvZt3LO1nfvou2ra/y0rbdtL+6j/Zde1nfvpsnNmxn594u9nZ2s6ezi5JcONa6rASdlJmWR9OOoPSylnPW8gUumd9NdVVxj3q4oJSRw8eNyvt8SkTQ2R1Jcelmb2c3XRF0dwcR0B2RPHq87s69joCuPMZwe6y1lVNOPbX/WPKKN49GeX5aMYefW758OaecckrxOihDWcs5a/lCLueR1cW/BssFpUJJYkS1GFFdRV2RBjduX1fNKUcdWpwPL1Mdz1XT2DAx7TBKKms5Zy1fyOVcVeTDXVDGow0Xg6SXgcHO1TuJ3AjHWeKcsyFrOWctXxh6zkdHxOT+GmWqoAyFpJZ8hm8eTpxzNmQt56zlC6XL2Tc2mplZQbigmJlZQbig5G9h2gGkwDlnQ9Zyzlq+UKKcfQ7FzMwKwnsoZmZWEC4o/ZA0T9IaSWslXZV2PMUm6UhJ90l6UtJqSZenHVOpSKqWtFzSHWnHUgqSJki6TdJTyb/3m9OOqdgkXZH8Xq+SdIukYTcyq6RFkjZJWtVj3URJd0t6Onkuyg1mqRaU/r6sJdVK+lHy/iOSGpL1DZJ2SVqRPG4sUnzVwA3AecAs4CJJs4rRVxnpBD4VEW8AzgQ+noGc97sceDLtIEro68AvIuJE4GSGee6SpgGfBBojYg5QDVyYblRF8V1gXq91VwFLI2ImsDRZLrjUzqEkX9a/Bd4NtAHLgIsi4okebf4aeGNEXCrpQuD9EfGhpLDckfxS5G3SpEnR0NAwqHh37txJXV3doLatVM45G7KWc9byhaHn3NraujmfGxvTHHrldGBtRDwDIGkxMB94okeb+cDVyevbgH9XPsPVHkBDQwMtLS2D2ra5uZmmpqbBdl2RnHM2ZC3nrOULQ89ZUl4jjKRZUKYBL/ZYbgPOOFCbiOiUtA04LHlvhqTlwHbgsxHxYF+dSFoALACor6+nubl5UMF2dHQMettK5ZyzIWs5Zy1fKF3OaRaUvvY0eh9/O1CbjcBREbFF0mnAzyTNjojtr2scsZDkGuzGxsYYbJX2XzXZ4JyHv6zlC6XLOc2T8m3AkT2WpwMbDtRGUg0wHnglIvZExBaAiGgF1gHHFz1iMzM7oDQLyjJgpqQZkkaSu9piSa82S4CLk9cfAO6NiJA0OTmpj6RjgJnAMyWK28zM+pDaIa/knMhlwF3kLt9bFBGrJV0DtETEEuDbwM2S1gKv8IdL/N4BXCOpE+gCLo2IV0qfhZmZ7ZfqBFsRcSdwZ691n+/xejdwQR/b3Q7cXvQAzcwsb75T3szMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCsIFxczMCqLfgiLpXEkf3T+fe4/1f1msoMzMrPIctKBI+ifgM8BJwFJJn+jx9mVD7VzSPElrJK2VdFUf79dK+lHy/iM9i5qkTyfr10g6d6ixmJnZ0PS3h/InwLsi4m+A04DzJH01eW/Qc7sDJPOZ3ACcB8wCLpI0q1ezjwJbI+I44KvAvyTbziI3lP1sYB7wjf3zo5iZWTr6Kyg1EdEJEBHt5ArMOEk/BkYOse/TgbUR8UxE7AUWA/N7tZkPfC95fRtwtiQl6xcnMzc+C6xNPs/MzFLS33wo6yS9MyLuB4iILuCjkr4E/O8h9j0NeLHHchtwxoHaJBNybQMOS9b/ute204YYzwF98eer+dUTu/jmmoeL1UVZam93zlmQtZyzli/AuO49lGBK+X4LygUAkm4GHgAejIinIuKzkr45xL77OmQWebbJZ9vcB0gLgAUA9fX1NDc3DyDEnLa2PXR1ddHe3j7gbSuZc86GrOWctXwBRo/uGtR330AdtKBExC4ASd8B3gb8WzKH+wpyBebrQ+i7DTiyx/J0YMMB2rRJqgHGk5sKOJ9t9+ewEFgI0NjYGE2DKNNNTdDc3Mxgtq1kzjkbspZz1vKF0uWc130oEXEvcC3wOeAmoBH42BD7XgbMlDRD0khyJ9mX9GqzBLg4ef0B4N6IiGT9hclVYDOAmcCjQ4zHzMyGIK855SUtBeqAh4EHgTdFxKahdJycE7kMuAuoBhZFxGpJ1wAtEbEE+DZws6S15PZMLky2XS3pVuAJoBP4eHJ+x8zMUpJXQQFWkrtseA6wDWiX9PD+Q2KDFRF3Anf2Wvf5Hq93k5zH6WPba8ntNZmZWRnIq6BExBUAksYAHwG+AxwB1BYvNDMzqyT5HvK6DHg7ub2U54FF5A59mZmZAfkf8hoNfAVo3X+jo5mZWU/5HvK6vtiBmJlZZfPw9WZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhCpFBRJEyXdLenp5PnQA7S7OGnztKSLe6xvlrRG0orkcXjpojczs76ktYdyFbA0ImYCS5Pl15A0EfgCuXnmTwe+0KvwfDgi5iaPIc3NYmZmQ5dWQZkPfC95/T3g/D7anAvcHRGvRMRW4G5gXoniMzOzAVJuRt0Sdyq1R8SEHstbI+LQXm3+DhgVEV9Klj8H7IqIL0tqBg4DuoDbgS/FARKRtABYAFBfX3/a4sWLBxVzR0cHY8aMGdS2lco5Z0PWcs5avjD0nM8666zWiGjsr12+w9cPmKR7yE3C1dtn8v2IPtbtLxofjoj1ksaSKyh/Dny/rw+JiIXAQoDGxsZoamrKs/vXam5uZrDbVirnnA1Zyzlr+ULpci5aQYmIcw70nqTfSZoSERslTQH6OgfSBjT1WJ4ONCefvT553iHph+TOsfRZUHpqbW3dLOn5vJN4rUnA5kFuW6mcczZkLees5QtDz/nofBqldcjremBLRFwn6SpgYkRc2avNRKAVODVZ9Ri5GSO3AxMiYrOkEcAtwD0RcWORY27JZ5dvOHHO2ZC1nLOWL5Qu57ROyl8HvFvS08C7k2UkNUq6CSAiXgH+EViWPK5J1tUCd0laCawA1gPfKn0KZmbWU9EOeR1MRGwBzu5jfQtwSY/lReTmr+/ZZie5PRUzMysjvlM+fwvTDiAFzjkbspZz1vKFEuWcyjkUMzMbfryHYmZmBeGCYmZmBeGC0g9J85KBKNcmlzgPa5KOlHSfpCclrZZ0edoxlYqkaknLJd2RdiylIGmCpNskPZX8e7857ZiKTdIVye/1Kkm3SBqVdkyFJmmRpE2SVvVYl9eAvEPlgnIQkqqBG4DzgFnARZJmpRtV0XUCn4qINwBnAh/PQM77XQ48mXYQJfR14BcRcSJwMsM8d0nTgE8CjRExB6gGLkw3qqL4Lq8f97DfAXkLIVMn5SdNmhQNDQ2D2nbnzp3U1dUVNqAy55yzIWs5Zy1fGHrOra2tmyNicn/tUrkPJS0NDQ20tLQMats0x//p6g62dOxh66v72LYr92h/dS87dneyp7ObPZ1d7OnsZve+3POefd3s7eqmuzvojtyjqxsigq4IuoPfv9fVHURAd68/LALYtm0b48eP/8O6Ptr01vvvk9e16eMPmHL6k2bH9h2MHTc27TBKKms5Zy1fyOX8iyvfQ21N9aC2z3fIqkwVlHK37dV9rN6wjSc2buepl3bwwiuvsqF9Fy9t201n98G/dkdWV1FbU0XtiCpqa6oZWVNFlaBKorpKSKK6Krece/D79VVVUKMq1Gs4zt3VMHrEa38Be7fpi3o16r1JX5+Rx8eWxh5xWN3ItKMorazlnLV8AfYIleB/mQtKiiKCx15o567VL/HQ2s08sXH77/+AnzSmlmMm1dF49KFMnTCaKeNHcWjdSMaPHsH40SOYMHokY0fVMGpENbU1VVRVFf6XJbdXdkbBP7ec5XI+Pe0wSiprOWctX8jlPLKm+KfMXVBSsG3XPn7wyPP88JEXaNu6i5HVVZxy1ASuOOd4TjlqAiceMY7JY2vTDtPMbEBcUEpo194uvnn/Ohb98lk69nTylmMP44pzjuc9s+sZO2pE2uGZmQ2JC0qJ/GrdZq68bSVtW3fxRydN4a/POpbZU8f3v6GZWYVwQSmy7u7gG81r+crdv6VhUh23/NWZvPnYw9IOy8ys4FxQiqizq5srb1/JTx5bz/y5U/mn959EXa1/5GY2PPnbrUi6u4O/vfVxljy+gSvOOZ5Pnn3c6y6nNTMbTlxQiuRf71rDksc3cOW8E/jrpuPSDsfMrOgquqBIeg7YAXQBneUyT/R/rljPjfev48/OPIqPvfPYtMMxMyuJii4oibMiYnPaQezXtvVVPvvTVTQefShX/8lsH+Yys8zwaMMFFBH8/Y9XEsBXPzSXmmr/eM0sOyp6tGFJzwJbyY0v+B8R8bp5kyUtABYA1NfXn7Z48eJB9dXR0cGYMWMO2ubRjZ184/E9/MWskbzrqMq/UTGfnIcb5zz8ZS1fGHrOZ511VmtepxQiomIfwNTk+XDgceAdB2t/2mmnxWDdd999B31/197OeMs/L415X3sgOru6B91POekv5+HIOQ9/Wcs3Yug5Ay2Rx3dyRR+TiYgNyfMm4KdAaiO+ff/h51jfvovP//EsqoswUKOZWbmr2IIiqU7S2P2vgfcAqw6+VXHs3tfFtx58lrced5jvgjezzKrkq7zqgZ8mV1HVAD+MiF+kEchPHlvPyzv28LUPzU2jezOzspBqQVGuGlxA7qT6bcC7gPnAU8CNEdF9oG0j4hly82Cnqrs7+NaDz/DG6eN5i/dOzCzD0t5DuYHcCfWR5ApJLfBz4L3ACcDl6YWWn18/u4VnN+/kqx862fecmFmmpV1Q3h4RJ0kaAbwETImIvZJ+CCxPOba83LrsRcaOquG8OVPSDsXMLFVpn5TvBIiIfcCyiNibLHeSG06lrG3btY//XvUS8+dOZVSvudfNzLIm7YLykqQxABExb/9KSUcAe1OLKk93rNzAns5uPth4ZNqhmJmlLtWCEhHnRUSHpJsl/ZWkE5O3tgN/nGZs+fjFqpeYMamOk6Z55kUzs7T3UPb7DjAF+DdJ64CbgYvSDengtr26j4fXbeE9s+t9Mt7MjPRPygMQEfdKuh94E3AWcCkwG/h6qoEdxH1rNtHZHZw7+4i0QzEzKwtlUVAkLQXqgIeBB4E3JcOplK27Vr/E4WNrmTt9QtqhmJmVhXI55LWS3En4OcAbgTmSRqcb0oHt7ezm/t++zLtn1VPlcbvMzIAy2UOJiCsAkiu+PkLunMoR5G50LDvLX9jKq3u7eMfxk9MOxcysbJRFQZF0GfB24DTgeWARuUNfZemhtZupEpx5jIdaMTPbrywKCjAa+ArQmtzUWNYeWreFk6ZPYPzoyp9Ey8ysUMriHEpEXB8Rj1RCMenY08mKF9t523HeOzEz66ksCkolaX1+K13dwZuPmZR2KGZmZcUFZYAee34rVYK5R/lyYTOznlxQBuixF7ZywhHjGFNbLqefzMzKgwvKAHR1B8tfaOe0o713YmbWmwvKADy9aQcdezo57ehD0w7FzKzsuKAMwGPPtwNw6lEuKGZmvbmgDMCqDdsYN6qGoyYeknYoZmZlxwVlAFZv2M6sqeM8XL2ZWR8quqBImidpjaS1kq4qZl9d3cFTG7cze6on0zIz60vFFhRJ1cANwHnALOAiSbOK1d9LO4M9nd3MnjquWF2YmVW0ii0owOnA2oh4JiL2AouB+cXq7Pkd3QDeQzEzO4BKvjtvGvBij+U24IxidLTg+y38eu1eamuqOHZyXTG6MDOreJVcUPo6Mx6vayQtABYA1NfX09zcPOCOYuceZozt5sRJtfzywQcGvH2l6ujoGNTPq5I55+Eva/lC6XKu5ILSBhzZY3k6sKF3o4hYCCwEaGxsjKampgF31NQEzc3NDGbbSuacsyFrOWctXyhdzop43R/1FUFSDfBb4GxgPbAM+NOIWH2QbV4mN4HXYEwCNg9y20rlnLMhazlnLV8Yes5HR0S/U9RW7B5KRHQmMz3eBVQDiw5WTJJtBj1nr6SWiGgc7PaVyDlnQ9Zyzlq+ULqcK7agAETEncCdacdhZmaVfdmwmZmVEReU/C1MO4AUOOdsyFrOWcsXSpRzxZ6UNzOz8uI9FDMzKwgXlH6UcgDKciDpSEn3SXpS0mpJl6cdU6lIqpa0XNIdacdSCpImSLpN0lPJv/eb046p2CRdkfxer5J0i6RRacdUaJIWSdokaVWPdRMl3S3p6eS5KJM6pVpQ+vuyllQr6UfJ+49IakjWN0jaJWlF8rixSPGVdADKMtEJfCoi3gCcCXw8AznvdznwZNpBlNDXgV9ExInAyQzz3CVNAz4JNEbEHHK3G1yYblRF8V1gXq91VwFLI2ImsDRZLrjUCkqeX9YfBbZGxHHAV4F/6fHeuoiYmzwuLVKYJR2AshxExMaIeCx5vYPcl8y0dKMqPknTgT8Cbko7llKQNA54B/BtgIjYGxHt6UZVEjXA6OTG6EPoY3SNShcRDwCv9Fo9H/he8vp7wPnF6Du1k/LJ7vXVEXFusvxpgIj45x5t7kraPJz8ArwETAaOBu5I/srI26RJk6KhoWFQ8e7cuZO6umwNDOmcsyFrOWctXxh6zq2trZvL/U75fEYL/n2b5M74bcBhyXszJC0HtgOfjYgH++uwoaGBlpaWQQXr8X+ywTkPf1nLF4aes6S8hqxKs6DkM1rwgdpsBI6KiC2STgN+Jml2RGx/XScFGG0YPEJpVjjn4S9r+UI2RhvOZ7Tg/W3akkNe44FXInecbg9ARLRKWgccD7xu96MQow2D/6rJCuc8/GUtXyhdzmle5bUMmClphqSR5K62WNKrzRLg4uT1B4B7IyIkTU5O6iPpGGAm8EyJ4jYzsz6ktodyoNGCJV0DtETEEnJXoNwsaS25qxb2X+L3DuAaSZ1AF3BpRPS+qsHMzEoo1dGG+xotOCI+3+P1buCCPra7Hbi96AGamVnefKe8mZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVhAuKmZkVxIALiqR7ixGImZlVtoMWFEkrez1+A7x1//JQO5c0T9IaSWslXdXH+7WSfpS8/4ikhh7vfTpZv0bSuUONxczMhqa/4eufIzdn+5eAXeSm5H0Q+JOhdpxMkHUD8G5yMzMuk7QkIp7o0eyjwNaIOE7ShcC/AB+SNIvc3CizganAPZKOj4iuocZlZmaDc9CCEhHvk/R+4FvA9RGxRNK+iMhrwvp+nA6sjYhnACQtBuYDPQvKfODq5PVtwL9LUrJ+cUTsAZ5NJuA6HXi4AHG9zhd/vppfPbGLb64pyseXrfZ255wFWcs5a/kCjOveQylmPe53gq2I+Kmk/wH+UdIlwMgC9T0NeLHHchtwxoHaJDM8bgMOS9b/ute20/rqRNICYAFAfX09zc3NAw60rW0PXV1dtLe3D3jbSuacsyFrOWctX4DRo7sG9d03UPnO2PhNcoe6fgy8sUB9q491kWebfLbNrYxYCCwEaGxsjKZBlOmmJmhubmYw21Yy55wNWcs5a/lC6XLOt6B8F3gb8EHgGEnvAR6IiK8Poe824Mgey9OBDQdo0yapBhhPbm75fLY1M7MSyuuy4Yi4F7gW+BxwE9AIfGyIfS8DZkqaIWkkuZPsS3q1WQJcnLz+AHBvRESy/sLkKrAZwEzg0SHGY2ZmQ5DXHoqkpUAduZPeDwJviohNQ+k4OSdyGXAXUA0siojVkq4BWiJiCfBt4ObkpPsr5IoOSbtbyZ3A7wQ+7iu8zMzSle8hr5XAacAcYBvQLunhiNg1lM4j4k7gzl7rPt/j9W7gggNsey25vSYzMysDeRWUiLgCQNIY4CPAd4AjgNrihWZmZpUk30NelwFvJ7eX8jywiNyhLzMzMyD/Q16jga8ArRHRWcR4zMysQuV7yOv6YgdiZmaVzcPXm5lZQbigmJlZQbigmJlZQbigmJlZQbigmJlZQbigmJlZQbigmJlZQbigmJlZQaRSUCRNlHS3pKeT50MP0O7ipM3Tki7usb5Z0hpJK5LH4aWL3szM+pLWHspVwNKImAksTZZfQ9JE4AvkpgU+HfhCr8Lz4YiYmzyGNJS+mZkNXVoFZT7wveT194Dz+2hzLnB3RLwSEVuBu4F5JYrPzMwGKK2CUh8RGwGS574OWU0DXuyx3Jas2+87yeGuz0nqa455MzMroXxHGx4wSfeQmzOlt8/k+xF9rIvk+cMRsV7SWOB24M+B7x8gjgXAAoD6+nqam5vz7P61Ojo6Br1tpXLO2ZC1nLOWL5Qu56IVlIg450DvSfqdpCkRsVHSFKCvcyDuPOW8AAAFl0lEQVRtQFOP5elAc/LZ65PnHZJ+SO4cS58FJSIWAgsBGhsbo6mpqa9m/Wpubmaw21Yq55wNWcs5a/lC6XJWRPTfqtCdStcDWyLiOklXARMj4spebSYCrcCpyarHyE3wtR2YEBGbJY0AbgHuiYgb8+j3ZXIThA3GJGDzILetVM45G7KWc9byhaHnfHRETO6vUVoF5TDgVuAo4AXggoh4RVIjcGlEXJK0+0vgH5LNro2I70iqAx4ARgDVwD3A30ZEV5FjbomIxmL2UW6cczZkLees5Quly7loh7wOJiK2AGf3sb4FuKTH8iJy0w33bLOT3J6KmZmVEd8pb2ZmBeGCkr+FaQeQAuecDVnLOWv5QolyTuUcipmZDT/eQzEzs4JwQemHpHnJQJRrk0uchzVJR0q6T9KTklZLujztmEpFUrWk5ZLuSDuWUpA0QdJtkp5K/r3fnHZMxSbpiuT3epWkWySNSjumQpO0SNImSat6rMtrQN6hckE5CEnVwA3AecAs4CJJs9KNqug6gU9FxBuAM4GPZyDn/S4Hnkw7iBL6OvCLiDgROJlhnrukacAngcaImEPutoML042qKL7L68c97HdA3kJwQTm404G1EfFMROwFFpMb2HLYioiNEfFY8noHuS+ZaQffqvJJmg78EXBT2rGUgqRxwDuAbwNExN6IaE83qpKoAUZLqgEOATakHE/BRcQDwCu9VuczIO+QuaAcXH8DVA5rkhqAU4BH0o2kJL4GXAl0px1IiRwDvExukNXlkm5KbhoetpIhm75M7mbqjcC2iPifdKMqmXwG5B0yF5SDO9gAlcOapDHkBt78m4jYnnY8xSTpj4FNEdGadiwlVENuWKNvRsQpwE6KdBikXCTnDeYDM4CpQJ2kP0s3quHFBeXg2oAjeyxPZxjuIveWjJF2O/CDiPhJ2vGUwFuB90l6jtxhzXdJ+n/phlR0bUBbROzf+7yNP4ybN1ydAzwbES9HxD7gJ8BbUo6pVH6XDMTLQQbkHTIXlINbBsyUNEPSSHIn8JakHFNRJXPLfBt4MiK+knY8pRARn46I6RHRQO7f+N6IGNZ/uUbES8CLkk5IVp0NPJFiSKXwAnCmpEOS3/OzGeYXIvSwBNg/jfrFwH8Wo5NUxvKqFBHRKeky4C5yV4QsiojVKYdVbG8lN7/MbyStSNb9Q0TcmWJMVhyfAH6Q/LH0DPCRlOMpqoh4RNJt5EYu7wSWMwzvmpd0C7mpPyZJaiM3lfp1wK2SPkoyIG9R+vad8mZmVgg+5GVmZgXhgmJmZgXhgmJmZgXhgmJmZgXhgmJmZgXhy4bNhkjSYeQG3AM4AugiN6wJwOnJOHBmw54vGzYrIElXAx0R8eW0YzErNR/yMisiSRdLelTSCknfkFQlqUZSu6TrJT0m6S5JZ0i6X9Izkt6bbHuJpJ8m76+R9Nlk/VhJ/y3p8WRejw+km6VZjguKWZFImgO8H3hLRMwld4h5//wb44H/iYhTgb3A1eSGArkAuKbHx5yebHMq8KeS5gLvBZ6LiJOTeT3uLkE6Zv3yORSz4jkHeBPQkhs6itH8YTqEXRGxvxD8htxQ6p2SfgM09PiMuyJiK4CknwFvI3e+5jpJ1wE/j4iHip6JWR5cUMyKR+TGf/vca1bmJnfqeaK+G9jT43XP/5e9T3JGRDwpqZHcnsr1ku6IiH8qbOhmA+dDXmbFcw/wQUmTIHc1mKSjBvgZ70nmfj+E3FweDyVT2XZExM3AVxj+w85bhfAeilmRRMRvJH0RuEdSFbAPuJSBzanzS+CHwLHAzRGxIjlpf52kbnJ7OpcWOHSzQfFlw2ZlStIlwJyI+Ju0YzHLhw95mZlZQXgPxczMCsJ7KGZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhAuKGZmVhD/HyuR67D4N6TnAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xa7f0d1e7b8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xl0XNWV6P/vrirNqipZs1Uylmdblm2MFYMNITZDAgmJSTokJC9AeoXHy+uM3VmdR3pKXjrJj193Op2sX7rTTYAwBHBoIB1DBiAEMSVgbMCzsY0HrMGzrcmatX9/3KtSyXiQpaq6qqr9WUurqm7dW3cfS9bWveecfURVMcYYY8bL53UAxhhj0oMlFGOMMXFhCcUYY0xcWEIxxhgTF5ZQjDHGxIUlFGOMMXFhCcUYY0xcWEIxxhgTF5ZQjDHGxEXAy5OLyDXAjwA/cJeq3nHK+znA/cAS4CjwSVXd6773DeBzwADwZVV96lznKy0t1ZqamjHF2tnZSUFBwZiOTVXW5syQaW3OtPbC+Nu8fv36I6pads4dVdWTL5wk8jYwHcgGNgC1p+zzF8B/uM9vBH7hPq91988Bprmf4z/XOZcsWaJj9dxzz4352FRlbc4MmdbmTGuv6vjbDKzTUfxe9/IKZSmwS1V3A4jIamAVsDVmn1XAt9znjwI/FhFxt69W1R5gj4jscj/vT4kI9MFX9/HG7l52+XcTzA1wyfQSppZk1l84xhhzLl4mlAiwP+Z1I3DxmfZR1X4RaQVK3O2vnHJs5HQnEZHbgNsAKioqaGhoOO9Af/ziSVo6FXZscz4TWF4V4KbabHIDct6flyo6OjrG9O+VyqzN6S/T2gvJa7OXCeV0v4lPLX18pn1Gc6yzUfVO4E6A+vp6XbFixXmE6Hj5cuXZhgYuWX4Zh9t7+MW6/fz0hd20+wp46H9eQmGOp11RCdPQ0MBY/r1SmbU5/WVaeyF5bfZylFcjMCXmdTXQfKZ9RCQAhIFjozw2bnw+IcsnBHOzmF5WyDeuncd/3lTPluY2vvLwG0P9PcYYk9G8TCivAbNEZJqIZON0uq85ZZ81wC3u848Df3A7iNYAN4pIjohMA2YBa5MUNwBX11bwdx+ax7PbD/Hw2v3nPsAYY9KcZwlFVfuBLwJPAduAR1R1i4h8W0Q+4u52N1Didrr/FXC7e+wW4BGcDvzfAV9Q1YFkt+GWZTVcNrOU7/x6K4faupN9emOMmVA8ndioqr9R1dmqOkNVv+tu+wdVXeM+71bVG1R1pqouHRoR5r73Xfe4Oar6Wy/i9/mE71xfR9/AIP/y9A4vQjDGmAnDZsqPU01pATcvq+GR9fvZcbDd63CMMcYzllDi4IsrZ5KX5effn9vldSjGGOMZSyhxMKkgm89cMpU1G5rZe6TT63CMMcYTllDi5Nb3TiPg9/GfL7ztdSjGGOMJSyhxUh7M5eNLqnn89SaOdfZ6HY4xxiSdJZQ4+uzyGnr6B1n92jteh2KMMUlnCSWOZlcEuXRmCQ/8aR/9A4Neh2OMMUllCSXOPrt8Gi2t3Ty99aDXoRhjTFJZQomzK+aWM6U4j3tf3ut1KMYYk1SWUOLM7xNuvqSGtXuPsa2lzetwjDEmaSyhJMAN9dXkBHzc/6d9XodijDFJYwklAYrys1l1YRX//UYTrV19XodjjDFJYQklQW5eVkNX3wCPrW/0OhRjjEmKUS01KCIfAuYDuUPbVPXbiQoqHdRFwlx0QRE/f2Ufn11eg8+XvksFG2MMjOIKRUT+A/gk8CWcpXdvAKYmOK60cPOyGnYf6eSlXUe8DsUYYxJuNLe8lqvqzcBxVf2/wDJGLr9rzuDaBZWUFGRb57wxJiOMJqF0uY8nRaQK6AOmJS6k9JET8POppRfwh+0HaTx+0utwjDEmoUaTUJ4UkSLgn4HXgb3A6kQGlU4+ffEFADz4qtX3Msakt9EklH9S1ROq+hhO38lc4DuJDSt9VBXlcXVtBavXvkN3X9KXvTfGmKQZTUL509ATVe1R1dbYbebcbl5Ww/GTffx6Y4vXoRhjTMKccdiwiFQCESBPRBbjjPACCAH5SYgtbSyfUcKMsgLuf2Uff7ak2utwjDEmIc42D+UDwGeBauAHMdvbgL9JYExpR0S4eVkN31yzhQ37T7BoSpHXIRljTNyd8ZaXqt6nqiuBz6rqypivVar6eBJjTAsfuyhCQbbfhhAbY9LWaPpQXhaRu0XktwAiUisin0twXGknmJvFxy6q5omNzbZEsDEmLY0mofwMeAqocl/vAL6asIjS2C3Lp9LbP8i9L+/xOhRjjIm70SSUUlV9BBgEUNV+YFzjX0WkWESeEZGd7uOkM+x3i7vPThG5JWb7d0Vkv4h0jCeOZJtZHuSa+ZXc+8e9tHdbFWJjTHoZTULpFJESQAFE5BKgdZznvR14VlVnAc+6r0cQkWLgm8DFwFLgmzGJ5wl3W8r5wsqZtHX388Ar1pdijEkvo0kofwWsAWaIyMvA/TiFIsdjFXCf+/w+4PrT7PMB4BlVPaaqx4FngGsAVPUVVU3JSR0LqsO8b3YZd7+4h65em+hojEkf50woqvo68D5gOfC/gPmqunGc560YSgjuY/lp9okA+2NeN7rbUt6XrpjJ0c5eHlpr5ViMMeljVOuh4NxeqnH3v0hEUNX7z3aAiPweqDzNW387ynOebgERHeWxsXHcBtwGUFFRQUNDw/l+BAAdHR1jPvZ05hX7+OHTW6nq3kteYGKulRLvNqcCa3P6y7T2QvLafM6EIiIPADOANxnujFecW19npKpXneUzD4rIZFVtEZHJwKHT7NYIrIh5XQ00nCve08RxJ3AnQH19va5YseLsB5xBQ0MDYz32dIpmnOD6f3uZbYNV/NWKOXH73HiKd5tTgbU5/WVaeyF5bR7NFUo9UKuq5311cBZrgFuAO9zHX51mn6eA78V0xL8f+EYcY/DUhVOKuG7hZH764h4+c8lUykO55z7IGGMmsNF0ym/m9LeuxuMO4GoR2Qlc7b5GROpF5C4AVT0G/CPwmvv1bXcbIvJPItII5ItIo4h8K87xJcVff2AO/YOD/OCZHV6HYowx43a24pBP4NzaCgJbRWQt0DP0vqp+ZKwnVdWjwJWn2b4OuDXm9T3APafZ7+vA18d6/oliakkBtyyr4e6X93BDfTVLphZ7HZIxxozZ2a5Qvo9TFDIfZ1jv94B/cbdVJD60zPCXV89mciiXbzy+id7+Qa/DMcaYMTtbccjnVbUByHKfPx+zLS9ZAaa7gpwA315Vx46DHfz0xd1eh2OMMWN2xoQiIv9bRDYBc0RkY8zXHmC881BMjKtqK/jggkp+9PudbG1u8zocY4wZk7Pd8noI+DDOiKwPx3wtUdXPJCG2jPKPq+ooys/iSw+/zsnefq/DMcaY83a2W16tqrpXVT+lqvtivo4lM8BMUVKYw79+8kJ2H+nkH361hfiO0jbGmMQbzbBhkySXzizlS1fM4tH1jdz1opW4N8akltGWXjFJ8tUrZ7HrUDvf++02ppbk8/758Z4CZIwxiWFXKBOMzyf8yw0XsrC6iC8+9AYNb52uKo0xxkw8llAmoLxsP/f9+XuYWV7IbQ+s57ntllSMMROfJZQJqig/m5/fejGzygu59f51PPiqLchljJnYLKFMYMUF2Tzyv5Zx+axS/vaXm7n9sY02pNgYM2FZQpngCnIC/PTmev5ixQx+sW4/H/7/XmL9vuNeh2WMMe9iCSUFBPw+vn7NXB783MV09gzwZz/5I197ZAMHWru9Ds0YY6IsoaSQ5TNLefZr7+Pz75vBmg1NXP5Pz/E3v9zE7sMdXodmjDE2DyXVFOQEuP3aufyPiy/gJ8+/zaPrGnno1XdYWlPMny2JcMXcCsqCOV6HaYzJQJZQUtSU4ny+99EFfPXKWTz2ehP/tW4//+exTcAmFlWHuWxWKYunTOLCC4ooLbQEY4xJPEsoKa48lMv/XjGDz79vOlua23hu+yH+8NYh/uP53QwMOvXAKkO5TC8rYFqp81VVlEd5MIcy9ys/234MjDHjZ79J0oSIUBcJUxcJ86UrZ9HVO8Cmplbe3H+c7Qfa2X24kyc2NNPW/e5hx3lZfoK5AQpzAhTmBijIdh7bj3fz5OENZPl9ZPuFLL+PrIAv+jrg9+EXQcQ5vwA+97lPAPfRF31PIOa1c9w42834PuDU829t7qf1zaZxfeb5nX+c/wBxsLWln7YNzV6HkTSZ1l5w2vzeQcXvS+zPmyWUNJWX7WfptGKWThteVlhVOX6yjwOt3Rzu6OFwu/N1tKOHjp7+6FdnTz/7j53kWNsg+7uO0jswSN/AIH39g/QNKL0Dab6y5MY3vY4g+Ta84XUEyZVp7QW++vFB/D5/Qs9hCSWDiAjFBdkUF2SPav+GhgZWrFjxru2qSv+g0jcwyKDCoCqqznYdeo3ziDK8DzDo3oYbOmY8xlvg/3RLBKxdu5alS5cm6fzj/IA4OZ82p4NMay84bc72J35QryUUc95EhCz3Fli6eafAx/SyQq/DSKrGQh8zyzOnzZnWXnDa7Evw7S4AyaSFnETkMDDWolilwJE4hpMKrM2ZIdPanGnthfG3eaqqlp1rp4xKKOMhIutUtd7rOJLJ2pwZMq3NmdZeSF6b0++ehTHGGE9YQjHGGBMXllBG706vA/CAtTkzZFqbM629kKQ2Wx+KMcaYuLArFGOMMXFhCcUYY0xcWEI5BxG5RkTeEpFdInK71/EkmohMEZHnRGSbiGwRka94HVOyiIhfRN4QkSe9jiUZRKRIRB4Vke3u93uZ1zElmoj8pftzvVlEHhaRXK9jijcRuUdEDonI5phtxSLyjIjsdB8nJeLcllDOQkT8wL8B1wK1wKdEpNbbqBKuH/iaqs4DLgG+kAFtHvIVYJvXQSTRj4DfqepcYBFp3nYRiQBfBupVtQ7wAzd6G1VC3Atcc8q224FnVXUW8Kz7Ou4soZzdUmCXqu5W1V5gNbDK45gSSlVbVPV193k7zi+ZiLdRJZ6IVAMfAu7yOpZkEJEQcDlwN4Cq9qrqCW+jSooAkCciASAfSLuyw6r6AnDslM2rgPvc5/cB1yfi3JZQzi4C7I953UgG/HIdIiI1wGLgVW8jSYofAl8H0ryUctR04DDwM/c2310iUuB1UImkqk3A94F3gBagVVWf9jaqpKlQ1RZw/mgEyhNxEksoZ3e6amoZMc5aRAqBx4Cvqmqb1/EkkohcBxxS1fVex5JEAeAi4CequhjoJEG3QSYKt99gFTANqAIKROQz3kaVXjJqHkppaanW1NSM6djOzk4KCtL6D7h3sTZnhkxrc6a1F8bf5vXr1x8ZTXHIjCpfX1NTw7p168Z07JnWBkln1ubMkGltzrT2wvjbLCKjqtKeUQnFGGMyQXffANsPtLO5qZXNTa28vquLyy/XhK+JYgnFGGNS2MnefrY2tznJw33ceaiDAXd11KL8LCJ50N7dTzg/K6GxpGxCEZEpwP1AJc7InDtV9UfeRmWMMYnT1t3HlqY2tjS3RhPI24c7ostJlxZmUxcJc9W8CuoiIeoiYSJFeTz//PMJTyaQwgmF4Ql4r4tIEFgvIs+o6lavAzPGmPE63tnLluY2NjW1srm5lS1Nrew9ejL6fmUol7pImOsWTqauKkxdJExFKAeRxC/1eyYpm1DcsdRD46rbRWRoAp4lFGNMSjnc3hNNGpuaWtnc1EbTia7o+9WT8qirCvPxJdXURcLMrwpTFszxMOLTS9mEEivDJuAZY1KUqnKgrZvNTU5fx5ZmJ4EcbOuJ7jOttIDFFxRx07Kp7pVHiKL8bA+jHr2Un4fiTsB7Hviuqj5+mvdvA24DqKioWLJ69eoxnaejo4PCwsLxhJpyrM2ZIdPanKz2qipHupR9bYPsbRtkX9sg+9oGaOt13hdgcoEwNeyjJuRnasjHBUEf+Vnxv2U13javXLly/WjWpE/phCIiWcCTwFOq+oNz7V9fX682D2X0rM2ZIdPanIj2Dg4q+46ddDvK3Q7zpjZau/oA8PuEWeWF1EXCLIg4Vx3zJofIz07OTaI4zEMZVUJJ2Vte4vQ83Q1sG00yMcaYeBgYVHYf7nATh3PramtzG+09/QBk+33MqQzywQWVzK9yEsicyiC5WX6PI0+8lE0owKXATcAmEXnT3fY3qvobD2MyxqSRvoFBdh3qYFOT02G+ubmNrc1tdPUNAJAT8FFbFeL6xRHqIiHmV4WZXREkO5CZZRJTNqGo6kucvnijMcact57+AXYccK48hhLItgPt9PY7Bajzs/3MrwrxyfdMcW9bhZlRVkDAn5nJ43RSNqEYY8xYdfUOsO1Am3PV0eTM9dhxsJ1+d3Z5MDdAXVWYW5ZNpc5NHjUlBfgTXLok1VlCMcaktY6e2NIkrazdcZKWp5+KliaZlJ9FXSTM/5wznTq3z2NKcZ6nEwRTlSUUY0zaaO3qY0tzK1uahmeY7znSGS1NUhbMoSrPx8eWTmO+e+VRFc615BEnllCMMSnpWGdv9KpjKIG8c2y4NElVOJf5kTDXX+h0mNdVhSkP5bpDaOd4GHn6soRijJnwDrV3R+d2ODPMR5YmuaA4n7qI02FeFwlTVxWipHDilSZJd5ZQjDEThqrS0todXcdjqBz7ofbh0iTTSwtYMnUStyx3SpPMrwonpZKuOTdLKMYYT6gq+491RWeWb3KvPI51OrVJfAIzywu5bGZpdKTVvMlBgrmWPCYqSyjGmIQbHFT2HO2M3q4augJp63Zmlwd8wuyKIFfNKx9OHpUh8rLTf3Z5OrGEYoyJq/6BQXYf6Ry+6nAXhOrsdWaXZwd8zKsMct2iqmg13TmVQXICljxSnSUUY8yY9fYPsvNQO1ua2qIzzLe1tNHd58wuz83yUTs5xMeXVDvDdKvCzKooJMtml6clSyjGmFHp7hvgrQPt0aKIW5pb2d7STu+AkzwKcwLUVoX49NKpLKh2hulOLyu02eUZxBKKMeZdTvb2s62lfcRoq50xpUnCeVnURUL8+aU17pVHiJqSAnyWPDKaJRRjMlxXv/Lq7qPRIbqbm1p5+3AHbu6guCCbukiYK+aWRdcur55kpUnMu1lCMSaDnDjZOzzKyn3cc+Qk8AoAFaEc6qrCXLtgcnQhqMqQlSYxo2MJxZg0daSjZ+Qw3eZW9h8bnl0eKcqjLhJi8aRePnzphcyPhCgP5noYsUl1llCMSXGqyqH2nugw3aEO85bW7ug+U0vyWVhdxKeXTo0uBFVckA24y8POLfcqfJNGLKEYk0JUlaYTXdGkMZRAjnQ4pUlEnNIkS6cVsyDilCWprQoRzrPZ5SbxJkRCEZFaVd16yrYVqtrgUUjGeE5V2Xf05IhhupubWjl+sg8Av0+YVV7I+2aXOdV0I2FqJ4coyJkQ/61NBpooP3mPiMgDwD8Bue5jPbDsTAeIyD3AdcAhVa1LSpTGJMjAoLLHnV0eLcne3Ea7W5oky++UJvnA/MroMN15k0PkZtnscjNxTJSEcjHw/wJ/BILAg8Cl5zjmXuDHwP0JjcyYOOsfGGTX4Y5oKfbNTa1sbWnjZGxpkskhPrKoKrp2+ayKQitNYia8iZJQ+oAuIA/nCmWPqg6e7QBVfUFEahIfmjFj19s/yI6D7dGrjs1NbWxraaOn3/nxzsvyM78qxCfqpzC/KsSC6jAzyqw0iUlNokNrY3oZhMgG4FfAPwIlwH8Cfar68XMcVwM8ebZbXiJyG3AbQEVFxZLVq1ePKcaOjg4KCwvHdGyqsjafn94BpbF9kL1tzte+tkEa2wcZcP+L5QVgasjnfvmpCfmoLBB8Hs/xyLTvc6a1F8bf5pUrV65X1fpz7TdREkq9qq47ZdtNqvrAOY6r4RwJJVZ9fb2uW7fu3DuehrNs6IoxHZuqrM1n1tnTz7aWNneortNhvvNQBwPu9PKi/KzorPKh5WcvKM6fkKVJMu37nGnthfG3WURGlVAmxC2vU5OJu+2sycSYZGnr7ouWYB+a67H7SCdDf4uVFjqlSa6aVxFNIJEiK01iMs+ESCjGTBQdvcqLOw87HebNrWxpamXv0ZPR9yeHc5lfFebD7loeC6rDlAdzLHkYQwonFBF5GFgBlIpII/BNVb3b26hMKjnc3uN0lDcOd5g3negC1gJQPSmPBZEwN7gd5vOrwpQFc7wN2pgJLGUTiqp+yusYTGpQVQ60dUeH6Q7NMD/Y1hPdZ1ppAYsvKOLSin5Wvfci5leFKMrP9jBqY1JPyiYUY05HVWk83jVimO6W5laOdPQC4BOYUVbI8hmlzjDdiFOaJJjrlCZpaGjg0pmlXjbBmJRlCcWkrMFBZd+xkzHJw0kgrV0jS5OsnFMe7SyfNzlEfrb92BuTCPY/y6QEpzRJR7QY4uamVrY2t9He45Qmyfb7mFMZ5IMLKp3kURVmTmXQSpMYk0SWUMyE0zcwyK5DHdG1PDa5yaOrzylNkhPwUVsV4vrFkWgp9tkVQbIDNrvcGC9ZQjGe6ukfYOfBoSsPZxXB7TGlSfKzndIkn3zPlGhdqxllBQSsNIkxE44lFJM03X0Dzuzy5ja2uBMEdxxsp8+tTRLMCTA/EuLmZVOpc9fymFZagH8Czi43xrybJRSTEEOlSWJXEDy1NMmCSJjPXTaduogz2mrKpIlZmsQYMzqWUMy4xZYmGbp1dbrSJFfXVjC/ykqTGJOuLKGY83K8szfaUX6u0iRDfR5WmsSYzGAJxZxRa4/y3FuHov0dw6VJHNWT8qirstIkxhiHJRSDqnKwrSdaSXeLO8P8QFs38BowXJrkpmVTWRAJW2kSY8y7WELJMKpK04mu6KzyoRnmQ6VJxC1Ncsn0YvK6j7Dq8ouorQoRckuTGGPMmVhCSWODg8o7x06y2e0s3+ImkBMnR5YmWTGnnDp3+dm5lSEKcpwfi4aGBi6ZXuJlE4wxKcQSSpoYKk0yVJbE6TAfLk2S5RfmVAa5tq7SHWkVZq6VJjHGxJEllBTUPzDIrsMxyaOpla0tbZzsHS5NMm9yiFWLq6LL0FppEmNMollCmeC6egfYfqCNLc3O19aWd5cmqZ0c4hP1U6IVdWeWFVppEmNM0llCmUBOnOx1E4dTFHFrcxtvH+7AnVxOKDfA/KowN10y1U0eVprEGDNxpHRCEZFrgB8BfuAuVb3D45BGRVVpbu1mi1tNd2uLkzxi53g4EwRDXFtXSW2VM0y3epLNLjfGTFwpm1BExA/8G3A10Ai8JiJrVHWrt5GNdLyzl7cOtrPjYDtvHXC/DrbT3u10los4czwumjqJm5ZNZX5ViNrJIUoKbYKgMSa1pGxCAZYCu1R1N4CIrAZWAUlPKF29A7xz7CR7j3ay72gn+446z3ce7OBQ+/C65aHcAHMqg6y6sIo5FUFqq5yRVkPDdI0xJpWl8m+yCLA/5nUjcHEiTvSvz+zg9e09/PeBN+gbUHoHBmnt6uNIew+H23uiQ3OHFOVnMbU4n8tnlzGnIsjsyiBzKoJUhKymlTEmfYkOlYRNMSJyA/ABVb3VfX0TsFRVv3TKfrcBtwFUVFQsWb169Xmf6/95tYuDnQNk+X0EfOAXKMgSwjlCKNt5LMv3UZEvlOf7KMhKj6TR0dFBYWGh12EklbU5/WVae2H8bV65cuV6Va0/136pfIXSCEyJeV0NNJ+6k6reCdwJUF9frytWrDjvE61Y4cwaH8uxqczanBkyrc2Z1l5IXptTebLCa8AsEZkmItnAjcAaj2MyxpiMlbK3vABE5IPAD3GGDd+jqt89x/6HgX1jPF0pcGSMx6Yqa3NmyLQ2Z1p7YfxtnqqqZefaKaUTSjKJyLrR3ENMJ9bmzJBpbc609kLy2pzKt7yMMcZMIJZQjDHGxIUllNG70+sAPGBtzgyZ1uZMay8kqc3Wh2KMMSYu7ArFGGNMXFhCOQcRuUZE3hKRXSJyu9fxJJqITBGR50Rkm4hsEZGveB1TsoiIX0TeEJEnvY4lGUSkSEQeFZHt7vd7mdcxJZqI/KX7c71ZRB4WkVyvY4o3EblHRA6JyOaYbcUi8oyI7HQfJyXi3JZQziKmovG1QC3wKRGp9TaqhOsHvqaq84BLgC9kQJuHfAXY5nUQSfQj4HeqOhdYRJq3XUQiwJeBelWtw5m/dqO3USXEvcA1p2y7HXhWVWcBz7qv484SytlFKxqrai8wVNE4balqi6q+7j5vx/klE/E2qsQTkWrgQ8BdXseSDCISAi4H7gZQ1V5VPeFtVEkRAPJEJADkc5pyTalOVV8Ajp2yeRVwn/v8PuD6RJzbEsrZna6icdr/ch0iIjXAYuBVbyNJih8CXwcGvQ4kSaYDh4Gfubf57hKRAq+DSiRVbQK+D7wDtACtqvq0t1ElTYWqtoDzRyNQnoiTWEI5u9OVDc6IYXEiUgg8BnxVVdu8jieRROQ64JCqrvc6liQKABcBP1HVxUAnCboNMlG4/QargGlAFVAgIp/xNqr04mlCOVeHt4jkiMgv3Pdfdf9iHnrvG+72t0TkAwkKcVQVjdONiGThJJMHVfVxr+NJgkuBj4jIXpzbmleIyM+9DSnhGoFGVR26+nwUJ8Gks6uAPap6WFX7gMeB5R7HlCwHRWQygPt4KBEn8WweitvhvYOYJXyBT8Uu4SsifwEsVNXPi8iNwEdV9ZNuJ/HDOH0cVcDvgdmqOnC2c5aWlmpNTc2Y4u3s7KSgIK3vCLyLtTkzZFqbM629MP42r1+//shoikN6uR7KaJbwXQV8y33+KPBjcZY8XAWsVtUeYI+I7HI/709nO2FNTQ3r1q0770BVleeff97WUMgA1ub0l2nthfG3WURGVaXdy4QymiV8o/uoar+ItAIl7vZXTjk2YZ3l7//XF9h5qBP/07/BJyAi+AT8IvhEEAG/b+i5EPAJBTl+grlZBHMDBHMDhHKzKC3MoSKUQ3kol4pQrvM8mIvflx4rPBpjMpuXCWU0Hd5n2mfUneWnLAFMQ0PDeYTouLikjxk5SlZWFgoMqvOlKDriuTIIDAxC90AfXSe7aWpTuvqVk/3Q3qsMnhJlQKDMXTq4Il+oKHAeJxf4KM4VT9eg7+joGNO/VyqzNqe/TGsvJK/NXiaU0XR4D+3T6I4bD+PO+cC7AAATk0lEQVSMrx51Z3lclgAmPpfJA4PK0c4eDrX1cLCtmwNt3ew/1sW+o53sOdLJi80n6errje4fzAkwq6KQOZUh5lQUMrsyyJyKICWFOeOKY7Ts1kBmyLQ2Z1p7IXlt9jKhRJfwBZpwZqx++pR91gC34PSNfBz4g6qqiKwBHhKRH+B0ys8C1iYt8jHy+4TyYC7lwVzqIuF3va+qHG7vYc+RTnYe6mDHwXbeOtDObze38PDavuh+pYU5zJscpC4SZn5ViLqqMBcU5+OzW2fGGA95llDcPpEvAk8xvITvFhH5NrBOVdfgzOJ9wO10P4ZbJsHd7xGcDvx+4AvnGuGVCkSE8lAu5aFcLp5eEt0+lGjechPM9gPtbGtp464Xd9M34NxDC+YEqK0KMb8qTF0kRF0kzPTSAgJ+m2pkjEkOL69QUNXfAL85Zds/xDzvBm44w7HfBc66hny6iE007501PHKvp3+AnQc72NzUypbmNjY3t/LQ2n109zmTvXOzfMytDFEXCbEgEmZBpIhZFYVkWZIxxiSApwnFjE9OwE9dJDzi9ln/wCB7jnSyubmVzU1tbGlu5VdvNPPzV95xj/ExvyrEwuoiFkTCLKwOM72s0EaaGWPGzRJKmgn4fcyqCDKrIshHFzvbBgeVd46dZGNTKxv3n2BjUyuPrNvPvX/cC0BBtp/5kTALI2EWVIdZVF3E1JJ87xphjElJllAygM8n1JQWUFNawEcWVQHOiLPdhzvY2NjKpqZWNjSe4IFX9tHT79wuC+UGqC4Y5NXu7dFEEynK83QYszFmYrOEkqH8PoleyfzZkmoA+gYG2Xmwg42NzlXMH7c1juj4LynIZkH10JVMEYuqw5SH0m59ImPMGFlCMVFZfh+1VSFqq0LcCDRMOsqyy97L9pZ2Nja1sqnxBBsbW3lhx+HoBM2KUA4LIk5yWVAdZmF1EcUF2Z62wxjjDUso5qxyAn4WTSli0ZQiYCoAXb0DbG1pZcN+53bZxsYTPLv9IEN1RiNFeSya4owqW+gmmlBulneNMMYkhSUUc97ysv0smVrMkqnF0W3t3X1sbmpjU5NzFbOxsZXfbDoQfX96aUH0CmZhtTMhMz/bfvyMSSf2P9rERTA3i2UzSlg2Y3hC5omTvcOd/vtP8OruY/zqTadCjk9gdkXQGbo8pYiFkTBzJwfJCfi9aoIxZpwsoZiEKcrP5vLZZVw+e3gy5qG2bucKJnqr7BD/tb4RgCy/MG+yMwlzUXURC6rDzCovtNn+xqQISygmqcpDuVxVm8tVtRWAU1am6URX9DbZxsYTrHmzmQdfdSZi5mX5mV8Vis6PWVAdZlpJgdUtM2YCsoRiPCUiVE/Kp3pSPh9cMBlwJmLuPdo5Isk8vPYdfvbyXsCpW1YXCbNwiptkImGqJ9kcGWO8ZgnFTDg+nzC9rJDpZYVcv9hZN61/YJBdhzvYuL+VjW7H/z0v7YnOkSkuyHZvlQ13/NscGWOSyxKKSQkBv1Pocm5liE+8x1kKp6d/gLcOtLOhcXiOzI+fG54jUxnKdW+VhaO1yybZHBljEsYSiklZOQG/ezUyco7MlubWEUnmma0Ho8dcUJw/IsnURcIU5th/A2Piwf4nmbSSl+2nvqaY+prhOTJt3X1sbnSTTNMJ3nznBL/e2AKACMwoK2ShW3m5/8QAl/QNkJtlw5eNOV+WUEzaC+VmsXxmKctnlka3He3ocasvO0nmxV1HePyNJgDuWPsUsyuCLIzpj5lTGbR1ZIw5B0soJiOVFOawck45K+eUA87w5YNtPTz4u5cYLKpmY2Mrv918gNWv7QcgO+CjdnJoRJKZYevIGDOCJRRjcIYvV4ZzWVIRYMWKuYCTZPYf62JD4wmnAnNjK4+tb+T+P+0DRq4jMzTbf2pJvg1fNhnLEooxZyAiXFCSzwUl+Xw4Zh2ZPUc6ooUxNzSe4P5X9tH70h7AWUdm6Apm6HFyONeSjMkIllCMOQ9+nzCzPMjM8pHryOw42D5iIuadL+ym3x2/XFqY4yaY4dn+pYU5XjbDmISwhGLMOGX5fcyvCjO/KsynljrbuvsG2NbSNiLJPPfWoREl/hfEzPavi4QJ51mJf5PaLKEYkwC5WX4WXzCJxRdMim7r7Olnc1PriOKYv9syXOJ/WmmBk2SqwyyaUmQl/k3KOedPq4h8EXhQVY8nIR5j0lZBToCLp5dw8fSRJf43NQ1fxby29xhrNgyX+J9VHhwxEdNK/JuJbDR//lQCr4nI68A9wFOqQxfuxpjxKMrP5r2zynjvrJgS/+3dbGocnu3/3PZDPBpT4n9uZWhEkrES/2aiOGdCUdW/E5G/B94P/DnwYxF5BLhbVd8ey0lFpBj4BVAD7AU+cborIBG5Bfg79+V3VPU+EckH/guYAQwAT6jq7WOJw5iJqDyYy5Xzcrly3nCJ/+bWbjbuPxGd7f/EhmYeckv852Y5fTgLIuHo0svTS63Ev0m+Ud2gVVUVkQPAAaAfmAQ8KiLPqOrXx3De24FnVfUOEbndff1/Yndwk843gXpAgfUisgboAb6vqs+JSDbwrIhcq6q/HUMcxkx4IkKkKI9IUR7XxpT433fsJBsbT7hDmE/wi9f2c+8f9wIxJf5jhi9biX+TaKPpQ/kycAtwBLgL+GtV7RMRH7ATGEtCWQWscJ/fBzRwSkIBPgA8o6rH3DieAa5R1YeB5wBUtde9FVc9hhiMSVk+nzCttIBppQWsunC4xP/bhzvZ0HiCTW6fzM9e3kvvwCAwXOI/NslUWIl/E0ejuUIpBT6mqvtiN6rqoIhcN8bzVqhqi/s5LSJSfpp9IsD+mNeN7rYoESkCPgz8aIxxGJM2An4fcyqDzKkM8ol6p8R/b/+gW+L/hNsvc4J/bzjCgDtHpiKUQ1VuP5sGdkZn+1uJfzNWkqj+dRH5PU6H/qn+FrhPVYti9j2uqpNidxKRvwZyVPU77uu/B06q6r+4rwPAEziDBH54ljhuA24DqKioWLJ69eoxtaejo4PCwsIxHZuqrM3pqWdAeadtkD2tg+xpG2D38X4Odg3fCivLE6aFfdSEfUwL+akJ+8gLpM+tskz4Hp9qvG1euXLlelWtP9d+CRvkrqpXnek9ETkoIpPdq5PJwKHT7NbI8G0xcG5rNcS8vhPYebZk4sZxp7sv9fX1umLFirPtfkYNDQ2M9dhUZW3ODA0NDVx0yaXROTJDVzJr3+oC+hCB6aUF0Vn+C6udOTKpWuI/U7/HyWizV7Om1uD0y9zhPv7qNPs8BXxPRIauXN4PfANARL4DhIFbEx+qMekvlJvF8hmlLJ8xssT/8ByZVl6KKfHv94lT4j9mtv/siiDZARu+nMm8Sih3AI+IyOeAd4AbAESkHvi8qt6qqsdE5B+B19xjvu1uq8a5bbYdeN0dtfJjVb0r6a0wJo2VFOawYk45K+YMd3EeaO2OVl7e2NTKU1sP8It1wyX+500ORRcrWzSlyEr8ZxhPEoqqHgWuPM32dcRcdajqPTiTKWP3aQTsJ9QYD1SGc6kMV/L++U73qKrSeHyoxL8zsuyXbzTxwCvOGJ78bD91VWH3VplzJWMl/tOXFQoyxoyZiDClOJ8pxflct9Ap8T84qOw+0jl8JdN4gp+/so+efmf48lCJ/6HZ/guqi6iyEv9pwRKKMSaufD5hZnkhM8sL+dhFwyX+dx7scCZiurP9fzqixH+2k2RiZvuXBa3Ef6qxhGKMSbgsv4/aqhC1VSFujCnxv/1A+4grmdgS/1Xh3JgrGSfZhPOtxP9EZgnFGOOJ3Cw/F04p4sIp0SlpdPb0s6W5bUSSiS3xX1OSP2JFzPlVIQpy7NfYRGHfCWPMhFGQE2DptGKWTiuObms92RddbnlTYyvrTinxP7O8cESSmVsZTNk5MqnOEooxZkIL52dx2axSLps1PEfmcHsPm5qGCmO20vDWyBL/cyqDTpKJuCX+KwrJshL/CWcJxRiTcsqCOVwxt4Ir5o4s8b9pqNO/sZUnY0r85wR8zK8KsbC6iKz2PqoPdViJ/wSwhGKMSXmxJf6vqXNK/Ksqe4+ejPbHbGps5ZF1+znZO8BPNz1PYU6AukgoertsUXWRlfgfJ0soxpi0JPLuEv8Dg8rDv36OnMmzorP9740p8T8pP4sF0Vtlzmx/K/E/epZQjDEZw+8TqoM+VtRP4YaYEv87Djol/jfud5LMT55/O1rivzyYE9Pp7/TJFFuJ/9OyhGKMyWjZAR91kTB1kTD/42JnW1fvAFtbRg5ffnb7wegcmepJeTHVl51jQ7k2R8YSijHGnCIv28+SqZNYMnV4mab27j42N8UkmaYT/HpTS/T96WUF0QmYi6aEqZ0cJi87s4YvW0IxxphRCOZmsWxGCctmlES3HevsdUr87z/BxqZW/vj2EX4ZU+J/Vnlh9EpmUXURcyrTu8S/JRRjjBmj4oJs3je7jPfNLotuO9jWHb1NtrGxladjS/z7fcybHBxRUmZmefqU+LeEYowxcVQRyuXq2lyurh2eI9N4vGtEkokt8Z+X5R8xfHlhdRFTi/NTco6MJRRjjEmg2BL/H1rozJEZKvEfO9v/wVf3cfdLzvDlYG4gmlycVTFTo8S/JRRjjEmy2BL/H13slPjvHxhkx8EOJ8m4EzHvenE3fQPO0LKSgmwWuuvHLHKTzUQr8W8JxRhjJoBATIn/T77H2TZU4j+2pMzzO3biTpFhcjh3+EqmOszCSJGnJf4toRhjzAQVW+L/JndbZ08/W1va2LDfLSnT1MpTWw5Gj5k6VOI/MjxHJlksoRhjTAopyAnwnppi3lMzssT/5ubW6Gz/1/cd5wm3xL8ITC4QfrO0l6L8xM7wt4RijDEpLpyfxaUzS7l05sgS/5vddWT+uHk34bzE3wqzhGKMMWmoLJjDyrnlrJxbzoWB5qSMEEvfKZvGGGOSSnSo2lkGEJHDwL4xHl4KHIljOKnA2pwZMq3NmdZeGH+bp6pq2bl2yqiEMh4isk5V672OI5mszZkh09qcae2F5LXZbnkZY4yJC0soxhhj4sISyujd6XUAHrA2Z4ZMa3OmtReS1GbrQzHGGBMXdoVijDEmLiyhnIOIXCMib4nILhG53et4Ek1EpojIcyKyTUS2iMhXvI4pWUTELyJviMiTXseSDCJSJCKPish29/u9zOuYEk1E/tL9ud4sIg+LSK7XMcWbiNwjIodEZHPMtmIReUZEdrqPk872GWNlCeUsRMQP/BtwLVALfEpEar2NKuH6ga+p6jzgEuALGdDmIV8BtnkdRBL9CPidqs4FFpHmbReRCPBloF5V6wA/cKO3USXEvcA1p2y7HXhWVWcBz7qv484SytktBXap6m5V7QVWA6s8jimhVLVFVV93n7fj/JKJeBtV4olINfAh4C6vY0kGEQkBlwN3A6hqr6qe8DaqpAgAeSISAPKBZo/jiTtVfQE4dsrmVcB97vP7gOsTcW5LKGcXAfbHvG4kA365DhGRGmAx8Kq3kSTFD4GvA4NeB5Ik04HDwM/c23x3iUiB10Elkqo2Ad8H3gFagFZVfdrbqJKmQlVbwPmjEShPxEksoZzd6aqpZcSwOBEpBB4DvqqqbV7Hk0gich1wSFXXex1LEgWAi4CfqOpioJME3QaZKNx+g1XANKAKKBCRz3gbVXqxhHJ2jcCUmNfVpOEl8qlEJAsnmTyoqo97HU8SXAp8RET24tzWvEJEfu5tSAnXCDSq6tDV56M4CSadXQXsUdXDqtoHPA4s9zimZDkoIpMB3MdDiTiJJZSzew2YJSLTRCQbpwNvjccxJZQ4Na7vBrap6g+8jicZVPUbqlqtqjU43+M/qGpa/+WqqgeA/SIyx910JbDVw5CS4R3gEhHJd3/OryTNByLEWAPc4j6/BfhVIk5i66Gchar2i8gXgadwRoTco6pbPA4r0S4FbgI2icib7ra/UdXfeBiTSYwvAQ+6fyztBv7c43gSSlVfFZFHgddxRjO+QRrOmheRh4EVQKmINALfBO4AHhGRz+Ek1hsScm6bKW+MMSYe7JaXMcaYuLCEYowxJi4soRhjjIkLSyjGGGPiwhKKMcaYuLBhw8aMk4iU4BTcA6gEBnDKmgAsdevAGZP2bNiwMXEkIt8COlT1+17HYkyy2S0vYxJIRG4RkbUi8qaI/LuI+EQkICInROSfReR1EXlKRC4WkedFZLeIfNA99lYR+aX7/lsi8nfu9qCI/FZENrjrenzc21Ya47CEYkyCiEgd8FFguapeiHOLeWj9jTDwtKpeBPQC38IpBXID8O2Yj1nqHnMR8GkRuRD4ILBXVRe563o8k4TmGHNO1odiTOJcBbwHWOeUjiKP4eUQulR1KBFswiml3i8im4CamM94SlWPA4jIfwOX4fTX3CEidwBPqOrLCW+JMaNgCcWYxBGc+m9/P2Kjs7hTbEf9INAT8zz2/+WpnZyqqttEpB7nSuWfReRJVf1efEM35vzZLS9jEuf3wCdEpBSc0WAicsF5fsb73bXf83HW8njZXcq2Q1UfAH5A+pedNynCrlCMSRBV3SQi/xf4vYj4gD7g85zfmjovAQ8BM4AHVPVNt9P+DhEZxLnS+XycQzdmTGzYsDETlIjcCtSp6le9jsWY0bBbXsYYY+LCrlCMMcbEhV2hGGOMiQtLKMYYY+LCEooxxpi4sIRijDEmLiyhGGOMiQtLKMYYY+Li/wd9tD9x68xO0gAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xa7f0e0c1d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xl4FFXa/vHvk4Qk7DthFxREFgEhgLLEIBIWF1DEbRxBRVxAFp1x9PV18FVn3GVRFBFRdBRUXEBlFY1hVQKyIwZQILIpQTDs4Pn9kdJfYBoSQjrV6dyf6+qru06fqjx1rtabqq6uY845REREgiXC7wJERCS8KWhERCSoFDQiIhJUChoREQkqBY2IiASVgkZERIJKQSMiIkGloBERkaBS0IiISFBF+V1AKKhUqZKrU6dOntbdt28fJUuWzN+CwoDGJTCNS2Aal8BCfVyWLFnyi3Ouck79FDRAnTp1SE1NzdO6ycnJJCYm5m9BYUDjEpjGJTCNS2ChPi5mtik3/XTqTEREgkpBIyIiQaWgERGRoFLQiIhIUCloREQkqHwNGjPrambrzGy9mT0Q4P0YM3vXe/9rM6uT7b0HvfZ1ZtYlt9sUEZGC5VvQmFkkMBroBjQCbjCzRid0uw3Y7ZyrBwwHnvLWbQRcDzQGugIvmVlkLrcpIiIFyM/f0bQG1jvnNgKY2SSgB7AmW58ewCPe68nAi2ZmXvsk59wh4AczW+9tj1xsM98s/jGDj9IOs4b1xEZFUio2iprlilOzfAlqlC9OZIQF48+KiBQqfgZNDWBLtuV0oM3J+jjnjprZHqCi177ohHVreK9z2iYAZtYf6A8QFxdHcnLyae/AtB8OM2XDEdiw7r/ei42EumUjqFcukqaVIzmnXAQRVnSCJzMzM09jGu40LoFpXAILl3HxM2gC/V/X5bLPydoDnQo8cZtZjc6NBcYCxMfHu7z8+jYxEbp++SVt2ydw4PAx9h48wk+7D7A5Yz+rt+5l2ZZfmfbjXj7ZeITyJYpxacM4erWsSZu6FbAwD51Q/0WzXzQugWlcAguXcfEzaNKBWtmWawJbT9In3cyigLJARg7r5rTNfBVhRmyxSGKLRVK+ZDRnVSxJ22zv7zlwhJTvf2bO2h1MX7Wd95ekU7tCCa5rVYu/tKlNuRLRwSxPRMR3fgbNYqC+mdUFfiLry/0bT+gzFegDLASuAb5wzjkzmwq8Y2bPA9WB+sA3ZB3p5LTNAlW2eDGuaFadK5pVZ//ho8xYtZ33U9N5ZuY6XvxiPb3ja3Jb+7qcVTF0b5wnInImfAsa7zuXgcBMIBIY75xbbWaPAqnOuanAa8Bb3pf9GWQFB16/98j6kv8oMMA5dwwg0DYLet9OpkR0FFe3qMnVLWry3fa9jJv7AxO/2cx/Fm3iqgtqMrhTfWpXLOF3mSIi+crXuzc756YB005o+2e21weB3idZ91/Av3KzzVB0XtUyPNu7Gfd3acDYlI28tWgTU5b9xLWtajGwYz2qlyvud4kiIvlCdwbwWZUysfzv5Y1Iub8jN7apzfupW0h8NplnZn7HvkNH/S5PROSMKWhCRFyZWB7t0YQv7kuke5OqjP5yA4nPJvN+6hZ+/z3ghXMiIoWCgibE1KpQghHXX8CHd7elRrni/H3yCq4cPY/UHzP8Lk1EJE8UNCGqRe3yfHR3W0Ze35xdmYe5ZsxC/jF5Bbv3Hfa7NBGR06KgCWFmRo/mNZhz38XccfHZfLA0nUueS+Y9nU4TkUJEQVMIlIiO4sFuDflsUAfqVSnF/ZNXcN3Yhazb/pvfpYmI5EhBU4g0qFqad/tfxNO9mrJ+ZyaXjZrL0zO+4+CRY36XJiJyUgqaQiYiwri2VS3m3JfIVRfU4KXkDXQfOZfFulhAREKUgqaQqlAymmd6N+M/t7Xh8LHf6T1mIf+csopM/fZGREKMgqaQa1+/EjOHJHBru7q8tWgTXYankLxup99liYj8SUETBkrGRPHPKxox+c62FI+OpO/ri7n3vWW6FFpEQoKCJoy0PKs8nw1qz6BL6jF12VY6D/+Kz1Zs87ssESniFDRhJiYqknuTGvDJPe2pVrY4A95ZyoC3l7Ir85DfpYlIEaWgCVMNq5Xho7vbcn/XBsxes4Ok4SlMX6mjGxEpeAqaMBYVGcHdifX45J72VC9XnLveXsrAd5aSoe9uRKQAKWiKgAZVS/Ph3W35W9K5zFy9naThXzFj1Xa/yxKRIkJBU0QUi4xg4CX1mTqwPXFlYrnzP0sYPOlbXZkmIkGnoCliGlYrw8cD2jH00nP5bMU2kkakMHvNDr/LEpEwpqApgopFRjD40vpMGdiOSqViuP3NVO59dxl79h/xuzQRCUO+BI2ZVTCz2WaW5j2XP0m/Pl6fNDPrk629pZmtNLP1ZjbKzMxrf8TMfjKzZd6je0HtU2HUuHpZpgxox+BO9Zm6POt3N3PW6uhGRPKXX0c0DwBznHP1gTne8nHMrAIwDGgDtAaGZQukl4H+QH3v0TXbqsOdc829x7Qg7kNYiI6KYGjnc/l4QDsqlIzmtgmp3PfecvYc0NGNiOQPv4KmBzDBez0B6BmgTxdgtnMuwzm3G5gNdDWzakAZ59xC55wD3jzJ+nIamtQoy5SB7RjYsR4fL/tJ90wTkXzjV9DEOee2AXjPVQL0qQFsybac7rXV8F6f2P6HgWa2wszGn+yUnAQWExXJ37o04KO721KmeBR9X1/Mgx+u1B2hReSMRAVrw2b2OVA1wFsP5XYTAdrcKdoh65TaY97yY8BzwK0nqa8/WaffiIuLIzk5OZdlHS8zMzPP64ayvzV1fLy+GJO+2czslVu4rUkMDStG5nr9cB2XM6VxCUzjEli4jEvQgsY5d+nJ3jOzHWZWzTm3zTsVFugcTTqQmG25JpDstdc8oX2r9zf//CbbzF4FPj1FfWOBsQDx8fEuMTHxZF1PKTk5mbyuG+qSOsGSTRnc995ynlq8n1va1eH+LudRPDrnwAnncTkTGpfANC6Bhcu4+HXqbCrwx1VkfYApAfrMBJLMrLx3CiwJmOmdavvNzC70rja7+Y/1vdD6w1XAqmDtQFHR8qwKTBvcgb5t6/D6/B+5bNRclm7e7XdZIlKI+BU0TwKdzSwN6OwtY2bxZjYOwDmXQdbpr8Xe41GvDeAuYBywHtgATPfan/Yue14BdASGFtD+hLUS0VE8cmVj3unXhkNHf+ealxfw1IzvOHT0mN+liUghELRTZ6finNsFdArQngr0y7Y8Hhh/kn5NArT/NX8rleza1qvEjCEdePzTtbycvIEv1u7kuWub0aRGWb9LE5EQpjsDyGkpHVuMp65pyvi+8ezef5ieo+cz8vM0jhz73e/SRCREKWgkTy45L45ZQxO4rGk1hn/+PVe/tIC0Hb/5XZaIhCAFjeRZuRLRjLz+Al76Swt++vUAl70wj7EpGzj2u8t5ZREpMnz5jkbCS/fzq9GqTgUe+mgl/572HbNW76B3bZ1KE5EsOqKRfFG5dAyv/LUlz1/bjHU7fuPhBQd4c+GP/K6jG5EiT0Ej+cbMuLpFTWYNTeDc8pH8c8pq/jr+a3769YDfpYmIjxQ0ku+qlS3OfS1jeOLq81m2+Ve6Dk/hvdQtZN0DVUSKGgWNBIWZcUPr2swYkkCj6mW4f/IK+k1IZefeg36XJiIFTEEjQVWrQgkm3n4h/7y8EfPW/0Ln4SlMXb5VRzciRYiCRoIuIsK4tX1dpg3uQN1KJRk08VsGvvMtGfsO+12aiBQABY0UmHMql2LynRdxf9cGzFqznaThXzFr9Xa/yxKRIFPQSIGKiozg7sR6TB3YniqlY+n/1hLufW+Zpo4WCWMKGvFFw2pl+HhAOwZdUo8py7bSZXgKKd//7HdZIhIEChrxTXRUBPcmNeDDu9pSKjaKm8d/w0MfrWSfpo4WCSsKGvFds1rl+PSe9vRPOJt3vtlM15EpfL1xl99liUg+UdBISIgtFsn/dG/Ie3dchGFc/+oiHvt0DQePaHI1kcJOQSMhpVWdCkwf3IGb2pzFa/N+oPuouXyrqaNFCjUFjYSckjFRPNazCW/d1poDh4/R6+UFPDNTU0eLFFYKGglZHepXZubQBHq1qMnoLzfQ48X5rNm61++yROQ0+RI0ZlbBzGabWZr3XP4k/fp4fdLMrE+29n+Z2RYzyzyhf4yZvWtm683sazOrE9w9kWArE1uMZ3o347U+8ezad5geo+fx4hdpHNXU0SKFhl9HNA8Ac5xz9YE53vJxzKwCMAxoA7QGhmULpE+8thPdBux2ztUDhgNPBaF28UGnhnHMGpJA1ybVeHbW9/R6eQHrd2rqaJHCwK+g6QFM8F5PAHoG6NMFmO2cy3DO7QZmA10BnHOLnHPbctjuZKCTmVm+Vi6+KV8ymhduuIAXb7yAzRn76T5qHuPmbtTU0SIhzq+gifsjKLznKgH61AC2ZFtO99pO5c91nHNHgT1AxTOuVkLK5U2rM3NoAgn1K/P4Z2u5YewiNu3a53dZInISUcHasJl9DlQN8NZDud1EgLac/uma63XMrD/QHyAuLo7k5ORclnW8zMzMPK8bzgpiXP5S21EnKpq312aQ9Hwy1zWIpmOtKEL5IFafl8A0LoGFy7gELWicc5ee7D0z22Fm1Zxz28ysGrAzQLd0IDHbck0gOYc/mw7UAtLNLAooC2ScpL6xwFiA+Ph4l5iYGKhbjpKTk8nruuGsoMalI3Drrwf4xwcreHPNL/xwpAxP9WpK9XLFg/6380Kfl8A0LoGFy7j4depsKvDHVWR9gCkB+swEksysvHcRQJLXltvtXgN84TTDVtirXq44b97amsd7NmHJpt10GZ7C5CXpmlxNJET4FTRPAp3NLA3o7C1jZvFmNg7AOZcBPAYs9h6Pem2Y2dNmlg6UMLN0M3vE2+5rQEUzWw/cS4Cr2SQ8mRk3XXgW0wd3oGG1Mvzt/eXc/uYSdv6mqaNF/Ba0U2en4pzbBXQK0J4K9Mu2PB4YH6Df/cD9AdoPAr3ztVgpVM6qWJKJ/S/k9fk/8PTMdXQZnsLjPc/nsqbV/C5NpMjSnQEk7ERGGP06nM20Qe2pVaEEA95Zyj0Tv2W3po4W8YWCRsJWvSql+fCuttzX+Vymr9xG0ogU5qzd4XdZIkWOgkbCWlRkBPd0qs+Uge2oWDKa2yakcv/k5ew9qKmjRQqKgkaKhMbVyzJlYDvuTjyHyUvS6TZiLvPX/+J3WSJFgoJGioyYqEju73oek+9qS0xUBH8Z9zXDpqxi/2FNHS0STAoaKXJa1C7PZ4M6cEu7OkxYuInuI+eyZFPA3/WKSD5Q0EiRVDw6kmFXNGbi7Rdy9HfHNWMW8sT0tZo6WiQIFDRSpF10TkVmDEng+la1eOWrjVz54jxWpu/xuyyRsKKgkSKvVEwUT1zdlNdvacWeA0e46qX5DJ/9PUc0uZpIvlDQiHg6NqjCrCEXc0Wz6oyck8ZVL81n3XZNriZyphQ0ItmULVGM4dc1Z8xNLdj260GueGEeY77aoMnVRM6AgkYkgK5NqjFzaAIdz6vMk9O/49pXFvLDL5pcTSQvFDQiJ1GpVAxjbmrJiOuak7bjN7qNTGHCgh/5XUc3IqdFQSNyCmZGzwtqMGvoxbSpW5FhU1dz02tfk757v9+liRQaChqRXKhaNpY3bmnFE1efz/Itv9J1xFzeW7xFk6uJ5IKCRiSXzIwbWtdmxpAEGlcvw/0frOC2Cans3KvJ1URORUEjcppqVSjBxNsv5J+XN2L++l/oPDyFqcu3+l2WSMhS0IjkQUSEcWv7ukwb3IG6lUoyaOK3DHh7KRmaXE3kvyhoRM7AOZVLMfnOi/h7lwbMWrOdpOFfMXuNJlcTyc6XoDGzCmY228zSvOfyJ+nXx+uTZmZ9srX/y8y2mFnmCf37mtnPZrbMe/QL9r6IREVGMKBjPaYObE/l0rHc/mYq9723nD0HNLmaCPh3RPMAMMc5Vx+Y4y0fx8wqAMOANkBrYFi2QPrEawvkXedcc+8xLv9LFwmsYbUyTBnQjnsuqcfHy36i64gU5qb97HdZIr7zK2h6ABO81xOAngH6dAFmO+cynHO7gdlAVwDn3CLn3LYCqVTkNERHRXBfUgM+uKstJaIj+etr3/C/H69k3yFNriZFl19BE/dHUHjPVQL0qQFsybac7rXlpJeZrTCzyWZW68xLFTl9zWuV47NBHejXvi5vf72ZbiPn8s0PmlxNiqaoYG3YzD4HqgZ466HcbiJAW06/jvsEmOicO2Rmd5J1tHTJSerrD/QHiIuLIzk5OZdlHS8zMzPP64YzjUuW9qWgcqtYxq08wHWvLKRjDcfhY18SHRno41106fMSWLiMi/nxy2YzWwckOue2mVk1INk51+CEPjd4fe7wll/x+k3M1ifTOVfqJH8jEshwzpXNqZ74+HiXmpqap31JTk4mMTExT+uGM43L8fYdOsq/p63l7a83U69KKZ7r3Yxmtcr5XVbI0OclsFAfFzNb4pyLz6mfX6fOpgJ/XEXWB5gSoM9MIMnMynsXASR5bSflhdYfrgTW5kOtImesZEwU/7rqfO5rGUPmwaNc/fICnp+1jsNHNbmahD+/guZJoLOZpQGdvWXMLN7MxgE45zKAx4DF3uNRrw0ze9rM0oESZpZuZo942x1kZqvNbDkwCOhbgPskkqPzK0cxc2gCPZpXZ9QX6+k5ej7fbd/rd1kiQRW072hOxTm3C+gUoD0V6JdteTwwPkC/+4H7A7Q/CDyYr8WK5LOyxYvx/LXN6dq4Kv/z0UqueGEeQzufS/8OZxMVqd9QS/jRp1rEJ0mNqzJr6MV0bhTH0zPW0fuVhWz8OTPnFUUKGQWNiI8qlIxm9I0tGHl9czb+vI/uo+Yyft4PmlxNwoqCRsRnZkaP5jWYNTSBtudU4tFP13DjuEVsydDkahIeFDQiISKuTCyv9Ynn6V5NWfXTXrqOSGHSN5s1uZoUegoakRBiZlzbqhYzhnSgac1yPPDhSm55YzHb92hyNSm8FDQiIahm+RK83a8N/3dlYxZt3EXS8K/4+NufdHQjhZKCRiRERUQYfdrWYfrgBOpVKcWQd5dx99tL2ZV5yO/SRE5LjkFjZgNPNl+MiARf3Uolef/OtjzQ7TzmrN1J0vAUZqza7ndZIrmWmyOaqsBiM3vPzLqame4GKFLAIiOMOy8+h0/uaU/VsrHc+Z8lDH13GXv2a3I1CX05Bo1z7n+B+sBrZN3SJc3M/m1m5wS5NhE5QYOqpfl4QDsGd6rP1OVbSRrxFcnrdvpdlsgp5eo7Gpf1DeR273EUKA9MNrOng1ibiARQLDKCoZ3P5eO721Emthh9X1/Mgx+uJFOTq0mIys13NIPMbAnwNDAfON85dxfQEugV5PpE5CTOr1mWT+5pzx0JZzNp8Wa6jkhh0cZdfpcl8l9yc0RTCbjaOdfFOfe+c+4IgHPud+DyoFYnIqcUWyySB7s35P07LiIywrh+7CIe/WQNB48c87s0kT/l5juafzrnNp3kPc33IhIC4utUYPrgDtx80VmMn/8D3UfN5dvNu/0uSwTQ72hEwkaJ6Cge7dGE/9zWhoOHj9Hr5QU8M/M7Dh3V0Y34S0EjEmba16/EjKEJ9GpRk9FfbqDHi/NZs1WTq4l/FDQiYahMbDGe6d2M1/rEs2vfYXqMnseLX6Rx9JimjpaCp6ARCWOdGsYxa0gCXRpX5dlZ39Pr5QWs36nJ1aRgKWhEwlz5ktG8eGMLXrjhAjZl7OeyUXMZN3ejJleTAqOgESkirmhWnVlDE+hQvxKPf7aW619dxOZdmlxNgs+XoDGzCmY228zSvOeAN+00sz5enzQz6+O1lTCzz8zsOzNbbWZPZusfY2bvmtl6M/vazOoUzB6JFA5VSsfy6s3xPNu7GWu37qXryBTe/nqTph+QoPLriOYBYI5zrj4wx1s+jplVAIYBbYDWwLBsgfSsc+484AKgnZl189pvA3Y75+oBw4GngrsbIoWPmXFNy5rMHJpAi9rleeijVdw8/hu27Tngd2kSpvwKmh7ABO/1BKBngD5dgNnOuQzn3G5gNtDVObffOfclgHPuMLAUqBlgu5OBTrrbtEhg1csV581bW/NYj8ak/ribpOEpfLg0XUc3ku/Mjw+Vmf3qnCuXbXm3c678CX3+BsQ65x73lh8GDjjnns3WpxxZQXOpc26jma0iK4zSvfc3AG2cc78EqKE/0B8gLi6u5aRJk/K0L5mZmZQqVSpP64YzjUtgoTouO/b9zmurDvH97t9pUSWSPo1jKBtTcP9GC9Vx8Vuoj0vHjh2XOOfic+oXFawCzOxzsuayOdFDud1EgLY/U9HMooCJwCjn3MbcrHNco3NjgbEA8fHxLjExMZdlHS85OZm8rhvONC6BhfK4XNPNMX7eDzwzax3/981RHu/ZhO7nVyuQvx3K4+KncBmXoJ06c85d6pxrEuAxBdhhZtUAvOdAE2qkA7WyLdcEtmZbHgukOedGBFrHC6KyQEb+7ZVI+IqMMG5POJvP7mlPjXLFufvtpQya+C2/7j/sd2lSyPn1Hc1UoI/3ug8wJUCfmUCSmZX3LgJI8tows8fJCpEhp9juNcAXTiecRU5L/bjSfHh3W+7tfC7TVm4jaXgKX36nydUk7/wKmieBzmaWBnT2ljGzeDMbB+CcywAeAxZ7j0edcxlmVpOs02+NgKVmtszM+nnbfQ2oaGbrgXsJcDWbiOSsWGQEgzrV5+MB7ShfIppb3ljMAx+s4LeDmjpaTl/QvqM5FefcLqBTgPZUoF+25fHA+BP6pBP4uxiccweB3vlarEgR1qRGWabe044Rn6fxylcbmJv2C89c05S29Sr5XZoUIrozgIicUkxUJP/oeh7v39mW6KgIbhz3NY9MXc2Bw5p+QHJHQSMiudLyrPJMG9SBvm3r8MaCH+k+ai5LNmlyNcmZgkZEcq14dCSPXNmYd25vw+Gjv9N7zAKenK7J1eTUFDQictranlOJGUM6cG18LcZ8tYErX5jPqp/2+F2WhCgFjYjkSenYYjzZqymv923F7v2H6Tl6PiM/T+OIJleTEyhoROSMdDyvCrOGJnBZ02oM//x7rn5pAWk7fvO7LAkhChoROWPlSkQz8voLeOkvLfjp1wNc9sI8xqZs4JgmVxMUNCKSj7qfX42ZQxJIPLcy/572Hde9spAff9nnd1niMwWNiOSryqVjeOWvLXn+2mas2/Eb3UbO5a2FP2rq6CJMQSMi+c7MuLpFTWYNTaBV3Qo8PGU1N4//hp9+1eRqRZGCRkSCplrZ4ky4pRX/vup8lm7eTdfhKbyfukWTqxUxChoRCSoz48Y2tZkxOIGG1cvw98kruP3NVHb+dtDv0qSAKGhEpEDUrliCSbdfyMOXN2Ju2i8kDU/h0xVbc15RCj0FjYgUmIgI47b2dflsUAfOqliSge98y8B3lpJ5WKfSwpkv0wSISNFWr0opPrjzIl5J2ciIz78nJRJia+7g0kZxfpcmQaAjGhHxRVRkBAM61mPKgPaUjTH6vZnK399fzl5NrhZ2FDQi4qtG1csw7KJYBnasxwdL0+k6PIV5ab/4XZbkIwWNiPguKsL4W5cGfHBXW2KjI7npta/555RV7D981O/SJB8oaEQkZFxQO2tytdva1+WtRZvoNnIuqT9m+F2WnCFfgsbMKpjZbDNL857Ln6RfH69Pmpn18dpKmNlnZvadma02syez9e9rZj+b2TLv0a+g9klE8kdssUgevrwRE2+/kN+do/crC3li2loOHtHkaoWVX0c0DwBznHP1gTne8nHMrAIwDGgDtAaGZQukZ51z5wEXAO3MrFu2Vd91zjX3HuOCuhciEjQXnl2R6YMTuKF1bV5J2cgVL8xjRfqvfpcleeBX0PQAJnivJwA9A/TpAsx2zmU453YDs4Guzrn9zrkvAZxzh4GlQM0CqFlEClipmCj+fdX5vHFLK347eJSrXlrA87O/1+RqhYxfQRPnnNsG4D1XCdCnBrAl23K61/YnMysHXEHWUdEfepnZCjObbGa18rdsEfFDYoMqzBySQI9m1Rk1J42eo+ezbrsmVyssLFg3tzOzz4GqAd56CJjgnCuXre9u59xx39OY2d+BGOfc497yw8B+59xz3nIU8Akw0zk3wmurCGQ65w6Z2Z3Atc65S05SX3+gP0BcXFzLSZMm5Wk/MzMzKVWqVJ7WDWcal8A0LoGdzrgs2XGUN1Yf4sARuKp+MbrVLUaEWZAr9Eeof146duy4xDkXn1O/oAXNKf+o2Tog0Tm3zcyqAcnOuQYn9LnB63OHt/yK12+itzyerFAZdJK/EQlkOOfK5lRPfHy8S01NzdO+JCcnk5iYmKd1w5nGJTCNS2CnOy67Mg/x0EermLF6Oy1ql+O5a5tTt1LJ4BXok1D/vJhZroLGr1NnU4E+3us+wJQAfWYCSWZW3rsIIMlrw8weB8oCQ7Kv4IXWH64E1uZz3SISAiqWiuHlm1ow8vrmrN+ZSbeRKbwx/wdNrhai/AqaJ4HOZpYGdPaWMbN4MxsH4JzLAB4DFnuPR51zGWZWk6zTb42ApSdcxjzIu+R5OTAI6FuQOyUiBcfM6NG8BrPvvZgLz67II5+s4S/jviZ9936/S5MT+HJTTefcLqBTgPZUoF+25fHA+BP6pAMBT8g65x4EHszXYkUkpMWVieX1vq14d/EWHvt0DV1HzOXhyxtybXwtLEy/uylsdGcAESn0zIzrW9dmxpAEmtQowz8+WMmtbyxmx15NrhYKFDQiEjZqVSjBO/0uZNgVjVi4cRdJw1OYsuwnTR3tMwWNiISViAjjlnZ1mTaoA2dXLsngScsY8M5SdmUe8ru0IktBIyJh6ezKpZh8Z1v+0fU8Pl+zky4jUpi1ervfZRVJChoRCVuREcZdiecw9Z52VCkdS/+3lnDve8vYc0CTqxUkBY2IhL3zqpbh4wHtGNSpPlOWbaXL8BRSvv/Z77KKDAWNiBQJ0VER3Nv5XD66uy2lYqO4efw3PPTRSvYd0uRqwaagEZEipWnNcnx6T3v6J5zNO99sptvIuXy9cZffZYU1BY2IFDmxxSL5n+4Nee+OiwC4/tVFPP7pGk2uFiQ+AT/BAAANVUlEQVQKGhEpslrVqcD0wR24qc1ZjJv3A5eNmsuyLZpcLb8paESkSCsZE8VjPZvw1m2t2X/4GL1eXsBzs9Zx+KgmV8svChoREaBD/crMGJLAVRfU4IUv1tNj9HzWbtvrd1lhQUEjIuIpW7wYz/Zuxqs3x/Pzb4e48sV5jP5yPUc1dfQZUdCIiJygc6M4Zg1NIKlRVZ6ZuY5rxixkw8+ZfpdVaCloREQCqFAymtF/acELN1zAj7v20X3kXMbP0+RqeaGgERE5hSuaVWfWkATa16vEo5+u4YZXF7ElQ5OrnQ4FjYhIDqqUiWVcn3ievqYpq7fupeuIFCZ+s1nTD+SSgkZEJBfMjGvjazFzaALNapXjwQ9X0vf1xWzfo8nVcqKgERE5DTXKFec/t7Xh0R6N+eaHDJKGf8VH36br6OYUfAsaM6tgZrPNLM17Ln+Sfn28Pmlm1idb+wwzW25mq81sjJlFns52RUTyKiLCuPmiOkwb3IH6caUZ+u5y7vzPEn7R5GoB+XlE8wAwxzlXH5jjLR/HzCoAw4A2QGtgWLbguNY51wxoAlQGeud2uyIi+aFupZK8d8dFPNjtPL787meShqcwY9U2v8sKOX4GTQ9ggvd6AtAzQJ8uwGznXIZzbjcwG+gK4Jz74ye7UUA08Mdxa262KyKSLyIjjDsuPodPB7WnerlY7vzPUoZM+pY9+zW52h/8DJo459w2AO+5SoA+NYAt2ZbTvTYAzGwmsBP4DZh8GtsVEclX58aV5qO72zHk0vp8umIbSSO+4st1O/0uKyRYML/AMrPPgaoB3noImOCcK5et727n3HHfp5jZ34EY59zj3vLDwH7n3HPZ+sQCbwNjnHOzzezXnLbrtfcH+gPExcW1nDRpUp72MTMzk1KlSuVp3XCmcQlM4xJYuI3Lj3uO8erKQ/yU6bi4ZhTXnxdN8Sg77e2E+rh07NhxiXMuPqd+UcEswjl36cneM7MdZlbNObfNzKqRdWRyonQgMdtyTSD5hL9x0MymknXKbDaQm+3inBsLjAWIj493iYmJgbrlKDk5mbyuG840LoFpXAILx3G54bJjPD/7e8ambGTDvmI8c01TLjqn4mltI1zGxc9TZ1OBP64i6wNMCdBnJpBkZuW9iwCSgJlmVsoLEcwsCugOfHca2xURCaqYqEge7NaQyXdeRFSEccOri/i/T1Zz4HDRm1zNz6B5EuhsZmlAZ28ZM4s3s3EAzrkM4DFgsfd41GsrCUw1sxXAcrKOWsacarsiIn5oeVYFpg3uQN+2dXh9/o9cNmouSzfv9rusAhXUU2en4pzbBXQK0J4K9Mu2PB4Yf0KfHUCr09muiIhfSkRH8ciVjUlqFMffJ6/gmpcXcOfF5zD40vrEREX6XV7Q6c4AIiIFpG29SswY0oHeLWvxUvIGerw4n9Vb9/hdVtApaEREClDp2GI8dU1TxveNZ9e+w/R4cT4vzEkL68nVFDQiIj645Lw4Zg1JoPv51Xhu9vf0enkB63f+5ndZQaGgERHxSfmS0Yy64QJG39iCzRn76T5qHuPmbuRYmE2upqAREfHZZU2rMWvoxSTUr8zjn63lhrGL2LRrn99l5RsFjYhICKhcOoZXb27Jc72bsXb7XrqNnMsXm4+ExfQDChoRkRBhZvRqWZOZQxJoeVZ53lxzmJvHf8PWXw/4XdoZUdCIiISY6uWK8+atrbm5UTRLNu2my4gUPlhSeCdXU9CIiIQgM+OS2sWYPrgDDauW4b73l9P/rSX8/Fvhm1xNQSMiEsLOqliSif0v5H8va8hX3/9M0vCvmLaycE2upqAREQlxkRFGvw5nM21Qe2pVKMHdby9l0MRv+XX/Yb9LyxUFjYhIIVGvSmk+vKst93U+l2krt9F5eApffLfD77JypKARESlEoiIjuKdTfaYMbEfFktHc+kYq909ezm8HQ3fqaAWNiEgh1Lh6WaYMbMeAjucweUk6XUfMZcH6X/wuKyAFjYhIIRUTFcnfu5zHB3e1JSYqghvHfc2wKavYf/io36UdR0EjIlLIXVC7PJ8N6sAt7eowYeEmuo+cy5JNGX6X9ScFjYhIGCgeHcmwKxoz8fYLOfq7o/eYhTwxfS0Hj/g/dbSCRkQkjFx0TkVmDEngula1eOWrjVz54jxW/eTv5GoKGhGRMFMqJoonrm7K67e0Ys+BI/QcPZ8Rn3/PEZ8mV1PQiIiEqY4NqjBryMVc0aw6Iz5P46qX5vP9joKfXM2XoDGzCmY228zSvOfyJ+nXx+uTZmZ9srXPMLPlZrbazMaYWaTX/oiZ/WRmy7xH94LaJxGRUFS2RDGGX9ecMTe1YNuvB7l81Dxe+WpDgU6u5tcRzQPAHOdcfWCOt3wcM6sADAPaAK2BYdkC6VrnXDOgCVAZ6J1t1eHOuebeY1owd0JEpLDo2qQaM4cm0PG8yjwx/TuufWUhP/5SMJOr+RU0PYAJ3usJQM8AfboAs51zGc653cBsoCuAc26v1ycKiAYK572zRUQKUKVSMYy5qSUjrmtO2o7f6DZyLp+u2Br0v2t+zG9gZr8658plW97tnCt/Qp+/AbHOuce95YeBA865Z73lmWQd6UwH/uqcO2ZmjwB9gb1AKnCfF1KBaugP9AeIi4trOWnSpDztS2ZmJqVKlcrTuuFM4xKYxiUwjUtgwRyX3Qd/Z8Lqw1xVvxhnlYnM0zY6duy4xDkXn1O/qDxtPRfM7HOgaoC3HsrtJgK0/ZmKzrkuZhYLvA1cQtYRz8vAY16/x4DngFsDbdw5NxYYCxAfH+8SExNzWdbxkpOTyeu64UzjEpjGJTCNS2DBHperugZt08cJWtA45y492XtmtsPMqjnntplZNWBngG7pQGK25ZpA8gl/46CZTSXrVNxs59yftzE1s1eBT/O+ByIikh/8+o5mKvDHVWR9gCkB+swEksysvHcRQBIw08xKeeGEmUUB3YHvvOVq2da/ClgVpPpFRCSXgnZEk4MngffM7DZgM95VY2YWD9zpnOvnnMsws8eAxd46j3ptccBUM4sBIoEvgDFen6fNrDlZp85+BO4osD0SEZGAfAka59wuoFOA9lSgX7bl8cD4E/rsAFqdZLt/zd9KRUTkTOnOACIiElQKGhERCSoFjYiIBJWCRkREgsqXOwOEGjP7GdiUx9UrAaE5Ube/NC6BaVwC07gEFurjcpZzrnJOnRQ0Z8jMUnNzC4aiRuMSmMYlMI1LYOEyLjp1JiIiQaWgERGRoFLQnLmxfhcQojQugWlcAtO4BBYW46LvaEREJKh0RCMiIkGloMklM+tqZuvMbL2ZBZp6OsbM3vXe/9rM6hR8lQUvF+PS18x+NrNl3qNfoO2EEzMbb2Y7zSzg3cMtyyhvzFaYWYuCrtEPuRiXRDPbk+2z8s+CrtEPZlbLzL40s7VmttrMBgfoU6g/MwqaXDCzSGA00A1oBNxgZo1O6HYbsNs5Vw8YDjxVsFUWvFyOC8C7zrnm3mNcgRbpjzfwph0/iW5Afe/Rn6wJ+4qCNzj1uADMzfZZebQAagoFR8maDbghcCEwIMB/R4X6M6OgyZ3WwHrn3Ebn3GFgElmTrWXXA5jgvZ4MdDKzQLOEhpPcjEuR45xLATJO0aUH8KbLsggod8JcSmEpF+NSJDnntjnnlnqvfwPWAjVO6FaoPzMKmtypAWzJtpzOf38Q/uzjnDsK7AEqFkh1/snNuAD08g73J5tZrYIpLaTldtyKoovMbLmZTTezxn4XU9C8U+4XAF+f8Fah/swoaHIn0JHJiZfr5aZPuMnNPn8C1HHONQU+5/8f9RVlRfGzkhtLybqlSTPgBeBjn+spUGZWCvgAGOKc23vi2wFWKTSfGQVN7qQD2f8lXhPYerI+3hTTZQn/0wQ5jotzbpdz7pC3+CrQsoBqC2W5+TwVOc65vc65TO/1NKCYmVXyuawCYWbFyAqZt51zHwboUqg/Mwqa3FkM1DezumYWDVwPTD2hz1Sgj/f6GuALF/4/UspxXE44j3wlWeefi7qpwM3elUQXAnucc9v8LspvZlb1j+81zaw1Wf9/2uVvVcHn7fNrwFrn3PMn6VaoPzO+TOVc2DjnjprZQGAmEAmMd86tNrNHgVTn3FSyPihvmdl6so5krvev4oKRy3EZZGZXknVlTQbQ17eCC4iZTQQSgUpmlg4MA4oBOOfGANOA7sB6YD9wiz+VFqxcjMs1wF1mdhQ4AFxfBP6xBtAO+Cuw0syWeW3/A9SG8PjM6M4AIiISVDp1JiIiQaWgERGRoFLQiIhIUCloREQkqBQ0IiISVAoaEREJKgWNiIgElYJGJASZWSvvRqSxZlbSm6ekid91ieSFfrApEqLM7HEgFigOpDvnnvC5JJE8UdCIhCjv/nGLgYNAW+fcMZ9LEskTnToTCV0VgFJAabKObEQKJR3RiIQoM5tK1qyldYFqzrmBPpckkie6e7NICDKzm4Gjzrl3zCwSWGBmlzjnvvC7NpHTpSMaEREJKn1HIyIiQaWgERGRoFLQiIhIUCloREQkqBQ0IiISVAoaEREJKgWNiIgElYJGRESC6v8BKCvw3+lMcoIAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xa7f0ea9b70>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def main():\n", | |
" simulation = simuler()\n", | |
"\n", | |
" ecrire_csv(*simulation)\n", | |
" figures(*simulation)\n", | |
"\n", | |
"\n", | |
"if __name__ == '__main__':\n", | |
" main()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python [default]", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment