Skip to content

Instantly share code, notes, and snippets.

@thmosqueiro
Last active May 16, 2019 02:08
Show Gist options
  • Save thmosqueiro/302fb5eafab8081a516c5844a4055ec7 to your computer and use it in GitHub Desktop.
Save thmosqueiro/302fb5eafab8081a516c5844a4055ec7 to your computer and use it in GitHub Desktop.
A slow introduction to TensorFlow
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Intro to TensorFlow using MNIST\n",
"\n",
"Walkthrough using TensorFlow on the MNIST dataset.\n",
"\n",
"### Table of contents\n",
"\n",
"1. [Implementing a Perceptron](#Implementing-a-Perceptron)\n",
"\n",
"2. [Adding regularization to the loss function](#Adding-regularization-to-the-loss-function)\n",
"\n",
"3. [Adding a hidden layer](#Adding-a-hidden-layer)\n",
"\n",
"4. [Problem: create a network with 3 hidden layers](#Problem:-create-a-network-with-3-hidden-layers)\n",
"\n",
"\n",
"\n",
"I will be updating this notebook as I get feedback.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pylab as pl\n",
"import matplotlib.cm as cm\n",
"%matplotlib inline\n",
"\n",
"import time\n",
"from IPython.display import clear_output\n",
"\n",
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"### This just defines a colormap that is more suitable for the\n",
"### visualization that we will use\n",
"\n",
"from matplotlib.colors import LinearSegmentedColormap\n",
"\n",
"cdict2 = {'red': ((0.0, 1.0, 1.0),\n",
" (0.5, 0.0, 0.0),\n",
" (1.0, 0.0, 0.0)),\n",
"\n",
" 'green': ((0.0, 0.0, 0.0),\n",
" (1.0, 0.0, 0.0)),\n",
"\n",
" 'blue': ((0.0, 0.0, 0.0),\n",
" (0.5, 0.0, 0.0),\n",
" (1.0, 1.0, 1.0))\n",
" }\n",
"\n",
"\n",
"blue_red2 = LinearSegmentedColormap('BlueRed2', cdict2)\n",
"pl.register_cmap(cmap=blue_red2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Importing MNIST data."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting MNIST_data/train-images-idx3-ubyte.gz\n",
"Extracting MNIST_data/train-labels-idx1-ubyte.gz\n",
"Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n",
"Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n"
]
}
],
"source": [
"import tensorflow.examples.tutorials.mnist as mnist_data\n",
"mnist = mnist_data.input_data.read_data_sets(\"MNIST_data/\", one_hot=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this dataset we have 55 thousand images for training and 10 thousand for validation. To access the input images, you can use ```mnist.train.images``` or ```mnist.test.images```. The labels can be accessed via ```mnist.train.labels```. Here is the shape of the images:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(55000, 784)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.train.images.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That means that every image 28 x 28 pixels. For simplicity, these images have been flattened (placed in one single line). Let's visualize one of them."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABsNJREFUeJzt3U+MXXUZx+F722kH6KBpqVKg1JBGsVhLKhApQbthoYmm\nSaOJISSmbm1YCIWdC3GliYkaZUNSSogsSAyQGBASk2pSKy0Uw0hLGii0GoG2QlvbgtAeN25cnPcO\nc2buzNzv82zfe/4s7ie/xe+ec/tN0/SAPIvm+gaAuSF+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CDU2\nzIs1zW4/J4RZ1u9v7k/lc1Z+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+\nCCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+\nCCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+CCV+\nCCV+CDU21zdAd0+9dsO0j1152dJyPvmPU+X8K2tXlvN1y/d97HtiOKz8EEr8EEr8EEr8EEr8EEr8\nEEr8EGpk9vmfeWN9OX/h8PFy/rtfPT+TtzNU/zlxcNrH9hf3y/nFDy6U84cm6t8JjBXzVbdcXR77\nyP3XlPOJsXfKOTUrP4QSP4QSP4QSP4QSP4QSP4QSP4TqN00ztIs1ze5OF/vR7z/dOnvqgd31tT+6\n2OXSzIHrtlxfznfeu7qcX77krZm8nQWj399c/3jjf6z8EEr8EEr8EEr8EEr8EEr8EEr8EGpBPc//\n3K6XWmeD9vFX3Fo/G750wHPps+m2zdeV8603rxnSnXx8z0z+s5w/8dD+1tm/Xz1ZHnvkyVfL+bZy\n2us9vKP9fQHeBWDlh1jih1Dih1Dih1Dih1Dih1Dih1AL6nn+t8+3/w/9wZP1TxY2XXWknI8vPjOt\ne6J2/P3Ptc6+c8/e8tj3Xqh/QzDI9x/8Zuvsextf73Tu+czz/EBJ/BBK/BBK/BBK/BBK/BBqQW31\nMVr+cGxDOd/x7cc6nX981UTrbM8Tn+l07vnMVh9QEj+EEj+EEj+EEj+EEj+EEj+EEj+EEj+EEj+E\nEj+EEj+EEj+EEj+EEj+EWlB/0c3C89gr7a/u3jf5xqxe+8K5D1tnR89+uTx2zbK/zPTtzDtWfggl\nfgglfgglfgglfgglfgglfgjlvf0j4NSHV7fOHn95vDx210/+NNO383/OHT3dPrw4d1+HJcsvKed7\nn147pDuZed7bD5TED6HED6HED6HED6HED6HED6E8zz8PHDj+pXK+7813y/lvfr23dXbmlRPTuqdR\n97W7bx3wieNDuY+5ZOWHUOKHUOKHUOKHUOKHUOKHULb6ZsA773++nG//+d/K+WtPPlpfYBYffZ24\n/opyvnTlZZ3O/+MdX20/9+J67bnnh8+V81MH3prWPfV6vd7qKycGfMJWHzCixA+hxA+hxA+hxA+h\nxA+hxA+h7PNP0a6/tr/K+eFf/rE89vRkvWc89on69dqD9tq37bi9dbZ6RX3szavOlvMV40fK+WAv\nTfvI8QGv1x6kej33N9Yt63TuUWDlh1Dih1Dih1Dih1Dih1Dih1Dih1D2+adoz/6/t84G7eOvv2tD\nOb/vzo3l/Asr9pfzXu/1AfP56djZW8r5mcO/7XT+RePtX+9Vl052OvcosPJDKPFDKPFDKPFDKPFD\nKPFDKPFDKPv8U/Sz717eOtt5w9fLY7dvOjrg7IP28UfT4X99UM7PHzvd6fw3bqn+T+F8p3OPAis/\nhBI/hBI/hBI/hBI/hBI/hLLVN0XLxk60zrZvGuKNjJA/H3q70/FLr7i0nP9g6xeL6fOdrj0KrPwQ\nSvwQSvwQSvwQSvwQSvwQSvwQyj4/s+qOu99tnb334sFO596wdV05/+wn7eVXrPwQSvwQSvwQSvwQ\nSvwQSvwQSvwQyj4/s+rMoZOts+aji+Wxg57Xv/dbNw64un3+ipUfQokfQokfQokfQokfQokfQokf\nQtnnp5Nn31xfzi+ca39mf8nyS8pjH3hwSzn3vH43Vn4IJX4IJX4IJX4IJX4IJX4IJX4IZZ+f0oWm\n/or89Bd7yvmiJe3ry23bNpbH3rHm5XJON1Z+CCV+CCV+CCV+CCV+CCV+CNVvmmZoF2ua3cO7GDNi\n0FbfzgPXlvObrl3eOtv4qRendU/U+v3N/al8zsoPocQPocQPocQPocQPocQPocQPoezzw4ixzw+U\nxA+hxA+hxA+hxA+hxA+hxA+hhrrPD8wfVn4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4I\nJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4IJX4I9V9tifbDDHn3OQAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5dd02d110>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n"
]
}
],
"source": [
"pl.imshow( np.reshape( mnist.train.images[0,:], (28,28) ), cmap = pl.get_cmap('RdYlBu'), vmax = 1.0, vmin = -1 )\n",
"pl.axis('off')\n",
"pl.show()\n",
"\n",
"print mnist.train.labels[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That means that the first example is a 7. As you can see, this dataset is not the classical MNIST, it is a bit harder."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Implementing a Perceptron"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The simplest neural network consists of 1 single layerwith the inputs, and one layer for the output. Originally proposed as a binary classifier (i.e., classifies patterns into two categories or classes), this connectivity is also known as [Perceptron](https://en.wikipedia.org/wiki/Perceptron).\n",
"\n",
"The model can be defined using functions defined in the tensorflow library. We will use $x$ as our input vector, with dimension $N_{samples} \\times 784$. The weights connecting the input to the decision layer are stored in the matrix $W$, such that \n",
"\n",
"$$ y^{in} = W x + b \\, , $$\n",
"\n",
"where $b$ is a bias applied to each unit. The dimensions of $y^{in}$ is $N_{samples} \\times 10$. It is usual to apply a softmax function on the output of these neural networks, in order to turn these into something with properties of a probability:\n",
"\n",
"$$ y = softmax (y^{in}) \\quad \\rightarrow \\quad y_j = \\dfrac{\\exp\\left( y^{in}_{j} \\right)}{ \\sum_{k=1}^{10} \\exp\\left( y^{in}_{k} \\right) } . $$\n",
"|\n",
"Thus, the element with higher probability is considered the prediction of this neural network. During training, both $W$ and $b$ are jointly optimized with respect to a given loss function. In this first example, we will use the cross entropy,\n",
"\n",
"$$ H ( y, \\hat{y} ) = - \\sum_{j}^{N_{samples}} \\sum_{k=1}^{10} y \\log \\left( \\hat{y} \\right) . $$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We start by defining the model:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"x = tf.placeholder(tf.float32, [None, 784])\n",
"\n",
"W = tf.Variable(tf.zeros([784, 10]))\n",
"b = tf.Variable(tf.zeros([10]))\n",
"\n",
"y = tf.nn.softmax(tf.matmul(x, W) + b)\n",
"y_ = tf.placeholder(tf.float32, [None, 10])\n",
"\n",
"cross_entropy = -tf.reduce_sum( y_*tf.log(y) )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we need to define the optimization procedure."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To get tensorflow started:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n",
"\n",
"sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))\n",
"sess.run(init)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We next run the training..."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.2423\n",
"0.9183\n",
"0.9187\n",
"0.9203\n",
"0.9166\n",
"0.923\n",
"0.9199\n",
"0.9155\n",
"0.919\n",
"0.9225\n",
"0.9171\n",
"Elapsed time: 46.061363 s\n"
]
}
],
"source": [
"# Total number of epochs\n",
"nepochs = 50000\n",
"\n",
"# Defining the interval at which we evaluate the performance\n",
"intcheck = int(nepochs*0.1)\n",
"\n",
"# This will store the evolution of the performance\n",
"# during the training \n",
"perfEvol = []\n",
"\n",
"\n",
"# Evaluating training time\n",
"tic = time.time()\n",
"\n",
"for i in range(nepochs + 1):\n",
" batch_xs, batch_ys = mnist.train.next_batch(30)\n",
" sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})\n",
" \n",
" if i % intcheck == 0:\n",
" correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))\n",
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
" \n",
" perfEvol.append( sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}) )\n",
" \n",
" print perfEvol[-1]\n",
"\n",
"\n",
"\n",
"# Printing the elapsed time during the training process\n",
"toc = time.time()\n",
"print \"Elapsed time: %f s\" % (toc - tic)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best performance: 0.920\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXGWd7/HPr6q37AmkE0I6SgKBpIUkQIuIIvsI6MBc\nx0FQxwWVwQGXYWa8ODrOHbwvx+3FqKMz3oC4XRSjjt6MA2ICQeKSkAbSTdJZCM2SCkk6CenO0lst\nv/tHnS4qW6c6XadPddX3/Xr1q8/ydJ3f03Xq/Oqc5zzPMXdHREQEIBZ1ACIiUjqUFEREJEdJQURE\ncpQUREQkR0lBRERylBRERCQntKRgZveZWYeZrTvGejOzb5jZFjNrNbPzwopFREQKE+aZwveAqwdZ\nfw0wN/i5BfiPEGMREZEChJYU3P1x4JVBilwP/MCzVgGTzWxGWPGIiMjxVUW47ZnA1rz5RLBs++EF\nzewWsmcTjBs37vx58+aNSIAiIuXiySef3O3u9ccrF2VSKJi7LwYWAzQ1NXlzc3PEEYmIjC5m9mIh\n5aK8+2gbMCtvviFYJiIiEYkyKSwF3hfchXQh0OXuR1w6EhGRkRPa5SMz+zFwKTDVzBLAPwHVAO7+\nbeBB4FpgC9ANfDCsWEREpDChJQV3v+k46x24Lazti4jI0KlHs4iI5CgpiIhIjpKCiIjkKCmIiEiO\nkoKIiOSMih7NIqXI3Vm7tZN7VrazYuMuepNp6qrjXD5vGh95yxwWNkzCzKIOU4ap0t5ny94ZOnqM\nlmEuotqRotyBK6nOyXSGO5asZXlbB32pNJm8j1HMoLYqzpWN07j7hkVUx4t/Ql5pByrQ+zzcOpvZ\nk+7edNxySgrFF9WOFOUOXEl1dnc+/sDTLGvbSW8yc8xyddUxrmqczjduPLeoB6so3+eokpHe5+HX\nudCkoDaFInN37liylmVtO+lJHvpGAmQcepJplrXt5I4laylWUo5qu1FuO6rtrt3ayfK2jkEPFAC9\nyQzL2zpoSXQVZbsQ7fucTGf4+ANP8+57VvPrdTvoSaZxstt7aN12blq8io8/8DTJ9OD/l6HS+zyy\n77OSQpFFtSNFuQNXWp3vXfk8fal0QWX7UmnuXdlelO1CdHWO8iCl9/nYwvg8q6G5yE5kR/rmu4f/\nJNKothvltsPabiqdoTuZJm7GuNoq+lMZnn5pL93JNN19aX7TtuOIg+KxZByWb9jJ15ZvpjoeoyYe\noypuVMdjvPH0kzm9fjx7D/az+vk9VMdjuZ+aKmPO1PFMGVdDd3+KXfv7qIrH+OaKLZH8r0/kILVo\n1uRhbxeG/z5396foS2ZIpjP0pbK/q+MxZp00FoCnXtrLgd4UyXSG/lSG/nSGaRPqeHRjx5De59+0\n7eQPW3ZTWx3nlEl1zJw8BoDO7n7qquPUVsUKvrwU5edZSaHIhrojLW/bCcAfn9vD/atfxAEcPDvF\nZ9/WyKmTx/Doxp38ZE32mUTuMLCJf3nHOUwdX8uyIR6o/vuZ7bz4b7/jF399EVXxGP/2yLP8Yu02\nMhkn7U4mA1Vx47d/f1k2jl8+w/9b+/Ih6yePreaJz1w55Dr/d+t21m1bwZnTJ7D4fdlLnP/4y3W8\nsOcgtVUDB8UYc6eN5/bL5wJw78p2unqS1ATraqpiLGvbOaTt/nrdDj79n61096c52Jfm4rlTef9F\np5FMZ7j0K4/R3Z+iuz9NXyp74Lv1ktO585p59PSnedfiVYVt6Cj6khm+tvzZI5Z/9S8Wcnr9eJ7b\ndYBb/+9TR6z/9nvP4+qzZ7Dmhb28/74nhrzdjMMjGzp4fPMuvvv753MHptqqOLXVMW677AymT6yj\nNdHJqvY92eVVMWqrs2UuPauesTVVbO/q4asPb6K3wINUbyrN3cs28YOb3wDAlo4DvNzZc8hBF+D6\nRTOB7Gdg0879ufXJdIYxNVXccdWZADy8fmj79q9at7Nz3x/46a0XAfCOf/8DG3fsP6TcRaefzI8+\nciEAn3xgLS+90n3I+ivnT6c3WVh9B/SnMrz73tUA/OWFr+Xzf3Y2yXSGRXctA8AMxlTHGVMd5+Y3\nz+a2y85gf2+SD32vmbqaOGOqY9n1NfEh79uPbOgYUqyDUVIosqHuSAMHoK6eftq27wPAADPD8tbv\n60nxwu5u8r9omBnpYM/pTw/tdN0d6ifU5pLLtIm1zJ8xkbgZ8ZgRM6Om6tWri+e/dgpVsRjx2Kvr\nx9XET6jODixomMwpk+pyy5LpDPt7U+wJDhrJ4GfAz55MsGnnfoZzVSKVcZZv6GBsTZyxNVUc6EsB\n5L61j6mO59aNq42zMPimO76uivs//AbG1MQZV1PFdd/8Xe59KURddZz1//xWkpkMybSTDA584+uy\nH7/GUyfy4McvJpnOkMpk6E85yXSG+TMmAjDvlAn867sWkkw5n/p565Dq3JtK05tMs/tAP32pbMLr\nS2b/xx+46DQAnnj+Fb7w4MYj/nbVp69gbE0VS9Yk+P1zewrepjs8vnk37o6Z8Z3ftfPjJ7YeUmZs\nTTyXFJa2vMzSlpcBqA7OomZMqsslhVShR8c8157z6pN9b3nLnOwXioEvHPEY0ybW5tZ//cZFZNzz\nztJiTKir4pIv76ZnCPt2bVWMH9x8Ab2pDKdMfHXf/tzbG+lJZt+Hnv40Pck0p9ePByCdcWIx2NeT\npGNfdl1PfzqXOAtVaMIuhO4+KrL5//jrIe1IY6rjbPj81aN2uyO5bXcnlfHcN8oL/+WR417OKMZ2\nD3fb/U/x0LrtBX2Ti1n2AFWsU/sw/tfpjNObDBJGKk1fMnuZZU79OKrjMZ7ffZDLvvrYkOI04Lkv\nXEssZrTvOsArB/tfPShXZQ/MA5dvepNpzKA6FiMWO/LySlT7drm9z7r7KCKXz5vGUfbro4oZXDF/\n2qje7khu2yz7LXJsTRWTx9ZwxbzpkdT5wxfPprYqXlDZ2qo4H754TlG2C+H8r+OxbNvJSeNqmDFp\nDKdNHcdZp0zI3eY4e+o4xlQXVt8BddXx3AF+Tv14mk47iQUNk5k/YyKn14/PJYSBsrVV8aMmBIhu\n3y6397lQSgpFFtWOFOUOXGl1XjRrMlc2TqOuevCPT111jCsbp7GwYVJRtgvR1TnKg5Te58EV+/Os\npFBkUe1IUe7AlVZnM+PuGxZxVeN0xlTHjzhYxoIGxasap3P3DYuK2qEpqjpHeZDS+3xsYXye1aYQ\ngoGeiMvW76T3sAbJcuvdG/W2o+7d25Lo4p7H23l0Ywe9qTR1VXGumD+Nj1w8J9dQXWzq3av3Ocwe\nzUoKIXF37lnZzhce3EhtVYz+dGZEdqSoduAotx1lnaMSRZ1LYRwgvc8nXmclhRLR3Z+ibpBGNJHR\npBIPzOWi0KSgfgohG1ujf7GUDzNj0azJfOs9xbn1UkqPGppDkkxneP99T7BiY/F6GoqIhE1JISSb\nduznt5t3sT/oNSsiMhooKYSkNRi1sJi3iomIhE1JISStiU4mj63mNXk9N0VESp2SQkhaEl2cM7P8\nHokoIuVNt8aEIJNxpk2o5cI5J0cdiojIkCgphCAWM75/8wVRhyEiMmS6fBSC0dYhUERkgJJCCP7+\nZ6385XdWRx2GiMiQKSmE4KmX9hY8oqSISClRUiiyfb1J2ncdVP8EERmVlBSKbF3QaW2BBgYTkVFI\nSaHIWgaSwkydKYjI6KOkUGTzTpnAB990GlPG1UQdiojIkIWaFMzsajPbZGZbzOzOo6x/jZmtMLOn\nzazVzK4NM56RcNm8afzTn74u6jBERE5IaEnBzOLAt4BrgEbgJjNrPKzYZ4El7n4ucCPw72HFMxJ6\n+tNs6+xRPwURGbXCPFO4ANji7u3u3g88AFx/WBkHJgbTk4CXQ4wndH94bjdv+uKjNL+4N+pQRERO\nSJhJYSawNW8+ESzL97+A95pZAngQ+NjRXsjMbjGzZjNr3rVrVxixFkVLoouYQeOMiccvLCJSgqJu\naL4J+J67NwDXAj80syNicvfF7t7k7k319fUjHmShWhOdnDFtPONqNaSUiIxOYSaFbcCsvPmGYFm+\nDwFLANz9j0AdMDXEmELj7rQmuljQoP4JIjJ6hZkU1gBzzWy2mdWQbUheeliZl4ArAMxsPtmkULrX\nhwaR2NvDKwf71ZNZREa10K5zuHvKzG4HHgbiwH3uvt7M7gKa3X0p8LfAPWb2N2QbnT/go/TWnclj\nq/nGTedyrnoyi8goZqPtGNzU1OTNzc1RhyEiMqqY2ZPu3nS8clE3NJeNh9fvYPPO/VGHISIyLEoK\nRZDJOH+7pIUf/vHFqEMRERkWJYUiaN99gAN9KRaokVlERjklhSJo2ZodGXWhGplFZJRTUiiC1kQn\nY2vinF4/PupQRESGRUmhCFq3dXH2zEnEYxZ1KCIiw6LxGIrg+zdfwN6D/VGHISIybEoKRTCxrpqJ\nddVRhyEiMmy6fDRMv928i39dtpneZDrqUEREhk1JYZgeemY73//jC9RW6V8pIqOfjmTD1JLo4pyZ\nkzBTI7OIjH5KCsPQ059m8879LNRw2SJSJpQUhqFtexfpjKsns4iUDSWFYdjR1cfYmrh6MotI2dAt\nqcPwtgUzuPrsU9RpTUTKhs4UhkkJQUTKiZLCCerqSXLdN3/HY5s6og5FRKRolBRO0DOJLloTXTpT\nEJGyoqRwgloSnQAsmKlGZhEpH0oKJ6g10clpJ49l0liNeSQi5UNJ4QS1JrpYoE5rIlJmlBROQF8q\nzbmvmczFc6dGHYqISFGpn8IJqK2K8+/vOT/qMEREik5nCidAw2SLSLlSUjgBf/XDJ/nL76yOOgwR\nkaJTUhgid6c10cmMSXVRhyIiUnRKCkOU2NvD3u6k7jwSkbKkpDBEA53W9AwFESlHSgpD1JrooiYe\n46xTJkQdiohI0emW1CF60xlTOWlcDTV6JrOIlCElhSG65Mx6LjmzPuowRERCoa+7Q9DZ3c+G7ftI\npTNRhyIiEgolhSF4ZEMH13x9Je27D0YdiohIKJQUhqA10cnYmjin14+POhQRkVCEmhTM7Goz22Rm\nW8zszmOUucHM2sxsvZn9KMx4hqsl0cXZMyfpwToiUrZCSwpmFge+BVwDNAI3mVnjYWXmAp8G3uTu\nrwM+GVY8w9WfytC2fR8LGyZFHYqISGjCPFO4ANji7u3u3g88AFx/WJmPAN9y970A7l6yDzzevHM/\n/amMejKLSFkLMynMBLbmzSeCZfnOBM40s9+b2Sozu/poL2Rmt5hZs5k179q1K6RwBzd76ji++8HX\n86Yz9AwFESlfUfdTqALmApcCDcDjZnaOu3fmF3L3xcBigKamJh/pIAHG1VZx2VnToti0iMiIOe6Z\ngpl9zMymnMBrbwNm5c03BMvyJYCl7p509+eBzWSTRMn50eqXWLetK+owRERCVcjlo+nAGjNbEtxN\nVOitN2uAuWY228xqgBuBpYeV+SXZswTMbCrZy0ntBb7+iOnuT/HZXz7Db9bviDoUEZFQHTcpuPtn\nyX57/w7wAeBZM/uCmZ1+nL9LAbcDDwMbgCXuvt7M7jKz64JiDwN7zKwNWAH8vbvvOeHahGT9y/vI\nOGpkFpGyV1Cbgru7me0AdgApYArwMzNb5u6fGuTvHgQePGzZ5/JfF7gj+ClZLVuzTRwLZul2VBEp\nb8dNCmb2CeB9wG7gXrLf5pNmFgOeBY6ZFMpFa6KLGZPqmDZBT1sTkfJWyJnCScA73P3F/IXunjGz\nt4cTVmnZuGMfC9RpTUQqQCFJ4SHglYEZM5sIzHf31e6+IbTISsivPnYx+3qTUYchIhK6Qu4++g/g\nQN78gWBZxaipijF1fG3UYYiIhK6QpGBBgzCQvWxE9J3eRswvnk5w13+1kclE0mdORGREFZIU2s3s\n42ZWHfx8ghLsSxCWh57ZwYpNHcQ0MqqIVIBCksKtwEVkeyMngDcAt4QZVClpTXSpkVlEKsZxLwMF\nI5feOAKxlJyOfb3s2NerTmsiUjEK6adQB3wIeB2Qu1Hf3W8OMa6S0JLIjnWkZyiISKUo5PLRD4FT\ngLcCvyU7sN3+MIMqFQf6ksyYVMfrTlVSEJHKYHk3Fh29gNnT7n6umbW6+wIzqwZWuvuFIxPioZqa\nmry5uTmKTYuIjFpm9qS7Nx2vXCFnCgO9tjrN7GxgEqAHC4iIlKFCksLi4HkKnyU79HUb8KVQoyoB\nW1/p5pKvrOB3z+6OOhQRkREzaENzMOjdvuAZyo8Dc0YkqhKwdmsnL+7pZvLY6qhDEREZMYOeKQS9\nl8t+FNSjaU10UlMV46xTJkQdiojIiCnk8tFyM/s7M5tlZicN/IQeWcRaEl00zphIdbyQf5GISHko\nZAyjdwW/b8tb5pTxpaR0xlm3rYu/OL8h6lBEREZUIT2aZ49EIKWkuz/FdQtP5ZKz6qMORURkRBXS\no/l9R1vu7j8ofjilYUJdNV/88wVRhyEiMuIKuXz0+rzpOuAK4CmgbJPCngN9TBlbo5FRRaTiFHL5\n6GP582Y2GXggtIhKwM3fW8OUcTV874MXRB2KiMiIOpFbaw4CZdvO0J/KsGH7fs6arltRRaTyFNKm\n8F9k7zaCbBJpBJaEGVSUNu7YR386o+GyRaQiFdKm8NW86RTworsnQooncgPDZevBOiJSiQpJCi8B\n2929F8DMxpjZae7+QqiRRaR1aycnjauhYcqYqEMRERlxhSSFn5J9HOeAdLDs9UcvPrq947wG3jDn\nZMx055GIVJ5CkkKVu/cPzLh7v5nVhBhTpN54+slRhyAiEplC7j7aZWbXDcyY2fVAWY4nva2zh1Xt\ne+hLpaMORUQkEoUkhVuBfzCzl8zsJeB/An8VbljReLB1OzcuXsW+nlTUoYiIRKKQzmvPARea2fhg\n/kDoUUWkJdHJqZPqqJ9QG3UoIiKROO6Zgpl9wcwmu/sBdz9gZlPM7H+PRHAj7ZltXeqfICIVrZDL\nR9e4e+fATPAUtmvDCykand39vLinmwWz1D9BRCpXIUkhbma56ylmNgYou+srrUGntYU6UxCRClbI\nLan3A4+Y2XcBAz4AfD/MoKJwweyT+PlHL2L+DI15JCKVq5CG5i+ZWQtwJdkxkB4GXht2YCOtrjrO\n+a+dEnUYIiKRKnSU1J1kE8JfAJcDGwr5IzO72sw2mdkWM7tzkHJ/bmZuZk0FxlN0X1u+madf2hvV\n5kVESsIxzxTM7EzgpuBnN/ATwNz9skJe2MziwLeAq4AEsMbMlrp722HlJgCfAFafUA2KYOe+Xr62\n/Fkm1lVz7mt0tiAilWuwM4WNZM8K3u7ub3b3fyM77lGhLgC2uHt7MEzGA8D1Ryn3eeBLQO8QXruo\nWrZmb65aqDuPRKTCDZYU3gFsB1aY2T1mdgXZhuZCzQS25s0ngmU5ZnYeMMvd/3uwFzKzW8ys2cya\nd+3aNYQQCtOa6CIeMxpnKCmISGU7ZlJw91+6+43APGAF8Elgmpn9h5n9yXA3bGYx4G7gb49X1t0X\nu3uTuzfV19cPd9NHaEl0cub0CYypiRf9tUVERpPjNjS7+0F3/5G7/ynQADxNdvyj49kGzMqbbwiW\nDZgAnA08ZmYvABcCS6NobE7s7WGhHqojIoK5+/FLncgLm1UBm4EryCaDNcC73X39Mco/BvyduzcP\n9rpNTU3e3DxokSFzd3qTGZ0piEjZMrMn3f24X7oLvSV1yNw9BdxOtl/DBmCJu683s7vyh+IuBWam\nhCAiQmE9mk+Yuz8IPHjYss8do+ylYcZyLPc83s7zew7yhf9xThSbFxEpKaEmhdFgWdtOkplM1GGI\niJSE0C4fjQbpjLPu5S4NgiciEqjopLCl4wDd/WkW6M4jERGgwpNCSyLbk1kP1hERyaropBAzY2HD\nJOZMHRd1KCIiJaGiG5rfeX4D7zy/IeowRERKRsWeKbg7YXXcExEZrSo2KbQkujjv88tY88IrUYci\nIlIyKjYptCY62dud5NTJY6IORUSkZFRsUmjZ2sXU8TWcOqku6lBEREpGxSaF1kQnCxomYzaUR0SI\niJS3ikwKB/pSbNl1QJ3WREQOU5FJoT+V4ZaL5/CWM4v/wB4RkdGsIvspnDSuhk9fOz/qMERESk5F\nnim8sPsgvcl01GGIiJScikwK77vvCe5YsjbqMERESk7FJYW9B/t56ZVuzpmpQfBERA5XcUmhdVsX\nAAt155GIyBEqLylszQ6XfbaSgojIESouKbQkuphTP46JddVRhyIiUnIq7pbU2y47nc7uZNRhiIiU\npIpLCue+ZkrUIYiIlKyyTgruztqtndyzsp0VG3fRm0xTHY9x+fx6br3kDBY2TNLYRyIieco2KSTT\nGe5YspblbR30pdJkgufp9Kcz/Gb9Tn67aTdXNk7j7hsWUR2vuKYVEZGjKsujobtzx5K1LGvbSU/y\n1YQwIOPQk0yzrG0ndyxZqyewiYgEyjIprN3ayfK2DnqTmUHL9SYzLG/roCXRNUKRiYiUtrJMCveu\nfJ6+VGFjG/Wl0ty7sj3kiERERoeyTAqPbuw44pLRsWQcHtnQEW5AIiKjRFkmhaGOgNpb4FmFiEi5\nK8ukUFcdH1r5qqGVFxEpV2WZFC6fN41Ygd0PYgZXzJ8WbkAiIqNEWSaFD188m9oCv/3XVsX58MVz\nQo5IRGR0KMuksGjWZK5snEZd9eDVq6uOcWXjNA2jLSISKMukYGbcfcMirmqczpjq+BGXkmIGY6rj\nXNU4nbtvWKShLkREAqEOc2FmVwNfB+LAve7+xcPW3wF8GEgBu4Cb3f3FYmy7Oh7jGzeeS0uii3se\nb+fRjR30ptLUVcW5Yv40PnLxHBbO0tPXRETyWVhDPJhZHNgMXAUkgDXATe7ellfmMmC1u3eb2UeB\nS939XYO9blNTkzc3N4cSs4hIuTKzJ9296Xjlwrx8dAGwxd3b3b0feAC4Pr+Au69w9+5gdhXQEGI8\nIiJyHGEmhZnA1rz5RLDsWD4EPHS0FWZ2i5k1m1nzrl27ihiiiIjkK4mGZjN7L9AEfOVo6919sbs3\nuXtTfX39yAYnIlJBwmxo3gbMyptvCJYdwsyuBD4DXOLufSHGIyIixxHmmcIaYK6ZzTazGuBGYGl+\nATM7F/g/wHXurlHpREQiFlpScPcUcDvwMLABWOLu683sLjO7Lij2FWA88FMzW2tmS4/xciIiMgJC\n7afg7g8CDx627HN501eGuX0RERmakmhoFhGR0qCkICIiOUoKIiKSo6QgIiI5SgoiIpKjpCAiIjlK\nCiIikqOkICIiOUoKIiKSo6QgIiI5SgoiIpKjpCAiIjlKCiIikqOkICIiOUoKIiKSo6QgIiI5Sgoi\nIpKjpCAiIjlKCiIikqOkICIiOUoKIiKSo6QgIiI5SgoiIpKjpCAiIjlKCiIikqOkICIiOUoKIiKS\no6QgIiI5SgoiIpKjpCAiIjlKCiIikqOkICIiOUoKIiKSo6QgIiI5SgoiIpITalIws6vNbJOZbTGz\nO4+yvtbMfhKsX21mp4UZj4iIDC60pGBmceBbwDVAI3CTmTUeVuxDwF53PwP4V+BLYcUjIiLHF+aZ\nwgXAFndvd/d+4AHg+sPKXA98P5j+GXCFmVmIMYmIyCCqQnztmcDWvPkE8IZjlXH3lJl1AScDu/ML\nmdktwC3B7AEz23SCMU09/LUrgOpcGVTnyjCcOr+2kEJhJoWicffFwOLhvo6ZNbt7UxFCGjVU58qg\nOleGkahzmJePtgGz8uYbgmVHLWNmVcAkYE+IMYmIyCDCTAprgLlmNtvMaoAbgaWHlVkKvD+Yfifw\nqLt7iDGJiMggQrt8FLQR3A48DMSB+9x9vZndBTS7+1LgO8APzWwL8ArZxBGmYV+CGoVU58qgOleG\n0Ots+mIuIiID1KNZRERylBRERCSnYpLC8YbcKHVmdp+ZdZjZurxlJ5nZMjN7Nvg9JVhuZvaNoK6t\nZnZe3t+8Pyj/rJm9P2/5+Wb2TPA334i6E6GZzTKzFWbWZmbrzewTwfJyrnOdmT1hZi1Bnf85WD47\nGAZmSzAsTE2w/JjDxJjZp4Plm8zsrXnLS/JzYGZxM3vazH4VzJd1nc3shWDfW2tmzcGy0ti33b3s\nf8g2dD8HzAFqgBagMeq4hliHtwDnAevyln0ZuDOYvhP4UjB9LfAQYMCFwOpg+UlAe/B7SjA9JVj3\nRFDWgr+9JuL6zgDOC6YnAJvJDpdSznU2YHwwXQ2sDuJbAtwYLP828NFg+q+BbwfTNwI/CaYbg328\nFpgd7PvxUv4cAHcAPwJ+FcyXdZ2BF4Cphy0riX27Us4UChlyo6S5++Nk79DKlz9MyPeBP8tb/gPP\nWgVMNrMZwFuBZe7+irvvBZYBVwfrJrr7Ks/uUT/Ie61IuPt2d38qmN4PbCDbA76c6+zufiCYrQ5+\nHLic7DAwcGSdjzZMzPXAA+7e5+7PA1vIfgZK8nNgZg3A24B7g3mjzOt8DCWxb1dKUjjakBszI4ql\nmKa7+/ZgegcwPZg+Vn0HW544yvKSEFwiOJfsN+eyrnNwGWUt0EH2Q/4c0OnuqaBIfpyHDBMDDAwT\nM9T/RdS+BnwKyATzJ1P+dXbgN2b2pGWH8YES2bdHxTAXcnzu7mZWdvcXm9l44OfAJ919X/6l0XKs\ns7ungUVmNhn4BTAv4pBCZWZvBzrc/UkzuzTqeEbQm919m5lNA5aZ2cb8lVHu25VyplDIkBuj0c7g\nVJHgd0ew/Fj1HWx5w1GWR8rMqskmhPvd/T+DxWVd5wHu3gmsAN5I9nLBwBe4/DiPNUzMUP8XUXoT\ncJ2ZvUD20s7lwNcp7zrj7tuC3x1kk/8FlMq+HXWDy0j8kD0jaifbADXQ2PS6qOM6gXqcxqENzV/h\n0IapLwfTb+PQhqkn/NWGqefJNkpNCaZP8qM3TF0bcV2N7LXQrx22vJzrXA9MDqbHACuBtwM/5dBG\n178Opm/j0EbXJcH06zi00bWdbINrSX8OgEt5taG5bOsMjAMm5E3/Abi6VPbtyHeEEXwjriV7B8tz\nwGeijucE4v8xsB1Ikr1G+CGy11IfAZ4FluftEEb2AUfPAc8ATXmvczPZRrgtwAfzljcB64K/+SZB\nb/cI6/t4tDJCAAACY0lEQVRmstddW4G1wc+1ZV7nBcDTQZ3XAZ8Lls8JPuRbgoNlbbC8LpjfEqyf\nk/danwnqtYm8O09K+XPAoUmhbOsc1K0l+Fk/EFOp7Nsa5kJERHIqpU1BREQKoKQgIiI5SgoiIpKj\npCAiIjlKCiIikqOkIBXLzA4Ev08zs3cX+bX/4bD5PxTz9UXCoqQgku0UOKSkkNfb9lgOSQruftEQ\nYxKJhJKCCHwRuDgY2/5vgkHpvmJma4Lx6/8KwMwuNbOVZrYUaAuW/TIY1Gz9wMBmZvZFYEzwevcH\nywbOSix47XXBePfvynvtx8zsZ2a20czuH9IY+CJFogHxRLJDCvydu78dIDi4d7n7682sFvi9mf0m\nKHsecLZnh2cGuNndXzGzMcAaM/u5u99pZre7+6KjbOsdwCJgITA1+JvHg3Xnkh2u4WXg92THBfpd\n8asrcmw6UxA50p8A7wuGsF5NdviBucG6J/ISAsDHzawFWEV2cLK5DO7NwI/dPe3uO4HfAq/Pe+2E\nu2fIDutxWlFqIzIEOlMQOZIBH3P3hw9ZmB3a+eBh81cCb3T3bjN7jOzYPCeqL286jT6fEgGdKYjA\nfrKP/BzwMPDRYOhuzOxMMxt3lL+bBOwNEsI8sqNSDkgO/P1hVgLvCtot6sk+ZvWJotRCpAj0TUQk\nOyppOrgM9D2y4/mfBjwVNPbu4uiPM/w1cKuZbSA7MueqvHWLgVYze8rd35O3/Bdkn5HQQnYU2E+5\n+44gqYhETqOkiohIji4fiYhIjpKCiIjkKCmIiEiOkoKIiOQoKYiISI6SgoiI5CgpiIhIzv8Hez4F\nk0UDhlsAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5b43d9f50>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print \"Best performance: %4.3f\" % np.mean( perfEvol[-3:] )\n",
"\n",
"pl.plot(np.arange(0,nepochs+1,intcheck), perfEvol, 'o--', markersize=12)\n",
"pl.xlim( -nepochs*.05, nepochs*1.05 )\n",
"pl.ylim( 0, 1.0 )\n",
"\n",
"pl.ylabel('Accuracy')\n",
"pl.xlabel('Iteration')\n",
"pl.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHVCAYAAAApYyiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXlwXdd15ruJ6QK4wMV8MREzCIAzKZKiKJGaqNGSbHmQ\nrdixHbcSJ+1O0p3YXd3pTpx2XiopO0kl1U6e03Emx7biUbZjy5IsiaIoURwkigNIEBMxz8DFdHEB\nXEx8f7x6r3qtb3URpmRuQPp+/+1d655xn71xsL7zrQ1Xr151hBBCCLmxJPg+AEIIIeTdCBdgQggh\nxANcgAkhhBAPcAEmhBBCPMAFmBBCCPEAF2BCCCHEA1yACSGEEA9wASaEEEI8wAWYEEII8UDSjdzZ\nE99upO3Wu5h/+Mj2DT72+4WftXHcvYv5w/s23fBx98cvtHPMvYv5/XtqVzXm+AZMCCGEeIALMCGE\nEOIBLsCEEEKIB7gAE0IIIR64oSKsdwrTs4vQNzW7INrZwRSIyUxLhr7onNzW6NQ8xORkBFQbt03W\nLgkbvGjP/n/iyyvQt7wiNULZaTgVLC7LGKty6QrLma4b9K2yhmWC6ktJwnc03bOwjGMgvoRjLrYg\n+6bnlyCmKFPObWkpuH99HtYYXFknw5JvwIQQQogHuAATQgghHuACTAghhHhgXeSAV9Q/9DcYyQvd\nFQzgqen8hnPXl+famJcOMRX5si8rFfdflIk54LTkRNGejmNeJBpfFu2JWYyJq/PQOT7nnIsvGrnA\nq/r810nyZI2y2nxvZkD+7ZsRSISYOXW/Eo0BPK7GwqutEYgpCKVCX8fglGhnZ2JMRUGGaJdkofZg\neFpqGMIZOMaTEvG4r2eYMd+8eqy5bnJeziPtwzMQE86S42B8Jg4xWt9SnZcGMXrOcs65/ok50bY0\nMRmp8jmYW8A5K5wp59ZIDOfDJOMC6EdTz/3OOTetrlGyMXbTkt++91a+ARNCCCEe4AJMCCGEeIAL\nMCGEEOIBLsCEEEKIB9aFCEsLilKMJLgWiOQaxgLBFBS6NI1IYUCWIYYZn5NJ/taBaYgJpUtBwdOX\nRyAmwRAGbKrKFe2p2ALEFGZLkUNDUQbE5KTLazIURbOQzYUolpick6KD0Rj+bn5RxmhRnHP2ub0b\n0MIoSydkCTlS1Ri2BFYlShi1MQPv3+tDE6J9Z0M+xGzOD0LfmQK5rfaRWYipK5D731YQgpgrGVLI\nk58WgBiLheVl1Uaxje6JGOLDJHXZpuZR/LOesR4rLfRbMp5HSwQVUXPLlZ5JiEmqyhHtsWk0BtJj\n/HstoxBTX5kDfVnpco6eNQSnzcNyHN5amQkx2tBjkyGKjczhPJqinsPkBFxHuiak6GzeMBR5O+Eb\nMCGEEOIBLsCEEEKIB7gAE0IIIR5YFzngZGUIbuVFdM7XMvE+2x+DPl0M4UQf5kXyVA62ych5PHpX\njWjXqtyuc87VF2M+41TrmGjfv7MIYp47PyTayYl4bitOJmYSHF4kIxXpJlRhibow5lNKlEH66334\nAf/sgsw5rTdDD+tw9Yf7VozOtVvnXRBEw4GWGfm71fwlvLsU83oBNRZe7cXx2xGZg74DlTKfOzaD\n+bgZlWuzPEZOdUVFuzoft1NomHPkpckxlZWCJh/l2XIs9k3heTSOSj1GwCgesJ7Qc1tuOk7RA9My\nv3myfRxiKsOoE1lSxhP5+fispypjoOwg5vS1Juee3SUQc7FvCvoKMuW2EjbguAgpI47GIbznlTly\nO00jOK/vNHQyBWlS02A9zynqeWoeRW3E28n6Hq2EEELIOoULMCGEEOIBLsCEEEKIB7gAE0IIIR5Y\nFyIsbVKQZHxAna8qdLzYisKElCQ02ZiclYKG8iIUSp0+NyDaDXUFEJOujBWis/ghuFV9pEyJJVqG\nUFAwq4RSr53th5h9O4pF+5aaLIhpG8OP6sej8sPz4ppsiMlLlaKHsmw8t+4J2bf4C/6A/e3GEhjp\nSlELS6ja6BqRIiSrwsveMhSE1GXLcabFH8451zElx0tlCA01tAnDch0eozYgcM65Y+1SrPX+bWGI\n0SKVy5EoxOwtl+fREcExdsIQCWkhT0MpmnzU5MlnYWcYx3SmMs5ZT0Ycpk5R3SptlGNx26a8VW1b\nGwodqCqGmFElxhuK4rOeF5TLhmVoUV2I86gWWHUbY0VX00pMwBOJKcGnrvLknHPPt09An952SQiF\nf0VBKdTS48s55xb1M2cYoawWvgETQgghHuACTAghhHiACzAhhBDigXWRA9b/Yg8YxRhOdMsP8mfm\n0RBgafnahQ5+bc9GiPlWrvxgfXEZ/+d/W5nMnX7jmRaICRt5kYPbpfFGYw/mLipKZH5sfh4LJmwt\nkdt+9iKahVy8PAx9k6MyF5gdxLzI7xysEu2MFBw2mQF5/ZtH8AP6tUxWKuZ6dD7RSNO6vcp0Xue5\nnHMuJ4B54ekFeQ8LVe7JOecm4zLmO5eGIGZXicwLFxnGCdEFfBYe3SpzvlNxHFN1OXJMnR3EHPAe\nNTZHjCIgdzZgjlJf28GpOMRok5PiDMwZarMQK0+/VrHGk8bKwRYpY5wxo4CKlQPWOc+zfag3mYjJ\n+/DAFrx3zSPyPmRmGEVm8nE8d43LbecYBjW6SEmG5R6k2FWMhiLTRjGKNLXtrXmoKRielfOWpWTR\nOd+3kALmGzAhhBDiAy7AhBBCiAe4ABNCCCEe4AJMCCGEeGBdiLA0WcbH0T3KrGJgDE0vKovxY/87\nqmUi/g+ebYaYUiXCajaEUkWZUlBQX49mHfkhFCaUZUlhRK7xu6891ybaAeP8X1FVlbaWoaHG7krs\n0xVSXjw3CDHfzpbH/fAmNG1IV1VUdHWktUaCct7IMK5pXF2bxRU8p+2q6krIEKhpMZVzztXlS/HU\n6/0RiNEimQfrUBDzTKv83b2bsArXsCHSqcmSx905iVVfriTIZ2hXMRqKNCojEm324JxzoVQUhumK\nNjV5+GzcVCgFbqMxFGrNL/5iq9X8IhmfxWulx+Vlo6rQSqmcs5r7MeYTt6CY9LnLcqzsLENRaF66\n7Hu9B+fRfeVyHDzXhGO3wahGVK7u+cgMjssdYbn/V4y5drOq2JZslMcbjaFg70ynFJze/UGcx5KV\n6KtjAsWk+h6tvIXKb3wDJoQQQjzABZgQQgjxABdgQgghxANcgAkhhBAP3FAR1vwiilhSlXhnxbAV\niS9pRyIUbITS5Klsq0TBilXx5hunZGWhlhZ0kHrgg1tFe3sJCgy+dqRTtD90sAJivv1yJ/S1dEmR\nQdPzRyHm5vffJ9oleej8sr9SCjP++QjuKyUFhUZLqmrR8BAKOo4rx5qP7iiBmOWJ9eNAZDG3iJ43\n2lUpNQn/Xh2bk8KgdKPi1qVhdBzSlY22FaBAblSJdNKMbeerCi+vdeP909VrnHPu2Q45zt9bVwgx\nX3r5imh/YCfG6Mf1vYaIcDKObk7zy/J67y7C89eVpSwRltbfGCZ1awat1UlPwfGkx5iuyOWccw1h\n6d5XnYsit8sjKE7Ly0SXO80LLbJyValyCnQOxVN7KlDcOruAz5OuIlSTh8d9pFPu/2AFulV94w1Z\nna4oB+fDO6rwd3npcjx94fk2iPnsIen6p13HnHOu13Btu174BkwIIYR4gAswIYQQ4gEuwIQQQogH\nbmgOWOd7LXSlCeeci87JnEPfJP4PXud3C0NYaSPTMFuoLZA5jpwMzEv8/XPtov2eA+UQc8+eUtH+\n8rfehJgPvWcb9P27m+Tv/qQE8ykxVf2oc2AaYo4e7xDt7FzMU3/ukXro25ghz/8jf3YEYk49L89l\n8qEtEKNzqNZ99IX+cN5Cm244h9VqikOYD9qSK++XVVVoxjAlOdItjVP2FmPOKjMgD2AwhqYA2sDi\n8jDGzBr57SMXZGWlK6OYM7y5SuZlB6bxuavOlfu3TAkmjOpd2any+VxYwmO8MiJNIKYWcDv63i67\ntTPuNHoY5qbh9DswLc+xNDcIMd862Sfaf/TQZog5N4xagKDKObeP4lgJKJ3BTaU4jzSr/PLGbCu3\njCYjjf3yfhr+Ge6uTdJ85VQfznW31MiYJGM780v4zA1OSy1CbQHmjhPVQc0auqV59Tzp3/w88A2Y\nEEII8QAXYEIIIcQDXIAJIYQQD3ABJoQQQjyw5qohTc+h0CKgPk6fjWOC/8qAFB3sqEYjjgSHyfIV\nJdoYi2IVjU/cUyPa336lG2I+fmelaG/dgdVITl4agj4t7BkYxeojw8OyL1Grg5xzn/3obtF+5sIw\nxPyLEm8451xPr7xuSck4JIIF0lxhdgmvv3FIaxotFtJVoZxzLjddXosM49psUMqa2gIUrVhmCmeH\npLgktojXtHdSikZah3Bs3K5EK01GZRyLASXk216Fz8ulAbm/BxowpmtSPi+6ypJzzs0bAqtgkryW\nVvWsgBpU1jVKUtVr4sa+1ipLhl5sNCqFbvfU5UDMV/pkVZ/PfucCxDx6Sxn0xZX5ye3VKPw72SOr\nWx1px2pESQnyvoRSUdzaPorz6GF1Ln2GocUzTVKcWF2AIrT0ZDUujLEzOY9jZWuhFF1ZgkGtHZ2J\n47ZjymTEOv/Vss6mTUIIIeSdARdgQgghxANcgAkhhBAPeM8BL6qcTV4mGmFoI477N2MualrlM55X\nuQTnnBubxrxEWoq8BJ+9qwZinmmLiPb2Wtz/4SqZJ+0Yx/zGw3X50FeZK/MSH9tVCjG//2yLaP/y\nbiyG8PU3ZVEJbWTvnHMvvnAJ+hq2y6IRNZWYc2q9Is9fFyBwzrk5w3x9rWDlejRW7jC+JP8+nTQM\nJZyThRZyM9CUID8Nx/T2cKZoh1LwftXnS5OUbMO4IVfdZ0sfMTODxRDS0+VxJhuFJm6tlMfYOYHP\nT3Gm3P+J/nGI0Sb4zjkXUzoC3XYO88SWoYo+6lXc6jWDpTtoKJI5T2vs7qqR88jUHN5fy3vmtjJp\nrDJtGJv81gE5H0SiuO2MVHlfQsb9bR5CAw2thbBMLn59vzQ5erUXc9A/bRwR7Q/vKYaYN/tRL6HH\nYZpRDOPckNzf8AxeI613SU6kEQchhBCyruACTAghhHiACzAhhBDiAS7AhBBCiAe8i7As8YdGC4ra\nx7CKR2dE9p29iKYXHzpci/tXCfQXO1BEElPClqlZFCb8+pOyYlBqKl7ax7YUQp8WNPSP47nNqw/N\nj3TiMQ6OywolaQHc//sf2QV9XcPyw/uu3kmI6XvhadE+fagKYooyUYixlllNhaTpeXndRwxBRlGm\nFG8d7RyBmNQk/FA/VSk5Xh+KQcyWPGlqUW2YXHzzwqBo767MhZh/+M4b0HfvYVnRSoshnXPukqqs\nVJ2HYrJkdR6pyfg8DxhCHo0lnspQ1aCWDZ3fWyhE450lo2JYfb4UZS6u4Ek/XC9FWPVK0Oecc6W5\nadD3apsUplrCv8sjUjxVkoHbGYtJEeaZQZyPNmZipaEVpbmyCqYNzUqh3+4iPLfLypCmx6iOZ1Uu\n08/zHRX4rPzPVztFe8Yw9EhNkc/zrjI0NFktfAMmhBBCPMAFmBBCCPEAF2BCCCHEA95zwNfDC42Y\n331gl/wY+6SRA33hTD/0ba6WeYAEI6l07rLM6+3dWgQxKSrP9389UA8x84uYz0lROXArL3JXvTzG\n8wOYL6wuCon2p/eiGfvJAczVdAzKnM/MDOZTsvbeKdrHjfz6zZtlflsXKVhraIMDKyeszeun5tE4\nIE8VbNiwwSg8kIw54GNdsmiCdd/fv1mO6TnDdD6+JPvGjft328E66FtQvyvJwpzZD0/0ivbvPrQJ\nYvJTZV7YMsbPMszq041rotH3ZH7p2sb4ies5KeycS02U1+WOmgKIWVD5eq0jcc657rFZ6JsyjDc0\nSyrn/E9ncc7cXy7zsie6oxCTnYZalvqwMpYxjrtLmb2UZ6Pu4L1b5TVJTsD3yKZRnCP1I/7GIOpd\nXnmtQ/7GGE8Jan/JiZUQs1r4BkwIIYR4gAswIYQQ4gEuwIQQQogHuAATQgghHlgXIqw9ZTLpXxTC\nxPzTSmC1dzsKpZ767kno21h8k2j3DqCg4A8+tFW0v34KhQkXLkpDhC9npULM7xtGIOf7pBDgQDVW\nWvraOVXpyBAvVGRLEc1//QlWPurtnYK+ncocJBJB8cZIjxRdBRrw2mojh6vrqSyNs6vOLCxpoRb+\nTot+gimG4CgJ71eKMoDZU4omG/OqWsyyodQKZ8r7HjPEh/1jKEjRDE6jWcZjB2Vlmr0laFwwEZO/\nyzT2b42FKWVus2hUBppdvLbASlfhWk3lK19o0x/rUBeUCKrHEFPlBOU9/7fLvRBztBUFl4dqZaUz\n63peGpL7CxkCujklhtNCUufs+6mjrkSwutaeYikm/db5QYi5Sa0HjYM4vm+vRnOMyKwcc2d7ca6/\n/y4pWGxsj0DMinoON5fgs7ta+AZMCCGEeIALMCGEEOIBLsCEEEKIB7gAE0IIIR5YFyIsLVh5yXDC\niqhqSJ9/eDPEvHAUBU6DIzKBn5aGl+S3vvyqaH/sfTsgpqFEigc+bLhlafGEc84FlPPNiQ5M+mtB\nwY8vjkKMFj1MTqLA4SGjilF0TrrjJK/CoagwByukaEGHUVxnTbNoCJzSVWWfYAr+vZqjxksoBceP\nrvDiHApyCtJQtKed057vwPt+tkuK+KzqYhMT6Er0Hx+WYpOvHumEmCce362OB52ostWYtoQ9V6Zm\noE+7g81uwG0vLsttLRuqJe1ulODWrhNWcsK1z+fisLxWL7ZPQMzrzdKZr6IYKwZ9Yl8p9LWqimk9\nYzguc5SzW2YA54NoXI7L1ZqPnRuU+9fPl3PORealk9sDm3HOfr1PXqMPbA1DTOcUitf2l0gRWokh\n5v3THzaLdsA4f33bdJWlnwe+ARNCCCEe4AJMCCGEeIALMCGEEOKBNZcDtqroDE7LPKWV05qZlv/z\n//wPmyDmvjuxKsypC/JD77S0ZIjZu69StBt7sIrGY3tl5ZptZfgh+PH2Meh7Y1CaY5RkYp74qXPD\nop0Xwnzhkqrck56O53HOyC9npsv9HdxZAjFbamQeZmsJ5pym5uVH7rpKz1pnNSYbqynwlJmC110b\nFzjnXGmWTCQ91TQCMYeqpK7AykH/l7ulucv/faIbYqy8fjhd5r8qlYbBOee2l8sx3DaEudxZZajR\nNY2mCNGFJejLDsjrlJ6MU9FIVG6rKBOvbTQur62ujrSW0DoDy1jluXNyPsowdCP375HP6LlunI9+\nZuSOb1FVjFpHME+aqjQEHVFDv6BiukbQ0KI0Nwh9e8ukYUXjEO7/b1+SWoQHduF8pOQTbtjQWHz3\n9AD0Hc2S5iRa/+Kcc4VhedyvfP8IxATLq0V756Z8iFktfAMmhBBCPMAFmBBCCPEAF2BCCCHEA1yA\nCSGEEA+sORFWqiEYGZ+TIo5w+NrVJ8bHMcF/aRkFGh+7p0a0n37DqHR0QSb0bz9QCTFHW6Xo4WAZ\nJuYTDRXPTUVS/PKcUX1jdFKKzg5twqo0L7fK301PxyHmsdsroe/Fi8PQp9HVTjqMCi0Bdd+mYlhd\nZy1j3RuNJdQKKwONrAAKhWYNAwtdDejummyIOdEzLdp1YRTffVOJCEenUKBomQm82CHH6wd3FkKM\nrnR0dgiFPfrcViNUc865swNS0JVhHKMW9lXkoHFC/5Q8RssIZK2gRVejMRSnZWXKc8zNxHMemJTP\ndqYhHNWiTOecO6euedCoXHVBCUwrjblWP9spSXjvNmbjcb9yRW67yKgY918fqBftU/1YwS1VGXjo\nKkfOOfdLt6ARSUdEXrebjApkL7XLY3xlAsVcez90WLTzg3j9VwvfgAkhhBAPcAEmhBBCPMAFmBBC\nCPHAmssBr1im+Kkyx5Bh5DwO3SELDfREMBdWko05h3890nHNYwpmyuIDllnIe7ZIs4qAYTQ+GMNj\nujwq86nDU5i7PbhZmo23juJ29ldLo/HfOoiFF/pnMHcbjcp8TnM/ftRfVyINGQwPeeizcldrmYRV\nJC9DqZjrSle575rCa+sTnHPu0qjMx0XjeE9vq5DXfXQOx0ZFjhzT2uzAOdQnOOfce+sLRLs6H40T\n/vxl+Wy0DqHhgh53vRN4jIUhfF7zgnLqmV/EQTWqxubLs2ickK3mAuserRX01JZl5L0rCuT96x1D\nY5OmFlmU46HbqyGmfXAa+m6vl3OUNt1wzrnovBwH+Rl478ampfFFTgaahQxOowZku8q5ThlFDL75\npsy57ipDgxhtIBLIw+Iw7aN43TLV2PjrF3Hu77wizZLybr0HYnZXSr2GNR+uFr4BE0IIIR7gAkwI\nIYR4gAswIYQQ4gEuwIQQQogHvIuwlpZ1BhsT8/OL8u+E0rx0iBlXH7W3Gx9wj8+gQGRTtTS1qC3C\nSj+vNg6J9tkmNK843yyr2XxCGXw451x1DooFgilSGHBPfQ7E/LhRii4sEdiBCnncf2tUxbHo75Gi\ng931myGmfUgKOnZV4DFGlaDCqvSyllkxlBRamJWfjmKTWmVU8GIrjo2/f60X+u7bKkVQFwdRNKKp\nzsFxrw1EfqLGinPOfXwfmhJ8/awUu4wYBh6f2C9/V5qF5z+gxDaW4MoyORlX5gm2sE92zsZxbtAi\nrPWEpfvbXCjvcVIiviPtUFWqSkJ4Xywiao4cmMR7Prcgr3GRse0tpXKuebkJx9yhzQXQ19gvhYcp\nhumSNv3R48Q55+6pk/NP4xA+O+mGwK19WO6/vBDn+i1qbnv6pTaI6VYC37owChhXC9+ACSGEEA9w\nASaEEEI8wAWYEEII8YD3HPDCksw5BJIxp5OcKJMlTd1oLDAxIf8vbxVsmI1jPkEbUYxNoFnFsjI2\nzzJMxJsvyjzfK61orn8pA80p9DHdUYeFFrTZ+oJhtP6jCzIPk2bkQCxq64tEuy6MeUbL2B1iVq4d\ns5axjDj0uBs1Ckzo3PFQDHUGN9dgzvylFlk8Y3MJGg40qbzwa+047nURjAe3YRGQFsPM4UCV3N8P\n3sRx/y+nZGGS2Xl8fpbU81ujTFucc64sF7UPekgFU/BdoDJf/m5hCRPFS+tIa6DrREwaOe1eVWhB\n58Gdc653TBphtA3hteseRNOUPcp8JcvQNOQE5UGe70EtjTYLuWML5nvr8nEemVuQN73AMPkoV0Uc\n3lR5Y+ecO6qKOlhDIL6A1zY/JOdtq4jCsUtSw3FgbznEVBfoPP31FwDhGzAhhBDiAS7AhBBCiAe4\nABNCCCEe4AJMCCGEeMC7CCs9IA8hlIqHNKOS97tqUGhyuU8m5vV2nXNubgFFJL95n6wkcrwLq4hc\nuCIFM4lG0n1jZaFoZ6Rigr/IEG+NqwovP20cgZjH9kihVMT4OL1QVSQZi2HlGOt3WlhzsgOFPnXK\nnMQSgU2r8wilry+DBMsUIb4kz7PDqLD1v549JtpV5Si+s8xdcoLyfoUz8XqdV2LD999UBDFRJeTR\nQhfnnDtl3NO8TDkWrW0vKpOcJ4/3QMxtW+S4f+FMP8R0hVB8+IfvaRDtMaPS08sdUgCUn4HPdNqG\n9fMOocVC04aoLTYvn6OSbBSwVanqP5NzuJ2SXBRB3VohhXdHDFGfnn+3lqI4cKsyC9GiKOecG57G\n+Wdbsfzdlcg8xLzaJufaIsN8pnNYCswe2VkIMc0j+Kz2j0uh4ZvNONdWKDGkFsA651yyVtO9BdbP\n6CWEEELeQXABJoQQQjzABZgQQgjxABdgQgghxAPeRVgaS5iQpxxLDlfl4e9mpUuRVWljYxaKQf7X\nS12inWYk3bOVg4ol8MpWopYffflrEPPEf/916OsdlU4vWUF0p/n264OifesmPP8XWsZFu6EIK3QM\nTqHQpbNPCl1yjIpNKUlSdDCL+gpTrLDe0U5YllvWlad/JNqpH/wgxBwwnLB0taj2URSNaGFUSQaK\n+OqVo1XPBLpeWU49g0okMxzFm9o+IkUrS4YT1eAUCmk02yvR3W1eOWjFFg1hoSFM02ijKEtMt1ZJ\nSsD3H13prCeCDmXRuJwjBidw7FjP41PnpcvTimEhlavEk9b1bBySx1SWjeMyJx3nyEQlXtKV4Jxz\n7l7lqjUyg+MyKUGO+fOGW9aWYpz/okrgVr+7BGIGJuV4zjXm46xUedxaJPzzwDdgQgghxANcgAkh\nhBAPcAEmhBBCPLDmcsA6N+acczH1P/bBGOY8bqmSVVjaxjA39dy5AegLqv/xT07i73SuZG4O8xK3\n7CgW7Vs/+RGIOds+Cn06h7Wzwqic0y/NQW4tQ7OHLWGZ80hPwvyKNlZwzrk0ddxW7iY3TfaNxzBf\nt55ybxZG0Rkwx9hSgHmlix+T9zlsGAdYeaySkBx3XeM47vT9ah3HfOCf/rRFtG/ZjKYEhyqwQtGR\nZqkZ2LYRzUJGpuRz9rn3bIKYMyr/dvsDNRCTHcB85GBMnq9lbpCuKiTNL+JNiqqqN1ZVpbWKleOu\nzpf51DFj7Ohn1DIvskhNltdmYBI1IcVqXFr51eREuZ26Aqw81z+FlcP0+WoTGeecK8uW+9c5Weec\nG5qU49IyPfrJ2SHo00zO4DHqeSzXqGC3+DZW4Fo/o5UQQgh5B8EFmBBCCPEAF2BCCCHEA1yACSGE\nEA+sORGWRSwuRT/PNkcgpjxXGkjU5GHyfMsdldB3flAKW3oDKDoIqiT//koUtXzpyXOinZuPopb8\nfBTobFLVNywjkipVkeT8SBRibi2R4i0tlHDOuV1FKB7onJTnP2yIPpqVIYMllFvvrBgqrHlVDWna\nqKZ17w5plhEMoPjN+iu3QJnLZKfh71KUgQZKwJz7vffUy98k4HZiS3jcB2vleHl0SzHE5ClThtO9\nOO7iSig2OYfCmul57Aur87cqdemiW4sraHiwnkRXGm1M4ZxzBUpgVWFUUMtIljGJhbidGcPYpEuJ\nl6x7pZ9ty9CiUQmzLAHj8Taco+/bFhbt6lyco1/vkWNsIoZCqT1VcuxaxYkiURRv3dEgTT56DRHa\nhfYx0bZMl7QRR1ry9Y/B9Tt6CSGEkHUMF2BCCCHEA1yACSGEEA+sixywJtUotKDzTGXZmBgw0qLu\nYKXMr2Y/RDrBAAAgAElEQVTX5UNMZa7M3S4ZhhZP/NX7RDu+hPkqy8xf57e7RtFsIRySuZIlIwd7\nYXhStFMMo/fxecyn6DyQla97B6Z8V4W+Ftb9q8uX2gPLYN8yRZlTxQgK0zHXd6BaFt0YN/Jhl4dk\nzuyqw5tVmIbbrsyyMspq/6WyiMKmHMyZLV2V47xnGk1yrFxjrzJqsPKIOi+fuN7dXlbBkNJgpCbh\ntQskyWtnXd9wBk7t+n7eV4MxwzMyd2pdc52nji3iXLfVMAt6s0caCmWnY6GDbFVE4tEtYYjJCcjf\nTS+gbmVPcQj6NNoMxznnqvPkszJrnJs1Vq8XvgETQgghHuACTAghhHiACzAhhBDiAS7AhBBCiAfW\npQjLYn5RChEuDaGYKSUJ/97QVVhyjWpArw9MibZVxUObNuQZ29EfcDuHSX4r6Q/ViObwI/uRqBRm\nFGSgwMCqOKPPRV/HdzO6GlHEqAKl+1arE9K3wjJl0FW/lg31R5YSpGQm47jrj+GzMDKCgi6NNmUI\nplx7/MYWVjd+9KlYRijvRvSYW1zG6xlVWjjLiGLUGquz0hzDEljpMWbNY1r0lWmYz5hGSGEpWNRG\nM845l6hEjP0zKOprGpNGINazY71ZLqhra4lZNanGmvF2wjdgQgghxANcgAkhhBAPcAEmhBBCPPCO\nyQFrrFzmavKbEcPs4HqYNXJhvde5rcEpNEC4FkPT+BurQEMoVQ4By0hiyTDBfzeyqjzlKlOZenTo\n3J9zzvVMXnss9js0IXi70MPFSpnFFlZUDHO5NxrrvqwY4wnBGJ1OHZi+9viydCs2vxh9ifXsWFi5\nct/wDZgQQgjxABdgQgghxANcgAkhhBAPcAEmhBBCPLDhKkUThBBCyA2Hb8CEEEKIB7gAE0IIIR7g\nAkwIIYR4gAswIYQQ4gEuwIQQQogHuAATQgghHuACTAghhHiACzAhhBDiAS7AhBBCiAe4ABNCCCEe\n4AJMCCGEeIALMCGEEOIBLsCEEEKIB7gAE0IIIR7gAkwIIYR4gAswIYQQ4gEuwIQQQogHuAATQggh\nHuACTAghhHiACzAhhBDiAS7AhBBCiAe4ABNCCCEe4AJMCCGEeIALMCGEEOKBpBu5s88/13r1Ru6P\nrC3+6P66DT72+9g/vfmOHXcbVnFFr75jz351fPdTN93wcffZf2t+l1/1dzd/8d6GVY05vgETQggh\nHuACTAghhHiACzAhhBDiAS7AhBBCiAduqAjr3U6Cu3ZefsVRu7GeCaUnQ1+O0RdIkn/7Dk7FIWZ5\nRY6FYAAf16q8gGhfGZuHmLFp7KsvzhTtlEQcm72T8phi84sQk5kmz00fs3POLS6tQF+yOv+FRYyZ\nX1yGPuKf6xX+Xc/vrN+8k0SFfAMmhBBCPMAFmBBCCPEAF2BCCCHEA++qHLCVg01Sua+kBIxZXJZJ\nh8HpBYiJxZdEuzAUgJjkRDym4pDMoS0sYYIjJUkeU8jIBY7FZH4uGsf8WYKRUFlRCZXld1KC5S3y\ndplc5AcxB5ydJgdDZgAHR2VOqmjPLi5BTGG6jDFSsHCPnXMuLVn+7V2RjeNVj6HCzBSI0c/GaplX\neeENG3C8xpdkH4fm20uiMdcFU+S4yErFcbmoBtkypu9dovFqp8dTJIbjeXJWzq3WnK11B/kZOB8m\nJ+ABLK7IA7WeFT3/WpqGtxO+ARNCCCEe4AJMCCGEeIALMCGEEOIBLsCEEEKIB9alCCvRUMe80TUp\n2pYhwswcGgmMTc6J9rbKPIjpGomK9oUL/RATn5OmBQ/cuwVinn+pBfo2VhSIdnZ2KsQU5aSJdvdQ\nFGICSpjV1joCMV96Yi/uPyNdtAdicxDTOyWNHCyB1zsRbRaxbAiOtHFK2BAqLRlCjnC6FD3tyMf7\n3h2NiXZRehrEbC0OifbhhkKIOaueDeecG5tD4w9NSUg+L5ZQ7FSPHIvWs3nVMJcZnsRxpgmmymfY\nMvR4p6MFT845l5cun/WF6xTCWUzMSWGUJdTqjMh7F0jCcZFg/E4bwtSEgxATV/fYmrPnFuQxNvbO\nQkzUMI0pzpZz3daSDIgZX5LbnpjF7YTS5PW3xvxq4RswIYQQ4gEuwIQQQogHuAATQgghHlhzOWDr\nu+e5BZkXmJrHD7ivdE2IdkEB5hdCQczPRVQ+ozMd86td3TKHlh/OgpiNJdLcvm90BmIeuLsB+vSH\n5wPD+Lt9NTIv3TU4DTG31eeL9uGtYYixMhVHOiOi/d56zCF2T6KZ/7sBnXOcjeO40x/qT89jfnxg\nEvOtOp86auRkg8ny8WyO4Nh4sWNctM92jUPM/lrUNWwOy3zYs5cjELOkHBZKcjAH/UbTsGiPjuDY\n1PoI55xbWsBrqQmG5DN8854yiMlQeWJt3rHe0OlEbdjinHPVuVIvEDecMK5E8JltKJD3bySG+U2t\n7zjfi/czJ0POoztK0iGm3SoKEpV9pcZ40kZIo0YhkdJcub9Hd+Jc9603BqEvrMyRjjaPQczQiHzG\nGqpyISZd6W2S3sIqyjdgQgghxANcgAkhhBAPcAEmhBBCPMAFmBBCCPHAmhNhWfSOyw+te4dRKBVX\nAplZ4wNqi4durRDtISPpX7VPij+sikGpqtTRVSMmJQn/3gmkyN9NRlGwUp4jRQ8P7SmFmEsD8ppU\n5KEwYsoQEWnRRc90DGJ0hRSrAs6CVRJlnbOiBFYbjA/ul1WFlSXj2ujqLc45d6JDCvtGptCYolaZ\nbAxOYMyoejYevxWFSs9dGsX9t0oBSpIxNisKpFHBmXYUaiWqsjc334T7DxhlwLQRR+PZHojZtq1Y\ntAuy0KxEX+/5xfUtwgqo+1CVi+esRVcpRumhaByfx8GonBP7prCqmza5KDaEUimqglzLKM6Z2izE\nOecO1Umh6ICx/0V1blvLsiEmXVXyevL0AMTUFIWgr3tMzm3Zhih3Uc2bkzE8xgz1PCcnXv8yyjdg\nQgghxANcgAkhhBAPcAEmhBBCPOA9B6yNN7SxgXPOLShDhM0V+HH01ippNtAfwVzmTZU50NemjC+i\nhvl336jcVkUYTby3FcncwXdO9kHM3TuKoC++KP8GKsjGnEtA5Xieeq0TYj7/6GbR/mkL5uuGpzG/\nXKZyTM1jaGw+qQza8zMwp/lOzAGH0mWOKBLFXNfAoMy9h4x8r5U7zlL5J8tcJS8ot9UQxrx+x7gc\ni5Z5/qO70VxFm3zMGbnTS8NyLPz24WqIeb5NGn/UGcc4NI15NG3W36qKUzjnXJIa93NGEZAeZXhT\naOQs1yrWExNWz5Zl7NI5LsehNb4yUvDdSms3ctMxN78YkL/LSsUlYigq72daMu6raRBNY4pVDr8k\nC3OwIzNy/jWGs7s8IJ+V0jw0XbK2HVMamGAAz+18syxiU74RTZe0NmT2LRSn4RswIYQQ4gEuwIQQ\nQogHuAATQgghHuACTAghhHjAuwhLVzoKZ6KIpbZQCk0u96Ng5eJlWZVl384SiLEMJDTWB9xFmfrD\na1QGvNouqzF96vYKiPmmIczKD0lhws4y3P9zTdI04Y8/sA1i/u6kNDLYrKozOefcg7UF0DerxDdd\nhhFHapI8X6ti1XrH0LFA9aPIFIqwhvqk2K2sFO/fpGHuklwixR15hvhOC2Ceb0JDjScOSOOLV7un\nIKYmD80cWlXVl+w0nAq6lfiwOITCFm0O0juG48diRhnlJBklZSKTaDyiiWmjhHUkwkq2FEaKrfn4\nHGvznNgCioCGplBwqU0l6otx290RKbzLzUBxnDY/aQjjNb8yguOgWAmjGvtRqJWvKi1Zle/qlUGN\nJdztjODY0QJbbfrhnHN5yoijSa0rzjlXdWetaFsGS6uFb8CEEEKIB7gAE0IIIR7gAkwIIYR4gAsw\nIYQQ4gHvIqwco2qGZhXaKfdL99WJtiUq0eIF55w73CBdtUIp+LsX22XlGmvb4SwpRHi1wxDDFKNA\nR7uxDEfRiWt/tawI8sXn2yDmgKo0Mr+EF+3fWkag7/tHroj2sT+4B2K0g8zzV3A7640kJaSzqp5o\nAoZzTjBLuvAkGGouXTHIOefKc+V4eXkAx4sWoMQMl7YTPVKQmB9EEWNKEh7ThBJB7d2I7m7zS3K8\nvqpcr5xzbttGGWNV4WnqnYC+z9xVKdpfOQoh4PCkhZbOOXfPrXI7lpPdeiY3DYVvmQHpYDUWw3O+\nrRodnE73SNc2y2UrmIrjR6Od8NrHUGS4qRDHkxZvWVXC9FityEEB4aByVhsyxHrVYXTHKlACr+ff\nxCpKHa2yLzMbhWqDE1KoVluIMauFb8CEEEKIB7gAE0IIIR7gAkwIIYR4wHsOWH+L3j+FubiBcfk/\n91MnOyCmOFeaUwxMYl7CYjVx9YUyn7DdqIbUN3Nt04DnLmGFosvdMj+WE8Kcx9KKzKu9ZxdWVXqt\nXebndAUp55y7pQarSAVVVZ7LQ2hy0qByHLEF3HaCU2Ydbm27dVxdxeHtLJe5910leN+fypRGBbqC\nj3NotuKccy2qilKZkUfSRhxBI2c2rnLXPRGsZvWR3TheNqvqXV99tQdiqtQxzRj5VT0WLnTiGE81\ncuc/uCB1BJPGc/j4HZWiPV6bBzG6UpeVg1+rrBiDUA+fQWNesYwnNFZeNqTGU5FhrHJpQJpjRIx7\nrg0sdNWu/3dfWGkpT+l9whk4LjrGpYGIpdvJDcrf5aTjs3OuexL6gur8i4088ZVmeW0X4rge6Tz5\nW6kDxzdgQgghxANcgAkhhBAPcAEmhBBCPMAFmBBCCPGAdxGWLkiRa5hcHOmQAqN9+6sgZmeJTKhf\nHEQxSqYhDNivqg815KNZRmtECmY2OBR67C2SAqd/fBMrH5Xnp0OfrlqkxTnOORdflBepM4ICi0JV\nTad7BCuNlBiii801Utjy/UtosvEbQSk0soQRq6nsspbJSsdrowU+LaM4pmqUkEMLp5xzrmUYK8Pk\nqCozHYb4rV0dU3EOjp/XzknjgF++pwaPMQfFY996c1C0P3lgI8T84LwcC9VFKHY52aSqkDWEIUaL\nKJ1zbnxGim0+/4EtEHNmQD4LlnAuU13v6dlrG6qsZXSltRN9aNCir0NtPor8TnXieJqIyWvejD4U\nUP3Iei5GVXWvZEN4OLeI0qSJWfk8pSXj7yqy5f5TjMpz82rRmJzD+aihBOfxUlWN6anX+yEm3nRS\ntks3Q0zfqBQ1Fmfh9V8tfAMmhBBCPMAFmBBCCPEAF2BCCCHEA95zwNbH6JqYMhvo6sGPrBN3For2\nLZWYr7q5BI0oXukZE+3BafzwXRdoaI5gfvWVHmmo0WKY6++twv1f6JVx92/Nh5jvnJK5iqoizG/U\nFsj8YO8Y5h1njbyM5lbjus0uyByLlQPOTsP8+lpG560KswIQc2VY3ufKXMz1NPbJXFubYQBQV5kD\nfToH2nEFDSzOvdEp2u99cDvEdDe2ivYn/vMdEBOZwbzo8y80ifYrr+G51dTJZ2pmHk0ZKlWuzcrr\nPbS9APoGp+W2Aok4fh6okb870Y9FHdpUXn41Biu+0B4hSYZuIisgTR46l+MQk6h+d6IT55qcII7n\nULrctnWttIHG+Cze81xlPtPYhUU6tlfiXLcxW+8fD0AbMU0Zc019gRyr2wtwzhpIx3l8Y4acI3+c\njGMusOUW0Y6PDkFM+ioKVqwWvgETQgghHuACTAghhHiACzAhhBDiAS7AhBBCiAe8i7CWVSI+OQH/\nJnjwoDTe0NUwnHMuM0Um1LMD+AH5q71j0Lc7LCvevNKHgoJnLkizgSduK4OYLlXF45GdWIHm755t\ng76Du0rlMbajiOdTh8pF+6cX8Ty0CMr6gP6RBjymOyuk6GvcMDLojkpB1yqKsaw7Akk47ipV1asG\nw0jlXK8UYeXkoJjpTCMKOTR7dpZA35sXpNjm1IVBiHEDLaL5+D+chpDfe7Ae+h68X1YPa+7EcV+u\nqiFZhYb6RuXYmDZEO08+3QR9G8ulSKfDEChGVSUeLf5xDoVESYZxw1phNZWaOsaleGjGqDyWkSLH\n6ngUhVp5GXitUpXoKDcd59E3uuT8U2SYv2hK8rCqULFh+tM6IgVz24uN36l7PGIICPVltESxt5Sg\n8FEbIX3jk3shJu8/3Crav/sjHLvtyjTnrRTg4hswIYQQ4gEuwIQQQogHuAATQgghHvCeA9YsryLB\n+GANftjfPimN20fnsGBBXirmJU70y9xXkvH/fG1UPz6Hea5RlYc52YJFDcpKs6DvzhrZ93wrmg3o\nwhJWzuFsn8yDfPZQNcSMG/mUbWVy/y8Zxx1Reb10w2xBk2AUrFjLWOYi2vDg1W40POgalPmgvl68\nf2XlmI+aVcb0l9vRiGNpUcbMqLZzzlU9+F7R/oTSCzjn3F8f64S+pstS11BZlQcx2nhjfAqfKZ0n\nvtiG+oSkZJxmIhE5ppcr8Brdv0XqE77/JubSC0Iy5x58G00S3m703LZiPCKjMXmPZ+N4z3vH5H34\nwG7Udhxtx3G4qUDmXHsmMHesc75zC7j/PmXykxXEedUyGdlSKLcdTMF5pHNcntvsIj6XjQPyuHON\n/Z90eP4/VHPbvTWoO6jJl7qPu2qyISYjIHPpqcnXP9fxDZgQQgjxABdgQgghxANcgAkhhBAPcAEm\nhBBCPOBdhDW/KIUJiQkowtLiBW0M4ZxzO5ShhvXR+2AURSQbNsiE/sIyfvg+EpNilE3Gx+kvL8ik\n/+MH0Kzj+BU02Tg7IM+ltiANYrQwoygbY26vlGKqReM8/v5MH/Q9NC2FLhPzKNRqU6KPcAYKXbQh\nwuLKtSsv+UQbwGjTB+ecm1NVoH70g9chJqAqrDRsw/seiWBllowMKRwpLsaKLgVKNDNrmFzoSmHx\nJXx+NhjPQn1DWLR7elBg1tkh73vD5kKIOfGmHFPlhuBst9qXc871jErRYFoKTkUxdf1LcvG5y1fX\nscuoAuYDPb6ccy5R3QerGlFcVSyzjEU2qwpU3ZMopirOQkOYMSX8SzCEUsOTcqxWFaBZRijt2lWN\nhqI4j+hKWVrk6JxzecpkKXUBY+rUHHmqOwoxVuW33nEp/PuqMVZylYHJIw1YnS5FKXVj8euf6/gG\nTAghhHiACzAhhBDiAS7AhBBCiAe4ABNCCCEe8C/CWpIJbMsIS1c/es1IuvdOSSHChX6M+YhRoagu\nV4oMVgxBweySFIP0TKOopkJV2ogv43aWDGHU4KQUuiQnosAqT1UtqTQq7hzrkiKaZ46fh5i6GnQ7\n+tabssLO5SvoyFSiBEK79hVDTP8UCoTWMotq3FkirKkZOaYqGiogRgultCjKOeeSDeewtDR5T0dG\nsKILCNsMV6DaaunmYznJLSzh71ZUXGwGx/Sy2l8gKRFiioulIOih3Tg2pubRTen5l2VlsMpCFKHd\nWyPFWwPT/RBzul06bxUbQi0fWMI3jMG+HPWsLxrzSGWuFAo1j+C9K8pEd6jhGTnGx6ZRvFVXJJ2g\nJufw3sXVs2NVEqvJwzkqVT0H/VP4rOi57mgzzkc1RXKsWOfaZwjTDtfLZ+V0D64Rl7qlmHZbMY6n\nJHXjtCjr54FvwIQQQogHuAATQgghHuACTAghhHjAew44VeUP+icxnzEbl7mnY2+goUR9rcxvfmgP\n5ns3GBV6SjJlzvUrp3sgpiEsY+YNs4PCTPlx+jdewgo0HzqIOUSdF7mzHPO0umLTXz3TBjH5Kvd1\naM9GiCk3cse9k2hOojl9ol20f8M4j363vnLAmrQUI79ZJs1dfvturDB1ZkDmkboN041LRqWjSXXd\n66vxvutKP1cdjrt2VY2pcQBzyb29aLIRnZImBHkFIYhJU4YLcSOXnKMMH77yoyaIKSnBbX/4oa2i\nvWTkOk/1y+um9RLOObdVGX+MTl97PN8IVvNmY+VOrZyvpiMi85u6Oo9zzm0xDDSck/f8YAVWZ3u5\nU5oFWaY7EWXokWKYheh5zTnM+ZZmYe5WG3g8ugvNX86r6nA9E3jPq/NRS/PjC7IaklU56+ZN0njD\nkO24YECe20r82vfs/wTfgAkhhBAPcAEmhBBCPMAFmBBCCPEAF2BCCCHEA95FWInqT4BgAA/pxIUh\n0bY+YD9QKz+y7h7HD7GPT01D3921SmhzayXEaNOCwSgKbQZjUgjw2YfrICYrgEn/4qAUC3z/8hDE\nnL4iRVi/chce4/ffkIYae8vR2KDLuCZJCapCib4hzrm//exdol2agQKHSyNrowrN9RI3TC7uqpFj\n42Qvjp8MJd7KNIQd+fn4MX88LoUsM/MoYtOmMFbVmZ2Vctw39WLFLcvAI1wkzy07GwV6+nddXbjt\n33xvvWjnZgYgptcwGYmp89cVdpxzLiVRXtsD1SgaOtMrRXAZxvVfqyQb1YAiqvKaVdUspoxN+o2q\nPoWGeEqLpS4O433ZXiTHqlVVqL5AxljmRaMxHM/aJObKGIqnutW5NBmGSvlKnKgrYjnn3MQsGojc\nVS+Fjq/34POsCaWiwK19TJ6bNib5eeAbMCGEEOIBLsCEEEKIB7gAE0IIIR5YAzlgmZewcsCjwzL3\n9IH7t0DM8Tb50f6k8UH+Zw6jkcKFQZlzKA1ivm5mUf7Pf9nIeewqlDm188OYL5tZxLzE5350UW7b\nyPnsqysQ7Z4JNDHfvFHu/1w/5nfaBjDnoQ0hdqgP0Z1zrjZbGrR3Tq2vfK8eY85hPirBEBacHZDn\nedEwtMgLyZynMTRAQ+Ccczkqj9U/hLmuz9xfI9ovtU1AzCsXZO5/1Mi3llfkQF+Kyl13duK2f/Uh\nqWO4MobahzPK0D5iGPzHjHzggUppznF5GLcdmZW/C6bg+8KsyiVbhh5rlbjxrGsDi7ZBfGYrCuTz\nGApiDtR6/rNVnr08B/P1Q1GVg17BY+wcl3OGNlNyzi7ioM8t0XjmsjPkMd20MQNiTnXJa5Jv5Lut\n5/mCep7jC6iN6B2XJh+WWYjOeVv7Wi18AyaEEEI8wAWYEEII8QAXYEIIIcQDXIAJIYQQD3gXYWl9\njCW0SFBmEZOzKEJqUSKs3/vwVoixxDhaiHCsZxxitGBndzGaXLzWp0Rgc5jgj8ax7+6tYdG2Knuc\n65THVJCFpgn63PYZlU7GDIHMoQYpujp6aQRiTg7I/VuiA+tj/LWCvn/OOZeshCNWzM9U1a26ShQz\ndfRLYVZxPopGcjJQ7FIdltVqPravBGKS1HW+3IFj838+vlu0f9A8DDHfeuYy9D18txRYbVWVn5xz\nLhKTQpoCw/BAGzXUFWIVnleMsXFTobyWmSk4FUUX5P57JnH8rifRleZ6H5nUZCmgC6WjCKkohGOu\nY1SKkBaNMa8NUsKZeM9TlFnPvGFEEc7EY+pX9886xpx0Obed70fBZ1WeNAK6NIACxhxjrGap6zRt\nrCNa1DcwjTGZqvqUNa+vFr4BE0IIIR7gAkwIIYR4gAswIYQQ4gHvOWCNZVCemy9zrq+c6oaYfbs3\nivZf/LAZYrbVoclEWb7MWR2/iMUQPnBLmWi3TcxCzIO1Mpf7r40DEGMZhFfny5yHZURSGVZGGMOY\n8zi8tVC0v3kMr9G2mjzo07lqKy+1sCQ7l69izkfnk4zbuKZYVHkrK4cdLpBjw8o3fuSAHBvdk5gz\nurMS86sFaTL/9XT7KMRsK5SmMHs3hyHmW5fkeK3MxbzanbdVQd+oMqpp6YhATIE6f22S4Jxzhxvk\nmBqeQdON4hw0tzkzJI0/LHMbPTZ17nG9s2iMp1llDnFgEz6zujhLUTYWR9F5SuecS1bXLzKDOfUC\nVUxjPIZzVlaanKNmjBxo2DDH0EYgA5Ood9HPWKZRpKNFFZHYVoqanMl5PKaTl6U+Yl89Pk963uob\nR4OYjbnyer8V+cs7a0QTQggh6wQuwIQQQogHuAATQgghHuACTAghhHjAuwhLfws+EkURS3a2FCqV\nGkYYD2+XAquFJUzCzy9iX7MyUvjzD+2AmFMDUjCSnox/t3zvkqxKM7+IQqW6AjTQuDgkBV1aHOSc\nc/sq8Hw1z56Toq9P34vCG0vEoqvQ/NodFRATTJbDpMMQoa110dW10AIV51CgF0hCYcur7XJsfOSm\nYohZMCrK/MpXT4n2ZkNso8eQZaSix3l+Oj7SZTko0nlZiQ0/cU8NxLzWLsU+O8pCEPPsRSkeCxsm\nMdbYOKqu29AEil12qSpOlrBIe8KsYT8YICXJqNI1J0/gXDdWVasKy/nAErC9dBlFfVuU2cr4DM61\nSepmzcRRVJeu7kPAqIbUPY5jNaDmzep8FOd1RuQ4SDeMmUqy5Pmf68EqZXFjHs1UIsKZeRSYzSnz\nF912zjmtnXsrb7F8AyaEEEI8wAWYEEII8QAXYEIIIcQDXIAJIYQQD3gXYWmBhuVItKDcYcoLUZS0\noDLjKYZgxqqQcc8mKfT45vlBiKkPSxHLsbYJiNlTIQUqZdm4r9iC4SClxAIl2eg29MOzUjBz/zbD\nwUVdyH87h1WN7tqMTmAtg9OinZ2G1608W257GU8DxHTrXZTlHAqzQql4beoK5PhpHkWBmvW7Jx7c\nJNrVhlCqLSK3tWEDVhrSopkBQ6ilHYicc+7jh6TYrmkYRVB5mVJQFY3jjR9Rx3h7PYrJ/vr7F6Fv\n53YpVtuYh+emmTREMytq4G0wKnWtVaznKE1VhbJEZduKpXjJqkZkCaN0j+UylatEfBOzOHbn1Hy8\naJyIvi/OYQWyXsMJqzpfPgeXh2YgZjQqt6PFks7ZQtk+VWlOu8E5h89TVjrO43Eljkwz9rVa+AZM\nCCGEeIALMCGEEOIBLsCEEEKIB7zngDWxOOZ5JtRH+o1zGNPWIz9Y31iYATED45ifO90n8yDWh+dd\nE/LvlCHDiGL3zbIqzhd+itWYfvNuNMfICcr9P7wJ87vJiTIv8d3XeiHm04fltl8w8mUjUTy337hV\n5gJ7onhu/SqvaKXZdBUTy2RgvTEZk0YFCcaJp6q8VutIDGJmjTG9rHJkF41c08y8vF8ZqZiz07oG\nvXYtP0wAACAASURBVF3nnLvUh0YFkZjMtV1ox2pIB1SFrZfPYYWv/DyZj3zmPFYTC2agOcfdDVKP\nYOUxp1VFm54RHJvrGeteaWMV61l7qUUapOSHUDeyrwx1Msfa5RxZmIW/O94mt73JMD3S1dE2FaCh\nRqtxr0pCcvxeHEC9QkRVjHt4C+pWLiudxRVDdxEO4ZjLSJXL3ZJhkKPNdtJSMAee+DYKXPgGTAgh\nhHiACzAhhBDiAS7AhBBCiAe4ABNCCCEeWHMirJwgCgM2bswS7ZER/Dh7c6U0RHj9IopBMjJw21nV\nuaJ9NRNjziiBSmIiJuGfapLGF4WGscK/nkGTj8IsGfelo+0Qk62uyZ+8fxvEtE7Ia1Jq7H/KEK+d\nHZqGPk2KEhrNzGNVqXeC6EqjRTJTc1g9ZnxGCkksEaElwkoPyEev07gPJcpg4HQjjp9DezaKdmoy\nikZK81Akk5Qg72meMV509aHN6llxzrkBZcQRMPZfUoJCnp9dktV6soMoQstTz6JV4cwy3FnP6DFX\nX4wVqLR0yJiO3Nl+FAPqMdc2FIUYbWoxEUPhptYgvdyC28kx5trGfhlXko1jrlcJZb87iudRUSCP\nMRjAZSzZEEp1qW1bx5ikLmZeELcdMwxprhe+ARNCCCEe4AJMCCGEeIALMCGEEOKBNZcDtooBfHR/\nqWjHDfPvMz0yvxAw8gJtl/ug74vf+57sKMf8akaezC9X1hRCzD/988uiHa7eCDGbNuFH5ToHPDaJ\npvjTszIP86cvtEFMV5csEHHvgQqIuas2G/q0eb82P3DOufklzGG+G5k1zE1CykCjJozG8ClGkm63\nMjh4rQfNMk60jon2PfvLIeaWcrmdZ5vRUEMb/Dvn3PyivM93NuDYnFUxmYYRyGfuqBRtXUDi/0Tf\npMyn69ybdYzvtHzvahibQd2BNu8xHlm3YMyRGSqnbxnLjEzJAgXaDMY5NKewtlOei/ndk21yPOtC\nNM7hPbc0DZeVsUyqYZbR2o/Pky7qs2DsP0tpEWLGOvJ2wjdgQgghxANcgAkhhBAPcAEmhBBCPMAF\nmBBCCPHAmhNhWYUmeqekUMgoIuKy0qUwYf/WIojZuwXFU5kf3iva6cn4N0nvuBRGaaGAc87d9Inb\nRdsyX0gxtq3NBRISMCZBXZRwFlb6qL+1UrSzDDHbxWH8qB329c7z0/iFMjWrKyZhTI1RLWYwJsUu\n91TnQYzuCwVQBBVbkOPsdw9mQUzYqJYzpYR9i4ZoZ1FVuNJVuZxzbloJ0yLpKBrqncQ+bdwyrMQ/\nztnVgt7pZKfhPdZozVN2qmG+koVjTlfuqsrFeWQoKu9V1xiK6vR8lGGMS0vMqQVOeZm4//wMua1g\nCs6HIzNy7M4u4L60uNU55wJq/rXMOm40fAMmhBBCPMAFmBBCCPEAF2BCCCHEA2suB7warH/dh1Qe\nRLffCjqHd9VITa042Zng0Fx+NVQYH7Bfa1/kxpCUeO2/V+eMfFTPBOY3e6RvijvWPgkx2mR+3th2\nonoYlpZxbFTk45gajao8mqFZ0Bh+C25ZPQyWuYJl1KALmlj5Xus5I3hdonEcF80jaOizGvTdKzT0\nJhvU/bSeCmusbCrCohyauBo/84s4npISdMEEzEEbkga3oi7cWhhffAMmhBBCPMAFmBBCCPEAF2BC\nCCHEA1yACSGEEA9suLoWMtGEEELIuwy+ARNCCCEe4AJMCCGEeIALMCGEEOIBLsCEEEKIB7gAE0II\nIR7gAkwIIYR4gAswIYQQ4gEuwIQQQogHuAATQgghHuACTAghhHiACzAhhBDiAS7AhBBCiAe4ABNC\nCCEe4AJMCCGEeIALMCGEEOIBLsCEEEKIB7gAE0IIIR7gAkwIIYR4gAswIYQQ4gEuwIQQQogHuAAT\nQgghHuACTAghhHiACzAhhBDiAS7AhBBCiAe4ABNCCCEeSLqRO/vcj5uv3sj93UiW1ZldvYqnmpSw\n4QYdzdrkzx9p8HIBPvnkhXfsuCPX5msf3XHDx90/nu7mmHsX8+9urljVmOMbMCGEEOIBLsCEEEKI\nB7gAE0IIIR7gAkwIIYR44IaKsH6RaM3T2MwCxIxNz0Pf3MKSaJflZ0DMyorceCy+BDG9Q1HRrtmY\nBTG1hUHoG5yKi3ZmKt6S+cUV0V5YWoGY6NyiaKcmJ0JMWgD7FtW2AsbvMozfkbeG1uOtrEKyk2iI\n+JIT5d/Qi8s4NpZXs3FCDDZsWHvCUUvgul7hGzAhhBDiAS7AhBBCiAe4ABNCCCEeWBc54Ov5l7/O\niTrnXFfvJPTFYjJXnJSIf5O89nKzaKekpkDM3NiYaE9tq4OYCy247ZrKHNE+c3kaYpKS5O9SUjAn\nOzkp89tLRp44Po/XJDdP5qULCzBPfaA2V7QTjLzQ1DzmxcnqsTxadP4tJQnHj74Xxm13SYm4cb1t\nrXNwDnNtTCWvb/Q9t96+EhNkb8CYD/VoWq3BUOKGa287rjQMQzHU7RSky/l3ZnF5VftfUeN5eRUL\nyy8638w3YEIIIcQDXIAJIYQQD3ABJoQQQjzABZgQQgjxwLoQYa0mWb6wJGO6B1DMZG0mNzddtEdG\nYxBT3bBRtOcNwVHpnkrRHh+fg5icnFTo00Ygt2wrgpjikBQdnLwyDjFaRHPblkKIOd40DH0TE/I4\n33h9BGIWlqTI4ZMHNkLMa13aUITmHf8fgWT8OzekDFd0NS3nnMtNkzHFoWSIGYvJ8WP5JljjXgtS\nYguo3pqck9u2DD2WVJ8lyNExzjm3rMQ2FHitntWIqVIMgZO+xNOGoVBSgozKTDaMgZblfNA6Ogsx\nuwpDxrblcY/H0SxpYFrOIy0jOI9+anepaE8Y23nBmCNjC/K4redie4lcDyyhmBY1vhWhFt+ACSGE\nEA9wASaEEEI8wAWYEEII8cCaywFbJg8p6n/uU3OYu5hXH2PvaSiAGJ13c8657jGZv9hfnQ0xI1Fp\nYFGTH4CYiMrF6bZzzuWk4/6T1bld7J+BmBZlKnL35nyIicbl+Q9NY15kYxgLTaSny7zispGM/M+H\na+W2Z/Hj+NygPLeJ2XeHMUdxlhwLVsGENCMHnJ0mc+TVWWiAUpQhNQNWfrd7SmoWrHxrjmEcs5oC\nDdoUIbqIRi4d43IszBtOID0RzONlpMpxF19CMwWta3in5Ymvt9CBzsumJ+G8MruEz1/npLwP7aP4\nHF9VmeJwZhxijlwYEu1/f3cVxHzx+Tboy86Q47AgKw1ictV8ZGlJTg1OiPbp7imIOVyXA33nBuRc\nX5qFz8WxNrntzDTUXTQUyjxxTtr1L6N8AyaEEEI8wAWYEEII8QAXYEIIIcQDXIAJIYQQD6w5EZY2\nCHDOuSJlRDE8jcKA922VoqueKRR+lIbQCKNtKCralnjptcvSnOLTv7IPYs4NyOR9/kYUav3x863Q\n9/n76kU7M4Cig46IFEsca8WPzCej8ppsKUcRQsz48P4zt1eK9m/81TGI+ZNn5XHftwPNQnqU8Uha\nypobWj83Wk8VTEVBxmsto6JtCWvSAngtWtsjop1qCAQ/cqcUtwSMakhPnx0U7QRDBPbgTrxftblS\nAHO0E4UsFTnyucs2jvGhTWHRDhrn2jiM2x6fk89Z7xQ+0wNT6llcRoHXehZmWQYOSaoaUVoSzgfV\n2VJMOWxUDDrdF4W+PaXyd1q46ZxzD9XK+/nFo1cgZleNFIGOG6LYrcb8E86Qz0+qIU788Zl+uf/3\nbYeYZ67IZ84Sjk7O4bltL5Liqb3FeIytI1Ko1dwzATE7SuR1tISXq4VvwIQQQogHuAATQgghHuAC\nTAghhHhgXSTqVmN2PTIrc0gHSnMh5usXBqHvpgppvFGeg7nbx7ftFO0mI6c1OCP3X5ODphf/8Y5q\n6PueKpBwRxUagSSrHMOn95VDzKk+mVMcmsFctjbLcM65SyPSyGHrzjKIWVQmJ8MzaMiwa2OmaI/O\nrC8jjulZvF4tHTLXnp+fDjFDQ9I4ZWIMx0ZBEeaapidksZD8TZin/c7LnaI9PIC5/8ISOc53bQ5D\nzIV+zAe+0irHS9DI757vkDFpRsyLGfKYrO2MTGGO8kCNvCb7S7Mg5tXlSdGeMvJ62oBnNQYjawVL\nL5Cucr4FaahbmZqXz59lxFGdh/OYzi8HUzC/3DQux+X7dqCh0TdPD4j27dV47wJJeG6vXJH38756\nnKN318r9LV3FvP+zb8g88ROH0QikJAPPP1md/18d74KYQzXyXM61jkFMZFZefxpxEEIIIesMLsCE\nEEKIB7gAE0IIIR7gAkwIIYR4YM2JsKxqSFqEZImy2lRlj0PleGq9Y1hpqDYvT7SHoygwCiRKEUvz\n6CzEaAONiCHq+V7jMPRV5UlDhNIgVgjRpgVNIyj00dxVgRWTThoinl0FUvRlXf+vP98u2lsO4jHq\nj/p1lae1hq60M2Xcr5FBeb3CYaxY9PhhKax74fwQxCQm4t+5B3eXiPbFTrw3KcrMZO8+FJvMqONu\nuoLb+cihCuh7Rh1nZBKNa5KT5Zju7cNxl14jn5+TZ/shpqwMhYVaBHZ5MAYxmqwgVq9ZjUBzrZC4\niupHWpg1EMO5ZkEZkpRk4PNoVdf61/NShPrIFhRYNY3K+/BADcb8zp1SGGZVR7u7CsWAL6tKQwuG\ngcbHdxSL9rcu4fP0pcekOYe+Hs4598OmUejboow4LP+M4x1yjN+2HcWRmrhRAWy18A2YEEII8QAX\nYEIIIcQDXIAJIYQQD3ABJoQQQjyw5kRYFnGVrF80ku7hTFlpoz2CgqvHbiqGvpASupzqm4aYnknp\nclWWhS4rIVUF5twIbudzt6MTVpJSAnRPoOhiSgmcDtegqGVgQgohpuIoJrPQFXYe24bXSLsUWWZD\nE3F5jS7O43n4IskQhPWp67xkCClW1DgbGUGh0AsL8t6kpRkVk15shL7BWuk4VlOFblnbqqRT0NHX\n+yAmFJJj8dED6GT2zZc6oW9pSR53VhY6LpWFpZvb5Yu4f+28lZWFgqD37S2Bvn891i3a0RiK4PbV\nSQFQdio6N80tKMe1de6ENRCVz7HlOhdbkOPyuSkU3pXn4n34iBI4nRvGOWpuUW77zDBWA2oclII9\nS9xanomucY9sk/ezcQifpxxVcawkhM/TPysnrNtq0ImrJAsFexOzcqzkZWDMP33vrGjv3IMCxqx0\n+bvcNHT0Wi18AyaEEEI8wAWYEEII8QAXYEIIIcQDay4HbHgWuIDK4Q2OY37xE3tKRXtmEavxvNGH\nVWHe31Ao2jVGFZH6nJBoP9+BFTJS8+SBP1KPH3D/oAmrMe0rkfmLujBWUbqzXuZOrgxjziWkKnJE\nYpjTPN2FOZ97qmUOr3Mc8zIryuygOhePcTEi97dofGTvi0Ujv7uszkkbczjnXFKyvKYzUTQcCCpz\niDGjGtLhB3dBn67iMzaORhg3qbxwWRnmul472iTa+bmYe2u/1A19m7bJ3FaOkQP+wdeeE+3d9x2A\nmDMXpbnMPfuxUte/vNgBfTp3nWfsf0iZg6Alg3NxlbO0DFXWCnoUphmTXYYy9LEMbXTqOBbHuW5L\nIY6Dn6jKPrnpmFMPqTx7zwRez49tl7nkF7twPrSe/52FUruSmmhUY1JGIFaVrO0Fcj4encPn0jnM\nnQcD8npPzuN1q9si9QqtLSMQs22rPP/6PJwPVwvfgAkhhBAPcAEmhBBCPMAFmBBCCPEAF2BCCCHE\nA2tOhJWdhoeUoswi9qoKLM45N6eMBYZm4hBjCQO+fVFKOx6qx203KmFNdR4KRnJTpRjn6RaUjOwv\nQQONgBJijM+g6KE7IkVniUYZj1z1cfilCAqubq/F/c8rEcv3L6HooCgkt73dOA8t1Frr1ZB0ZZqh\nIRS2VSiB2qISTjnnXDAojQIWFjDGMlzYVSEFVkfGByBGGwd86lY02dB9Xz2Ggqtd+2uhb3BQChLb\nXj0NMe/75IOi3TuCIkZ9TZ56tgliyiqxMteyMjm5uwFjepUBTrshPkxWz09BCJ/NtcqSIfyryZKC\nni8eaYeYx/dKEVB1HppuaPMg55yryJHPce+kUQFMVYPLC6IRxv94rlm0P3ozGq1YVZxK1L3ZXoQC\nq0pVxekvXkUB36wST+2pxPnIqrR0pV+On/QArjVP3Fkp2jmpdRBzfkg+B/0zKKBcLXwDJoQQQjzA\nBZgQQgjxABdgQgghxANrLgc8apiPpyfLvxMmZjHmu+dlzvXuOjTI7hrBHNKhOpnz/cujmHO4Qxlh\nVOXiZfvKcWUubxxj2V2Yn7q1Qu7/z47h/j++U5qMRGYxv/ODy/L8rRxs/xTmfIqDMldz5GQPxNx5\ns8wz6gIOzjlXqz5GP9o1CTG+sHKwC8qco/9iM8Rk3LJDtGNGwYAdm2TusiQvCDHjUbxfezdmivbp\nNjSGf/qozP+daMQP/g9sl4Yvxqm6dkOPUKuMYvLy0GSjo19qHwYH0GRkpzJlaOvAwgC52TjuL16U\npjRXjSISharASiApBDGDU/LaWqYraxWtm3DOuZZxmV88vBlz40faZIGEPeWZEPPk8V7oK8mXYzNu\nXKs9FTKfGo2jpmF/rZxbr4yjEca/PNMKfX/2KzeJtnX+mcnynv/2gUqI6ZiS83iCMei10Y5zeC69\nY2g69APVp9cH55w7fUVe/8q9aLq0WvgGTAghhHiACzAhhBDiAS7AhBBCiAe4ABNCCCEeWHMiLItl\n9cF60PiAelepFKicG8AEe3wJBQVPn5VikJUVFCbMK7HCHz55AWI+eFeNaF/oQRGSVaHpTJ9M6Ffl\nomDlu5fkMdbmY8z7VFWnS6MomHmhDT+O/92vnxXtwaPPQMyRlftF+/TWMMTUFUghyBr34XDJWkiW\niuKpK819op2QgH+vnkuTopFDu9CU4MgxNFP41HPyuv/ap+6AmF+9XVYs+ufXUFjzm7fImNqirRDz\nS//8BvSdON0l2nkFKHCam5Pj9aohbKkMy/u+qwJNERp7cSyGlQlDjmHAo4U0Z7rRXGZmXoodLXOF\ntYK+fla9sNd7pQjrAUsE1CWv58ZMnA8aynOg7/EdUix0qh/vyx0VUmA1a5jPtIxLEdTRlgjE/PID\naGDRqIxUdhaheOxIpxTx3VWF5/HMZbm/csOI5GXDUKi2RI7x4ydQ8Bp985ho3/Kl/wQxH1aiqxSj\nqtNq4RswIYQQ4gEuwIQQQogHuAATQgghHli7CZP/jSWVLEkxEowvNsu8wNGjaKzwHz52M/TlpctL\nMDmPedqfvt4v2n+pPih3zrlvKyOQyWn8OF0XXnDOuZ+q/IlVaOGxrTK/2zKBpvj/5SfSBP+RnYUQ\nc+yNPugrK5O5uB4jzxeblvn08qx0iFlS5vraRGGtoXOFRVWlEDMxIvPz5TX4wX1Nucx5Pm8Ymdyy\nvxL6agu3ibZlnPLUuWHRzjNyfRtzZf4rZozf2Tj2PXS4XrQvd09AzMFdMv9obefmMqm9+B9PNkJM\ntmHEce8eeb0Ho2hcc7wdTT00uRkB0U5Jvv583I3GsgwpyJCGLLrIi3PObS2RudPoAt6XCkNL0j4p\nn2OtbXHOuWSlczjVj/ndRaXJmTQMah6qRZ3IF37WItqhVFx+7q6SOeiOKdTy3Fot56zvvI6FTP7m\nwzuh75l2mRduqcfneWXTY6KdloJztr4nE3Ecu6uFb8CEEEKIB7gAE0IIIR7gAkwIIYR4gAswIYQQ\n4oF1IcKaVsKSD23G5PmXp7pEe/+BWogJZ6Aw6A31cf/pxkGICSjBzie++ALEfPARmfQ/vLMYYlKN\nD7aLQzKh/xMl+HLOuc/sLxftH7WMQkxFgRTDFAYDELNNVXVyzrmIEovt+/jjENOjTEX+5lQ3xHxI\nCcVGZ1AYspZIUUYchYVYaShDCXySDYFPv6qw9fjhaojpjqAgb0ZVZtlahMK2+SV5THdVocmFNhR5\n6hyKwLaX4+80edloZnD8vBS3zMxgVafv/cVXRXvz+z8AMR8+WAF9PzwtBYGDA2iy8di9m0S7LBvH\n9IUBef3XUzUky9ikJk+eY246irDaRqQwKbaAZhm/f88m6LvUJ6/xzcUo/DvWI0VXI0Z1ulCqfA4C\nxnPxvSaswHVQmYpoAaxzzr05JI9xTzEaxLRPyPP/s/dug5hXe1E89utKDPnvD1RBTNuQHE9/8Qqa\ndeSmvX1CP74BE0IIIR7gAkwIIYR4gAswIYQQ4gEuwIQQQogH1oUIqyAoxVMVBShYeWhLvmj/8AJW\nw/j6y13QV1Qgq+DcubcMYuaU00zFxiyIaeqSrj1DWShqOXIBBV4fPyQFKp+5D0U8X31DVsHJS0cx\nma699FTjMMRE51FQ8djN0pHoiiEYSlQOXj9+oQViPrxNCuMsZ6e1RFqKHPqVhthjICLFHhVhrN6S\nH5KimVgcRUAlhnhoc1iO4WTDAe1NVRln1qjm1TUqj/HCIFa8ursaK8r8/ncvivZffnQXxDz8uW+L\ndm4ZVnp6/+/+qmi/0Yjimx+fQWFhc6Mc0zUN6ERWnSfdnDbn4vXvn5IuTMPTKBRbK2zYcO1nQguz\n4os4nv7b3VJgOhnD5/rlNhRqLqpKbx0TcxCzv0SOlc35uO1LY1KoVBBC163TbWPQ92t3yLnOEqE9\nUCOFomeG0aEtJUlex8gs3vMiQ4T6o0tyHO7fiJWmKtXakhNEEZx2C1syzmO18A2YEEII8QAXYEII\nIcQDXIAJIYQQD6yLHHBGQH74PGd8eP7VV6QBwYSR35g3KsUs58n/+V/owNxFqTK5eOErX4OYP/rL\n35H7WsS8wGX1kbdzzp3vlzm8qw5/99g2aXLxN8fRCKOrb0q0H7+9EmIWjHzSsqpscm9NLsSc65T5\n7eJSzClOLchckf5Yf60TNCqzvGeXNFOZXcRxV6KMVJqGcdy9cApzoPN7MOcJ+98sdQ131qCRymf/\nTVbBWlzGe1yRFYQ+XaHoyfOoT6jcLnONDTWYMzt5Vpp11BrjJzKO1+S//9oB0TYOG5gzcuArKv9m\npNLXDDrnaeWEF5ZljJVd1MYXkXmcVy5HsIpQkaq0VJuLWpq/PSXn0Ye35kPMN17qFO0n7kHdyuZi\nHHP6/g1OYX55MCrnX/18OefcI1ukFsFKraca5iB9ahz+rWEo9NgWqWV5Tx2OeZ1LZzUkQgghZJ3B\nBZgQQgjxABdgQgghxANcgAkhhBAPrAsRlq4cY5GRJs0ptlegUCgzgIn5p09JQ4AEQ8Xx6kkpOgju\nOggxA9MyER+J4sfhiYZaIFOJlfKDaLLxdyflMVqCobAyFBk2qpjMGEYcx69IC4/WUTTiiESkeCEp\nCf9uG5uT5zs9f+17tpZYWUG5y7wSrV0ZRZOL1iEpdtldjoYe/+3RBui7PCK3NT6HAsFtYWn48uXX\nOiFGC3lSknCMf+H5VujLyZRGBeFMFLvcvF2K0HpGUezzB78kK9F85w0Uc922HauXPdsojXJ2Gc/r\nk0fl+dZVYkyKEtukpawv8Z8mpCqvDc6ggE1PUVoU5ByOXeecW1iWz+Q/nkLTlE/fIiuvffsCxjy0\nX5oVtRhzRkUOjqeqkJyjTnXhth9skKKnWytRBPbFl9pFuygT50xr/nuoNizabUNRiPkbZeTyh/fW\nQcz5QTlnWoYiq4VvwIQQQogHuAATQgghHuACTAghhHhgXeSAh6Ly//lXxjAX9duHKkX7R81oqPGz\nNweg766bpCHCEcM4/u5D0pDA+jj9iU//uWgXHboXYv7TB7ZA3//T3r3ERnVfYQC/YHs8tmf8fuLx\nkzFvDOVhk1IkIFHaikRdRFVa1BYVKY0idRMpUtVKVZtVVSlVhLpopVap0lYtXQCKQhJSQSMISQDz\nCAZs/AADtrGxjccztsceP2gXXZ3znRTLBf895Pvt7tVlZnznzv0zOt+cc6VP1hDb+rAuoWsMsTjW\ndzbXyPrYhFED0sd4nuflZshLoLkHn7+4WNZupo2GFP2x+f8Y/XGbMWpkqaqh+ngCa7B9Mdnov9Ro\nOn97SL5/VnODvjGskfnT5POX+7BmdqhF1lN1vdnzPG//1pDYfuOjG3DM8xtKYJ/+TI0aOYsiVRde\nuiQAx5y9La+X8gJswDBk5CFWh3LF9ssNlXDM5pB8vg+vD8Mx0bh8j9JSkvs7RXVQnr/MdLxFtwzJ\npjsXevB+uLoEh8HomEN9BeYVjrbJ+6YeRON5nnd3RF7P22txOE2+H6/n9oh8nfs3heCYTFXDP96B\ndeKtIfm6Wwbwc/Hd9Tg4pDsqcxc1xXg9ryiS5826L0wZ95P5Su6rlYiIKElxASYiInKACzAREZED\nXICJiIgcSIoQVpZP/j/h83sxOEZPHxo3mk6UFmFApCQgf8TtM37If6nlntg+crgJH1uFrnY1Yqjk\nwJFW2FddLcMoGT58S/Tfsq4KJ86c6bgvtneswqDYxVsjsK/rjtxXGcJARV2ZDD08VRWEY2IqxNMb\nnYJjXNGBK8/Dc2pNpilSP/C/0h2FYwqCMpjVcR+bdTxlTI96+5IM+1XmYcDrpcYqsf3HBzi95dA1\n2dBiTz0Gro63YiCxsVa+po1lGEjpH5PhqW1GaOd3H8vXVG801Hg6nAv7KgLys6hDaZ7nee2DsglF\nTiY2XEgm+hqzvv3oKT4x4z52oiMitleVYPAvnIvvZ1tEBua6BrHJh56m9fI2vI+1DcswVVFGOhxj\nNQcpC8hr/Hx/BI7pHpH3jckZfJy6Qvk41Xn4/FYjkj+d6xHbVsCtSk3zWmrcFx7lwC1+AyYiInKA\nCzAREZEDXICJiIgcSIoasP4BuTWwYGZWHhQuwDrpLw5ehX0/bJQ/Bs8yHrvzuqzXbd2xGo65eEY2\nCK/KxybefZcvw77y8h1iu7YU6zm6WcZJo0H6vp2yXvjmYaw3N2wog30/Vc1BDn9+D47RP07vNuq7\n41OyBjxjDDdYTLL88n1OMYZw6PP+gwZsHBCbkjW6UMBqgIDnIqAGamxehvVV3YRgRSE+tnaxIU3w\nbQAACVtJREFUGxupWHQD+xwfXvfhCllHXFmGtf+KoLxeqwrx+r1pNErQ5/tsNzbZ0I1Q8jLxdoVV\n+eRh1Rd1Ddaqpb6wVtb5x2ewWcTrx9pg356NcijGK0ZO5fB1+fmfNT7HvhT5uv/Zie/dj7dVwb7f\nfibzAi9twc9Ta0Dme6xz1KMGJjQZjUj+chYbKoVUkxhriEJ5trx+h+OPN8vCb8BEREQOcAEmIiJy\ngAswERGRA1yAiYiIHEiKEJaulWcbgZFCv/wxdmYaNtTY+/Ry2PfnJlms9xuNMF781kaxfWsAi/6Z\nKozy1tHrcExqIU7oKFXTc272Y5ORbtUAIhjEH54fuzootq3A1aZKDPr8VYUVttRiI4XBcRk0yjfC\nMDEc+JNU8o3wXX6GvIayUh/+cbEaB1TmYJMN3Vwm1QiBfdwlr4U1RsOFKRU+3F2HTS9KMjG8dbpb\nNkE42NQHx3x7s7yGmgewkUt1tgxqNd3B5grFmXi96hBWMA3Pvz4mEsewkT5tizn7B6EfI2A0qqYP\nnbuL53x9sQzD/f0CvncFxj1ibaF8r371UScc88tnV4rt09334ZjGMnmPaB/ED//J24Ow7+t1Mhh7\nJ4pNa25F5GPVGA1qCtT9Z2QCr4tXd9bCvnda5Wv6Wg02HcpVzV7uxrBZSWKW05CIiIiSGhdgIiIi\nB7gAExEROcAFmIiIyIGkCGHpovfdUSz664DDmiAW2EuzMeixc4UMBpxsx64u127LYMmudcVwzIhK\nIU0YwYCffGc97Pv1wStie1M9hqfqGmTHmhLj7yhQ4YH3mrGj1QfGvh/tkB1rrI5InRHZyah/FCe0\n6I45Rr5kUcvx40ehQAX7Zv+N4Yt/3ZDXhtWt6TcnMOySF5CP7U/F/wtPqECOLxVP6idtMliyoxI7\nsB04dRP2fTVcILb1xCvPw+5miRR8/n9cld26nluJU7jysnywb0B1M7L+fm3W6Fy0mENXD2O99N4x\nGUwaGMPP2o00+XlsrMXgnRVMSlNTwfY1lMMxF9WEosu9GDidVie9Oh8DXxeN7lRFAdlV6ivGBC59\nHdwYxnv99pAMga0vxHv9H873wL5t1TK81jmEAavKoDz/0SnshGV10JovfgMmIiJygAswERGRA1yA\niYiIHEiKGvDktKy99RrTeEYTsl41Po01kFX5OM1laELWovZuwWYZ4TxZq+iMYH2jQ02z2b0CpzEd\nvTIA+158Vtbs/GlYZxtPyL+/uRubdYxNylpRXhbWZWqKsmBfi5pUk+XDBibTqtmDNSEl2Wq+Wnx6\nFvbpKTMXjLrWiJqW0tmH703XTcwVHHhtp9g+0ooTrurU+7UsgE0JXt0tm8sMJxJwzAubSmFfc5+s\ndW0O4bVx4758rKIsvF18T2UW8gNY7001asf9cVl/KzWahRQG5PP1xx7vZJqFZtW0/SnyO5E1+W17\nSNbv09Pwe9TYJN7/fn/ujtiuD+H9sFS9f1sq8Zgp1WzmnUt47T63oQT2JdR95JCRSfnmGpkheP/a\nEByj69tWE5t1Zdi05k5EXs89UfysRBPyPmpVe/2p8h5prTVzxW/AREREDnABJiIicoALMBERkQNc\ngImIiBxIihCWNmOEgManZDCgaxgL7BPGpJpSFVbKTccQifaNVRhqWVMkQ1gzs/ga1xk/GO+KyWDP\ney0YOshKl2/T9jBOLCpT0096Y/j36+kynud54yq8Zv2AX4ewnkSxSQxhneiQTQl6hsbhmE9PtYnt\njACGiWrrMJDys/dbxfa25Rja61ABuWgCX2OuXwZCjqrpXp7nebuMyVjwXEPY8ECfkx2VeN190isD\nZsPGxCKrUcNST16LOekYNvKpQJIvFQOCielHN5lmoVkNHfT9Z08dNkgJqKYx1r3GalDiVwHLEiPg\npQNFh4xJS+FS+Zoaw3jtNt3GMOKyXBki/PQCNst4XU1jOt6GAcaDx+Skue/vWQ3HlAbwmtONbGry\nMdSYrq65yVn8jhr/P0JXGr8BExEROcAFmIiIyAEuwERERA4seZSNpR/mtXevL9iTLZ1jZwjd+EI3\nLPc8bDyhh0N4HtbLVpdgLTDNaEig61wTRk1LP/YD4z2bVPVtq25rvGxgPfaj8sbzq5y069j3t+aH\n/lFGedyLxuWP8gcicThmQ61simC9x6NGU4RTqln8RBxr9nUr5NCPC2dwqEPRMtm4oKICcwbDw9h0\nPhiUtcZso2ZWUSibc3x4uguOWb5c/v1hY6jD5BTWrnuH5blcW4EDBUYn5Pmf7+CFt/fWL/h199a5\n2/N6tUvUfasigA0lilRupX14FI6x7lFlWVjz1N48KQd3lOdjg5Zn6mQWYDCODVI+uxnF1zQjr4M0\nYwBHn7ou1hm5gyyf/HfBdMwGhHLwes5UGYKJGbwu9f1vLgkDaw3d31A1p2uO34CJiIgc4AJMRETk\nABdgIiIiB7gAExEROZCUjTjmYq5hoviUPg7L7nMJdOkpQj0jc5vcMt9gCT7Ok98s43Gy3odghmxU\nsKECG7CsK5GTsrpGMPB0/Bo2JcjNlSE9K4TV0S6nZ63dWAXHhMtleOndD67AMSlGA4t4VAZ3QnUV\ncMz5plti22c0qenskI1jyvIxNORPw+efUaHBkXH8vOhA0peBDvT0jmHwL5KQ5yrHhw01+uPYWOXy\nPXkdlmdjUOnnz8jpbHdG8fl1eCk7HZeRVxorYV9xjgyBRcbwPe82nk8r8MvXPTSJnx1rQtGo2reQ\nAeQvwm/AREREDnABJiIicoALMBERkQNPbA34UZpPffVR1XZp8bg5hPXdG4OyZmXVLcsLsC6q62Fr\narCh/UBUPl+e0SzjgScvtKowDl4IBLBGmKIawPiNOt5IHjaT0Xwq+xA3mo5MG0NQ0tW/mzCadWQa\nr+nLZta494xOTf/P7S+SmyHPuVUnbY/IbMCM8fz6W5v1GttGsDmItW8+onP8e7XFUPPV+A2YiIjI\nAS7AREREDnABJiIicoALMBERkQMLOg2JiIiI/ovfgImIiBzgAkxEROQAF2AiIiIHuAATERE5wAWY\niIjIAS7AREREDnABJiIicoALMBERkQNcgImIiBzgAkxEROQAF2AiIiIHuAATERE5wAWYiIjIAS7A\nREREDnABJiIicoALMBERkQNcgImIiBzgAkxEROQAF2AiIiIHuAATERE5wAWYiIjIAS7AREREDnAB\nJiIicuA/I5YlMyfAD2UAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5b7c45550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f,axs = pl.subplots(3,3, figsize=(8,8))\n",
"\n",
"c = 0\n",
"for ax in axs:\n",
" for sax in ax:\n",
" w__ = sess.run(W)[:,c]\n",
" sax.imshow( np.reshape(w__, (28,28)), cmap = pl.get_cmap('Blues') )\n",
" c += 1\n",
" sax.axis('off')\n",
"\n",
"pl.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It looks like just a bunch of blobs, right?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adding regularization to the loss function"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our next goal is to learn how to include a [regularization](https://en.wikipedia.org/wiki/Regularization_(mathematics) term in the loss function. The model remains the same:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"x = tf.placeholder(tf.float32, [None, 784])\n",
"\n",
"W = tf.Variable(tf.zeros([784, 10]))\n",
"b = tf.Variable(tf.zeros([10]))\n",
"\n",
"y = tf.nn.softmax(tf.matmul(x, W) + b)\n",
"y_ = tf.placeholder(tf.float32, [None, 10])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, this time we will add regularization terms to the loss function. To do so, all you need to change is the variable ```loss```. In the example below, we add the L2 regularization on both the weights $W$ and biases $b$. The loss function then becomes\n",
"\n",
"$$ L( y, \\hat{y}, W, b ) = H ( y, \\hat{y} ) + \\beta \\left( \\dfrac{|| W ||^2}{2} + \\dfrac{|| b ||^2}{2} \\right) . $$\n",
"\n",
"Thus, the higher the $\\beta$, the stronger the effects of the regularization. If $\\beta \\to \\infty$, there is no learning because both $W$ and $b$ tend to zero. In principle, $\\beta$ should be cross-validated and optimized."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"beta = 0.005\n",
"\n",
"loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)\n",
" + beta*( tf.nn.l2_loss(W) + tf.nn.l2_loss(b) ) )\n",
"\n",
"train_step = tf.train.GradientDescentOptimizer(0.02).minimize(loss)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The rest works pretty much the same. This time, however, we will store in a matrix ```TOSAVE``` the weights $W$ as a function of the number of iterations to later generate a video."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Elapsed time: 47.527899 s\n",
"Epoch 0 with curr performance 0.098\n",
"Epoch 50000 with curr performance 0.896\n",
"Epoch 100000 with curr performance 0.896\n",
"Epoch 150000 with curr performance 0.896\n",
"Epoch 200000 with curr performance 0.896\n",
"Epoch 250000 with curr performance 0.896\n",
"Epoch 300000 with curr performance 0.896\n",
"Epoch 350000 with curr performance 0.897\n",
"Epoch 400000 with curr performance 0.896\n",
"Epoch 450000 with curr performance 0.897\n",
"Epoch 500000 with curr performance 0.896\n",
"Elapsed time: 565.837649 s\n"
]
}
],
"source": [
"# Getting TF started\n",
"init = tf.global_variables_initializer()\n",
"sess = tf.Session()\n",
"sess.run(init)\n",
"\n",
"# Storing the evolution of the performance.\n",
"perfEvol = []\n",
"\n",
"# Total number of epochs\n",
"nepochs = 500000\n",
"intervalCheck = int( nepochs*0.1 )\n",
"\n",
"# Matrix to store the weights as a function of the number of iterations\n",
"TOSAVE = np.zeros( (28,28,10, nepochs/intervalCheck + 1 ) )\n",
"\n",
"# Printing the elapsed time during the training process\n",
"toc = time.time()\n",
"print \"Elapsed time: %f s\" % (toc - tic)\n",
"\n",
"for i in range(nepochs+1):\n",
" \n",
" if ( i % intervalCheck == 0 ) :\n",
" \n",
" for c in range(10):\n",
" TOSAVE[:,:,c,i/intervalCheck] = np.reshape(sess.run(W),(28,28,10))[:,:,c]\n",
" \n",
" correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))\n",
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
" \n",
" currperf = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})\n",
" perfEvol.append( currperf )\n",
" print \"Epoch %5d with curr performance %4.3f\" % (i, currperf)\n",
" \n",
" batch_xs, batch_ys = mnist.train.next_batch(30)\n",
" sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})\n",
"\n",
"\n",
"\n",
"# Printing the elapsed time during the training process\n",
"toc = time.time()\n",
"print \"Elapsed time: %f s\" % (toc - tic)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best performance: 0.896\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXJ5Nb7xfS1NL0TvnRiFAgIKIgSsGiLuyi\ni63rzyv25wXFxcvCT2Rd3IuiP/zp2l2trD93FalVd9nKFmuBCgUXaIEWeqVJgDalNNM7SZo0yXx+\nf8zJME1zmaRzcmYy7+fjMY/M+Z5v5vv5Tk7mM+ec7/kec3dEREQAiqIOQEREcoeSgoiIpCgpiIhI\nipKCiIikKCmIiEiKkoKIiKQoKYiISIqSgoiIpCgpiIhISnHUAQxURUWFz5w5M+owRETyytNPP73f\n3Sf1Vy/vksLMmTPZsGFD1GGIiOQVM3s5k3o6fCQiIilKCiIikpJ3h4/yhbuzcfdhfryunrXb47S2\nd1JeEuOdZ1Xyyctmc27VOMxs2LQbpUJ8r9Vn9Tmsti3fps6uqanxXD+n0N6Z4OYVG3lwayNtHZ0k\n0t7iIoOy4hgLqiu56/r5lMSyt7MWVbtdotiAC/G9Vp/V58G0bWZPu3tNv/XCTApmthD4HhAD7nb3\nb3ZbPwP4CTAJOAh8yN0b+nrNXE8K7s7nlz/Lmq37aG1P9FqvvKSIK6sn8/1F52XlgzKqdrtE8c9T\niO+1+qw+D7btTJNCaOcUzCwGLAWuBqqBxWZW3a3ad4B/c/dzgDuAfwgrnqGycfdhHtza2OcfEqC1\nPcGDWxvZ1HAkr9uF5AZ884qNrNm6j2PtJyYEgITDsfZO1mzdx80rNpKtLyKF+F6rz0PXdiH2GcI9\n0XwRUOvu9e5+HFgOXNutTjXwcPB8bQ/r887d616kraMzo7ptHZ3cva4+r9uF6DbgQnyv1eeha7sQ\n+wzhnmieCuxOW24A3tytzibgOpKHmP4MGGNmp7n7gfRKZrYEWAIwffr00ALOhoe3N570Tbk3CYc1\nW/fx8ydexgwMC37CdedXUVpcxKbdh9nZ2IRBcl1Q79r5p2NmbNp9mF0HW1iz9dUBtfvQtkYAnm84\nwoHmttSupwEjS2PUzJwIwOY9Rzh6rB3S4htdVszZU8cBsOWVI9z5ux20ZrgBt7Z3cteaHfzbx5Ob\nwpP1B2jrSJBwx0nudVSOKU+9/oNb99GRSOCejNtxpk8cyTlV4wf8Xv9+y6v8+zMNzJsylnlTxtLa\n3snqLa8m+22Weo/nTRnLnEmjaWrr4LGd8eAVkn0HeHDbvgG2u4/fbd6bjN+hZuYEJo8t59UjrTz5\n4gE86FciAQ5cdmYFlWPKeWl/M0/UHwjeF0i48/sB/p1Xb3mVZY/WBW0k/c+LZzCqrJinXjzI+pcO\npup37cEtuWwOpcVFrNsZ55mXDwPJ1xno9vX7La9SG286YbseVVbMhy6eASS3/YZDLcH7nqwzbkQJ\n186fCsBD2/YRf61twH3u2rbvf+4Vjh7rSG1buFM1YSTvOKsSgOVP7aLleGdquwOYM2l0av1g3us/\n1u7nkjMqaOvo5KePvwSQ2m4M4/wZ47lgxkSa2zpYvn53UE6q3oUzJ3L21HE8tH1g21hXn7Mh6tFH\nXwJ+YGYfBR4F9gAnfbq4+zJgGSTPKQxlgAPV2p7Zh2OXto4Et923+aTy9557OqXFRfx20yvc/diL\nJ63/0/OS/zjL1+/i3qd2n7S+3ziDD/HvPvgCD28/cYOaXTGKh790OQB33L+Vp148eML6s6eO5f7P\nXQrAX/3mOTbvOZpxuw48tnN/avnGe58l/lrbCXWuOfd0vr/4PAA+v/xZWo6f+J4uvmg651SNH/B7\nfbzTuXnFJm66Yi7zpozlyLF2blq+8aR6X333POZMGs2+o6186ufPDKiNnttNnPA6d3+4hsnV5Ty/\n50iP7d/7yYupHFPOxt2HueXfnz+ltts7nb9ftf2EsuvOm8qosmIeq93P9x/aedLvfOytsygtLuKR\nHfEet71MtHZ0snLTK9z/3N4TyivHlKWSwr1P7epx2+tKCj96tP6kbS/TtgG+s3oHLx1oOWHdFWdV\npj70v/P7F9jfdPK217W+vXNgHzXtnc7aHY1cckYFxzsS/MMD20+q84UFc7lgxkSa2jr4xv1bT1p/\n23vmcfbUcbT1s9fdXaZfyjIR2olmM3sL8HV3f1ewfCuAu/d43sDMRgPb3b2qr9fN9RPN8772O44N\n4MNqREmMR758eerboOO4wxvGllNUZBxqPs5rrR2p8q5vNbMnjQag8WgrR461895/fIy2jsw3pBEl\nMbZ9YyG1jU0cOdYelCbbKCuO8aaq5Df1ra8c5Whreyo2PPlt79xp4wF4ZtchrvunP2bcLiS/Gb34\nzfcAyUNPnYkEYBRZ8hvjhJElzDhtFADb9h7FHYqKkt+0ioJvk5Vjywf8XpeXFPG7my5j3IgSJowq\npaMzwcsHW0j+C7z+/laMLmPiqFJa2zt5cX/z630n+Td6/w//2O+hsnRlxUXc99m3pvbyTh9fzpjy\nEprbOnj1aCsGFJml1leOLaO8JEbL8Q4Ot7RjFqwHLrtzLa0D/DtvuG0B8PpeZnlJEWZGe2eCzoSf\n8E3WDIqLDDMjkUj22oA3/vXqAW/Xz339KjoTfsJ2DcntB6C5rYP2zkSwB5Vsq8iMiaNKATjQ1Mbx\nzgTv+PYfBtznbd9YSONrrSQSyYEOXXu6pcVFjBtRAsCRlnYcx5IrMYOSoiJGlMYAOOtrDwzo79zV\n55JYEe7OsfbOVJ+7PmVLYkZZcYxEwnmtrSO1omv7Ki+JUV4SG1Tb276xsM86mZ5oDnNPYT0w18xm\nkdwDWAR8ML2CmVUAB909AdxKciRSXnvnWZU8EBwq6E+RwRXzKqkcW95rnQmjSpkQ/JP0pHJsOZVj\ny1kwb/KA2wU4o3J0n3WrTx/b5/rzp09gRElsgB/OsdTz+UFy6c28Kb23P9D3esG8ycysGJUqK44V\nMWdS7/0vL4n12P4VZw3svb6yenKPrzOqrLjP9keWFjOy9MR/0SsG8Xfu+hDuriRWRNqf4uTfL3p9\nNMtgtuv+Xr+3uLqcNroMGFyfASrH9P5/BTBuZEmf6wf6d+7qMyS/3HT/251Qv8hSySlbbWdLaCea\n3b0DuBFYDWwDVrj7FjO7w8yuCapdDuwwsxeAycDfhRXPULnh0lmUFffxn5CmrDjGDZfOzut2IfmB\nkfb50adsbsCF+F6rz0PXdiH2GUKe5sLdV7n7me4+x93/Lii73d1XBs9/7e5zgzo3uHtb36+Y++ZP\nG8+C6krKS/p+a8tLilhQXcm5wWGafG0XotuAC/G9Vp+Hru1C7DNo7qOsMzPuun4+V1ZPZkQP+85F\nljz+d2X1ZO66fn7WLnbp3m73b+5htQvRbcBR9TnK91p9Vp9Db1vTXITD3Xl212He989/JFZkdLpT\nXhzjinmVfPLS2akTtWG0u6nhCD9+tJ6HtzfS2tE5JO1GOR1AVH2Oqt0o21af87fPOTHNRRjyJSkA\nvHygmbd/+w/c+b5zuP7CaVGHE7oo/3lEpG+5MPqo4NXFmwCYUzmqn5rDg5kxf9p4lv7F+VGHIiKD\npHMKIXrj6eO46/pzOXPymKhDERHJiPYUQjR5bDnXnd/ntXgiIjlFewoheuSFODv3vRZ1GCIiGVNS\nCNEXV2zi7nWDmztGRCQKSgohOdLSzv6mNmZPKoyTzCIyPCgphKRuf3Lk0ew+5rYREck1SgohqY83\nAzBHewoikkeUFEJSF2+iuMiYNnFk1KGIiGRMQ1JDcsPbZrFg3uSsT+kgIhImJYWQnDa6LDUfvIhI\nvtDX2BB0dCZYuraWHa/qGgURyS9KCiFoOHSMb6/ewaaGw1GHIiIyIKEmBTNbaGY7zKzWzG7pYf10\nM1trZs+a2XNm9u4w4xkq9cFw1L5utSgikotCSwpmFgOWAlcD1cBiM6vuVu02krfpPI/kPZz/Kax4\nhlJdo4ajikh+CnNP4SKg1t3r3f04sBy4tlsdB7ruaD4OeCXEeIZM/f4mJo4qZfzI0qhDEREZkDCT\nwlRgd9pyQ1CW7uvAh8ysAVgFfK6nFzKzJWa2wcw2xOPxMGLNqpf2t2gvQUTyUtRDUhcDP3X3/2Nm\nbwF+ZmZnu3sivZK7LwOWQfLOaxHEOSA/+8RFHDnWHnUYIiIDFuaewh4g/R6UVUFZuk8AKwDc/b+B\ncqAixJiGRHGsSNcoiEheCjMprAfmmtksMysleSJ5Zbc6u4ArAMxsHsmkkPvHh/qwc99rfO2+zew+\n2BJ1KCIiAxZaUnD3DuBGYDWwjeQooy1mdoeZXRNU+yLwSTPbBNwLfNTdc/7wUF827j7Mz554mfbO\nRP+VRURyTKjnFNx9FckTyOllt6c93wq8NcwYhlr9/mZKYpoIT0Tyk65ozrL6eBPTJ47URHgikpf0\nyZVldfFmXcksInlLSSGL3J2OzgRnVCopiEh+ivo6hWHFzPjDl99Bnp8rF5ECpj2FEJhZ1CGIiAyK\nkkIW/WrDbm741/W0dXRGHYqIyKAoKWTR0y8f4tldhykrjkUdiojIoCgpZFF9vJnZmghPRPKYkkIW\n1cWbNBxVRPKakkKWHG45zoHm40oKIpLXlBSy5OixDi6YMYF5U8b2X1lEJEfpOoUsmX7aSH7z6Uui\nDkNE5JRoT0FERFKUFLLkC8uf5dM/fzrqMERETomSQpY8v+cInQlNbyEi+S3UpGBmC81sh5nVmtkt\nPaz/rpltDB4vmNnhMOMJS3tngl0HW5ijifBEJM+FdqLZzGLAUuBKoAFYb2YrgxvrAODuf5lW/3PA\neWHFE6bdB1to73RmV+jCNRHJb2HuKVwE1Lp7vbsfB5YD1/ZRfzHJW3Lmnfp4MwCzdY2CiOS5MJPC\nVGB32nJDUHYSM5sBzAIeDjGe0IwfWcJ7zpnCGUoKIpLncuU6hUXAr929x+lFzWwJsARg+vTpQxlX\nRmpmTqRm5sSowxAROWVh7insAaalLVcFZT1ZRB+Hjtx9mbvXuHvNpEmTshhidrQc74g6BBGRrAgz\nKawH5prZLDMrJfnBv7J7JTM7C5gA/HeIsYTq0m+t5W9+uyXqMERETlloScHdO4AbgdXANmCFu28x\nszvM7Jq0qouA5Z6n97Dsmgjv9HEjog5FROSUhXpOwd1XAau6ld3ebfnrYcYQtrrUyCMNRxWR/Kcr\nmk9RXbwJQFNmi8iwoKRwiurjzZTEjKoJOnwkIvkvV4ak5q23nnEa40aUUBxTfhWR/KekcIounTuJ\nS+fm3jBZEZHB0NfbU9DRmWDb3qO0tvd4zZ2ISN5RUjgFuw62cPX31nH/c3ujDkVEJCuUFE5BvYaj\nisgwo6RwClLDUSs0HFVEhgclhVNQH2+mYnQp40aWRB2KiEhWKCmcgrp4k+6hICLDioaknoKbrzqT\nRCLqKEREskdJ4RRcMqci6hBERLJKh48G6dUjrazd3khzm+6lICLDh5LCID26M87Hfrqe/U1tUYci\nIpI1SgqDVBdvojRWRNWEkVGHIiKSNUoKg1Qfb2bGaSOJFVnUoYiIZE2oScHMFprZDjOrNbNbeqlz\nvZltNbMtZvaLMOPJpvp4k+6hICLDTmijj8wsBiwFrgQagPVmttLdt6bVmQvcCrzV3Q+ZWWVY8WRT\ne2eClw+08K43viHqUEREsirMIakXAbXuXg9gZsuBa4GtaXU+CSx190MA7t4YYjxZEzPj/s+/jdFl\nGtErIsNLmIePpgK705YbgrJ0ZwJnmtnjZvaEmS0MMZ6sKSoyznrDWJ1kFpFhJ+oTzcXAXOByYDHw\nYzMb372SmS0xsw1mtiEejw9xiCf7Y91+7nnyZRIJjzoUEZGsCjMp7AGmpS1XBWXpGoCV7t7u7i8C\nL5BMEidw92XuXuPuNZMmRX+Xs/ue3cN31+ykSCOPRGSYCTMprAfmmtksMysFFgEru9W5j+ReAmZW\nQfJwUn2IMWVFfbxZ91AQkWEptKTg7h3AjcBqYBuwwt23mNkdZnZNUG01cMDMtgJrgS+7+4GwYsqW\nOg1HFZFhqt/hM2b2OeDnXSOEBsLdVwGrupXdnvbcgZuDR1441HycQy3tzNGegogMQ5nsKUwmeY3B\niuBitII+kP7SgeQtOLWnICLDkSW/rPdTKZkIrgI+BtQAK4B/cfe6cMM7WU1NjW/YsGGomz3BkZZ2\nykqKKC+JRRqHiEimzOxpd6/pr15G5xSCwzyvBo8OYALwazO785SizFPjRpYoIYjIsNRvUjCzm8zs\naeBO4HHgTe7+aeAC4H0hx5dzfvhIHT/775eiDkNEJBSZ7ClMBK5z93e5+6/cvR3A3RPAe0ONLget\nWL+bx2tzfoCUiMigZJIUHgAOdi2Y2VgzezOAu28LK7Bc1N6ZYNfBFuZUauSRiAxPmSSFfwaa0pab\ngrKCs+tgCx0JZ3aFRh6JyPCUSVIwTxuiFBw2KsjpQesak7lxTqWSgogMT5kkhXoz+7yZlQSPm8iD\nqSjCcORYO6NKY5riQkSGrUySwqeAS0hOZtcAvBlYEmZQuerPa6ax+W/exdjykqhDEREJRb+HgYIb\n3ywagljyQoFf0C0iw1wmcx+VA58A3giUd5W7+8dDjCsnffgnT3HNuafz/guqog5FRCQUmRw++hnw\nBuBdwCMk74vwWphB5aKDzcd59IU4h1uORx2KiEhoMkkKZ7j714Bmd/9X4D0kzysUlPp4MPJIE+GJ\nyDCWSVJoD34eNrOzgXFAZXgh5aa6IClo5JGIDGeZXG+wzMwmALeRvHPaaOBroUaVg+rjzZTGiqia\nMDLqUEREQtPnnoKZFQFH3f2Quz/q7rPdvdLdf5TJiwf3X9hhZrVmdksP6z9qZnEz2xg8bhhkP0I3\ndkQJl51ZQUz3ZRaRYazPPQV3T5jZV0jeP2FAzCwGLAWuJHl9w3ozW+nuW7tV/aW73zjQ1x9qn33H\nGVGHICISukzOKTxoZl8ys2lmNrHrkcHvXQTUunu9ux8HlgPXnlK0IiISqkySwgeAzwKPAk8Hj0xu\nfTYV2J223BCUdfc+M3vOzH5tZtN6eiEzW2JmG8xsQzwez6Dp7KqLN/GWf3iIdTuHvm0RkaHUb1Jw\n91k9PGZnqf3fAjPd/RxgDfCvvcSwzN1r3L1m0qRJWWo6c3WNTew90soYTW8hIsNcJlc0f7incnf/\nt35+dQ+Q/s2/KihLf430u9XcTfLubjmnfn8zoOGoIjL8ZTIk9cK05+XAFcAzQH9JYT0w18xmkUwG\ni4APplcwsynuvjdYvAbIyZv21DU2MWlMmSbCE5FhL5MJ8T6Xvmxm40meNO7v9zrM7EZgNRADfuLu\nW8zsDmCDu68EPm9m1wAdJO/u9tGBdyF8dfEmZldoL0FEhr/B3CynGZiVSUV3XwWs6lZ2e9rzW4Fb\nBxHDkLp49mlUjC6LOgwRkdBlck7ht0DXndeKgGoGcd1CPvvKwrOiDkFEZEhksqfwnbTnHcDL7t4Q\nUjw5p7W9k1iRURLLZPSuiEh+y+STbhfwpLs/4u6PAwfMbGaoUeWQ/9y4h3lf+x2vHD4WdSgiIqHL\nJCn8CkikLXcGZQWhLt5MUZExeWx5/5VFRPJcJkmhOJimAoDgeWl4IeWW+ngTs04bpYnwRKQgZJIU\n4sGwUQDM7Fpgf3gh5Za6eLMuWhORgpHJieZPAfeY2Q+C5Qagx6uch5vjHQl2HWzhPW+aEnUoIiJD\nIpOL1+qAi81sdLDcFHpUOaIjkeCLV53JRTMzmRRWRCT/9Xv4yMz+3szGu3uTuzeZ2QQz+9uhCC5q\nI0uL+czlZ1CjpCAiBSKTcwpXu/vhrgV3PwS8O7yQcseew8d49Uhr1GGIiAyZTJJCzMxSczyY2Qig\nIOZ8+O6aF7jmB49FHYaIyJDJ5ETzPcBDZvb/ACM5aV2P9z0YburjTRp5JCIFJZMTzd8ys03AApJz\nIK0GZoQdWNTcnbp4M+89RyOPRKRwZDqhzz6SCeHPgXeSo/c9yKaDzcc5cqyd2ZNGRx2KiMiQ6XVP\nwczOBBYHj/3ALwFz93cMUWyR0t3WRKQQ9XX4aDuwDnivu9cCmNlfDklUOWBWxSi++4FzObdqfNSh\niIgMmb4OH10H7AXWmtmPzewKkieaM2ZmC81sh5nVmtktfdR7n5m5mdUM5PXDVDG6jD87r4qJowpm\nmicRkd6Tgrvf5+6LgLOAtcAXgEoz+2czu6q/FzazGLAUuJrkjXkWm1l1D/XGADcBTw6uC+F4vHY/\n2/YejToMEZEh1e+JZndvdvdfuPufAFXAs8BfZfDaFwG17l4fzKy6HLi2h3rfAL4F5NRVYrfdt5l/\nfHhn1GGIiAypAd1OzN0Pufsyd78ig+pTgd1pyw1BWYqZnQ9Mc/f/6uuFzGyJmW0wsw3xeHwgIQ9K\n10R4sys08khECktk95g0syLgLuCL/dUNElGNu9dMmjQp9Nh2HWymM+HMqdTIIxEpLGEmhT3AtLTl\nqqCsyxjgbOAPZvYScDGwMhdONtfFg+Go2lMQkQITZlJYD8w1s1lmVgosAlZ2rXT3I+5e4e4z3X0m\n8ARwjbtvCDGmjNTFk7OD6xoFESk0mcx9NCju3mFmN5KcFiMG/MTdt5jZHcAGd1/Z9ytEZ/GF07lw\n5kTGlJdEHYqIyJAyd486hgGpqanxDRsi35kQEckrZva0u/d7eD6yE825yt354SN1bN5zJOpQRESG\nnJJCNweaj/PNB7bz5IsHow5FRGTIKSl0Ux+MPJqjk8wiUoCUFLrpGnk0R1Nmi0gBUlLopj7eRFlx\nEVPHj4g6FBGRIaek0M2L+1uYVTGKoqIBTQgrIjIshHadQr764YfO5/Cx9qjDEBGJhPYUuimOFVEx\nuizqMEREIqGkkGb3wRa++h/PU9vYFHUoIiKRUFJIs+WVo9zz5C5ajndEHYqISCSUFNJ0DUedVaFr\nFESkMCkppKmPNzN5bJkmwhORgqWkkKYu3qR7KIhIQVNSSHO8I8EZlUoKIlK4dJ1CmlU3XUq+TSUu\nIpJNoe4pmNlCM9thZrVmdksP6z9lZs+b2UYze8zMqsOMJxNmupJZRApXaEnBzGLAUuBqoBpY3MOH\n/i/c/U3uPh+4E7grrHj6s+r5vXzip+s52qqrmUWkcIW5p3ARUOvu9e5+HFgOXJtewd2Ppi2OAiI7\ndvPsrkM8Vruf0aU6oiYihSvMT8CpwO605Qbgzd0rmdlngZuBUuCdIcbTp7p4sybCE5GCF/noI3df\n6u5zgL8CbuupjpktMbMNZrYhHo+HEkd9vEn3UBCRghdmUtgDTEtbrgrKerMc+NOeVrj7Mnevcfea\nSZMmZTHEpLaOTnYdbNHd1kSk4IWZFNYDc81slpmVAouAlekVzGxu2uJ7gJ0hxtOrI8fauWDGBKpP\nHxdF8yIiOSO0cwru3mFmNwKrgRjwE3ffYmZ3ABvcfSVwo5ktANqBQ8BHwoqnL5VjyvnVpy6JomkR\nkZwS6lAbd18FrOpWdnva85vCbF9ERAYm8hPNueC2+57nIz95KuowREQip6QAbN5zlPbORNRhiIhE\nruCTgrtTH29itkYeiYgoKexvOs7R1g5doyAigpJC6m5rs5UURESUFEaVFvMn557O/5g8JupQREQi\nV/Czv72pahz/uPi8qMMQEckJBb+n0HK8I+oQRERyRsEnhau/t44v/2pT1GGIiOSEgk4KbR2d7D7Y\nwpTxI6IORUQkJxR0Unj5QAsJR7OjiogECjop1HcNR63QcFQRESjwpFAXbwbQ1cwiIoGCTgoXzJjA\nFxbMZVRZwY/MFREBCvw6hYtnn8bFs0+LOgwRkZxRsHsK7s62vUdpbe+MOhQRkZwRalIws4VmtsPM\nas3slh7W32xmW83sOTN7yMxmhBlPuv1Nx7n6e+u496ldQ9WkiEjOCy0pmFkMWApcDVQDi82sulu1\nZ4Eadz8H+DVwZ1jxdNc1EZ5mRxUReV2YewoXAbXuXu/ux4HlwLXpFdx9rbu3BItPAFUhxnOCeo08\nEhE5SZhJYSqwO225ISjrzSeAB0KM5wR18SbKS4o4fZyuZhYR6ZITo4/M7ENADfD2XtYvAZYATJ8+\nPStt1sebmFUxmqIiy8rriYgMB2EmhT3AtLTlqqDsBGa2APgq8HZ3b+vphdx9GbAMoKamxrMR3Gfe\ncQZNbZohVUQkXZhJYT0w18xmkUwGi4APplcws/OAHwEL3b0xxFhOcuHMiUPZnIhIXgjtnIK7dwA3\nAquBbcAKd99iZneY2TVBtW8Do4FfmdlGM1sZVjzp9je18fD2fRxtbR+K5kRE8kao5xTcfRWwqlvZ\n7WnPF4TZfm/Wv3iQT9/zDPd/7m2cPXVcFCGIiOSkgryiuesahVkVGo4qIpKuIJNCfbyZKePKNRGe\niEg3BZkU6vY366I1EZEeFFxScHfqG5s0vYWISA8K8vjJbz5zCWXFBZcPRUT6VXBJwcw4c/KYqMMQ\nEclJBfd1+emXD/LzJ17meEci6lBERHJOwSWF/3ruVf72v7ZSrDmPREROUnBJoX5/E7M1EZ6ISI8K\nLynENRxVRKQ3BZUUWts72X2ohdkajioi0qOCSgq7D7bgDnO0pyAi0qOCGpI6d/IYNv31VZTEdD5B\nRKQnBZUUAMaNKIk6BBGRnDWsk4K7s3H3YX68rp612+Mca++kJGZcVf0GPnnZbM6tGoeZ9hpERLoM\n26TQ3png5hUbeXBrI20dnSS8q9x5YPNeHt7eyILqSu66fj4lsYI6tSIi0qtQPw3NbKGZ7TCzWjO7\npYf1l5nZM2bWYWbvz1a77s7NKzayZus+jrW/nhC6JByOtXeyZus+bl6xEfes3PZZRCTvhZYUzCwG\nLAWuBqqBxWZW3a3aLuCjwC+y2fbG3Yd5cGsjre19T2XR2p7gwa2NbGo4ks3mRUTyVph7ChcBte5e\n7+7HgeXAtekV3P0ld38OyOpERHeve5G2js6M6rZ1dHL3uvpsNi8ikrfCTApTgd1pyw1B2YCZ2RIz\n22BmG+LxeL/1H97eeNIho94kHB7a1jiYsEREhp28OMPq7svcvcbdayZNmtRv/db2zPYSUvUz3KsQ\nERnuwkxXRjfjAAAH1UlEQVQKe4BpactVQVnoyktiA6tfPLD6IiLDVZhJYT0w18xmmVkpsAhYGWJ7\nKe88q5JMJ0EtMrhiXmW4AYmI5InQkoK7dwA3AquBbcAKd99iZneY2TUAZnahmTUAfw78yMy2ZKPt\nGy6dRVmG3/7LimPccOnsbDQrIpL3Qr14zd1XAau6ld2e9nw9ycNKWTV/2ngWVFeyZuu+PoellpcU\nsaC6knOrxmU7BBGRvJQXJ5oHysy46/r5XFk9mRElsZMOJRUZjCiJcWX1ZO66fr6muhARCQzbaS5K\nYkV8f9F5bGo4wo8frefh7Y20dnRSXhzjinmVfPLS2Zw7bXzUYYqI5JRhmxQguccwf9p4lv7F+VGH\nIiKSF4bl4SMRERkcJQUREUmxfJsh1MziwMuD/PUKYH8Ww8kH6nNhUJ8Lw6n0eYa79zslRN4lhVNh\nZhvcvSbqOIaS+lwY1OfCMBR91uEjERFJUVIQEZGUQksKy6IOIALqc2FQnwtD6H0uqHMKIiLSt0Lb\nUxARkT4UTFIws4VmtsPMas3slqjj6Y+Z/cTMGs1sc1rZRDNbY2Y7g58TgnIzs+8HfXvOzM5P+52P\nBPV3mtlH0sovMLPng9/5vgUTQPXWxhD1eZqZrTWzrWa2xcxuGu79NrNyM3vKzDYFff6boHyWmT0Z\nxPnLYPp5zKwsWK4N1s9Me61bg/IdZvautPIet/3e2hiifsfM7Fkzu78Q+hu0/1Kw7W00sw1BWe5t\n2+4+7B9ADKgDZgOlwCagOuq4+on5MuB8YHNa2Z3ALcHzW4BvBc/fDTwAGHAx8GRQPhGoD35OCJ5P\nCNY9FdS14Hev7quNIerzFOD84PkY4AWgejj3O4hjdPC8BHgyiG8FsCgo/yHw6eD5Z4AfBs8XAb8M\nnlcH23UZMCvY3mN9bfu9tTFE/b4Z+AVwf1+xDJf+Bm2+BFR0K8u5bXvI3pAoH8BbgNVpy7cCt0Yd\nVwZxz+TEpLADmBI8nwLsCJ7/CFjcvR6wGPhRWvmPgrIpwPa08lS93tqIqP//CVxZKP0GRgLPAG8m\neYFScfftl+T9Sd4SPC8O6ln3bbqrXm/bfvA7PbYxBP2sAh4C3gnc31csw6G/abG8xMlJIee27UI5\nfDQV2J223BCU5ZvJ7r43eP4qMDl43lv/+ipv6KG8rzaGVHCY4DyS35yHdb+DQykbgUZgDclvuoc9\neaOq7nGm+hasPwKcxsDfi9P6aCNs/xf4CtB1s5O+YhkO/e3iwO/N7GkzWxKU5dy2PaxnSR3O3N3N\nLNShY0PRRk/MbDTwG+AL7n7U0u53MRz77e6dwHwzGw/8B3DWULU91MzsvUCjuz9tZpdHHc8Qe5u7\n7zGzSmCNmW1PX5kr23ah7CnsAaalLVcFZflmn5lNAQh+NgblvfWvr/KqHsr7amNImFkJyYRwj7v/\nez8xDZt+A7j7YWAtyUMb482s60tbepypvgXrxwEHGPh7caCPNsL0VuAaM3sJWE7yENL3+ogl3/ub\n4u57gp+NJJP/ReTgtl0oSWE9MDcYfVBK8oTVyohjGoyVQNdog4+QPObeVf7hYMTCxcCRYHdxNXCV\nmU0IRhxcRfI46l7gqJldHIxQ+HC31+qpjdAFsfwLsM3d70pbNWz7bWaTgj0EzGwEyXMo20gmh/f3\nEE96nO8HHvbkweKVwKJgtM4sYC7JE489bvvB7/TWRmjc/VZ3r3L3mUEsD7v7X/QRS173t4uZjTKz\nMV3PSW6Tm8nFbXsoT7RE+SB5Nv8Fksdrvxp1PBnEey+wF2gneXzwEySPiz4E7AQeBCYGdQ1YGvTt\neaAm7XU+DtQGj4+lldcEG2Ud8ANev5CxxzaGqM9vI3nc9TlgY/B493DuN3AO8GzQ583A7UH5bJIf\ncrXAr4CyoLw8WK4N1s9Oe62vBv3aQTDypK9tv7c2hvDvfTmvjz4a1v0N2t4UPLZ0xZWL27auaBYR\nkZRCOXwkIiIZUFIQEZEUJQUREUlRUhARkRQlBRERSVFSkIJlZk3Bz5lm9sEsv/b/7rb8x2y+vkhY\nlBREkhMPDigppF0Z25sTkoK7XzLAmEQioaQgAt8ELg3muf/LYIK6b5vZ+mAu+/8FYGaXm9k6M1sJ\nbA3K7gsmONvSNcmZmX0TGBG83j1BWddeiQWvvdmSc99/IO21/2Bmvzaz7WZ2j6VP+iQyRDQhnkhy\njvkvuft7AYIP9yPufqGZlQGPm9nvg7rnA2e7+4vB8sfd/WAwRcV6M/uNu99iZje6+/we2roOmA+c\nC1QEv/NosO484I3AK8DjJOcJeiz73RXpnfYURE52Fcl5ZzaSnLr7NJJz6wA8lZYQAD5vZpuAJ0hO\nVDaXvr0NuNfdO919H/AIcGHaaze4e4LkFB8zs9IbkQHQnoLIyQz4nLuvPqEwOdVzc7flBSRvAtNi\nZn8gOVfPYLWlPe9E/58SAe0piMBrJG//2WU18OlgGm/M7MxgZsvuxgGHgoRwFslbIXZp7/r9btYB\nHwjOW0wiedvVp7LSC5Es0DcRkeQMpZ3BYaCfkpzffybwTHCyNw78aQ+/9zvgU2a2jeRMnU+krVsG\nPGdmz3hyaugu/0HyfgmbSM4I+xV3fzVIKiKR0yypIiKSosNHIiKSoqQgIiIpSgoiIpKipCAiIilK\nCiIikqKkICIiKUoKIiKSoqQgIiIp/x8UKhGPILtvUwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5b330a490>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHVCAYAAAApYyiLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3d2PZVeZ3/Gn2zTtpmkbG4yNje0eA8YxxjAO4T2RQ0gy\nyguJRmQuomgURbnPTaQoN0n+gFxHcxEpL5qLUTQjMZlImSEM8cww4GGMAb9h3LYpu912t9tvTdO4\ni8JdubBQtH/rC7U4XVXr7HO+n7u1tc4+++y99l6n6nnOsw5sb2+XJEnaXwdHH4AkSevICViSpAGc\ngCVJGsAJWJKkAZyAJUkawAlYkqQBnIAlSRrACViSpAGcgCVJGuAt+/lmBw7ca9mtNba9fd+BEe/7\nzw4ccNytsd/e3t73cXfgwF9Z8zF3BWx7Y9+PYpTt7e91jTn/ApYkaQAnYEmSBnACliRpACdgSZIG\n2NckLJFLC7zG703aXTSiFhmZWmaZGLWXSVE9+z4E23LUrXbilk9ySZIGcAKWJGkAJ2BJkgZY4Rjw\nohGsntct2oe2/bRjXz3fk7IPvYYu9yL71uXarbO+W6OV7NbDYS/vRF2OnmIZFKdNvVcq9/2Tjn31\n9KE7pef5R32yfsbeFhTxySpJ0gBOwJIkDeAELEnSAE7AkiQNsEJJWLuVGEVB/0yUov1sdbw/Be9z\n3/SdKI/pIvTJS/lW6HNlx7a3dezb722/jJ50ELoRe65o6k3zWySNpeeq03ttwra8E+i48/1MyvqZ\nTAyiK0OjJe/ta6HPO6L9duiTzwy6Mj+Ebfnc+jH0eT7ar3Tsu2f0VLV3FD0Ps8/eFgLxSSpJ0gBO\nwJIkDeAELEnSADONAffEcika1RMNex36ZBSLvrfkD9avgT4UX80Yy4+gT26jGHBPhIzi1HlOKC6T\n8SSKLy0SMZy/nk/dE42nkZH7oqhaRszo6tEx9bx/jigadS9Fm44xSxtUtdHHjDxWVR2NtgtG/Ew+\ntilO+y7Ydjzat0Of90f7RuiTV4uKddCzJkdLtquqvrlDu6rqsWifhj6Uy5N3Is0HeS57CpEsbj2e\nkpIkLRknYEmSBnACliRpACdgSZIGmGkSFsmAOgXhKcEqt9Hr8jRRgkMmK9zR0aeq6t3RpnSYTMLa\ngD6ZjkN9KEUmt1GfTF64qqPPeny3y0/ZU/6gqk1joTPakwTVk0LXU36FSjLkZ8sRVlV1PtqUDkNJ\nWJnaQklYPQluPSVy5oVW30k5yujq0fPnrmh/APq8J9o9V4aSwOhK3BDt56BPPn+ehT6PR7unCBL1\no4TXnqJDPdeoz3o8JSVJWjJOwJIkDeAELEnSADOJAWc8oafkPMVyqSx8RtboO0mWBOgpqNFT6Jv2\nRfHlW6KdceOqqid3OJ4qLmz+QrSfgj70g/mUsaLV+27Xs2ABXXWK72bUjq56Rvpo1GV89VXoQ6/L\nEUVRxLwzKAZ9LNoUjcs+VVU3d7x/nlu6e1dPFv+neGOeGTp79IzI589Z6JPbLkCfvBL0PKZsiMxQ\neA36ZFyY4sQ56q+GPruVMUF3tDFgSZJmzQlYkqQBnIAlSRrACViSpAFmkoSVelY6oiQsel1+B6GA\nfiZhUdJDz6pGdLp7SjlkghOttJTHRIlTlJhwfbQpjefFaFPyQqYazf+7Xc8nyCtKKRuUDteThJVX\nnUoiZPoLpYdQElaOMrpb8irT6M1jos9Bo/W6aNN5y9FKKTu9JRiWE12tTMIieSWOQB86W5mESc+o\nTLCi1LccGXSn9BQUoqTQLMRBIzP1lr+Z7usgJJhdarbR3bt7KyTN/ykpSdIMOQFLkjSAE7AkSQM4\nAUuSNMASJmFRVZXc1lPlqrc6S6Z/UEJDpprQfnY6nipOXsqgP322XGOm53sT1V+ipIv8/LdDn6xG\n05PMNv91aRKd9byB6Ibq2UYjKq9gT3pe1kOrqnoCtuUoo7pJPaMsK2r1JJNVtaOO7owcQav31wIl\nXG13vC7PXq5JVVV1BrZlYiYlauVZpns90+Mo4ek22JYJTTSisw+tznY42lSti/bd80zKtL69fY6t\n3piWJGkGnIAlSRrACViSpAGWMAZMelZDSvTTfooL5CnoWemoJ3ZBkS8qhHEq2rRCyQ3RpjhtRgwp\nlkzft/K43wt9no/2sx37Xo/vdjkSeyP/GY2n6HxGv2jU5VnegD6/3xSSqcrxeV0zDqs+He3jsJcc\nmRQDpodMnpOe7AiKRq6eXOmHrnre249Bnzbyf2uc0XynqjYqTCMnrzE91b6PmQcfj3ZmEFS1n42u\net51NMLo0+VeesrW7O0UuR5PSUmSlowTsCRJAzgBS5I0gBOwJEkDzDQJi+SPs3tXyOhZjSjdCNvy\nVG5An8dh29PRph/VfyLaX4A+d0SbfghPiVm5Lg+lw2R5B/px/Op/l+spEUOlFeiMZrILpQzmaKUE\npxytJ6FP1b+AbdMxfLb+Y9Pjqnp50qZiHTl66O6h0ZLr4FBJiExMo9G7euVeEo2e6epkhyGB7nPw\nqvdEm1aSyruYUjJzG6VJfRnSEf+g7o8t9DzO52jPXUf7odSwHGW0qpFJWJIkrTwnYEmSBnACliRp\ngJnEgBPFBbKgREanqE9VGyugfWf0hE5bxkm/1vT4CBRIz5+mH4M9/1n9yaT9l1i24TejfTf0odh1\nRnQyOlfVRh8pYrl6ehYDyPgXxSnp5/456iiOlvFUGtG5jUrwV/0GbJt+ukMR761qC2/Q++cx0sjM\nJQCq2rgwRTrznKx+vJe0scwrI+b7t+BVn4dtef0ocprlfCiTJIuvvAh96Al5KqLOD2KxjhxRdGfk\nc4wyCNpth+oc9Jvaqmtiy97+jepfwJIkDeAELEnSAE7AkiQN4AQsSdIAM03Cou8NmWJwM/ShH15n\nCgGlJtwa7eegz6OT1mcgHeafwqs+2vHuH4z2a/Wtps+JJjWC5Po2VX2rKB2JNg2b9VirJmViEJ0F\nKs7Rk+CV62n1pBWewpSvT8K2L01an4Ue7482pd5l0hWlw1BpmRxlVBRiPZOutqPd3o95p98Fe8lr\nV9WmUtJ6bdmHir/0jF1K9zwe7VP1g6ZPjp/NeifsKY+cRk9b/iXPG73qdHO+d15V6XL4F7AkSQM4\nAUuSNIATsCRJA8w0BkzRqCwVfxP0oRhw/vCbYqkZJ/160+PWWGjhi7CXj8G2W3Y4mqq2NAbFfE7U\nQ7HlduhFr8yoJUUsKa6YVv+7HMUkez51TyyzZzEGyg9o900FWOg2n47hX4UeWaKFFlXIGDAV1KAR\ntZ4ZA4toz1QW66FnBsXiM7r5PPTJkUKFVfJ1NC6o+Eouz0CLe+R4PrvgEVwHEd6MHFNuQlv4hOaM\n3ctOWP2npiRJS8gJWJKkAZyAJUkawAlYkqQBZpqERYedKSOZ3lTF6QrXR5tSA05H+7Gmx69Fm1Jh\naM+ZWEPh/UzC4jU9ck90jihdIldxoiOg4hzqRVcit1Gf/HZMV+GRZkuWdqmqeha2PThpURJWFlOg\ndJjU8zloG6X5ZUmKHqtXvKN9ZuVd3I6BwnWGzkabkpAyvelUHYZemajapt4dbd6tLSTT9qCUJyqE\n8cKkdTX0oCIjOeb6xlfPFLn489G/gCVJGsAJWJKkAZyAJUkawAlYkqQBZpKElakVuQZMVZsy0pPy\nVNWeAlpzZrr60XX1VNMj1xm6A/ZCR5Tv/jT0yRpXfwZ92rQvOke58lNVW4OJvpNl+s3qpbr06Ekm\noj6URpLXnV6XNXm+A32+2myhUbbRbDlUfzJp3wmvyruFUhhz9FAf2tZTCYsqaK2+nZ9Hz8TZewbr\nXtGzLhNOaaWh26Kdya1VbWXA9v0v1FdgW6aTtgleF5vUrJebPkejTeOLKrJl0tmr0Kdd/4nOYyZd\nmYQlSdKsOAFLkjSAE7AkSQPMNAZM//XPuATFwki+jqJT05+n0zpLFDlOFCnIqMj90OdL0d6qvwm9\nMlbTE8utan96T9GTXNukJwY8/+92PZ8g47s0Mo/Atoyd0hnNfIAsmVLV5gdwCYLHmy33drwqPwut\n2NQTyyY9sfMsykCFE+adjUCfKM86PccyYn8N9KEIep4t2nfGQOnJlqNlA/pQFkxeZYqvZpGjdoRf\niOfYha61xKrac5uftao9Jzk/VPE6UouZ/1NSkqQZcgKWJGkAJ2BJkgZwApYkaYCZJmFtdbyG0mHo\n+0YG67P8QVWeJvrZeybMUBkMCudnisF/hT4PNwkNt0OvvJSUcEUJVpkalis/VbWpYuupJ1Go97pn\n2gitU5Wr3FAS1qN1LLZQEuF9zZabo02jPu8g+vx5Z9K79xQwoQfRvBOselCJlhwZx6FPrnhFI4zu\n2RxllKiU+6JCHPk6uuo9JVkyubOqfbr2PMdydaYqTn3MdZMo9TC30TGahCVJ0qw5AUuSNIATsCRJ\nA8wkBpxxSooB5//qKZaZ8bKqNp5BcZFbJq2NurXp8Yf1zKRNiypQpORb0b6/roNeH4o2XbaM71C8\nlz5bliTPYuhVbVyGonOr/12OPmFG7CgaR3HhHNHPQZ9no/0gHlXGv2jJhvaVWQafIoY5XilOnCOB\nRiZFA9MmbFv9EUWFOPJTU7GI49GmUUex2xei3S6G0L6O9p3FOXIhnCp+AmYWAz2jUi4OUdXeURQD\npvhuFtmgQiT5rPsa9OlZSqTP6o9xSZKWkBOwJEkDOAFLkjSAE7AkSQPMJAkrvyfQukL542hKHqBt\nKUsUVGUSVtWvNT3+d/2vSfsrdarps4U/vM9EgFzppGqxH7DTCiGUPJCJEFRmJM/36n1vW2Tlo6r2\nLNNZp33nFcyEq6qqF6NNJQkO1YlJe6tONn1uhfSpvPGptECODHr/nnXK6G5Ni650NO9iHXT0uY3O\nXl4ZSoLqSUKi0ZromZHJVJTwSmVjcpTnCCeUhJZJV/T585ld1X5+ujMzmbVn9C5u9Z6kkiTNgBOw\nJEkDOAFLkjTATGLAif4vn6UEKC5BUazcV5bXr2rjKXfvuO8tjIHQcee+KYqWxTLOQZ+MHVH5B4rn\nZMx358UoeNis/ne5K2BbnnUaYbTQQsZcqU8Wp6Co1l3Nlp3jvVXt1dqAPhl9o4hhjlYaPT0jg0Zm\nntt5x3tJz5mhZ0Y+2yhO2rMsCF2tXAKESsQ8EG3KIKB952fJxRGqqilERAVFsjgHfX4qspGFiCgG\nneeW+uTneAP69Fn9p6YkSUvICViSpAGcgCVJGsAJWJKkAWaShJWHSSkbmYTVswZNVZvakSt9VLU/\n9KYkrNw3rbx0oeN1tEJIJkr1fA5K66ECHj2lFGYyTC5Dz/pOPSlsdIZ7XkffhDMd5Tj0yfQTeq8N\n2JbHSaMlyx3QmjM954hGa6bo0OtyzbPVS8Ki0i55JigJaJHnYVWbhEXPmoeiTWtwZZ82UesgrG91\nqa6PLe+Hfd8UbVrBLbfRyKB0yDyXtGLT49GmO2P3RqJ/AUuSNIATsCRJAzgBS5I0gBOwJEkDzCS7\npqfeTiYd0MpHlGCUaSwUvM9ttPrG56P9MeiTVWaq2hQZqiqT70+fPxMxKDGDLnfWN1rPJKwePaku\n56FPm47S1s6hmkDHo3079MnEKEq9OQHbnor269AnR/kd0CfvMjpHtO8cwT3naPVQbbU8g5TWl88D\nemZQJb5MTKXRshHt9pl1faz0RqlU9BR5qc5M2g9H+02ZGEbPnhw9lKhFf1vm56U1yHIbzQeZHrg4\n/wKWJGkAJ2BJkgZwApYkaYAlDO7Rd4I8TIowZFxgo6MPbaMfp+e2LKNQ1R43xVdoFaOeVZzyB+S0\n79Szdg1t8zvZz9NTZIJKrVB883C06cpkhJBGZo4WKhtAEas8TnrdkWjTqM/PTyUKaNsir1u9QhwU\n5c4zQ/HdHIl09XIFtapD8ayjyGnG9HPdoap2VS4q0EIymk1ZOk/WtyftM/j5c4Uk2lPeYVVV29Hu\nGdFURmb3+LSVJGkAJ2BJkgZwApYkaQAnYEmSBljCJCySh0nfGzIxgVJWHuvctsj75zZKGaFjyh96\nU9A/Pxul7GTSFaVY9BTZ8DvZz0M3S6Z/0BpclA6Xr8tyMFVtcgulmvS4E7blSks963TR2j05onuT\nsHqsXtJVj56COnll2mIRhyHh9Jpo59pEVe34pQTCXEOI1hSip1iOlb4SF1SsI5On3gF9ep9/aX+n\nRJ+2kiQN4AQsSdIATsCSJA0wkxhwj/wovT+gzshETyEOistkxKonTlzVHjddkoxnUFRx0UUVVmgI\n7LKeK9pTxqQn8kSjLksQZDmWXjRas0wBFevIz99zRxnvvVwZae+5P9sY6CaMutNxBU/jVc/yL73P\nsR75up7nYc9+eu6wqr47en+XAPEvYEmSBnACliRpACdgSZIGcAKWJGmAmWbg0PeGDLD3JiFl8hKV\nUljEoiUJFk3U6klw6Pm+5Xeyn4euXk/5FVqDKxOaKAmrR6bsHII+dEyZakKpJ7uVGGWC1eWg8id5\nlemqUyGKRfSM+mVE5235zOFMSpK0cpyAJUkawAlYkqQBZhoDJovGN/MU9P6oeye7GQNepI/2w7IV\nnqDi+VpHuxUDzcIc2k0+ySVJGsAJWJKkAZyAJUkawAlYkqQBDmxvb48+BkmS1o5/AUuSNIATsCRJ\nAzgBS5I0gBOwJEkDOAFLkjSAE7AkSQM4AUuSNIATsCRJAzgBS5I0gBOwJEkDOAFLkjSAE7AkSQM4\nAUuSNIATsCRJAzgBS5I0gBOwJEkDOAFLkjSAE7AkSQM4AUuSNIATsCRJAzgBS5I0gBOwJEkDOAFL\nkjSAE7AkSQO8ZT/f7MCBe7b38/20XLa3Hzww4n0PHLjDcbfGtrcf3/dxd+DAEcfcGtvefr1rzPkX\nsCRJAzgBS5I0gBOwJEkDOAFLkjTAviZhSevp0h6+LvvQd+rd+p7t93VpN3lHSZI0gBOwJEkDOAFL\nkjSAMeDGovG6VeF3st1HYyq3UZ+L0f5pRx9Ct3leZ+rz1o4+uW03x49jcTlljZH9fmYuOi6G1AH6\nhRzhkiQN4AQsSdIATsCSJA3gBCxJ0gAmYTUy8aSqPU1vgz5v3+E1Vfx958fRpqSaTL6hPj0JO2/A\ntiui3TMk/N7281FCCl2Ln+zQrqq6EO32uh+L9qHOI8qRcB76VF0Z7SPQJ+8FGhv7nbwl1pM8Nd12\nEJ4Z+cSgK0fpTvm6HnTnJPoUW3gEizzb9jZxy1EvSdIATsCSJA3gBCxJ0gAzjQHT94aM3Wb8qqqN\n01ZVXbtDm7ZRDHgr2pvQ5wXYlhGMV6DPq9GmWO6PdmhXcZwxPwudt6ujfRj6+F3ul5PXvb02hyLm\nexT2kjFgGpkUxcpoMl29c00viuLleKF7bNEYcJ6TnojgOsj7v42CUuw2xw/d6XmF6U7PTADaD2Wp\n5FPsDI7MnpyCfNbSUb4bttGRptei/UPok+OQnsd9fGpKkjSAE7AkSQM4AUuSNIATsCRJA8wkCSu/\nJ1CqSQbdb4A+lGB1Y7TfBX2uijYF8zMwT0lQ74Bt10SbCoFk+sKL0CcLemSiAn/6KyJZ7GXoc6k5\n/1TuIa3id7ue8gI9CYK0rR3TW7Gv1+rcLzi2n49SpzLV5Fy9B3pl8t07oU/eC/RIofulJyHm+WhT\nguKqJ2a1CT6H4t6mpyGNuBwHlCh1thnj7Xg+GseUiYBVbcmPqvYJxWMln9uUTJWJftSHnnb5/G2P\nqOrxaD8BfV6K9uvQp88qPiUlSVp6TsCSJA3gBCxJ0gAziQFnRIPitO+NNsW0Mt5aVXVLtKmQwCIx\nT4pB0PedjEv0FDI4DX02ot3+OP+VOtVsuz4iQRTlO9vEs+kYe2J6c0fR1BybvYtwZASOCrdMz+lR\niAHfHO27YC8fg20ZOX0AisR8PbadwmjfHdHuKWRT1eZeUEQyI9XZXkXT+GrGe6vamCstkdEz4l7D\ne/YD0W6jyRfiOlzAWCoV/aEMk53QMfbk7VwH294XbYqeH+84pp6Fb/r4F7AkSQM4AUuSNIATsCRJ\nAzgBS5I0wEyTsKigRQbiKTWBVrZ4JNqUUJBJSJQMkoF4+il8JopVtQkqlOiTn5c+x50d798mT52r\n707alITVnpM2wUs/QwkZdJtlIgdd0zOT1vuhxz3RpoSr34Btebd8Gfrkt/Ov1fmmz6mmcEEmNVZx\n0l5uo8+fhTfo3syjnPvfFNPx07MCFqEn1Llmb7dBrxxldD6f3fHdDkLCVabFXoAEs9eafVGCVT6P\nKVGLCjHlM5HuqHzWPg19cswv/jyc+2iVJGmWnIAlSRrACViSpAGcgCVJGmAJk7AooJ3fE3qSWmg1\noidh20a0M8GgKpNBroMVSjJ16jSunPP3YNuno00VZBIlc+UxUTJXu5rMxTo8aR/Eikx5TdYlCSs/\nZ3vd26QrOje0Wkomm7TXPVNLKAUp18Wi9YLoTsh0FEo1eSzabR012hON31zVqKpNuqKjzE9H1bIy\nmWvuf1NM1xGiGnw5wuiMn8NXZt00Smbtke/YXrueRDGW15hWfsvnf65WV8XJkHkf0ljJKlv0rN29\nMTb30SpJ0iw5AUuSNIATsCRJAyxhDJjk//Nfgj4ZU6I+X2u2fCZinlTI4PZo08/XN6L9WxHLqar6\nLsZcspQCRXQyQkc/s88IIcVAaNt0RZDTGAPO4+5ZHWpuKHbbE9/N60xxSnpdbmtXZsk9nYDr/mK8\nP70TrZCUe/ot6PNw/UpsodVj8ijpOz1FpvN+pQh3bpvJ4+qyTHNHLsJzJM94Wx6lqo1lVlXdGm0q\ncpExddpPZie0Y/5Sfb/Zlk+R47DnN+rCpP2T+kHT52xsO1l/DnvKVbqqqm6KNr0u+7Sfg/MVFuNf\nwJIkDeAELEnSAE7AkiQN4AQsSdIAM8lqyNSSnqSObzc9/iG86gvRvhf65JoZlCb1n6P93Wbtjype\nl+bj0aYknkx6oIIiWUCEktDovE2/g23hekg9SVjr+l0uRwNdPzo3mezS84P/NsXqXLz/k/UXTZ8H\nYc+Zjvjd+lXo9Ylon4Q+WSiBxl1PcRlKH8ukL3pcrdq4m36e81j8JYvsvBv60HjKhCpauSpXZzsO\nffJ5cBr6tMlLmbyaJYiq2pTUPJqqdjRR6aQnmxWL2m0P1h83fR5uSojQuaV7fDGrNnolSZoFJ2BJ\nkgZwApYkaYAljAHTd4Kdi39nKYwPQ4+7YVvGJSha9Z1o3wd9/m2z5V9Br4/CtoxyPAF9MnZLBcoz\nLvwo9NmAbflDf4q6ZMx3CYfNnuj5fpqxy1ycoIoLWGQ8LjMNqtr4G+37oUnrIsSAH2q2VP3fZrGQ\nfwy9Mtb3MvTJ3IsXoA/JMUWfLccZXY9V+xsiPzPdazme6J7NHIOq9hxnbklVGzumgha57+81PS5C\nfDWPksqAZFSaotT56bNQUhVHwG+INo24C1HW5OmuhWcoTt9n1UavJEmz4AQsSdIATsCSJA3gBCxJ\n0gBLmE1DQe+eYgc7/ziaUpe+Hu1MKamqei7avwt9turfxJa/D73oR92ZPNX+gLzqgWhnWlhVllu4\nsl5tehyGV51rftTfk3SwLnYuhNEmslBqCaWEZOoIpZJk2iCNzo1Ji0qtUPmMNumLVr3J+45WLOpZ\nGYZGXk+CVU+fVZPJcXl/VnH6UKKVzxJdzxwHNC7Tdc2Wrbqm2fZ0PJNobbgsqkGfNJOpaBKj2SBX\nAKPUqfb9KC2Xrsli1mFES5K0dJyAJUkawAlYkqQBljAG3IPiG9PYSf6/v6rqMdiWEdfz0CfjElv1\nT6DXF6OdkYqqqq/AtoxCU5zx+WhTpG8ai8vyGlVV52Bb3xDIvdExrsN3OSpckDFfKvdyF2w7Hm0q\nOZBFEGgRjul5v1BXNz028MrncfcUfKAxnbFk+hwUa8woHcXackxlfLSKR/oqofsqn3/0tKPreVW0\nKe6f9zblpOQ2Kh7UXvO8wrSEQ+4582+q2k9Gy8e0Uek2vksZFT3LhuymdXhqSpK0dJyAJUkawAlY\nkqQBnIAlSRpgCZOwer4T0GEfmbR+CD/FPtWx59dhW5vyRKH6XHPmf0Kfb8K2TLCiRJcs4EE/jp8m\nWGzWS9CHjjsLKSz6nSyTN+b23Y6ON5N+aIWZLLJBCVcfgW2ZJkIJXnlt6JpmMtWdTY9XMJUl1wGj\nYiE57ij5MfezAX0yjbGqTRyisUl347ppz8vBSBU90vSoeh2edpeae5SueT7HKMHr6WhnImnVbbXZ\nbMvVkOiOyyOkRKl8Hm9AH0rMytFMhTgoCXcvze0pKUnSSnACliRpACdgSZIGcAKWJGmAmSRh5TZK\nWJkmyJyD5IGroGpOpsLQ6htZP+ZE3Qe9MtGEEmZoXZpM9KG0g1w3JBNfqtqKRLQeCCXDZEIFJV2k\ndamE1bPqSY4YGkG0n7z1Mhmvql31isZGJoZREtg9sO3eaH8c+vTULsqUGEqmouSt/PzUxwpsBclM\nN0ebUqnorHynHp60z+MzIhNFqc80qe8D9XLTg0ZhPkepPlqOcHoaXahDsWWr6UMj5UK0afJrk7D2\ndnyt+uiVJGkpOQFLkjSAE7AkSQMsYQyYDiljvhRnyxhSruRSdamJArTxlLaMQRuBpdVlztS3J22K\n+h2DbRsR5/pqV5yPYsB53rKIQxWdkzZm156j9ifr6xKLyzFFUauMUlGcNKNf9Lqe+Dyd9xwbVKSF\nVmj6bLTpvtuINh3jI9GmWDaN6fz89Nl6rOK4+//o0+XziNY0onI+GZd9vk40fXoi+pm10q6/xaOp\n507JIzpfR6FXjvn2WXcBnmNtfJdW18q5hfrsntUevZIkLSknYEmSBnACliRpACdgSZIGWMIkLJJJ\nLD3raLSJWj+FwHwmNGRqSlWbvEDpIplgQD9fpx+V/86OR1TVJl3RZcu1Rih9gpKw8v0OQ59Mzegp\nLLEK8hzSOX0y2pQg2JNYRykpGx3vn2u8UNENSpPJhCpKsPpqtB+EPrl6DiX/kfwstNJUjlc6t6vt\nEtxrL0VSJD2P6CmSqXgfgz6ZdkjPrLzC1Ie2vRjt7+Prch2jfK6R9tlzCYs15VOZ+iRKSt09/gUs\nSdIATsCDkRYfAAAbfklEQVSSJA3gBCxJ0gBLGLijQ3pXtClelNva4u5nIIb1fMRTKBKXP2qnSFRG\nEyi6QNGxdskGKgWSn5/iInne6CjpR+VZXIKOMmMnFEteRRldo3OT8XEaQbmoAmlfd20UfKErerpZ\nToSibxuwLT8b9ZkW5r+6zjQ9MtZISyrQthx15+t16NUTo1s1uQBFe6+divvxFDwPXoFrlVF3Wn4j\ns01ooYcsD3MK+jwO2x6L9oW6Bnrl0zaLANE2Gif0t2WeS+rTU5ho9/gXsCRJAzgBS5I0gBOwJEkD\nOAFLkjTAEiZhUapJJiFl8YGqNjGp76P9af3lpE3fSDKFJo+GXkeFOKjUwZebLbk+U1VfIZJMdaEj\neLnjqKhohN/T3tSmEx2KRCkemWdh2y9uV/UlOD0d+/5G/UHT5xKOqdxbm2B2MNaPOQJ7SXTXUXpV\nW1LkEPTKcbdq4zATrqraM0Nn9H3R/kjT41RT9qLqv0XRlAfhefDRaNNVeSHaWYrlzfenYj355KRn\nfX5+2k+ic0TbMgmVErxoxbO9s2ojWpKkWXACliRpACdgSZIGWMIYMJUWz8OkKOyN0aZy5G0Bj80o\n/v1HdaLp8/V6atLOcuFV7RIGWZ6hquosLnSQURf6cXrGZSkamO9IR5A/ha9qCzBQDCTP5RIOmz2x\ncwwytxyDvdwC266PNi2XkHcCldjIEf0h6HOqTjbbcl9UvP5SHZ20X4aiBBmho6jmJhaAyaIIVNwl\nY4Tr+PcCFYLIbXQ/fhK2fXrSeriea3o8XE/ElldhPxnVp/en0ZrxXbqeOaLojupB80jqOca9tY4j\nWpKk4ZyAJUkawAlYkqQBnIAlSRpgCbNpehKMqFhEruORxSuqONHjeLRvbXqcjzVBzuPKMfldhpLA\naFuu/kHJA89Hm37AnusqbUAfSsLKAgw0JNY1GSY/Z5uotBnbXoUCKG1JhHaUU4mURCkjedWp6AXJ\nBCteYWx6v2zB2NxqPgklsdB46Vm9awkfT7uKktN67q18HlApDHrW3R5tKhvz/mi3iVrtc4RGeM+1\no/fPBFuaDxKdM3qO5h1ExYo2O95v96zLk1SSpKXiBCxJ0gBOwJIkDeAELEnSAEuY5UDB80zCoqB/\nJh28F/pQTaJMY8mkqKqqu6J9Gvr0BPh7Egoo6SETW6haVb7fKehDaTyZWETJOFnBi763reJ3uZ2T\nsLJSzxlI4tiC+lA5gmjPPStsnd+h/eb7U7JPVo6jI8ikQUqUSu2qSnzkuY3u+1UcU78sekTnGHsY\n+lCiaj7r6HmY15jeP8dOJvRVcTpgrqdFVa7yWUfjoud5SM+63La/Kx8RR7gkSQM4AUuSNIATsCRJ\nAyxhDLinEEf+EL2qjWFRTItWUcrYcU9BAIqTnok2rSKyAdsyLkPx5Xx/KjKS5+gc9KFzkp834zRV\nbQx4Xey8GlJ7Tq9terwCK9q8EnG8wxAnzqveU+KC4700XvK671yIgwvJZCy3tyhC3uc9+RHroOeR\nnPcjnbt8rlS1BTSoTxbHuA765HOUxgUdU+YH0DMqS9JQLDvHE40vet3yjTn/ApYkaQAnYEmSBnAC\nliRpACdgSZIGWMIkLAqoZ/CeilVkMkgmJVVVXQ/bMumIklEyYYWO8Y1o06mlJKiePplQQIlaeUz0\n/rRCSr4fvc7vaW/quV3oXFFi3zSlahMKB2w2Y6pNsDoYyVuHIJlrCwthZAIOFS7I46bxk+eEVpPJ\nz9FrHcddXuP2evbd63TusoDRogmvmdTX88yuap9bPeuEUVLhFdFedJzQcee+Fx27fdZxhEuSNJwT\nsCRJAzgBS5I0wExiwFmCgOK7GcN6FvrQx804V8YAqtofvtN+MnZBcTeKi2R8l35AnkXDe+LLFHfs\nKTKiX05PsQ4yHR+HIdaUJe6PQTywJ6tgE+KyB6NwDI36RCPzbLQvYWH+niIfjsM39VyJngISWx3b\nqBBHXgd61iYqEUOjZfr+hzr2TBHYS01cmMYOnceec7u//AtYkqQBnIAlSRrACViSpAGcgCVJGmCm\nmQ+UqJXbKDFgt/bd8+NsTh/YWU/yFH1vyktJfXq3aXE9Kya1/Tbhum/GGH6lScajQhytnpRBstkk\nu9CqWFnIpqfYS9XiyWurrufZQsUpUk8Bj3Y89T2jel5D7z9NgqI0sT45VnoTrva2qMYiHPWSJA3g\nBCxJ0gBOwJIkDTDTGHCPRb9b7NZ3kkViKbvJ71b7Y9FYZsZ8qVjFzmMoe9BSCJu4nzzOnvHa89kc\nd8uhZxEDsnzFKhazfPFe4t0iSdIATsCSJA3gBCxJ0gBOwJIkDXBge5t+MC1JkvaSfwFLkjSAE7Ak\nSQM4AUuSNIATsCRJAzgBS5I0gBOwJEkDOAFLkjSAE7AkSQM4AUuSNIATsCRJAzgBS5I0gBOwJEkD\nOAFLkjSAE7AkSQM4AUuSNIATsCRJAzgBS5I0gBOwJEkDOAFLkjSAE7AkSQM4AUuSNIATsCRJAzgB\nS5I0gBOwJEkDOAFLkjTAW/bzzY4cOLC9n++3n3o+2IE9P4rl9vr29pBTcODAR1d23Gln29vf2fdx\n96kVftZpZ9/ofNb5F7AkSQM4AUuSNIATsCRJAzgBS5I0wL4mYe0nyoC4tOC+3ujaT8bc2yPo+bZz\nRdcRLWbRb1vrnjy2PHpGsN+ppbnwbpUkaQAnYEmSBnACliRpgFnGgCm+m3FKipZt4d4y6noI+lwd\n7bdCn6t27NMTwbuE34kuRvunHX1+DH1+suPrDtZm0yPPiDHhX9ai2QfL/l6Xw+/+y6gnByWvHF3J\n3bq6NJpzG/XJvJ1l5V0gSdIATsCSJA3gBCxJ0gBOwJIkDTCLJKzdW1aE0ocyxegI9Lky2m+HPrnt\nHdDnRth2bbQzmYv6kAvRPgV9TsC2H0xal+p002OzfjhpH4YrYmLWz/QmQfX0WySVZNG7pecKUorO\not/hLSqy3/Lq0cM/U0epTz4Ns13FT8i37fBe5EewLdNLX4E++TSsapNwOSl3fznCJUkawAlYkqQB\nnIAlSRpgFjHgReKL/IPyNj72RhSiuISRgdej/Tz0ye8yFBmhWG7Gim+DPrd37CcLaFAhjvwc1C8L\nelQd3MUo/OrpK6/SymIqVCQl+7TXpt3Ws5+qdrzSHZP5EBS1y3FOjxTalnf1osuQzPdviJ6CQiTP\nFJ0BKieUVzNjsrSNnmKJ4rTPdbzuvbDt3dG+ZcH3p6ffS9Gm2HHuqy1LtJs5SXMevZIkzZgTsCRJ\nAzgBS5I0gBOwJEkDzCIJK/WUA6AkBHpdprAcxOIH0203QI9MnjgG4fvzda7Z9lq0T9e3Ye/XR5uK\nfGSiT5sodiX8PD3XeSL5SegMLcOP2vdez9ospGf1KkolmRZAuRbOciatvBP2chiPaXoVt2HfP4pj\nPAt7eTXa5zCNiMZrT7pP3sV0V+f5n8/fFIuWPsmHNhW9oHI+mYRFZzPT7F6EPt+N9uN47T4F23Ic\nUMJgpkp9s+nx4UiD+kDHO1W1I4NSCnMbJWHtpvmMVkmSVogTsCRJAzgBS5I0wCxiwIv88Pwo9KFo\nXU/x8YyxZNyN+lCpDCqjkD8G/yD0uaLOTNpHol3Vxvno81PEJSOPGZOuauNAL0OfPLeLLCOwfHKk\n0cjLEUORJXpd9qPROY0Bv1JPNz0ORRSWlvu4CbYluu4ZuT4GfbK0y0UoU7CJIy8/L8XJM05MJRBm\n8Qjr1vOs61kahqKyGc+kBQuygMXj0IfKELWehW055umJOF0M5ihc8x9G+1HYC42KfEZS3kqeNzr/\nu7nwjH8BS5I0gBOwJEkDOAFLkjSAE7AkSQPMMoOBvjX0/MicEoMyFYSSFzL5pGedI0qMoOPO96cV\nQu6Ids8KIflz9qpMb3hTpkpsQJ9M0KFzu9c/WN97PYlSdOXzJ//v6uhT1aZL0do0mRLTXsEzse7M\nmXoM9kMJMZkYRelb+VnocZHnjRJrKMUr358StXJbTxLcav1N0fPM6D3jWUiFVgw633FMOVLeAUdw\nYz3VbPtxbKMRn3dcTyoXJYrR52iPsi1Rc208yajIx25ardEqSdJMOAFLkjSAE7AkSQM4AUuSNMAs\nk7CoEknPuimUKJRpHrT6SPbJ6lUkq7VUca2fXFnpHujz2WhTElYmXT0CfSjNJZM1etak2c1KMMuD\nPnmmidAaM1kXjeqk3Qbb8srT++ft2VPLjEYe3eaZykKfLftQDaSszvUE9NmAbXkX0WpQmSZEd9Bq\no0+c26gyXVsrr+13EdfOmo6xg5DOlCmFx2Evn4dtmWBKz9Ec4V+DPt+INiWh8WfLJ2c75l6rE5M2\nzRm8uthi/AtYkqQBnIAlSRrACViSpAFmEQPuWZMmi2ycgz495QAoBpw/YKdVNNp1alq0Ts6vRzuL\nblS1kQv6/BnNoPgKRfAydkzxpIyx0Jo089MzqjIuS3FSKieQKL6Za0zR6Mjbk+LEWfLleuhzDWzL\n0jFUQCSjjVTkI8tC0F1GJR9y3xTJ61mrbKfjWV70rEkUA8645AvQ5wyuXZVPl8xDqMqxegn2/lqU\nvqB3olyWu6JNz8yvR5sKCp2M9hau93UnbMsxnvdg1aV4Sl7ENaOmLicm7F/AkiQN4AQsSdIATsCS\nJA3gBCxJ0gCzSMLKtApKs8gUDl4Ng8Ll07ISFyAZJBO1NrEUxc6r4lwXP/KmXlRqIYtqtKkDbUID\nFeKgVUMyMasnUY2S0FZTT6JWoitI6W95NXoKcVCi1tFoH4c+p2BbjrxMkalqE8zozstzQsdIa4Pl\n5+1JgqO0pUWu0fLKo6d7LdOCMkn0TVSuJ5OuKPEur1WbBnYpSvM8Wg83fZ6EPWfaHyWKfifamZRV\nVbVVH4wt9Fnvhm05fqlozXT8XoAkLLpTFzXv0SpJ0kw5AUuSNIATsCRJA8wiBpyoEERGbi9inJaK\nJkzjAhQ7bmNPGe+tagvut7Hkm+FVGTGj4uMZK6GYTxbQ+D70eRxjaLR4QDo9aV0JV6CnqMD8ZASu\nZzkL+k5LkfUszkG3Yr6OyjJkRIpisBRtOx7tLAlTVfW+aNPI24g2lXKhcgoZf6PPlueElliZrywe\nVNUXUU+88AyN1SyIQuPi2WhTxPNzk9b36/amx7+r32u2/ctoU3mab0X7PJb5yDg1FcihMZf301PQ\nZzou6dzmNbqcxWn8C1iSpAGcgCVJGsAJWJKkAZyAJUkaYJZJWKQtEdDz439CffJ7ChUtyESALzc9\nKAnroWjTD9gzMawnCe0ZTB/4KGx7Z7Tpp//Tz7+NhR3mjpKAMk2GVvXJZCL6cT+t9JP7eq7pcXO9\nOmnTmi+59hGVJKA74Xcj3eVE12pI7TG2JWCoTAy9Ls8TJQ31/H2wWn9D5HOM7uIsaEGppeeh6M+F\n2EZJUDkKnmkS8ara598nmx7P1Debbf8j1jGiJ03ecTdAWuzp5ilJSY4kk0nbIhvXRTvL3Oy21Rq9\nkiTNhBOwJEkDOAFLkjTALGLAGReguEj7o3b6bkEfNyMo9LPqjAxQpG1j0rq+zjU96KfhD0R7s66B\nXtN44ZW12fRoF5qgY8xiIVXVvN/r0Gf6g/0tiAFfzo/Rx1hkiQ+KE2ckjYobULRtOho+AiP470T7\ns7CX90f7RuhDEdgcdycwdpuxtp5YLsXjaEylWTyK9h2dlXwaZR5AFZfXoXIVKUfqv28Kc1S1hYgo\nb6YtVvRwPJOvrGeaPn99x71UvRHP1ufhWUtZF/mEpHObd3jP8iOUk9PLv4AlSRrACViSpAGcgCVJ\nGsAJWJKkAWaZ+ZDB9Ko2EH4RE2Z6ErMofSFTWyid4eSOPdqfpldt1UdiCyU0PDJpXYQkrPbn+ceh\nDxVbyDINPQkzrUyMox/ZLzdKt8jiEDSmMt2DEq7aBKcPxoj9NLwqt90Jfd4bbRo998O27zRbKN0l\nz0mOsar2/ulJW6lqzxOdt0ztW7+/F+gBfXW027WIqu7u2EZPg/uifQzu5PNNYhYld94D2x6ctDKZ\nrKrqjmh/HvrkGO8pD1NV9UK02zIcbQolr463e9ZvREuStAScgCVJGsAJWJKkAZyAJUkaYBZJWFdE\nmw46A/PnMGGG5HcQSkbJVBf63jIN15+FHlv1K7D1rdFu10M6FukClDxwqanoRWlgtG5Kph1Qva5p\nggyl2cxfT9Ie9dl5VZ93QK2c49Gmq5VpSbRS1uloUyrTf4dtZ+vDsYVqaOW9QJ8/70bqQysd5WpQ\nNKryzif5utX/myKfGJR4R3d6ouSlB6N9Hmvc5RHQCmA5MquyWuBx6PE3op1JWVVt2mhPha+qdhRS\nomh+Mkr4pRTYRa3+aJUkaQk5AUuSNIATsCRJA8wiBpzfEuig83/1h+A/9VvNf/ir2ogCFRvIGDDF\nPKZHSWvCcHzsoUnrQ3DcuU7O4xj1yQIiFFPbgG15pBS7mRaSoHdfzW9yeb3o+vX0aeXVoTWUHos2\njfuM+VIBgt/HK5YlDujeyHFOmQ1ZqoDGD0Wm8xP3FPBYzeyDX4SueZ4VirA/Atv+MNoPQ58/brb8\nJvT6aLR/p+lxbf1Rs+0D0c6VvKr4s6QcOTs/jd+U55JWTNrvjILVfG5KkrTknIAlSRrACViSpAGc\ngCVJGmCWSViUUnIk2u+EPqcxxJ9ri1Ahjlztg/bzsWjTd5s21ebmSLqiH363K9d8AnplEhYlA1Gq\nT67U0/48/2idm7TpGDNRbH4owSe3UdpGnue2T1uGo+r5aNOIyitDfXJdmkfreuj1BdiWa+FQ+lYW\nZaEiLZnER316EqwoCSy39a60NF89ZyX70Bl/HLZ9Kdpb9Y+g1/Fo/zr0ydIX9zU97oVX3RRtSs3L\nz/IQ9Mk7jD5/lnmpapO16Am532l+qzV6JUmaCSdgSZIGcAKWJGmAWcSAsxw4lQc/1rGf03UGtubP\nwam09/FoU7GOjIVRhOOBZsvJKDh/sin6UVV1T7SpT8/P06k8yLRwwtF6temRn5YioVTYfPVQ1Gh6\nnQ/DmaDxSqMjZUmWl6HPiWbkU7z3btiWSztQ1DAjzDSm8vO32QBcvP5otLMgTlUbAZ3F4+qyZH4L\nnZUchbRIx/2wbav+bmy5F3rl8gd0BL89aX2mHm165DtVtVkGFG/NeC5lrWQuBN1LNFJo9O70ur1+\nrvkXsCRJAzgBS5I0gBOwJEkDOAFLkjTALLMaqLBBfpDroM/NkD50sklhyKIbVW3Y/wbo88loU2ED\n+ll9Fv6gBKu3RZtSE/KzUZ/2mI5F0hV9skyr6VmxZDVkmgglYU3PBhWJyXSjqnYkHII+mQ53Evq0\nK9PQFaQ0lRwLbRLW4Uj7os+Rx92zYlNV1bmuUZR/H9DfC/P9G+IK2Jbjgore5Jmj5KKTmPqX4zmT\n7Ghbu67StfV/Ju1/DXuhp2g+oSh57EK0X4c+eRfSSKJzmymodDfv94Q439ErSdKMOQFLkjSAE7Ak\nSQPMIgacMV/6cXT+P5/KadwF2w7VM5P20/Vl6HU82lRaIIvgfxH6fA62ZYSMSos/0dEnY3iPNT1u\nguh5RqApLpKFzdenEEfPEhPTaNMBOBMZwa9qC8dQUYJz0b7YLBxS1S6q0Bf7rzoR7bbMR44NigFn\nrI3icVyIo6fIxvr9fZCfmGKZef9RnPQw3OubEbs9GO2q9hr/Ndj3X432ndCHsl2yoA/FiXMBEio+\nkzFvur92LhnDx5j34V4vMrN+I1ySpCXgBCxJ0gBOwJIkDeAELEnSALNIwsrAOCX85A+4ab2iTFep\nahNN3h1JWVVV99d/iC0Pwp4ywSpXFaniFJVMsPom9Nk5wermOCv5uar6Ejoy8Yf6UKLWeqDvq9NS\nCa9DiholrWVyRya6VVWdboopvBt6ZXkB2hOlpGTqTjs6tuIoKSElt52HPhdx5GXJEkqJoWISqy3v\nLTrnPfffcdiWo4ce/vmEovfPp89/gj5UTij3TU/DHM1UrCPvQipiQ9sSff48t5QcuZv8C1iSpAGc\ngCVJGsAJWJKkAZyAJUkaYBZJWJl0RYkemeZBKR20LZMFboc+fzuO4If1e02fJ2PbC7AfCuhnbaO3\nQx+q9JJ61kLKBIeqNnmNEiMyEWOvq8MsLxpB05prVPXpJKZhZYIR1ZnKVDp6/7zSNFroNs99t2sW\nvRIjJpOySI6nn39MuY2OkZK3VluOH0o4zfQ1qo9GK8blGafnUSZYnalPQa9c+Y18D7b9xaR1dbPe\nV3tMNJ7eF21KOKVVyXIbPetym0lYkiStICdgSZIGcAKWJGmAWcSAE8VFMppAfWjVkCxbcBz65DZa\nVekfRJu+2VAkMEsk0DpHz0Wb1rbJSCCtIkLxlNxG522v4yDLK2OQPQUlqAQMxUBzhFD0P/dNRTay\ndMBh6HMEtmXMmaJm07Is5+sM9Mljojg1fbZ89Kzf3wIUUc/7j+7Zm6JNK79RyZZno015Imea8fMR\n6PXPo3039MniQVVVfzppnasHoM9D0c5CRVUvx9Oe7koaTbmtp6CJqyFJkrSCnIAlSRrACViSpAGc\ngCVJGmCWSVg9gfGe9V+q2kSEp6DPsWhTSkmmnlAqCslEAErUyhIJVIgkPxvth4pE5LmkhKv1LbyR\ntwfdLpm8RGUBKCUmk7VoVGXyFI3gHEE96SdV7ZU+DX1yG6W70J3W8/55Lmnlo/X7+yCTsKh4Tq70\nQ0lYdOZ61p+6OZ4SJ+u/QK/7on0N9KHxnGOV0sAembSOwtMn74qelY/o3ZfhubZ+I1ySpCXgBCxJ\n0gBOwJIkDTDLGDDpWTCgJ75J8dUsakHfWjKC1RuXyGOi487C6lQsoyeWa3z3F1n0u2i+jm4pKo6R\nMWCKHWeUjgp69JQToGgfZQmkLE3fLtjQfn4qcU/x3UUWWli/vxfoXj8bbbqSFBe+JdpUUKgtj0KZ\nI9MiG+2SCrwYDcWzU45mGt35HOu5A6qW81m3fiNakqQl4AQsSdIATsCSJA3gBCxJ0gArk4TVg4Lw\nPYF5SoTYyW5+s1lkNaJlTDiYP0r3yNWAqA8VqzgVbUqwytIJlFqTo6Nn5aGq9jgpwapnpSVaRalH\n3iE0yv37gM5KpkXRvU4JT7mqGo2KPOM9JVRITxIo9ckR15tMmuby/HOES5I0gBOwJEkDOAFLkjTA\nWsWAF7VIPGEuMQhdrp7SARknruorS5B6FlqgW5q2ZSSt57t4T1mE3Spooqq+54jPmvly1EuSNIAT\nsCRJAzgBS5I0gBOwJEkDHNjezrV2JEnSXvMvYEmSBnACliRpACdgSZIGcAKWJGkAJ2BJkgZwApYk\naQAnYEmSBnACliRpACdgSZIGcAKWJGkAJ2BJkgZwApYkaQAnYEmSBnACliRpACdgSZIGcAKWJGkA\nJ2BJkgZwApYkaQAnYEmSBnACliRpACdgSZIGcAKWJGkAJ2BJkgb4f2fCrg/k54rRAAAAAElFTkSu\nQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5b7d11410>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print \"Best performance: %4.3f\" % np.mean( perfEvol[-3:] )\n",
"\n",
"pl.plot(np.arange(0,nepochs+1,intervalCheck), perfEvol, 'o--', markersize=12)\n",
"\n",
"delta = nepochs*0.05\n",
"pl.xlim(-delta,nepochs+delta)\n",
"\n",
"pl.ylabel('Accuracy')\n",
"pl.xlabel('Iteration')\n",
"\n",
"pl.show()\n",
"\n",
"f,axs = pl.subplots(3,3, figsize=(8,8))\n",
"\n",
"c = 0\n",
"for ax in axs:\n",
" for sax in ax:\n",
" im1 = sax.imshow( TOSAVE[:,:,c,-1], interpolation='nearest', cmap = pl.get_cmap('BlueRed2') )\n",
" sax.axis('off')\n",
" c += 1\n",
"\n",
"pl.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Making a movie with the weights..."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAD8CAYAAABzYsGzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnduTXddx3r8BiQvvEEQSFCWRI1p3UTSlyJIsX0qWldhJ\n2a6U4qjykPJDUnnNY/KSKuc5f0DKT0lVokolqdgVV5JyIjuSIlGKJMsKRVIUb6KGF5AAQYIAB0Ng\nMCQmD7t/e3+nz5qjwcycMxtGfw/oM3utfVt7oftb3Wv1Wtrc3FShUCgc2O8HKBQK40Apg0KhIKmU\nQaFQCJQyKBQKkkoZFAqFQCmDQqEgqZRBoVAIlDIoFAqSShkUCoXA9Yu82dLS56/p6Y6bm99Y2um5\n/3Bp6Zpuu69sbu6o7ZaWPnJNt9vm5k+23W7FDAqFgqQFM4Nx4nLIa0MvbuctL//8Ks1rbfe8v36Y\nRT6WGnX4b/f2FZw/f1wb/wMKhcLPRSmDQqEg6aoZJswioLmsVfdykm816mS9eKDx+/ot6m51bDyY\n9XSz3jy33KzzZ91jO0OIq3eY0fpvxBDguvS3JF1KdS+G9BbIrer34PfeDiHG3YMLhcLCcJUwA9Cy\nU2jZbO3XG+ejnVs2iOugpb1pDoU8kqQk3Zjqj0u/5qdp2ZdDjTKQuZS3XK7fenPO42u83agzTkaA\nRedb32hlR5O8KeQNjeu8EdLZwPmQL4U8k+pK047tVn9E7g1DGFfPLRQK+4YRM4O3Gr9bY/4LIbE9\n6LeDVucdIW8O6Vr+zZBo5db4DWw07s/5WVvvX9O2vB2Z20hDK1CHFnjJ6ryZ6rTOp6VouVetDtfE\ndh2zsmxXW5ZpMayB0N4hO0ZfuTPkspW9P8m7Qx61OodD0mfOWBkt9N2Q3w/5mNU5GRJG0Xo2pbLd\nMYRiBoVCQdIomUHL+qMdLyTpZWhHtPN7rM6HQ6LB77QybB3juJWQbh9XUp2zVobt4/63ahqLbWbX\n8DwVVtxtF0+aLbtbY45l3uPX4u1osTWrg33DZjlf4/zsN2/FeuYLns7fDg5D3/molX0w5F2prn/n\nzJu8z2VfwfMhH7c6uRX8b/rh9Ulep92gmEGhUJBUyqBQKARGNEzIYcNW+BAn4UUrQ5/hVLk1/S0N\nQ4GWG+z2kPeEhM49a3W4Jo6fV6zsqZDuIJImCflidC53cbLIm/IGt1sZv/NQwt1Qr6eye6wMcszX\n4Ct563CPW0K+t3E+z90KBi8W/p1uT9L/q7ySJMPWDatD/+W881ZGq74c8sWQ/uXov7SqX5uBWB68\n+fNfuTOxmEGhUJA0KmYAcJT4JA1+Z20rDRY4u8g8fIjDrzVxNjsesQTnrA6MwBlJLnsl1WlNLZ0P\n8tVbzAA743zlWDqG9CfnWrSmu9j4UoQf+SruQuUeBHfvaDwbLcZXchs4XxBSbDkQeTocxM78eGNa\n4GI6Lg1fhZbzCUX0GdgC/dtXL+YvNzgQD+qEJGmjv1/LaX3lKGZQKBQkjYIZZB9B9g84WlNn+H00\n1XH7hq1Bk3rwC63uI11pUkujedHkbkEIMzHu4/kXr2dnLWnJUpoOhvK3TwzCc/JwSA9wwaG4L/b1\nnkYdvo5/Ob7G/mWU4M7wH/+ufGv6hU+lgsPQmpeSlIY3vS+kM9WDjWPSZOvybJk/+ZTut5LcHYoZ\nFAoFSaUMCoVCYATDBDBr5fysef83J9lyY/EbqnXCyk6HxLX1oXQ9aToI5vSOmY7MKns+1V08vAUZ\nbEHJPcDF7zyH0p+cYcKf9nT1nX3Z8WjHz8bfyyHv1oAcmPP750Hb4mce8qasNnSazzqBJyVJ9xpN\nZzjEYIG1FR62pd2f6EPPn7ZS+kx2jPv9fcjidaTLUysq9+a/cTGDQqEgaZTMABy233laTCs0CO5u\n1FkJ+UT6W5JWQ/5SSLSuz0VfDonmdhcbtu6ZkNjZcTADnE1YYV9VkVfqt6bXvND/+ichB7t/Sv9K\nknRrTKJhupaHL/k6tErLDZcDbItHdhZKR4L1/Gb87WwHjsAXfk+S0vAuXw2O8D/6FYqS9IWQtHSL\nFcNW4Bj+5Tgvs+HdoZhBoVCQNCpmANCOPmbHZmHDfPIP9dHdvNJTVuchSdIvhn/AR29Mk/22viVJ\n+l5vJf7Aaj0QklVqHjzD1vGMHjxbLGat94TveMtRL4cU3bKf6n99Od1FOhyMgOAZ53sLZEbg9i1P\n3dm/jEddKx0xX9LfDPnFkM4F6YX0UN7/LqsDx6A3nrCpVA/3DJWWpwWcf9AaXZ893DPYAevbyj65\nfRQzKBQKkkbJDNBProvvSWU+8kRPM2J7LuSwNvzXQrv+g/j7AQ1AuxNDOKv/J0l6ckJLc9/PhfRI\nBbaXMR5NujjfeJ604xaWp2hlf6Q+TIAW97c70XMKYgZ/3Jf9Ssg8rcYjBrP8AtjK7eS3ng8mMzn4\nF78/JO/mkYJjSVLW+uJc8z47djL6KG1zsY/Q+F1onY5bOevgPid6nscXq0xHhUJhD1DKoFAoSBrl\nMAH3kxMjfh9MdbwMkto5C5djsogkfSnkJ0O6+48rsSbtYyGf7GfjS8P6A8ijE8K8WQYYl55tzf/P\nocWcqKsDgyq6yvf6kr8RkgHaG0lKg5Nwq4T2/kytZ1zMkKG7yy12hLeFyvvwhlRuPGdOfC4NbYAj\n0VfaHA9Jz7nYvEJ35ztiuOBO3cGVSB6FWZu4bB/j6rGFQmHfMCJmkMMk7s5ZDsnjvsvKmOrCqsHO\ncfi3rUYODHrQEssDMxhCX16LEBAa3LMg7e3Ksd1g1uq/1hYv+RjuKE/YLT0YkmnWP+xLaFe+lDsO\n8z2uS3/789JyLQfoYtA9lYc9aQMC1KetjHqEXU/0HOu41epa86ao5ZY9Z9cYHH9DaPO2kMdSDanV\nPnninTSZNHh7KGZQKBQkjYoZYB/QhT65k5BLa/olOndFknRcP5M0BMKk6cTWfjY2Hkvwrb7kfqvF\nfRkttiYWvdE4tli0pqDkXAPXN8pgBHhJvjZxVZjXiiTpoP5PX8KEbVqnlW2CY3h7PIsRz3Llo9vd\nIm+a0vW558zmPtdnuiJk7EyVPscmKvRVZ5Od/V/TX4R03kFrdHzjgF6buJM0tCE+F8+79Xr/645U\ne3cTuosZFAoFSaUMCoVCYETDhJzs1OfBQVUPNMoYXnQUHteiz18EkChPbclasj8JuaHfiF8egMxB\npBetDCLHrMhZwbP5IF/dnU0QYSioU3hanKES6y4fmbgalLibT//5RglfrLW6Pj9bawgDaYa8L86B\nyJPSv3xoyNA05xzw+jmpm/e6lZDsyOStwtd4Mq7cOWXXLKHqWu9yJVuCfznuw3Pw/8FDk1eOYgaF\nQkHSKJlBaxZ9znTkmYYmdwPETfOM1chJ1N3y/buQj/YaHKeQh2twDrZm2ONUzJuoLB6t/afz1jLe\ncrwVqzgIo/24t0bS8K7fkDS5CQotn7eo8S+Xw52t0CZ1djezfifISUsftDJajO/qDuKchBcW6a2b\n14R6f3otJG5B+pwHZ3F3wyJuszLum5+xmEGhUNgDjIgZ5G2kfGUi1reVcBvN2WnnFd0rSfpqv3px\nGL1hgf7Szv5uv2LsIyHR4B4KwgZyr9etjOko1N+/xN+tzePyZnPOaZ5PcphO5GG0RyZKPf8U9ihv\nJeLMgA7WmhbDFF2ee7NRZz7I/inG4MtWh5YjbPiylR1OZa3N6yiDo/pEtTwhiPt6aBJm0Np+hvvA\nVr4ZsrX9zfZRzKBQKEgaFTNAL2G7fPyTNzFxoIEZt/22JOnP9N/7Gl+LaZ7DYhGfNoqvIC9ZcuuP\nJcgbinn9xW+eslUUobXFDHV9q5gX0zFa96Ce7utsRBbE94bd9w7DF8qZl1vMoNUqi48egJxzkO/a\nGrPnbfek6UlnnO/ZtWCzMIMXG2XcH2bii/Nyv75T08Db05psVAuVCoXCDlHKoFAoSBrVMAFAuTxU\nByGFxvnq8DxJ6cFUV1rvqRrX9jVkBOIYFrBa3MnrzemYP1seHswixvMBd8Jl5E+eN0rxwReBLVoT\nQupJ4nELtjZYWQmZU8G6szCnFXfkRKiLGy7kIChPedLq5PUwPtEtr+9kCPADq3My1fVUtHnowZDA\nk6PdmaSHLRnYcQ/WT9bahEKhsAcYETPAnrQmDd+YytyGEHohHMaUUtfE5LC50CjL24u07pETfvuU\n49akksUiu8E8KJqf2MuwBAStWq4qziP86AFfWoX6re1rOL+1tzZlWyVGnR/gUDxBTmzuZfRDZwb0\nGZgBQVmfztY5rQ9EX7s8ERpkkhEtlrcI7M7oML3ByxCmxGEJm91dTo1iBoVCQdKomAGPgtV2ZoDG\nzIEyabBPaG607RetzqdCEopZsTLGe5kh+Mp7wjStaT2tzWAXgzy9qeVtwWZgkT3gBKdaDkneB59y\nxLWwRT+1MngW9bH+rWVkF5Lc6pmkRTIEng6+46FFvCv4m9xq0yrwpY4hHLdMRe8LyTS1Vy1X0hPx\ne6Pvc/QhD1nnrQSd062k+/Pcu8sMUcygUChIKmVQKBQCIxgm5JAclMmdfM+nY06ncugGOuWvxiqx\n1l7AhGdw0EABnawyLMgJvqQx6dPsrJOktZBQch/g5GSltKC7qmgxruk0n5Y+kv72++ew4ayyxc9E\npFXoA/50vHkXgD1o/TGvgl0O6RkwfKglTSZU5byn9aO4O/f3VH8Mtpj96kMAno1n2ptkvOPpyYVC\nYV8xAmYA8mQd13YwgSeSnHV+ayuON5OUprVrK2fCjalsVi6f/UMrR1R2vfp0K6a85Hw5rTdiBcc7\n7RisYyPV9dbdjtXfv92XWR1BH3Bm0DnlDkeZr0zI05F4/hWrg8OVKzrPzWzrQEwaujzhJORL5b7n\nd7zylYmzMJ6eXCgU9hUjYgYg+xCk6WmWbzZ+I/Mk19Y1W5YdDXwkSWmaEYyr2XKI0W1I9sS0pirn\nqTctUMfzGeTJQq2WHycjyGh9z84yr0c/OGG2/cRUCA8LPcu2ztq+ZlYeKOBMOWeA2JscUcUMCoWC\npLGZuC2RLbNb7Zv18zFr5LoVa2jl8W3pzvHo01aOpZa1Bm82jkmTdoZlXDlDpf++Egs/HjYgTVtU\n/+/QmiIM9uotrqTvzD9D5Hh6cqFQ2FeUMigUCpJGPUyYRcn9sa9kteB2NjjZjhNoXGQ3o/V0O33i\nHDYc95vvFtul4nsb0hsLihkUCgVJ0tLm5uISVBcKhfGimEGhUJBUyqBQKARKGRQKBUmlDAqFQqCU\nQaFQkFTKoFAoBEoZFAoFSaUMCoVCoJRBoVCQVMqgUCgEShkUCgVJpQwKhUJgoUuYl5YevKZXRW1u\nPrzjdDVLSx9ZYNvNutX8M+60sLn5kx3deGnp5mu8z53fdrsVMygUCpJGndyksDfIhrGVNXo7uxts\nx27s1LbsD9soTKKYQaFQkFTKoFAoBP4aDBP2IyvfWHXorE01Zm1xcmkL6Wjln8zp5Q+luvn3VtfM\nQ5mrbdiQN1WRZg/PQG6b/c3BONZeXSgUFoyrlBm0tqFCsk3azY06nOfbYOZt2VrbvqP5W5b3oCax\nH/o1WyH/O29+5hmiede1ib9vsRrZBnm25LX+F5va3JT+lmZvTnM1YJbVp227VvE3o1dsx9bnq/ld\nLze3bqP0uiR3h6vtyxQKhTlhhMygtX0olgZrf8zKjiUJM3CNjg17JUlJejXkmZDo5/NW51y6pls+\n7scW2q1x87xxJWNsZwadb+BgMIIWp+IYtsc5FZ3nXH+UWt4+/G5tZ5+fCd6x6HlCmflJ2eo7W8Lq\nH0p/32h1eGta5oyVne7biTPoK/5tuPqd6Yr+bG8k2fL1bB/FDAqFgqRRMYO8NfqdVnY85B0h77ay\nd4S8LSQa1LUsVv75kEetDA18NuTJkIPP4EBYjnf2fw8j5zNalSRt9M9/rK+1fzjY+H0oSQkOsBHd\n4Fy0wZJZSN4CW3ZWA87pXfGLd6Zd3YpxfzZzd/sJXgoJS/NvN8/IwiQjOKD1viR7P3xUDs880x+9\nPuoO58MkuMPkJrf8t7srJH3dORnHjibpV3si5DMhnfFeOUsoZlAoFCSVMigUCoERDROgr7eHfI+V\nMSyAKt1jZbeGhI5CcZ1qZieWUy7OpymgWit9jcvhsDmtE5Kku8yNBkE+1Q9FoHrbnXizG2RHWw7j\nSdMOTSestNGR+Le73nutxgMhHwzp4a8f6GVJ0rdCnuzJ8YetFoMrvqsP8XgW3Gs8ow8N5ulMnBwe\n3GoleXhwwcpW+0HE+0N2bXzRBlEXp0LWTuHzWhC+0V1Wh57FcOF9VkY7L4f8an/XAe6y3B6KGRQK\nBUmjZAZY7dsbZWjec1aGzsYyE2ZxZoDzCpvnoclD6Rjnf7RRp7P6q/pRXzJcCUswtk3LaYfWhCva\nrHOafij++qTV+FTIL4f0r/JVTeI74Uw9oafsKCwOa+YORNqa70obLoJVSbQNT3ZLowZPtjpRel9I\nmAHP+KLVeSZKTkuS3m0lq+GAPttb79z3pKHP4Ty/wcq4L+ethHxCu0Exg0KhIGkUzABLmhfCtKYM\nY3FWrAxt3GnZOyKY46Ggk/1ffyfkZ63UGYQ0WDKftIQ/orvHWs80pGN9OGk7OQH2ArPG0MMk1gF5\nQs/ZqbLDcc3VONqakgWH8MDksyGxRyf6Eq/Fd+Q7+f25KnfkO3uIbR6Lct6ekIcaNXjq1f5bu58K\n9pr7rofzuve8NdX02gOr5f39vyNn8r3d18MV8DG4HwZceT8sZlAoFCSVMigUCoERDBMAdBZi6s4U\njj0kSfo1mwGIs+uDIXHtrNjZ/zro4KM9vXMXGdQO0pudWf5syMEJdrIfJuDMaZHOeWOWk5D3a9HG\n7j3Wo+zZePfXGkMRQosesPqjkI/2YS/ovd+fZ+JM/65vJtla2TjP0OJS3L27hz/1ah/ehIJ7wJWZ\nsIQYcQ/6zMtuCPS2npQ0GcxeDvl23PGSnpMknQ4pSS/o/8Yv3Loeav9Ouu/TIVtDie2jmEGhUJA0\nKmaA5Zq2IAcilPe78ffv2Vm/HpJgC3bw31idR/s59L8f8tNWij3A2jPPe8Xq5JWNgw7d6CfV5MlL\ne61nWxYyW/ucu0Aa3o/nceecW5vh/HPmCHtK35Mk/SD+fshq/0ifiF+fCflCyFetFs6x/Bz+vFjU\nRec86O631reX/3fIk988OLgc8ugWf0vDeouOGdxnJZ8LCT+FU7r7kVU0z8T5T4WUpB/qf0uSftyv\nx2FiknObciAWCoUdYgTMIK/lJty00tf4WEimxrqWRZv+MOQ3Q/6LiXv803QFn3QEE3gt5CvpuCT9\nOOTPNI2cx2BeTcoYdtYYOqc+l4bnYtKKWzhacjnVfbivcTGYwSPx99cnQn1fCgkrog09fPhyekZf\nUZnbrGWb5rlqkfsRPrzJyo6lY62VoLAGpl876+oCrmthxZ0zwDnuSdKnY+ED4w4+UZm7r8Xku5Up\nn9HOUMygUChIGgUzwIpd3EIOGgub/R0NwLPAGOu/hNzQP7davxMS/fqslTFl5q9C/jBJ6YhelzTY\nj3Ojyd67lS4/bL9zDghfRISn5f6QtOZKXwMvyeDndl7GNXPeSM8SBWAm3uXyRLPWQqV5AHbD5KOc\n88HRyoHIZCF8UbSjM7JjcaQb16/YFHo4B3025zTyY7Sox2DghkPsAn68u0hWMYNCoSCplEGhUAiM\nYJiQMe0MwR31eEhfmwX5gnJt6O/Hry9bLejsX4T0gQYgFMTd3piqsdr/8mbLaxLyfPVFICeR9bWF\nOE0ZCixbGa4r3FU4TYdnX4vVeiv92/u1qYd7jGHY+60O94DwrluZJ16XFr95Sl73ML22oJ0Dg+EB\nQ4jHk5SGXsrEogEvpRoMwdxFyeCOwLVPZ+LJPJC4FyhmUCgUJI2CGWR9hCYedOG5sCYvaBpDckqs\nCsziYav1X0N+N+RJK8Ntk63aECa6qFPxC0vgrGErfdpepzYf8O4Ep3wyEYyACcVu2WljHH6vNup0\n55/tVx26A5H70IZvNerA2VZCetth27CbrZTli2ALbIIycD964cV+LaZ/T5gmAVfcrCtWp+try9F3\nnVcArpgT+fuVYAbHrQw+NWxiszf9q5hBoVCQNCpmkMe9g2U+G56BPPlSGuz50bAmT/d+AQ8fornh\nFm5tGNMS8MlZbKTBgg2TRAf4BBtp/j6DVn7AvAWXh5hy2M4/OaNXbBLv4pNnYBZMnv28lTGtG0YA\n4/LlTBdTnVZocdb2dfME9+2sty9FwivAOP4Ry251rvd/wDR5x5f6Oh+IDEfky3JmAP84m+S6hYTX\ngy1djjbxHIy0zhtTR3aHYgaFQkFSKYNCoRAYwTCBR8jpzD3s1NGnyw06x7oFZscTAnvFaB0aj1nm\nPzMH1denUpwvp+eQBgcbDrpZuzhDPRepZ7knz+k0HepOC/mwhmEPQyrewYcJhB0JUf6qldFGhNS4\n3mON++d9Af1+IO/fNG9wn64/eKp0XIQMF+63spcifwCt3FqPmVeseKvTIj8NudpMFtv1q7Xoz2vN\nocDe5s4oZlAoFCSNghkA9HJr5d2RODIdpmFtOJo7708rTe+E+x8m7svVcBy2JpkQ+kJz+6pHmvB8\n+nsRwFrAopjQ4w5Ongfb5PYvbxhDS/kaOUKSuG89HThMAKctWQ988g3t0sq1AAM5kuSibVTnJjxj\nbJTcQYT2HrDapI/nTehXviIjJ4H3sOGTfRn7hLpLHGTG7Gw0M4I17QWKGRQKBUmjYAY8Qt6J1i1Y\nZ1VOhOV52cb8aFy0c2uv4Txucy09BH+4/+2aRl5N5zYAn0HOmLTXmBV2y3zIR6i87SOaRjd6PRqh\nWwJbpyamuNCysABnbCshuxDbbTE5yzlVzh7pLbfWf/tZY995hBlzKLOzviesxonoB2ciH4PzGZgB\nXBL/ggezyeJAcn/3oqz1jCCnOPe70I+uT39L07ku92ZicjGDQqEgaRTMIG9vdlf6Wxoes7NKX+9z\nDwwg+wBnuZZDb66E/F8TZ5L552ZN4lLj9+mQz1sZ1nhRU45nobMsB2ztPN7wY2G1vVX5jSXnLVf6\n6dfSt/Xf4hft5MzgzYn7+QZggFbBmzEZP8gbxS7aNvE09MFfsLIuv+OJYE//1pjVDyKjE34EGJXn\ndIIJvNBHLFrbBc7KQ8B5N6S//by93bCnmEGhUJBUyqBQKARGMEyA6vAo0Cl3ruBM7Kj8RaNcfxYu\nmociWSmhIF8bTprOM32Y5hNWyhl592ZP981vEqOuWBlhHZxCi5owI00nRz0w9QQMfliB4a7BvOsw\nrkIfMH085Mlwr71mZZdjGhfytWgLJ7205nr/VL4yP6dIXzToe7g1PUSHnWRfzmGy1aMxTHy0dw/S\ncr6JCe9Ev/Jh51brcFpp5FvJTi8luTcoZlAoFCSNghnkqRtoUl8TP8kMJickdzZvNbT0am+1W5ND\nc0YeadCuTKahSZwZ4DD8SchVK8vJNBfJDADv2oWfNmyN29lwnxJgdAee2+iubgd/c6407O/sfOLG\nCbkR1mxj4i60b8tJuJ1U6fPEpGPaVx0OLkDe0RPJEoZmZSt9xydb5Z2V/d3uTHJWqvO8uZA0nQdi\nb1DMoFAoSBoFM8iaj2UcPsmCjDqMfH1US8iLCcl5YYw0W5O+mOq82aiLxeCavtlGnlKb8zMsAnkM\nOljvUzHFdiNsu+d4yk/Mm/vImd/rfWjTWRXfCObG/f3dGY/n9pW2zv2w6FyI/Dfwb04oscWX6Id5\niptnmKJNeF/vz/SZHCL0yUP8zlkPpHYq+t2jmEGhUJBUyqBQKARGMEzIDkQoudMqCO3t6W9pmppC\nwU5bnddDroR0yseMdByBOBndYcPwoLXyIedh2A/9mlOaTa+POBNOzzOWqvxwhCYzSfY3GGrn4ZDf\nh2ETKxtbYbTLjbKcz2BRw4OtnLy+ExUuU/qKOwc5lpPp+urDvLdya00j12HGqIeK82qOWe22Nyhm\nUCgUJI2CGeSJH9mhJw1WGs3rlo/fOVDme+RlB5vP6WbuN9raXWz5fKxja0fe/dCreWfmVkJUMO0k\nWw+n1HrfVktxlcFCHe7rcp6v+czrQPkW3hZ53WJrPj31F50QNe+56JY5sy1/78xm6TMeduVa51Md\nv1YOuzoW35+KGRQKBUmjYgZoSbRtK1dfa/17zgiDfvNxFSwDLe1hR34TAmrdg98HkxwLMkNwZH0/\nMK7DYREZ8d8S57d4xUZ4Dw7YisY88qYl3Vtzub86rMpZ3Qi6n6RphiANbbme6kjDWJ/nd/8SyL6C\nwftC7xkmcrXuMWtF596uVgTFDAqFgqTxqGZD3sBUmj3e5Fhr3Led83OEoJWhN29SMnYd6s+3FXOS\n1uPYerCFMyEPmIW8Lkm3nWCjZyZ4GHxSFkwgTz12LHqS0Vbwb57ftDXFehZyPx6unbebHeBtk9tk\nPmzAMfZeXSgUFoRSBoVCQdIohwmz0NJdrT0EM3ZCsa5GPdmi27P2Ycyp3jpcnvjNSsSd7iE5q/5Y\nhgct7NXq09bAal732h2uxh5fKBTmgKXNzZbDrVAoXGsoZlAoFCSVMigUCoFSBoVCQVIpg0KhEChl\nUCgUJJUyKBQKgVIGhUJBUimDQqEQKGVQKBQklTIoFAqBUgaFQkFSKYNCoRBY6BLmG5aWFrYqqnWj\n/V4we2Fzc8ePsLT0wDW9omxz85Edtd2nF9jnHHm3iP3C96+gzxUzKBQKkq6S5Cao9lla9u2pOq4Q\nuyu0NN+VpJW4WtN0FHaPnVrNeVjbebGNYgaFQkFSKYNCoRAY3TCh5e2BFg0ppp3csyUFm36S4+9W\nq3No4jqT10YfsrnIW+lvadhg5dJU2YHYAIOnuLqHC9shoNeG/djOW+Zv7b3ySpLqtzYHmJX4f6tr\n7nb4cG182UKh8HMxGmaQNWDbwnLUtzdjw44bk/TMv2yzfnf6WxoYxO2ahDMDtnd7OuTP+pLLsaHm\nemwuxjbn42UILfsxyw5tB7ztLHfs+OxODv9t10GcN9lD+ta//KZ33mBlvvG7JK2FfNOOnUnH5r8h\n+xi/UKECTBaGAAAOy0lEQVRQ2BeMhhnMsqSDveks18aE1caqraW/Xc/hR4ARHLOy+0J+OJW1fAYX\n0t9DvQM7tqrzRt5+zvP4Y2OyL8TfnbIWo8AmYuuwh62NcTnmXzrv6bA/aN09P7Vbfaz8TY0yQA85\n0bjHu5K8o3F+3g74VSuDNbCl63Y2e9sOihkUCgVJI2IGGQe3+C3ljSu7vw6ERNv66PXm8Pif16ok\n6TW90Jed1I/i1/GQsAe3hJ1f4Eicf5umwaba2N2tN9dcBFp+aaRb/ckt6o9FnXdZDXhSy/q9FfXP\nxzVf07mQA871TIB29S3Zsbswi8UwhXz1licKjxMepdZG8rTJyZCPWJ0ne97w6XQlaWBk2PvvS5I+\nZuzygyHduwVoNZ63mEGhUNhTlDIoFAqSRjhMyOEaaXDUQL3dPQXBhIThjLnF6mSX4Ckr+0B/v+7o\nDSE9/MP9oWPnrexsyFdCQpFbRH3vkXV5axPa65P01oOudsOEM3o2apzra9ydpIN35yq005rVWQ/q\ne7F3vnrLHErHDiUpzdNe5YCoD4UYJjA8cCpOP2J48ETI5+V4Ox19f+MK3TDhpmijs1aDwWseSEnD\nkJRn26vBVTGDQqEgaUTMIGs3n6TRcl7lMpgB53nwMG88/k77jcX7aMh7GvfAzYMlcAuwEhKtDqNZ\n1yKQt1lH+tszmYoWchuPbSGA1fGbk/aGJ/V4/HoxpNvIu0LeGZLu5DaGaxMs8/P5DbfgvNbE3t1h\n1lUocwaH7ea7ulN0PZUB7ztH4wp366eSpNWQ0tBHsfYrIZ0PwTZgWRsTIdnDE/f4gPYGxQwKhYKk\nETED0ArzYCcYWV5qlHHMNTjIY9u7rOyTIX89JNr9jNUhZMQ93CLATBa3UKk1mSoHwnxqNVb7/elv\naWAGdIOWV+SNVMftF/elFV4O+VOr80zIZ0N6y3If2MP+dMeNJKXhKU+H9Ek/63pH/Op61IEIOXsY\n8L0hvxDSWQPXorW/GfK7zWfCC+ZX6PjC2eAP1M0h+CtFMYNCoSCplEGhUAiMZpiQ13/7TP/VkAwB\nWsMEQnsMBZyo5oDbl6wsOw6p+4bVgTK+FNIpI8+Ew2mxKxTyXDiGCe4ybb0R4Dyu01rxycxM3K7u\nnOQ3rY6z0V1xDKrOp7rS0Go5/HklyeiuHHkox9N6v+Jbn+7nm37QShlodu90OXrfGf24r8FZDEMf\nsLMZODEsoIVesDqX+4EGa2Z8eEdv7864MBHM7bCTIUMxg0KhIGlEzCBne/F1gTCDi30wZtDta2Fd\nXo+/16fmwks41O6IfATuXsMaPBaS8OGK1cGB+JOQL1kZz8Z15r8moaW/Z+l0noynfsrKMjPAOXiT\n1VkOiXPQmcH9IWEUrZX22cnZmlCU3bCLsVHwD/iJ97nT/S84o4dkaQOYGL32432Nx/SopMFt6n0O\npvlXIR/qr/Jhq3VvyPs1DVhe127ngxnMCsFvB8UMCoWCpBExA8CY29fWXex1ONZlsECrymBs69M/\nO53PKMw16HdC4gdAa79idZ4M+UT/HB6cxCqwsrF7g/mOevO94SO0iwc/D6RjHja8PpVxvrcQlpyW\nuc/K/m7IXwjJRO8Vq8O1aWG/P6yF59htcGx7yH4d+KZ7VXiSjWa4FTA5i/b6Ql/ydPgY/lB/LEn6\nx3YWLBZmsNaHKn0SPcyWdvdvCt94Y+JZd4tiBoVCQdIImQGYzKvDmLS1kAWtjF5j3OZa9quSBmbg\n684ZQcMwWszkuV734hP23DRY5QNx/gnNF5cbv/GH56m/0mBRLqU6Epbt3liY9J446n5rjsHJ/lNv\nz6Rn+7Fz9ks8qwFwLKYz+7PBRPanG9Jq3N2nqeM1WQ1euNbzw6EFefsXembk4/tfliStRK6C/2yx\nAvoW9z8eXOFUH2eQpic7n+x/HY7eih+CZ93thLdiBoVCQVIpg0KhEBjNMAHKdDD93SFPSbqxUQa5\nZTAwUNXjQYNxYf1PO3u9J4eEZzoSd3FiBTlkGeeZE0rW6XeOno0YJiwmVTrDhLwBjDu7cvrMYcrU\ng9HKvxV//2pIdxHy5rjKfmBlz/ZDANq6NRSA7l7QNBZni3xwle/KfwIfHt2ZpCct43xa9A/7oaEH\nECeT8D5qdz2s5yRJvxJ/05ve6l2L0kvxmy/b2jYoDxJ367QuZlAoFCSNiBkAtJ6Hfy5OOZpcBzJd\nFhuGDn+xr8GR74fc0C/a+TggH4t7AZ+0tBwSHe7OyZbFmwz37O1EJLdxOdV5y0mI/eqs+IetZX85\n5OdCMjXbp9fQOrSmO1+nk8fiUvNulbcocdbC76VUZ+/2Gd6OtaM3ufVn+g8uY3cNwha+EfKW6DWr\nEyHV5ZBMSP5hX0Ig8UMh/1ZI57t5ithJK6PV4FytieY7QTGDQqEgaUTMAO3MSMu11LneAmIx3O5i\njXKOoiE0w2KiDb0v3UVi2cgt4TO42Nd1PY0FJIjjYZ/JyTR7Z9O2A+6W28etb/dGR4MR3GslWEIs\nC1bIp1vDMb4S8pRNuZ3erg5m4l8vsxd/Np43Z6zYO2xn6zRwqPE7B66lwX+CrV/tmY1fgfecnohF\nIBIfDdPjWpv+vZWkND1V61A6vlMUMygUCpJKGRQKhcBohgk554AH9g5HCsr1nhA5hWeYAGXNabo8\n0RZk6+H+yMfDvQed/HFPDFvrDyCIPkzAtdMNF1q0cn7Iaz1bpJLUXJM1paFdyEJAi/nqePJC/Gn/\nRb5opXwP2py1fr5i5GSq422XSfyVkPq9Q2utZF7N6uFonKhf64/8QcgHrdZ/lCQdjTM9aSnDgrzG\n0xPC5V7sz5aTzu9VaxUzKBQKkkbEDPJGFp4qHSfWyV5fu6uF30yVoc6nrQ5TZTqrdK8F++AYf9kf\n+aWQPgUFHdxa09gF3W6KSSLYz/ltnNICNgb353Q6ct7AnYOc9cpETQ/KSo/2odvfC+kTa5hshBOV\nK71udfid06FL0/kUFotZTmveiBwWfzJx5t8LidOa1ZsenPyGJOk34i8P12L16U2wD/9qeaqYu13n\n1beKGRQKBUkjYgaAIE1rp+OT/ZjUdSjr6ZZD4kNojcA6hvCclTzXT1/+VEh0uJ+PnWC8O9hXGEHe\nwm2xuzDnJPLDpKPD/S7VHdwfwFsxBiUE+/TEpCoYAdNvfGVd3lhsOmcC+R14ssvNfDyHGsf2Bi1f\nCcdgcdNZMoa3/HZ/5Het9PMhGf1zha/0NT4TmY6YULRiZ+c9mOlp3qtz8vjWxKKWP2E3KGZQKBQk\njZAZMFnWtRTZA94bdveFifXyaGf0KlGAz1qdlZD4jZ13MO7De5Cz/vix7r632JiYu7Uy7C4O3H16\nm5nsg2ltTjOdnddz+U5mAp7MVfB43KNrD/iEfzs6GGefa45452eTWh532CfMgDbyb0ebnLKcRwNW\nkuziC7fpz/sa/yxk7p3StB+gxSbzxigeg8mTjlpTtXYyfauYQaFQkFTKoFAoBEYzTGB4kFN7SkPw\nEPJ6xFyAT0dKs8GByB65xzXg90N+PmRrvT8z83HrPG51OkfZu4PiemCT58Thsz8OxIxhVedSPAmD\noFsataGgF/tSD6vSPgwPPNV6NzygPbiHD0Voj2FXal9xml1gi7VN3I1hQ8uBd6CflPbnVtpNJKK1\nPpWkNKwAncxq0GE5JIFYWtidhDemY600tnnKmWMnLVnMoFAoSBoRM8hJvz0ExjQXwneugd8ZLOG7\n+pdxhLVkX7BarE5H93t4jCwHhMk6RvBus+1odRprsHKKHErTuYb2BzloJl3oMzdNg0nDw1p5nIXu\nrspJVj1XQmflLwVj4q5uqYYNcGAEvkELdnMxeaEy+Fab6W9paMnlkHea4xNnbHYWP2G//ygkgerW\npnK0KJzLLTPt1kqDTj/Ma1Ud5UAsFAo7xmiYAXYYjegjS+wHa/HfbWVsh/mbcYXzsWnFMyGlYWMw\ntKUHFpku4kufpEn7dzZJZy1Yh7eT3B/QUsO02PV46xf6J3UrjJWG++QNU6ShZa5PdSVa6Uyf/7Gz\nsS0LN1zHW5r7zX/LGbeU3C3nh/InowXpa74Vbd5m9pQ+E788nE0rMKH5e33JbeFryRksl+1sWjlv\nPOf3zynXd4tiBoVCQVIpg0KhEBjNMAEwXHi9cYw59B5mWU6S8OPvWB00XnbcSEMgkdn1KyHdhcac\n/bUk/dkWm+4s47okfa4/btfWCsGbU1lr1WPOIeEOQM7rXLyrfbDsfKNOHm5I+2WLcBjmlRy+spBh\nAt/a98miP5zq2+ITIf+R1aIn4lZ8qC851zutyavxTFx36PV8yVYLvZn+zntH7hTFDAqFgqQRMoOW\nMwRLPrldSQcy8TABBFvXSm4JWmEebBkOrwuNOoQU/RnzRhb7A3R6TuMpDS3DJCzPR0BrESzjrVtB\nthzQkobVmydTndYu0Pk6+4+8Z7U/Ga2W82xIQ2u9O3jDCf37OPJtq5WT6HoPgY8+Ftfu+KX30xxS\n9Else8UEMooZFAoFSWNS0wlvN363rDCWnHFcnmIqTWtZH99zrTwdumX9x8ECWsg63f9mKhD27JiV\n5ZAi4/qWB4Sukkes0vSkbL//xXSs1eUWa5PySkZ8B69aHZ4a38GylbGhymDJ8Sw82h/JmS/ynsrS\n0Ndafqfcx7bDBnbrtypmUCgUJI2YGbQwa2LPrIVBszTedrTp+JhARs6O7NY7j4zdLw4TYESMHfRW\n4Rit6D4DPC3Y1pbPItvhA42y/UFuNf/OudU8dySsM3v8W/+ZWouJrmSC2ixGsNetV8ygUChIKmVQ\nKBQCV9UwYRZmUa7x0/y9wnTas+n9D1uurGwTrm/8biXZyuddatSZlZxrXHBKnlck7k86uzbm1ZLF\nDAqFgiRpaXNzXlMYCoXC1YRiBoVCQVIpg0KhEChlUCgUJJUyKBQKgVIGhUJBUimDQqEQKGVQKBQk\nlTIoFAqBUgaFQkFSKYNCoRAoZVAoFCSVMigUCoFSBoVCQVIpg0KhEChlUCgUJJUyKBQKgVIGhUJB\nUimDQqEQKGVQKBQklTIoFAqBUgaFQkFSKYNCoRAoZVAoFCRJ/x+oRdHDFBXckQAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5a675b9d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib.animation import ArtistAnimation\n",
"\n",
"f,axs = pl.subplots(3,3, figsize=(4,4))\n",
"\n",
"images = []\n",
"\n",
"for i in range(TOSAVE.shape[-1]-1):\n",
" c = 0\n",
" images_ = []\n",
" for ax1 in axs:\n",
" for ax2 in ax1:\n",
" images_.append( ax2.imshow(TOSAVE[:,:,c,i], interpolation='nearest', cmap = pl.get_cmap('BlueRed2') ) )\n",
" ax2.axis('off')\n",
" c += 1\n",
" if i < 101:\n",
" images.append(images_)\n",
" images.append(images_)\n",
" images.append(images_)\n",
" \n",
"line_anim = ArtistAnimation(f, images, interval=50, blit=True)\n",
"line_anim.save('my_animation.mp4')\n",
"pl.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# This is to free some memory, in the number of frames captured for the video was too high.\n",
"TOSAVE = None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adding a hidden layer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the next example, we will add a hidden layer. The size of the hidden layer is defined by the variable ```hl_size```. It is common to set the size of the hidden layers in descending order (784 - 100 - 10), but they can also be cross-validated. Also, it may occur that a larger hidden layer may be desirable, which is the case in shallow networks.\n",
"\n",
"In the code below, $W_1$ and $b_1$ are the weights and biases, respectively, that connect the input layer and the hidden layer. The activation of the units in the hidden layer is given by $y_1$. Then, $W_2$ and $b_2$ are the weights and biases that connect the hidden layer to the output layer. The rest follows the same logic as before."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"beta = 0.0005\n",
"hl_size = 100\n",
"\n",
"x = tf.placeholder(tf.float32, [None, 784])\n",
"\n",
"# Propagation to the first layer\n",
"W1 = tf.Variable(tf.zeros([784, hl_size]))\n",
"b1 = tf.Variable(tf.truncated_normal([hl_size]))\n",
"y1 = tf.nn.relu(tf.matmul(x, W1) + b1)\n",
"\n",
"# Propagation to the output layer\n",
"W2 = tf.Variable(tf.zeros([hl_size, 10]))\n",
"b2 = tf.Variable(tf.truncated_normal([10]))\n",
"\n",
"y = tf.matmul(y1, W2) + b2\n",
"\n",
"y_ = tf.placeholder(tf.float32, [None, 10])\n",
"\n",
"loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=y, labels=y_ )\n",
" + beta*( tf.nn.l2_loss(W1) + tf.nn.l2_loss(b1) + tf.nn.l2_loss(W2) + tf.nn.l2_loss(b2) ) )\n",
"\n",
"train_step = tf.train.GradientDescentOptimizer(0.05).minimize(loss)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 0 with curr performance 0.098\n",
"Epoch 10000 with curr performance 0.947\n",
"Epoch 20000 with curr performance 0.965\n",
"Epoch 30000 with curr performance 0.970\n",
"Epoch 40000 with curr performance 0.972\n",
"Epoch 50000 with curr performance 0.973\n",
"Epoch 60000 with curr performance 0.974\n",
"Epoch 70000 with curr performance 0.976\n",
"Epoch 80000 with curr performance 0.975\n",
"Epoch 90000 with curr performance 0.975\n",
"Epoch 100000 with curr performance 0.976\n",
"Elapsed time: 139.746448 s\n"
]
}
],
"source": [
"init = tf.global_variables_initializer()\n",
"\n",
"sess = tf.Session()\n",
"sess.run(init)\n",
"\n",
"perfEvol = []\n",
"\n",
"nepochs = 100000\n",
"intervalCheck = int( nepochs*0.1 )\n",
"\n",
"\n",
"# Evaluating training time\n",
"tic = time.time()\n",
"\n",
"for i in range(nepochs+1):\n",
" batch_xs, batch_ys = mnist.train.next_batch(30)\n",
" sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})\n",
" \n",
" if i % intervalCheck == 0:\n",
" correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))\n",
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
" \n",
" currperf = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})\n",
" perfEvol.append( currperf )\n",
" print \"Epoch %5d with curr performance %4.3f\" % (i, currperf)\n",
" \n",
"\n",
"\n",
"# Printing the elapsed time during the training process\n",
"toc = time.time()\n",
"print \"Elapsed time: %f s\" % (toc - tic)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimal performance: 0.976\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucHGWd7/HPb3pmMpPrJCQTQxIgMQkksJBguCiXgwTk\nsgh73BUD7kFU4LguooseFlbXo3jOnnXdgysuqwIirqtgZF03IoIQgkTkkiAJ5D6TC7mQTE8Skswk\nmVv3b/+omqYzyUx6Zrqmerq/79drXtP11DP1/Gqqu35dVU89Ze6OiIgIQFncAYiISOFQUhARkQwl\nBRERyVBSEBGRDCUFERHJUFIQEZGMyJKCmT1kZkkzW9nNfDOze82s3sxeN7Mzo4pFRERyE+WRwsPA\n5T3MvwKYHv7cAnwnwlhERCQHkSUFd38e2NNDlWuAf/XAS0CNmU2IKh4RETm28hjbnghszZreFpbt\n6FrRzG4hOJpg2LBh7znllFMGJEAZPA62pdjV3EpTSwdpd8rMGFFVztjhQxhamSi6duNsW+s8ONf5\n1Vdf3eXu445VL86kkDN3vx+4H2Du3Lm+bNmymCOSo3F3lm/dywNLNrJ4bSMt7SmqKhJcfEotN184\nlTMmjcLM8tpmeyrN7QuW88zqJMM7UgzNGrWlzMDLE7x3Vi33XDubikT+DozjajfOtrXOg3udzezN\nXNq1KMc+MrOTgMfd/bSjzPse8Jy7PxJOrwMucvcjjhSyKSn0LI4dMxz+Bm7tSJHu8gYeUp7gkjx/\neNyd2x59jadXN9DSnu62XlVFGZfOGs+98+fkZd3jajfOtrXOg3+dzexVd597rLbj7JK6ELgh7IV0\nLrDvWAlBetaeSnPbo69x/QMv8+TKnRxqT+HAofYUv165g+vuf4nbHn2N9lT3b7K+cHduX7Ccp1c3\ncKj98IQAkPYghqdXN3D7guXk64vI8q17eWZ1sscPDUBLe5pnVidZsW3foG43zra1zgPXbtxtR9kl\n9RHgReBkM9tmZp80s0+Z2afCKk8AG4F64AHg01HFUgri2jFDfG/gB5dsorUjlVPd1o4UDy7ZOKjb\nHYi23Z2OVJq2jjQt7SkOtHbQ0p7qVbstHSn+ZXE9+w6109TSnvm7zmWn096r999g2c7f++0G9h1q\nZ+/BNt4+0MaeA23sam4lFX4Ym1ra2bHvENv3HmLb2wfZuucgW3YfJB3O393cyobGZuqTTXzz6fW0\nxPQei+yagrtfd4z5DvxlVO2Xmr7smGdPrslL23350P7z9WeSTjsdaSeVdioSRnmijJb2FPsOtQfl\nKac9nSaVdk4YM5SqigSNTa1s2XOAjpTz9JqGI5Jfd9IOi9YkWfXWPla9tR8cHKdz3/ShMydRWV7G\nq2++zZod+3EAdzz4xQ3vPREz44X6Xfxm9c5etfvUqp2Z6Ude2cK6nU2k0k7KnXTaGTOskjsuDzpP\n3Luo7oj5k8cM5StXnwrAk6t61/avXt9BVcUK/vHDZwBw2TefZ+f+FtLhslPuXPlHE7jn2tkAnPa/\nn+JA2+Hb8rqzT+DZtcmc23WH36xu4Ddf/Q0An503nb+6dAaNTa2c/XeLMvXKDMrMuPOKU7jpgqls\n3nWAD377d5hBoswoM8PM2HeordfrvHTzM7gH0/dcewYXzhjHc+uSfO6ny8Nyh/D3Dz5+NmdPGcMv\nV7zF5xeswHHSTmZnnmu7z6xp4IxwnbO9/DfzGD+yigeWbOLeRXVHzF/51csYPqScf3luA9//3aac\n28xue9GaZK//rjuD4kLzYDTQ5/b7smP+9nVzaA2/EVYkyhg2pJyW9hSr3tpPS3uKlvYUh9pTHGpL\nMeeEGqbVjmDnvhZ++OLmd+a3BaemevOhffz1HfzqjV+R/WXxJzefw/vePZbfrG7gtkdeO+LvFt56\nHqdPquGZNQ3c9fM3cmusi5aO4Ejpn5458oP5x6dPoLK8jCdX7uCBJUd+MG9474lAEHt7qndHWdn1\nX6jfxfPrG0mUWWbHd+JxQzPzN+86wNqd+zPzEmVBT5NOvdlRATgwc8LIzPS8mbUcaO2gLGv5px7/\nzvxPv38aqbSTKLNg52zGzAkjefSVLb1q14AvXTULd2fOCcGXj6FDyvn8pTOCHa4HRwtpd06fFMwf\nXlXOh+dODhJW+JNK0+u2HbhoRi1lZUEkY4cPAeBdo6q4+ozjKQs/d0HSgdoRwfyp44bxifOnUGZg\nBvct3tCrdjtSzt9eNQsj+PvO5Xduv0tnjuf4UVWYgZmF9Ywh5cEJm/8+ZyKnTxpFmRmfOcpnoCe5\nHlXkItILzVEYDBea47joOvNvn+RQe+/eGGZkdsx3XH4yn75oGlt2H+TCbyw+ou5XPjiLG8+bwtqd\n+/ngt39HVXmCqsoE1RUJtuw52Ot4b7t4GomyMsoTwY7pqtMnMGn0UN7cfYAX6ndTHu40O+efP20s\nNUMr2bHvEHUNzZSXGTc+vJS2jtyvj1RXJHjprnnsb2nv8sGE8SOqKCszmlraOdSWAgMj+FAbMGZY\nJWbGwbYOzvza08c8Iuva7pqv9XQfZ+56u53z1XZc7cbZdrGtc64XmnWkkGfZ5/aPtuPoem4/1x4L\n6bRTVhbUW7B0K5t3HwjPTQbnJ3ubEAA+8/5pmR37e04cDUDtyCE8/PGzqK5IUF2ZoKoimD9mWCUA\nJ48fQd3/vfKw5fTlDXz7B04+6rwTjxvGiccN6/ZvJ4yqZsKoaiD45pXrUUqZBd+SRw2tYNTQim7r\njaiqYERV9/OHVpYz75Tet5svF59SG0vbcbUbZ9uluM6gpJB3fT2335FKUx4eNfzn8u2s3dmU2eFv\nf/sQp00cxUM3ngXAtxbV0bC/hQk1VUyqGcqF08fxi+Xbe3Vao7sdc1VFgotO7v4NdrQEFtcb+KYL\npvDs2mROCWlIeYKbLpg6qNuNs22t88C1G3fbSgp51ptz+4faU9z40CuUJ8oYO7ySJz93IQD/9tKb\nLN+6l+NrqplYU81FJ4/jjKyLwgtvPY+aoZUkyt7ZQR/sxbn9fH+ziOsNPHtyDZfMqs2pL/cls2o5\nY9KoQd1unG1rnUtjnUHXFPKut6dSygyunTuZabXDMzvLfYfaGT6k/LCd/rG8tuVtrn/g5Zzarq5I\n8Mgt5+at91GcN/nEcf0mznbjbFvrPLjXOddrCkoKeTblzl/Rm/+oGWz6f3/c73bj3DFDvB8ed2fF\ntn088PxGnl2bpKUjRVV5gnkza7n5gqmHHWUVQ7txtq11HrzrrKQQkzh7LMS5Y4Z4Pzwi0jP1PopJ\nnL0GKhJl3Dt/Tmw7ZjNj9uQa7vuonpckMlgpKeRZnL0GQDtmEekfPaM5zzp7DVRV9PyvjaLXgIhI\nfykp5JmZcc+1s7l01niqKxJ07UBUZsF1hEtnjeeea2dHMoy1iEhf6fRRBDrP7S9am+Rrv1xNw/4W\nWlNpXXQVkYKnpBCRznF13txzkH//i/dlhpEQESlkOn0UofUNzQBMqx0ecyQiIrlRUohQXbKJ8SOH\nMKq6+wHWREQKiZJChOqTzUyvHRF3GCIiOVNSiIi7c6gtxYzxSgoiMnjoQnNEzIynb/9vmeeviogM\nBjpSiFhZL0Y6FRGJm5JCRBYs28pNP1zWq8dFiojETUkhIks37WH51r1UlutfLCKDh/ZYEalLNjNj\nvO5PEJHBRUkhAu4edkdVUhCRwUVJIQI797fQ3NrBNHVHFZFBRkkhAs0tHZx5Qg2zJigpiMjgovsU\nIjB9/Ah+/unz4g5DRKTXdKQgIiIZSgoR+B/ff5m7fv5G3GGIiPSakkKeuTvLt+4lof+siAxC2nXl\nWbKplaaWDo2OKiKDkpJCntWFD9bRPQoiMhgpKeRZXbIJCHogiYgMNkoKeXbCmKF86MyJjB1eGXco\nIiK9pvsU8mzezPHMmzk+7jBERPok0iMFM7vczNaZWb2Z3XmU+SeY2WIze83MXjezK6OMJ2ruzt6D\nbXGHISLSZ5ElBTNLAPcBVwCzgOvMbFaXal8CFrj7HGA+8C9RxTMQdjW3Mfvup/m3l96MOxQRkT6J\n8kjhbKDe3Te6exvwKHBNlzoOjAxfjwLeijCeyHVeZD7puGExRyIi0jdRJoWJwNas6W1hWbavAH9u\nZtuAJ4DPHG1BZnaLmS0zs2WNjY1RxJoX9cmwO6qeoyAig1TcvY+uAx5290nAlcCPzOyImNz9fnef\n6+5zx40bN+BB5qquoZkRVeXUjhgSdygiIn0SZVLYDkzOmp4UlmX7JLAAwN1fBKqAsRHGFKn1DU1M\nrx2OmcUdiohIn0TZJXUpMN3MphAkg/nA9V3qbAHmAQ+b2UyCpFC454eO4fpzTqBMCUFEBrHIkoK7\nd5jZrcBTQAJ4yN1XmdndwDJ3Xwh8HnjAzP6K4KLzje7uUcUUtWtmd71kIiIyuER685q7P0FwATm7\n7MtZr1cDRfE0ml3NrexqbmXauOGUa4hUERmktPfKkydX7uTyf1pCsqk17lBERPpMSSFP6hqaGFaZ\nYMKoqrhDERHpMyWFPKlLNjNt/Aj1PBKRQU1JIU/qks3M0DMURGSQU1LIg70H22hsatWdzCIy6Gno\n7Dyoqkjwg4+fxdSxGvNIRAY3JYU8qKpI8P6Ta+MOQ0Sk33T6KA9+v2EXv6vbFXcYIiL9piOFPPjO\ncxvYd6id86efH3coIiL9oiOFPKhraGaaeh6JSBFQUuin/S3t7NzfwvTaEXGHIiLSb0oK/ZR5sI6O\nFESkCCgp9FNdQ/AITt2jICLFQBea++lP5kzkjMk1TBo9NO5QRET6TUmhn4aUJzjlXSPjDkNEJC90\n+qifvvn0en6/QfcoiEhxUFLoh+bWDr61qI7XtuyNOxQRkbxQUuiHzp5HukdBRIqFkkI/dPY8mjFe\n9yiISHFQUuiH+mQzleVlTB5dHXcoIiJ5oaTQDzv3tzB17DDKE/o3ikhxUJfUfvjW/Dm0tKfiDkNE\nJG/0FbefqioScYcgIpI3Sgp9tL6hib/88R+oTzbFHYqISN4oKfTRyu37+NUbOwCLOxQRkbxRUuij\numQzFQnjxOM05pGIFA8lhT6qa2hmythhVKjnkYgUEe3R+qgu2aQH64hI0VFS6INU2qmpruC0iaPi\nDkVEJK90n0IfJMqM/7z1/LjDEBHJOx0piIhIhpJCH9y3uJ5rv/si7h53KCIieaWk0Acrtu5l94FW\nzHSPgogUFyWFPqhPNmu4bBEpSpEmBTO73MzWmVm9md3ZTZ1rzWy1ma0ys59EGU8+tHak2Lz7ANP1\nYB0RKUKR9T4yswRwH3ApsA1YamYL3X11Vp3pwF3Aee7+tpnVRhVPvmzadYC0wzQdKYhIEYrySOFs\noN7dN7p7G/AocE2XOjcD97n72wDunowwnrxwh0tnjWfWhJFxhyIikndRJoWJwNas6W1hWbYZwAwz\ne8HMXjKzy4+2IDO7xcyWmdmyxsbGiMLNzcwJI3nghrl6LrOIFKW4LzSXA9OBi4DrgAfMrKZrJXe/\n393nuvvccePGDXCIh2vrSMfavohIlI6ZFMzsM2Y2ug/L3g5MzpqeFJZl2wYsdPd2d98ErCdIEgXr\nj+9dwl8/9nrcYYiIRCKXI4XxBBeJF4S9iXLtnL8UmG5mU8ysEpgPLOxS5xcERwmY2ViC00kbc1z+\ngGvrSLNp1wHGjqiMOxQRkUgcMym4+5cIvr1/H7gRqDOzvzOzdx/j7zqAW4GngDXAAndfZWZ3m9nV\nYbWngN1mthpYDPwvd9/d57WJ2Ju7D9CRdo2OKiJFK6cuqe7uZrYT2Al0AKOBx8zsaXe/o4e/ewJ4\nokvZl7OXC9we/hS89Q3NALrILCJF65hJwcw+C9wA7AIeJPg2325mZUAd0G1SKDZ1ySbM4N3jlBRE\npDjlcqQwBviQu7+ZXejuaTO7KpqwCtOZJ4zm1vdPo7oyEXcoIiKRyCUp/BrY0zlhZiOBme7+sruv\niSyyAnThjHFcOCPeLrEiIlHKpffRd4DmrOnmsKykdKTSbGhspiOl+xREpHjlkhTMsx4c4O5pSvCJ\nbZt3H2Te//8tv1j+VtyhiIhEJpeksNHMbjOzivDnsxTwvQRRqU82ATBjvC4yi0jxyiUpfAp4H8Hd\nyNuAc4BbogyqENWpO6qIlIBjngYKRy6dPwCxFLS6ZDOTRlcztLLkzpyJSAnJ5T6FKuCTwKlAVWe5\nu38iwrgKTl2yWQ/WEZGil8vX3h8Ba4HLgLuBjxIMW1FS7rjsZCrL4x5UVkQkWrkkhWnu/mEzu8bd\nfxg+MnNJ1IEVmvefUvAPhRMR6bdcvvq2h7/3mtlpwCigpPaQW3Yf5IX6XXqWgogUvVySwv3h8xS+\nRDD09Wrg65FGVWB++fpbfPTBl2nTjWsiUuR6PH0UDnq3P3yG8vPA1AGJqsDUNTRx/Kgqhg9RzyMR\nKW49HimEdy+XzCio3alLNjNtvJ6hICLFL5fTR8+Y2RfMbLKZjen8iTyyApFKO/XqjioiJSKX8yEf\nCX//ZVaZUyKnkra/fYjWjrSSgoiUhFzuaJ4yEIEUqneNqmLhrecxYVR13KGIiEQulzuabzhaubv/\na/7DKTyV5WWcPqkm7jBERAZELqePzsp6XQXMA/4AlERSePz1tygvMy4/bULcoYiIRC6X00efyZ42\nsxrg0cgiKjD3P7+RkVUVSgoiUhL6MpjPAaAkrjOkO3se6RkKIlIicrmm8EuC3kYQJJFZwIIogyoU\nb+07xMG2FNNrdY+CiJSGXK4p/GPW6w7gTXffFlE8BaUuGTxYR0cKIlIqckkKW4Ad7t4CYGbVZnaS\nu2+ONLICsKnxAADTxikpiEhpyOWaws+A7JHgUmFZ0fv4eSfxyhfnMXpYZdyhiIgMiFySQrm7t3VO\nhK9LYi9pZtSOqDp2RRGRIpFLUmg0s6s7J8zsGmBXdCEVBnfnjsdW8Pz6xrhDEREZMLlcU/gU8GMz\n++dwehtw1Luci8nO/S0sWLaNP9LdzCJSQnK5eW0DcK6ZDQ+nmyOPqgCsbwh7HmkgPBEpIcc8fWRm\nf2dmNe7e7O7NZjbazP7PQAQXp7qGJkBJQURKSy7XFK5w972dE+FT2K6MLqTCUJ9sZsywSo4bPiTu\nUEREBkwuSSFhZpk9o5lVA0W/p2zrSHPq8SPjDkNEZEDlcqH5x8AiM/sBYMCNwA+jDKoQ3POR2bj7\nsSuKiBSRXC40f93MVgCXEIyB9BRwYtSBFQIzizsEEZEBlesoqQ0ECeHDwMXAmlz+yMwuN7N1ZlZv\nZnf2UO9PzczNbG6O8URq6eY9zL//RTY2lkRHKxGRjG6PFMxsBnBd+LML+Clg7v7+XBZsZgngPuBS\ngnsblprZQndf3aXeCOCzwMt9WoMIrNy+j5c27mFEVUXcoYiIDKiejhTWEhwVXOXu57v7twnGPcrV\n2UC9u28Mh8Z4FLjmKPW+BnwdaOnFsiNVl2ymZmgFY4eXxGgeIiIZPSWFDwE7gMVm9oCZzSO40Jyr\nicDWrOltYVmGmZ0JTHb3X/W0IDO7xcyWmdmyxsboh52ob2hmeu1wXVMQkZLTbVJw91+4+3zgFGAx\n8Dmg1sy+Y2Yf6G/DZlYG3AN8/lh13f1+d5/r7nPHjRvX36aP1Rbrk01M04N1RKQEHfNCs7sfcPef\nuPsHgUnAa8Bf57Ds7cDkrOlJYVmnEcBpwHNmthk4F1gY98Xm1o40Z0yq4T0njo4zDBGRWFhUffHN\nrBxYD8wjSAZLgevdfVU39Z8DvuDuy3pa7ty5c33Zsh6riIhIF2b2qrsf80t3rl1Se83dO4BbCe5r\nWAMscPdVZnZ39lDchUY3rIlIKcvljuY+c/cngCe6lH25m7oXRRlLrr76y9X8YcvbLLz1/LhDEREZ\ncJEdKQxWa3bsp7xMvY5EpDQpKXRRn2xmunoeiUiJUlLIsru5ld0H2pg+Xs9QEJHSpKSQpT4ZPm1t\nvI4URKQ0KSlkGVldwfyzJjPzXUoKIlKaIu19NNjMnDCSv//T0+MOQ0QkNjpSyNLY1Eo6rfsURKR0\nKSlkufLeJfzNf7wRdxgiIrFRUgjtPdhGY1MrU8cNizsUEZHYKCmEMj2PdI+CiJQwJYVQXZgUptXq\nHgURKV1KCqH1DU1UVySYWFMddygiIrFRl9TQ5ae+i3ePG06Zxj0SkRKmpBA6Z+pxnDP1uLjDEBGJ\nlU4fAYfaUizdvIcDrR1xhyIiEislBWD1jv18+Lsv8uKG3XGHIiISKyUFoD7ZBKDRUUWk5CkpAHUN\nzQwpL2PS6KFxhyIiEislBYJ7FKbVDiehnkciUuKUFOh82ppOHYmIqEsqcO91s6mqSMQdhohI7JQU\ngPecOCbuEERECkLJnz5auX0fC1e8RVtHOu5QRERiV/JJ4Zevv8UXfrYCXWMWEVFSoK6hmaljh1Ge\nKPl/hYiIkkJdsonp4/UMBRERKPGkcLCtg21vH1J3VBGRUEknhQ3JA7ijpCAiEirpLqmnHj+SF+68\nmFHVFXGHIiJSEEo6KZSVmZ60JiKSpaRPHz38wiZ+/odtcYchIlIwSjsp/H4zi9Yk4w5DRKRglGxS\naGlPsWXPQabpIrOISEbJJoUNjc2kHWboHgURkYxIk4KZXW5m68ys3szuPMr8281stZm9bmaLzOzE\nKOPJVp9sBvS0NRGRbJElBTNLAPcBVwCzgOvMbFaXaq8Bc939dOAx4B+iiqer5P5WKsvLOOm4YQPV\npIhIwYvySOFsoN7dN7p7G/AocE12BXdf7O4Hw8mXgEkRxnOYmy+cysqvXEZlecmeQRMROUKUe8SJ\nwNas6W1hWXc+Cfz6aDPM7BYzW2ZmyxobG/MWoBKCiMjhCmKvaGZ/DswFvnG0+e5+v7vPdfe548aN\n63d7rR0pbnjoFRavU3dUEZFsUSaF7cDkrOlJYdlhzOwS4IvA1e7eGmE8GZt3HeT59Y00tXQMRHMi\nIoNGlElhKTDdzKaYWSUwH1iYXcHM5gDfI0gIA/a1vS7ZBGggPBGRriJLCu7eAdwKPAWsARa4+yoz\nu9vMrg6rfQMYDvzMzJab2cJuFpdX6xuaKTOYMlY9j0REskU6IJ67PwE80aXsy1mvL4my/e7UJ5s4\n8bhhVFUk4mheRKRgFcSF5oE2YkgFZ580Ju4wREQKTkkOnf31Pzs97hBERApSSR4piIjI0ZVcUnhq\n1U4uvee3bN1z8NiVRURKTMklhbU7mqhvbGbs8CFxhyIiUnBKLinUJZuYPHoo1ZXqeSQi0lXJJYX6\nZLNuWhMR6UZJJYWOVJqNjQeYrgfriIgcVUklhQNtKa46fQLnTNE9CiIiR1NS9ymMqq7gno/MjjsM\nEZGCVdRJwd1ZvnUvDyzZyOK1jbS0p6iqSHDxKbXcfOFUzpg0CjOLO0wRkYJRtEmhPZXm9gXLeWZ1\nktaOFGkPyg+1p/j1yh08uzbJJbNquefa2VQkSuosmohIt4pyb+ju3L5gOU+vbuBQ+zsJoVPag+Tw\n9OoGbl+wHHc/+oJEREpMUSaF5Vv38szqJC3t6R7rtbSneWZ1khXb9g1QZCIiha0ok8KDSzbR2pHK\nqW5rR4oHl2yMOCIRkcGhKJPCs2uTR5wy6k7aYdEaPatZRASKNCm0tOd2lJCpn+NRhYhIsSvKpNDb\nJ6pVlWscJBERKNKkcPEptZTlePtBmcG8mbXRBiQiMkgUZVK46YIpDMnx2/+Q8gQ3XTA14ohERAaH\nokwKsyfXcMmsWqoqel69qooyLplVyxmTRg1QZCIiha0ok4KZcc+1s7l01niqKxJHnEoqM6iuSHDp\nrPHcc+1sDXUhIhIq2mEuKhJl3Dt/Diu27eOB5zfy7NokLR0pqsoTzJtZy80XTOWMyTVxhykiUlCK\nNilAcMQwe3IN9330zLhDEREZFIry9JGIiPSNkoKIiGQoKYiISIaSgoiIZCgpiIhIhpKCiIhkKCmI\niEiGkoKIiGQoKYiISIaSgoiIZCgpiIhIRqRJwcwuN7N1ZlZvZnceZf4QM/tpOP9lMzspynhERKRn\nkSUFM0sA9wFXALOA68xsVpdqnwTedvdpwDeBr0cVj4iIHFuURwpnA/XuvtHd24BHgWu61LkG+GH4\n+jFgnunhBiIisYly6OyJwNas6W3AOd3VcfcOM9sHHAfsyq5kZrcAt4STzWa2ro8xje267BKgdS4N\nWufS0J91PjGXSoPieQrufj9wf3+XY2bL3H1uHkIaNLTOpUHrXBoGYp2jPH20HZicNT0pLDtqHTMr\nB0YBuyOMSUREehBlUlgKTDezKWZWCcwHFnapsxD4WPj6z4Bn3d0jjElERHoQ2emj8BrBrcBTQAJ4\nyN1XmdndwDJ3Xwh8H/iRmdUDewgSR5T6fQpqENI6lwatc2mIfJ1NX8xFRKST7mgWEZEMJQUREcko\nmaRwrCE3CpmZTTazxWa22sxWmdlnw/IxZva0mdWFv0eH5WZm94br+rqZnZm1rI+F9evM7GNZ5e8x\nszfCv7m3UG4iNLOEmb1mZo+H01PCIVHqwyFSKsPybodMMbO7wvJ1ZnZZVnnBvSfMrMbMHjOztWa2\nxszeW+zb2cz+KnxfrzSzR8ysqti2s5k9ZGZJM1uZVRb5du2ujR65e9H/EFzo3gBMBSqBFcCsuOPq\nRfwTgDPD1yOA9QRDh/wDcGdYfifw9fD1lcCvAQPOBV4Oy8cAG8Pfo8PXo8N5r4R1LfzbK+Je7zCu\n24GfAI+H0wuA+eHr7wJ/Eb7+NPDd8PV84Kfh61nh9h4CTAnfB4lCfU8Q3OF/U/i6Eqgp5u1McAPr\nJqA6a/veWGzbGbgQOBNYmVUW+Xbtro0eY437QzBAG+S9wFNZ03cBd8UdVz/W5z+BS4F1wISwbAKw\nLnz9PeC6rPrrwvnXAd/LKv9eWDYBWJtVfli9GNdzErAIuBh4PHzD7wLKu25Xgl5u7w1fl4f1rOu2\n7qxXiO8Jgvt0NhF2AOm6/YpxO/POqAZjwu32OHBZMW5n4CQOTwqRb9fu2ujpp1ROHx1tyI2JMcXS\nL+Hh8hzgZWC8u+8IZ+0Exoevu1vfnsq3HaU8bv8E3AGkw+njgL3u3hFOZ8d52JApQOeQKb39X8Rp\nCtAI/CBWFf8ZAAAEH0lEQVQ8ZfagmQ2jiLezu28H/hHYAuwg2G6vUtzbudNAbNfu2uhWqSSFomBm\nw4F/Bz7n7vuz53nwVaBo+heb2VVA0t1fjTuWAVROcIrhO+4+BzhAcMifUYTbeTTBwJhTgOOBYcDl\nsQYVg4HYrrm2USpJIZchNwqamVUQJIQfu/vPw+IGM5sQzp8AJMPy7ta3p/JJRymP03nA1Wa2mWCE\n3YuBbwE1FgyJAofH2d2QKb39X8RpG7DN3V8Opx8jSBLFvJ0vATa5e6O7twM/J9j2xbydOw3Edu2u\njW6VSlLIZciNghX2JPg+sMbd78malT1MyMcIrjV0lt8Q9mI4F9gXHkI+BXzAzEaH39A+QHC+dQew\n38zODdu6IWtZsXD3u9x9krufRLC9nnX3jwKLCYZEgSPX+WhDpiwE5oe9VqYA0wkuyhXce8LddwJb\nzezksGgesJoi3s4Ep43ONbOhYUyd61y02znLQGzX7troXpwXmQb4Is+VBL12NgBfjDueXsZ+PsFh\n3+vA8vDnSoJzqYuAOuAZYExY3wgecLQBeAOYm7WsTwD14c/Hs8rnAivDv/lnulzsjHn9L+Kd3kdT\nCT7s9cDPgCFheVU4XR/On5r1918M12sdWb1tCvE9AcwGloXb+hcEvUyKejsDXwXWhnH9iKAHUVFt\nZ+ARgmsm7QRHhJ8ciO3aXRs9/WiYCxERySiV00ciIpIDJQUREclQUhARkQwlBRERyVBSEBGRDCUF\nKVlm1hz+PsnMrs/zsv+my/Tv87l8kagoKYgEA5X1Kilk3W3bncOSgru/r5cxicRCSUEE/h64wMyW\nWzC2f8LMvmFmS8Px7P8ngJldZGZLzGwhwV23mNkvzOxVC54HcEtY9vdAdbi8H4dlnUclFi57ZTj+\n/Ueylv2cvfMshR93jokvMpCO9W1HpBTcCXzB3a8CCHfu+9z9LDMbArxgZr8J654JnObum8LpT7j7\nHjOrBpaa2b+7+51mdqu7zz5KWx8iuGv5DGBs+DfPh/PmAKcCbwEvEIwB9Lv8r65I93SkIHKkDxCM\nPbOcYIjy4wjG0gF4JSshANxmZiuAlwgGK5tOz84HHnH3lLs3AL8Fzspa9jZ3TxMMZXJSXtZGpBd0\npCByJAM+4+5PHVZodhHBcNbZ05cQPPTloJk9RzA2T1+1Zr1Ooc+nxEBHCiLQRPCY005PAX8RDleO\nmc0IH3bT1Sjg7TAhnELwOMRO7Z1/38US4CPhdYtxBI9pfCUvayGSB/omIhKMSJoKTwM9TPDchpOA\nP4QXexuBPznK3z0JfMrM1hCMzPlS1rz7gdfN7A8eDPnd6T8IHhG5gmDk2zvcfWeYVERip1FSRUQk\nQ6ePREQkQ0lBREQylBRERCRDSUFERDKUFEREJENJQUREMpQUREQk478A+EptpVAYkV8AAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5a7cfe690>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print \"Optimal performance: %4.3f\" % max(perfEvol)\n",
"\n",
"pl.plot(np.arange(0,nepochs+1,intervalCheck), perfEvol, 'o--', markersize=12)\n",
"delta = nepochs*0.05\n",
"pl.xlim(-delta,nepochs+delta)\n",
"pl.ylim(0.0,1.0)\n",
"pl.ylabel('Accuracy')\n",
"pl.xlabel('Iteration')\n",
"pl.show()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANSCAYAAAAQ9+32AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuAXld53vtqZFmyZVlCWLaMLxqMjQ3G2FwM5m4cIIQQ\nIJSQpoe2aZq0NG3TtE3SNMlJOE1JT9M257RJaAKchOYCCRCuKWBsjMEGDAZjYwQWvjBCli1Ztqyx\nkJnx2KPzx36ftX57ZlkXa2a8Z/T8/tC79c769t7f+tZee+/1Putdy/bv3x/GGGOMMcYYYx5/Rh7v\nEzDGGGOMMcYY0+EXNGOMMcYYY4wZCH5BM8YYY4wxxpiB4Bc0Y4wxxhhjjBkIfkEzxhhjjDHGmIHg\nFzRjjDHGGGOMGQh+QTPGGGOMMcaYgeAXNGOMMcYYY4wZCH5BM8YYY4wxxpiBcMyCHm3Zsv0LerzF\nwv79yx7rR890nTb53hHU6bJl6x/nOp3G9nDGUPbv3/2Y63S522mTR46gnbo/fRRcp3PPkdRpRKxy\nvTaZcFude1ync88R1OmTXadNvnsIdTqcpz9jjDHGGGOMOcpZ2AiaWTLozZ6xnom0j8B3atofwMe/\nH4jpgxcZIK2zlu9g4yGtz7Zq+nBpfXbpXvrLsX2gtsZaWZN2X/Pv3GPr090AoUe7jBk+U2mnow5g\nr85r+OFD3MeBempjzNyg0BuvN23zCUZX8sFCdSrH54KH0h4L3/JGOV3fRyQlOEzcpxhjjDHGGGPM\nQPALmjHGGGOMMcYMhKWrczKPCYV2V8InScgK+BRmvgs+fWZ3PLH4dsfuiIg4D8HnVWkpe2yFjSWZ\nbIWthy9/5BkeqAYfKp5VWY51L8nNvp7MTuMqxzZ8vKS1/RB8k41zXXzdgL75OvgkU5yC7/60bF+S\nLeyNc4tvb9ybWxQ5npH2ePi2pJ3dKqdRtytm/fXQpb3GmMOndU9Qr8kreHX5W72Ga59QmZrxt4h6\nXfNYhyqLNMY8Nni96Q7dei6cwLaeETbCd8+Mv0XU65vH0BMTP/tgWj5ftO7zrQkRjxVH0Iwxxhhj\njDFmICy+oXNzRBzsjXxlw3dy2nPh00jEi+HTKOUdcV/xaaTiBJQ7Oy2jb/rETvi+mfbJjXPahW2N\nYjx+EYpWqpTZqfJXYXx2osQROR7TcRy2FWVchW93Sm5v7R3j9LQPwqda56+qKM/djfPnuNLjgybu\nrzjIdN9T0p4On9o2o2p3pP1h+L6W9nNogSP520zHaSh5ZjmryuvT7mgc5c7i0ej8RC9252QixswF\nraQAGrleBZ+i6i+FT/epB+DTSPm34FNv/W34TmwcY6zhU4/Be5LOzxE3c7TTSn0mH68ZPc20nkzG\nEb/amM9RvNtK/8KouO7oJ8F3U+MYT097L3zPTbsHPp3/bfAp+ra6Ue5w8bOCMcYYY4wxxgwEv6AZ\nY4wxxhhjzECwxHEJ0lrXQWxtTGEcQVBZkhDK7EbTngifwsZ/GhfA2wlELmrsbzdKSXjHxrc2LROH\nPDUtJ35K0sbwseSRTIWxkKyN8bK9rvH34xp/uzm/1b7YUHwPpXCTaSpqeL6G87cWWeRZKKna+h58\nt6Y9B74npGWQXzX8ffi0vbCCnJEULU3h+47k9x1FuZelvQy+J6W9Eb63pv1d+KpEodbuT6VdH9uL\n7/jc/gt8VpKHyfgheHWl1bOZiO/kVpU9Smg6/AQ3xsw/rdUhD7SeUethhdJ59Wij8EkKTZm8xMn3\nwHddY9+614xDIv5gSsSfiHK6F1GapV6d343SKGOOZlqJNFqJeuRj+SpNPgHlunRgz0K50bTnwadr\n8KnwfSztlfCNzLARtb/gU5eeiZlMRJJJPrc+VhxBM8YYY4wxxpiB4AjaEqQVOavRJb7rd2OJjK+c\nn/Zp8Glkko1lNO3KuLn4bkjLCJCSMzB1heIMTLOgz7aSPjAypv0wGqVYz8IkCZk9rXUcnjpxtcYb\n12WM73aUe0ravUh3otEd/h4aid2JZCI3xqm5VaelnxP/OyL6KUcUjTwRv9G2tBNlHxER62M2Cxc5\nm8bU3rU5dj6OljCdv/A06kpndwv2o9ghR6qvSvu53hR+JUo5uXg+lulp9mK87ady77+CT2p07JT4\nTPG9L+1Yb8ysS0WwqpHK2xjTThQgWqntmdJaVxXvSYqgj8KnK5x6Ad1rmPxjU1pewUpmNYLlMzan\nvQ/lWkt+6PzXwucImjEdrYWH9GxHdZSeVsfgmy7qlW/M2i/7kq+kZeKft6Rl0iA9NzwJPvUr/Kyu\nb17H6i+Y8E7PXTyX1vIch4IjaMYYY4wxxhgzEPyCZowxxhhjjDEDwRLHJUhrhS2Fjc9CEoTRtBeh\nnCZVMyEIJ1MLCcEohNMky2fAd21jf3+Z9ufgU5iZQjRJAscax+Xk8K1p18R80hKOanzjWY2/1XQn\ne4rA5g3Fd0sReF6Nz3Tf/obeah5ar4zSVAXWq8BPv/VYEanWc34wvo5PtoLtj+/KPFzzTDKC8V6y\nk+6cKXu6Ou3r4JOk4Vb42rIirYRUZZQrUuJ4GupU6/C9r9eyOoHuL8dHi+f+ssXfqBPm9tdBU7KB\nuZg+bMzSoLVWWAvKodTfsefSdc9RZz3gnAyfEv1Qprijl/aj47Yssa8nVOz61I2QW2s/vE9qNUX2\nsuqL+D2MORppTV/R1JjWGoO7esJH3ekvKZ5dOZnhi+hNpspkkbqa2V15t3479rajHLHe589qJGzT\nUxyfKTQFhWJLTV/hXV6J4ri/Q8ERNGOMMcYYY4wZCI6gLRH4pr2q8XelgRiFT1Gt4xrlvgOfRgjv\nh+9/pt3RGw/8ldxvHZ9QUopWCmKmL1fa0xvg21VSwtfo1YaMdCx8zGd6ho2o4z9MT//CtIy4qabv\ngE8xwBfC9+K0/HaKJHGhAu2nJnwdK+ncedxTZp3xeTn2fEtvvFcRJR73QFP45waNV40jyrQ8o2kv\nQ4uZyG2267+X9oPwXVEiVPV7aAmJH8d41odLkv6asHd3iR3Xo5xQYrM8cjca90V4xsuY2Vvh/bWI\niFiD6ODeA8YHjDk64R1EPQGvuJYipLVkhfbDOLZ6Ak7iV08w1Uu+/8y0VZuxL96bW9SYdH3vjnJv\niqh9bu1Tz8/rnlG66QMuImDM0YMSgvC5UNcy9So7yxbjUdLZXFM85+WemKL/oZ6WpkN9xLZyz45Q\nurrLEBW/Ki6OiIiNcX3x6YmIUbAz0j4PPn0nJoVj/O9wcATNGGOMMcYYYwaCX9CMMcYYY4wxZiBY\n4rgEmZphI2r4mMK23Q2fJCEM2WpKJqdKSzKyo1fyryKiv8bEm9L+LnyST14AnyQrFI58qATCjy++\nK1ImshEykZakc+7RWAYlhDovroBzY6OctrnKm0L2F8Kn9cpWNsq9Cj59Y8oeddxPw9cF/PeVKesR\nt2QKlxVxefFNFakmx2vmR+JIkd+B9jyJba1HxG+rSbkUMVyWn2LtKUnNV4IojQ1XR3p3RESMFFlj\nxJbc0wZIH3blb/6FlED0+Q/Y7iYw7+0lO/lWHsMY00K9OqVKkiWtaviIelcmHpDc8dnwqUe9vrc6\np5I2vRg+nU0V3q/MM5uELHskyz0zKpI2Upi10tJGcxSi+11rbUPeq3WXpYRwX3lKvBPe7mpeE1cU\nzy1xbkREnBVbik/Ptew3lAroMggQNQ2HosercirDD+DT08LZ8GnyyuXw6YmO35f92eHgZwVjjDHG\nGGOMGQiOoC1B9ObOt2/FepieXiMWZ8GnEUemElXEi/vTKMKXS+L7epRfx+jEdWn/Lkop+vFx+JQq\ngxMr69ncC1+XTmQfRko0GjO/45O6VDges67h0zgu4z2qYUYbP5GW4yynzvhbRK2DrfBpqQT+mjoe\n41KtZLbdhPcpJMioo1P8Hhpd5jGOHH5bnd1a/HIa4Xo+ymn8miNr3047FpuK72lZRxwtV+zyo/F6\neEfTvrN41mSd7o1X4/w+FRERu+Il+KwSdt8Gn1LrnNkoNzvR/7QTbRvTRL0sezGNPh8PnyJUVIno\n74xkvSYt+4SaqunV8L4n7T+B79y0NcWIRtG342yOy56JCpNvNc65qgIWRvNhzBDQtcwFZ1qRIV0V\nO3F/XJuqIsa6p/KJgM8DL8rnQUbklGCEkTE9iZ0Kn56D31Wu94jVub/XoJyeJb4Mn5KE8IpW/0IN\nlZ57eH6HgiNoxhhjjDHGGDMQ/IJmjDHGGGOMMQPBEsclAiUhCqc+ET5JLU6ET+I1NgKlNHgSfFxD\nRlxfBB2vg7eTO07E7xXPyfHHERFxZeNcbkUoe32KVW7qpZHQ2TwDvk7ytxdrj52S8rT5FY5IJnhy\n42+cwKrapKxQUsh3wNdNYT0DQs9Xpj0DpSSVuSU+WnxjafsTT7t1vM7DyiG3lNXl+AtLLso1z05u\nlJuYYece7ZltVxN2R+GTLIFtSBKn10P6+W/SUiD60ZIg5VJ4vzrrXCTUvTlljd35nZNb16LkP0hL\n2e2b094IXyu1gVr++KzjG3O00UoSpF7p2IaP9y71HZQVan8UZUt0vAO+PyhbfwTvN2fsOaL2Qk8v\nnu2lXx8rvg2xOSICovuIXb27r+h6rZF57FONWQxI7svrt14VTy1b4znpZSX+ek5eR1wvTc+rTBqm\ntVJ5p/6xtLwr/2FJTVeff/blU9hkeSKpfQmnaWhKzhieW9dkCa6eKDnm7AkPB8YRNGOMMcYYY4wZ\nCI6gLUEmGz5NsuTIpNJZMCakSdAvhO+/pWU6/jrBehQ+Jar4YPFowiTTYygu9pOY4l1HODlOqvEG\njrV2KUvWlkQZ9Zy/H3MNj6txXI7F6sg85268ZqSkzI+YjlvSd3/x/XJaXoD/Me0YfEqQwaN+Pi3T\nkLwwI2c3w3dLiSVxHEbfg9NudRb7Gr65TbNPaqrqWgv3ZZv4GMppgQHGUTWxl6NUH0nLeGZt8azp\n7rtvwHibRsIm4t+i3IciImITkpicGP8rIiJu7o3fKerGqKR+HUbVunPwqJg5WjlYbzKZkedjcG8Y\nTct7l64upuVRFJzH+Ku0fwbflvi53BqD90/SfgM+3SE57q0IWh3RH2tO/e8+swbj7at6fzHm6EX6\nkr4665S03yqec/Lee2sjQsWnFSWj2xbnF9+N5Rnn7uI7Pa9bRtBelM9lN+L5TEnwjkM59SV87qrU\nXkf75vmtmFXq0PCzgjHGGGOMMcYMBL+gGWOMMcYYY8xAsMRxCaK3bq50JXkIpy4rVEtpoELOX4Ov\nyuu4eoQEZ0wnIsnfzxfPJ+O3I6Iv/pJwhDJKpWG4AWHmDWlX5CTsiBpyrqX6q73PLbPHL9YgXK7Q\nOZN1KMD+VPi+n2f7JvgkfHsxfO9O+174PtuQz6xOESv/ItnjZG+1EaXXoKhGotPWyh1cEU+SgrkX\njlYkHaz1rC3KadV22FlpcvFH4Htp2g/01uZ7W9qfhK9LNLOrJ5D8i7TXFc9p8d2IiPhplJKE9KX4\n1b8U10REX67xnLRfgW9X/mLzJxo1ZtgcfES4u9rXwdOSsKunaq08yPuexPa39vq70bS/AZ+E93WV\ntHVxU0TMlCRKrDQKn3qoaZTq+ra96KX3Zr/tVRDN0Y76gb14XlmR0zT4FPKKtKOQCuuzfBpV37At\np5NERJyXn3k5yulplde0rlAeV2f1fvj0DL0P1/RIXtPnYRqE0opQCsn+7HBwBM0YY4wxxhhjBoIj\naEsQvXVzpF6jitvgUzpiJqDQSASTTdRYFuMaSozAGIEmWl9VPKNpr4jVxfefc/rkZY3j7m74mDZZ\n32MKPo1fMv3pfMGJnz+cdmOjHFNw6Pw4sqso2QfhW592Sy/O2aWUPQeeW7Mu98Wz4VXN8SiKVdZE\ns2sz2sPx5J2xKbfG4NV4EWOfc0ttp3VJguMa5TT6xBF0te2byrlH3BRPy61NKKnx6lfBp5Z3Enwa\nf69Xzb9I+7copTb2AvgUuWNyEv0KXGzh+hxt4y9kzNFOP6LcjUSz19GSGlQq6J5wb6Pc7fDtKrH2\nN8OrT30IPvUydRz9kYygsTeZzDvPfUgwpH6bD1N34xOilUrEmKOZlYg8SXXEZ5Pb0nLpIT2bMqX+\nnpJgpPKPMiLHKJTu8lfDJ7XYG+H703IWdb/rckmffeWKr88ut6AXOyUVU1R26VtS33QoOIJmjDHG\nGGOMMQPBL2jGGGOMMcYYMxAscVyCKNhKeZVSPlBexfXPxHjaiXgRvJ0k5Pyy+lTEt+MLeSwmX9B6\nYFUmcn+W+2GIAyVfoSRMgjqGtyXam4BPckyGiqdn2Llj9vjFNNbjeDAFbzyuVvBgkpXpnKb62Z4Y\nUilDri2eXUVm802U61JP3Nq7VDWh/eziWRF/GhERU1gHRGvGbSi/aq3fbT0ZpdYGuQ+eJ8R8cLDf\nSL91a0UxpqPRKmQXpuwgIuKmlDREvB4lta4RrwaJJau497RspxQ96tc/Hj6JfL8Nn66jV8CnNVMo\ny9I5W+JoTO0LKE2XDJAS8Sen3Q+f7h1bkHJjRcoPp+IpKKk9UcgviRJFh0rXVAXNkpXvQimJ/ZfD\np/Nnn3XcjL+R/Q2fMUsdPk3p2meiD917x+G7PJ/0XoSrRnJHTn25Le/9TDynJ6wr4dOUksvLlVz5\nYu9KPy1tXX31JfmscQMEzNqaxP70FMwJQfq+q+PwcATNGGOMMcYYYwaCI2hLEL2t8+1bI/lr4NMI\nBCcz1jf8r5at9TnRmQkypkuk5lh4P5b288WjdOOMHem4TIauVCPfgE/nch98+m6tEcy5H22YfXmM\nYExUdfrX+PtEGd+5BF6NwjBRhf7+Gvg01sPxY9US442KFNWY0lT8WG59uvhW5u+2qzdapBja7Cnt\nnGa7tbSKuZ7aXmOfmiB8ci9FbffLbinjUBG/ledyEWKpz0/7Q9jz75S/119ke0nlwvQzSsX7XJR7\nUdqaTOCmHG97eyZWiVBMMnpj9Eo58E74lHKfo+WM4RljOlpp5xnf1zXEGNi+ODe3quZiKpN69Meu\nNabOO9C7IqKfVvuOvANdgCtWo/trUU6xd94L9Qnek9Y1ys3fcjDGDJ/lDR8jzLo+zoVvLK+uUfh0\nvz0Rvp9JS5WNljLiYhq74iW5xRR1XbKgLb0nSPVK9VlW6qgno5Sep29G9O3W/KYr8O0UUT/c6Lkj\naMYYY4wxxhgzEPyCZowxxhhjjDEDwRLHJUhrHTSFhbdDsnZySuA4sVLJLS7D+i1aB4aJES6MzRER\n8dESMo6o4sU6XVpBXsq/rk77efgk7uNaV2qclIZoAulp8Cl0PvfroHHadyelmYZE764MWE/0JIRK\n3EGZ4g1pWdOqkWfA99q0XN/sj9KyZu4vZ1BR3VfJ5LHx4YiImIw9xbcmJ9Lv7Yldl2f5mOWbe2qQ\nX+KkdfjrtlJ/FxXfxSlZpFThE2kpk1XtMgnHnrg8IiL2xd+HV9ORnwffaNrvwHddRFRBZESt5Z+H\nT78uJRdK48IJzy15rjFHK7pPsd+RDHgMV8mO7NkpKx4v/WHtPXRP2N47ilL8sJ/t5Eu7eqtpdncb\nyh615y/DJ8ki70m6T/Fal0hzRU+g3+FRcXM08khjm09JEiZT3qwJI1zvUPdZPiVpxVc+U76r7Inp\nRJTSi89Ob2ic7R9ERMQl5VmrPl9cjVKby1Z9rl5dpgTVZ8V9+dzTknMfCPcVxhhjjDHGGDMQHEFb\nguitmyP1+qEnMV65Pd/0GZvZUMrN/uw/g+/9ZWsMXo0x1LGN9+R4JkdJP5X2q/AxbiHq6ASTk3Zj\nLvsRiWEEZv5Q/KPGSfaXMVPGKpUiv05Kf3ncHBERX4+PFp9GUnbFy/BZxYM4oqPJpxxL0b6vgk+p\no+tY094yqlMTxe8rI0I1ZcXa/LX7Y72Kbz0ccwm/hcaXpnolNNpVW5iiUb+EUv8g7S/ApyQnnIir\neOIHSuL7iJpa5CL4VB9MtD81y/P0tKwV/eL/E75byi88O53Nihnf2JijkWUNn3pSTrDXFcTlLi7J\n+8rNiJfV/utMlNS96JPFc1Zef89BqXtyP1x65rZyLhUdbRopleq9kovEdHe8qZ6vG7Vf6UT75ihk\nurHN50Jd51Rq6dnuxfDpSYcqFimw3lXSh0VEvCXt/yie1fE3ERGxryQPi4j4SNqnwtfpcJh05Iq0\ne+BTVP9Y9AKb85pfgaRm7LsOB0fQjDHGGGOMMWYg+AXNGGOMMcYYYwaCJY6LnFZCEEFphsLC68rq\nXXU9B07AvK6xv5em/VzjuP3Vs7pVzDbGx4tHgjWGqJXE4ebedNCH8/zqVGuFt0ewmszulO2NI6R8\nYik317RqdXKWZy3ENZLIbMS6GJLy/BQ+o8QSL0Gtbsvt65FSZXXKYfbFxfg01/npWBlfz7OjcKir\nwQ2Y6Kq6n4RIT+v9jM3aa8R8juHoXJ7d83ZpapjCRNtcyez/zNb945ALKg3Ab2OlktXx3YiIWIVy\nEyUhyPuwx9enva54JCR9G0pJksHEIfrNmS7noTzeHb021NXl3CezMWbxIaHfRONvF2Bbsnuug6be\ni/LjrSWlwKvhlYC/XnX/Ni17NvWo34JP9xVOAVBfeV9Zi7LeZ/f2+t6VM2zEiKWNxkREvfZmi4L7\nCXj0FHUtfD+blv1GTY32m/DqCbJKnjfErRERsQ9JQs7Jo4zhmW0qBZcfwt70DP1K+NQn9ROEdWfG\n/mV6hj1UHEEzxhhjjDHGmIHgCNoip5W6W2/dHM9TcgOm2/jfaRl1Oa+kjq9oZON++D4eT8gtJib+\nxYiIOAce/ZUJ5uuYYh0/WZ/Trxkn0ncbg293abJ1LGJ5RisWZnyyxiV3lrHdmnBjNEdWN+ITirCs\nh09pQC6F7460d+KbvDvtrXEjSmpPtf4my3RVXtJ3RkTErjLuG7Ey7o6IiOdjRPnOtBO9mKu+09x2\nEbPjSf20umvTfgU+RnhnwjS9GmX7kYyaRdRIZT8Ftr77XvjeO+vIig1zlE9pWRhBU9KbMfjuKKP5\ndYx/RUY5HUEzpp0kaDQtI+jqF7l8hvrXrb3eQyPm34Ovu3pXlin+dQT+OpRSlIzLdiiaNgqf+qyH\n4Jua9deI+g14nzLm6KX1fMZnIvUHrdRdvM/rDs3EclPxr3LrNfAq+cdtxTOWTxgbM3FbRE3Rz35o\nY96lvwafepdR+BSb4/OA+ib2EdJdOc2+McYYY4wxxixS/IJmjDHGGGOMMQPBEsclAmVTCqM+Gb7j\n0nINh8mUYW2KbcWnsPEGlPtG2k/0jthJR1bHbxWP3vYZota6MTfBV9ctq4FrCUIuQTlN4+R3uw8J\nQ6Lx9/mjNS39mFm+m4qtwrzz8wy5Xptko1zP/nlpWc8UT4oVOdF1qhcwl8TxafBtTVvr+bgZf4mI\n2FHENzzD1tT9uUUTaykhVK3xV56Ml0dExIXx2eK7KVsbJbuX555W4dwlrb0KMs8qNuJ31HZdmeUt\nKUz4f1FKf6W8QvJJXlv1l6uruljaaI52KHHWVchrWDJ6yhnVe50L33jx1QRNW+Ls3LoZJbt726/B\n87G0lFfNvvrr35mcSMflyHZNasD+WL0aP23M0Qun3EhOuKfxd6ZA0zMRpzzo+n1pEK2q+zr4ur3/\nMJ52dP1eh7NZl+JLPjlpCgr7HD3bsQ/TVc4pLZI78vserrRROIJmjDHGGGOMMQPBEbQliEbqOQqp\nGM92+H4qRxdPh0+jFxzZ0MgBo1s3Z7KJFzU+y+jH29N+DD6Ndfwk0o4oBcYNKKeRCk7eVASo1XAP\nN4Xp4aG9c4xVtcpIjJK919rfHtdHRH80RPEVRrI0aZ0RpZrMuXqnMvJ5LiKfW3IkeWV8uPg0gjOB\nMeo9OW69qhfPmZ10pCbQmNsugnVwWlqOMetM+vG7ri5vKp+I0O9wPRKCaEye3+yq8t3ZOr6elt+3\na70vR+IQ/ZJcIuIdab8Kn1KCs90/mL8cv4cjaOZoh9d/K2mGetddGHM+P+8ATOlzX7To0h39Q9zl\n9BmmylfKAOoFNALO61o9OD+raBmTDk2Wc10Jr75J7RU8Gm5Mh64j3jN1DfI+qXQ/z4NP1/5H4FsV\nX4iIfgIPJSW5vBej197rcknqI5jKX8fbAp+ePqh6UnT/m/DpOfjkOHLcZxhjjDHGGGPMQPALmjHG\nGGOMMcYMBEsclyAK4nL9KMk5KM1oST0kbRyFT+knONFRsi8eQ2k0uD9J+b4Mn9a14WTQ8UwTMgUh\ni4LQD6Pc7FXQFhoKRxXE5hkqfQRroYPfV99tD1b8uSNlMedDwKNVfrb3RKfdivechDqSPqIz+AH2\nN57CooneSkOqVX6PljRwbtH6a/xmOoOJnpxR58fVULoVi7bFW+Drxpum4p3wvTHtbTGbKkC8JOWi\nXAfp0rTfgk/nfDt8kmFQzihZLkfALHE0pqLrgVLH2hfUVFObY0dusQdV73ZC8azPq7K1/tB/ge/Z\naf8OfLqPjcGnXoerqunu1F/T6fiYTSez5D1TPalHxc3RzpqGT/0B5cutaRC6ppnkR2sb8tr6YNp1\nEFLuyfR3m3C3/qG0XFHx82mZDEzTazgl6OQZNqIvxRbqB6YafzsQ7iuMMcYYY4wxZiA4grYEaaWz\n0AghRyfuTsuR/RtyPHMlvGokXKNd45ZMdaqUC5PwfTHtHRgzWZNjDCy3MX3HwaczYCNtxXMWdmSS\nZ6OxWqZw1/TSmu5kTyb16MeKNEJcv9GLcqLr3SilI2xAQhD9rv1R3NlnMpa/5Sb8lhO5Pdkb9dVR\nDlbTc0srtXUdYWK0TOdyCnxKvHsjfF39nofve0v5HTgW1kVBfxRHe3PaN6KUomWcAKyRsJfAp4jw\nDvgenmGNMX3UfzHKVFPWs//RmDVj1Oo1arxMvev7egvMaGx7tHgm468joh8tU2yO0Tf1QOwVdX9i\nn3V/6lJ4P2uhXsmj4uZop7Wwj55NeQ3eErPR9cOnKd3lmcBD9+WpksYrQnqYE+FRIhAmLLmx6JNG\ncdwuIRn7K+mWqAJQqiA+V7cSIh0K7iuMMcYYY4wxZiD4Bc0YY4wxxhhjBoIljksYhooVDmZIWZMi\nKXtcUSQuorTwAAAgAElEQVRwNQXFZIpRGG7WSuucHKmJmi2p11WYOnlrPCEiIkawDtraxjnr/Bi2\nVviYApiFHWXg2ln6dhQbTsywEetSnrinF2p/Utr67SSlGy+1EVGD8axVrRhSU1qsiysiImIsJ8F2\ndEKcrb1a1XmxBh+aYSMWomuQJKif3kRS2Ivgk+iTEke1oS8Vj77RLb1yEiONFs+q+FpE9OWHJ8yw\nEfUXYs1vTns2fPo708foXJwYxJgD0544z9QcnUB/JfrZJ6Rlz6tVKe/D2ogrc3sn0lRplTSKo3Vf\nZK8oyRMTa6nP4Npo9V5Z70QjeeXz3uTRcGM6pmfYiCof5j1T0uOnw6enRib0GkvLdcsiXpmWKUa6\n57ebe0/CXf9ySU+krCfbetVS1iyWzypVv9Oyhu9wcZ9hjDHGGGOMMQNh2f79rVQD83W0ZQt4sEXE\n/v3LDl6ozZmHWKcaDWR8RaMSTEDempT599NeA59iOEy9oFgPYx+3pr0fvtkJktsTRMXhpiaNiPje\nEdTpsmXrD7GdKprGhK8bGz4lDpmder8mdI2oNcdvfEXjs9pmlEu/ImtVvyZjkEoOwrEZ1fqBx3n2\n79/9mOt0+QHa6XRvrEnnX7/bWdl6OIl3Z6n7Gm3cGDsjImJHL4LW7WdFGTevvwZ/IdUok95o3O3y\n3nE7GC1TBJApDA515OuRI2in7k8fBdfp3HMkdRoRqw5Qr+ztpssU/BrfPiPjZBwH31cSL9XkST+R\nlstijKXlqLwi4+xRpe/gdavx9B80fHt60/71qWl4uiMyoUCLCbfVucd1OvccQZ0++QB1yj/o6tkI\nnyJovNo2pWVES/doXm/S4vCZd0tJo1aTkI1mjJzH1RMR+w31EUxkd8yMv0UcerTsu4dQp46gGWOM\nMcYYY8xA8AuaMcYYY4wxxgwESxyHwAJIHFtJC7TNFackLJlEUHltlmSYWZ/ZBJ+SJTDEq5AzV2lf\n3TgXSsbEska5Q2VhJI5dIHw1xHeSw0z3ViSTrJCSRAlsuJqHAutMvaKaPqFRjrSmr0sUxF+YSU7E\noY3TzJfEsUVfJtBaRaQlJNAhKHHUd+e6bxJHtNJ61LrSWoD80o/MsPzkYxntssRxHnCdzj3zKHFs\n0Zc9zkbJoo5r/K11ba6ET/ckpgTQZ1py+vlsEJY4zgOu07lnniSORNclpx7o+uUkDT1jUc6oBEG8\nznUtj8GnJ4mzGuX4VKWnKE6r0JPTGvhaz6aWOBpjjDHGGGPMEsQRtCGwABG0I0EjDK1p0a1J1Qeb\nGH0kEYdDZWEiaEeComlM9j4942+PRquctpmqQvtu1fTh1/5CRtBatEam+ultlx+gJA+/rOF7dOaz\nnTqCNg+4TueeBY6gDYHD6yUeG46gzQOu07lnASJohwt3qmdPRtAOpMBq3dOnH2Vb6AnriDpC4Aia\nMcYYY4wxxiwi/IJmjDHGGGOMMQNhYSWOxhhjjDHGGGMeFUfQjDHGGGOMMWYg+AXNGGOMMcYYYwaC\nX9CMMcYYY4wxZiD4Bc0YY4wxxhhjBoJf0IwxxhhjjDFmIPgFzRhjjDHGGGMGgl/QjDHGGGOMMWYg\n+AXNGGOMMcYYYwaCX9CMMcYYY4wxZiD4Bc0YY4wxxhhjBoJf0IwxxhhjjDFmIPgFzRhjjDHGGGMG\nwjELerRly/Yv6PEWC/v3L3usH33e41SnrTf76QU/i0fnK0dQp26nj8IR1OnpbqdN7nQ7nXuOoE6X\nuU6b7D+SdhoRy5ad5XptsH//HUfQVo99nOp0eoaNWOhHyQOxf/9D7lPnGt+n5p5DqNPhXFVmwVme\ndgV8eqCdPMhnVzZ86q6PafhaD8Wtcq39PXSQcmZpMzLDRrTbQetl7FDvKlNpVzX2txy+Rw7gm4LP\n7dQcDgeSsrB/Xp32QfjYP85kecM31fAtPnSFHWwIplWudVc69iD7OdD+lrIQqVUH6vFavStbnJ4S\nJuB7+ADHeqTh4/6Wcj0bMxu3eGOMMcYYY4wZCH5BM8YYY4wxxpiBYImj6TUCCT0oRND2avjWpH1S\n47MURexLSxGy9rcHPsl0eC4aPXgAPoklLCEzEX15l6Rbx8GndvoD+NSGdkGiM5It9Ikop7a9Dj5K\ny2Ye94GGj7jNmoPBPlbiLrZdtT+KwSSBZPuaavgkODuYVHi4tKSLvNpVK9+Hr7sqTyl3olqHvHfp\nXkQxXvtaP6NxLrqjte5eQ+XRpYsrG6VaUtkn4a6+J1vcJHq+h7I2+33h8jxGbcHqhVsTlSZ75zn0\nOjVmbnGLN8YYY4wxxpiB4AjaEuZgSRMULeBIoRrEU+G7N+0O+E5N+0L4vpf2Tvg08sbPKhHDSfB9\nJy2jFWI9tjXS2RrdXFyjweZIUNvm+LlGau+DT+2Z7WVv2aqtbTpb4664rfiOzzFdHuOBUr6iseDW\nWH5r/Nft9OhhbVpGIPY1yp2YdiN8G9KeBt9Y2l3wKfLANq7+lv1pK6p7sGRQC4+uWCbtaF1hJ6Tl\nXe7ktKzF7m6zM74KXxdh24J42bq4OSL698d6DbfiR3eVrRVZcqpXTnetk+FbSP1HK05adTErG/Eq\n3ZdPnfWXflRN92Amr1Fc8Q74pF5ge5/Mlj4J7cOqLDHZO0p3NiMxXjzT5XucgHLW1JiliyNoxhhj\njDHGGDMQ/IJmjDHGGGOMMQPBEsclDIP+El88sVGOMphnpKVIRPs5Hj7JHplMRLJIJv+4vXEun0n7\nI/CdnnYMPjVOChoE16t6eIY1ixeNGFE+05ILqj2vapSjJEzSMUp21cY/EPcX3925zTa0NQVPpzbk\nQEwIonNg4gadH4VaS2P9KdOntU5TbanLslWwj1UikBNjNnux/ca07HfVdvnZ69PeAN9o2usax53E\n1TWSrXINyk2UcvNNa3xYVyDr9dy0vCtJIvdM+J6edhS+exrHuDlt/dZ7yrdmjyIB/x8Xz8bYluUr\nE+Wuyt6jdafV3xdiXHx2EpO16Mf0225CKX3zUfhaa6W2+jH1pKwB9Yd3w3dilmSb1jHu6LW47ved\n7olOdYYHW/vOmKWBI2jGGGOMMcYYMxAcQTtK0PRbJtw4fobl3+9slOPb/JvSvgc+pVe4Cj6NND4Z\nvt3xkoiI+HxcU3xvSMvEIZ9vHFepkWcnUjaLFf6+Kxp/19goU+qr42JCkFem5VTzM9N+Dz5FM14J\n3+a0G+D74zyzryM2Npmj+RfGluLTNcOoxu60jIionbbSSZvFRY2V1baxNrcZNd0VT4iIiD1xCrzS\nFTCBRNfzrY+biufKtGzjfz/tRfCNpX0RfA/NsBERO9M+ghjI6uKrMNX8/KIrm1esttnD6+plfelq\nOh2+C9Nuh093JX5WkZr74fu7aa+HT/v+18Wzo5wze5Sz0l4N31jaUfhUs4+P1mMc2/rdH2z4tsL3\n8rTs216XlvFMtXlGcb+SluoFJa/5HHz6tdhXrstekm1xVyYTmeh5W3cMY5YGjqAZY4wxxhhjzEDw\nC5oxxhhjjDHGDARLHI8S9Ca+Gz5Nn6Z84Zsz/hYR8eK0FIm8N+3V8GnqNWWUO+MpERGxtsh6In40\npY2c3i3Z2f+ET+KFM+GTZJKJQySRsNhhcTEyw0ZUqQxlt/pdVzXKvQK+q2eUj6htm+1e8t0b4ft4\nXJxbTOfQyZjOg5zxpuwyKRdSOgBK21pT1rUekDvdxYXaZ2s1LK4Zpb5pvJfYQHK2mgBhRUoMp3qt\n/FsREbE7+8uIiK9ln3kGSv122l+P8+Dt2ufFEM9ekvbLZSW2uqbUKD4piRvlarvK+S+UGJfrm+kq\nYsIIyUMp2NT3vwS+mm6iImEnUwf9StqvwKfjtu4it2Fb/cOL4dMvz99T/ckP4GutgDdfrJrlWQsR\nof7KGr0h628EgldJHNmfPbtxtG+lZa0oZcu/gk+i0u/Cp+uLzxe65/OXnCjyV/bR6okdazBLD7dq\nY4wxxhhjjBkIHsxdgjx0AN9X4dN435vh0xRpjjcqmvZ78Gl8cwy+f5f2jfD9To4CM4Kh5MX87LVp\nOVldY5CM8Gksk9PANa7mRLvDpzUixHiDfksmqVZimFfBpzHUa+FTO3k6fJq+PwafOr3+uexIX00S\nMB3PioiIm3rRilfk/mrMYSwXjjgLpZSGgWPqNc25WYwwvbhUAkz3oFgJI1m3ZtRiD+KrU6V3ZWRG\nqeRrvEyqA7Y+JQyZQCt6fR7vo70rqfO9DLFeXVOfQanx9N7fS0Uyn5GzVg/AVBVKzPEG+HT34l1E\nqSd+Fj5dk2+C71lpnwHftrRM9KHjMjmJehdGbHQ3/CZ8X0zL31N3I8abeHebL1S/jOc/NMuzs6RD\nohalS1QzHXcVzzvzTvs6lKqt7IKydU7qZxi3U7xuDKmXTotdEdFP7LU3XpBbXy8+LXtwb5DuyCtK\nVDRiyroZs4RxBM0YY4wxxhhjBoJf0IwxxhhjjDFmIFjiuETgm7YkCAz+S1zxpEY5yg20Tgn3p7XJ\nthSRVsRlOeH59SgnYcTvwHdLWkofPlb2MfsYPGdNGuY5fyNta02XlrTTDAN1NJShapvJF9ROmBjh\nlTP+FlETgjDRh35/StE+kZbiKEnGvtA7w+/nOVEmpqnv7Cb/ICIi1kGutCclPHf0VvLp/n4hzobn\nZRYf7BOVFmIaPdYZ+Qt/r1fu7+TW1fBKVlZld+tTInZc6TEjtufqkdchpcJPpP1f8H00z2EjWtil\nadm335qWiU3GswRbva6zuV0Pra4cV2mJ0lvprCSBpEBf9cRVN/X9KTXUXWQPfD+dluJ5JSpppar4\nSMP3Hfgkvq7HWJkyvMleYpDpGfZI0X7YP7UE3J34elcv9Ze+J+Wl9/TKR0Tsi1+NiIj39fanz9aW\nfmu5+7OXVh2NFc+elDhyvcm95bP1+WJ7kdmejZLdOSwv6cgipkodONZglh5u1cYYY4wxxhgzEBxB\nW4JoTJeRieen/Sh8Snl7M3xK8nw6fF8uWzWB/lXxmvzbB4rvuWk/V1I9RNQRME6+Xp+f5UTrbvTz\nX8Pz0AwbUcf2mHpfE4k5RmqGhZIpcERI25w6r/QJz4JPv+8O+LR9C3zbcrL5xvgSymlUtk6Rf1O2\n/BdG5fj0vbN31l0ihnVIyKDkNGyn/ypHhS+AT2P5vI7uTsvYgBk+042080ob8QCiVq3Yj6IIG5GE\nY0fZ/tHi25395AXx4eLbngnxd2ExiffEu2ad36Y8B6aj+FRaRvMUEWO7vz8/yzQYW8vWk2cd67HT\nihod2/DpjC+CT5Ez1uxYRERchvrXQi5be+nzfyYte48/SMtEJOpxqM24MO2fwNdd0SOIv0+XO98o\nyimRBdPsqxdsfe/HwoHG15me6OwZNqK2htvhU+IVpqVpfTfuW+h7/jf4dJeuUU71kXzmqHVFjYFS\nPTGOuy49TGGmuwOjocYsDRxBM8YYY4wxxpiB4Bc0Y4wxxhhjjBkIljguQfTWzdVsJLXipPHxeFlE\nRIzF54rvnPK3ypq0O3qr/lwaERH74s7i+VyRllEwI6kCJyNrfZkqMTkvpZIUYUjOeBd8On+KWCSo\n5IouZvhoOjkljhIkUhB1U1qKhfT3bb1J6d06SDt6KUY6Ke4/jT8uHiWx+V2U0hVAca7kvhQB/WRa\niq1+Lu0n4FNbpMSMkmOzmOh6Ura01mpTapNsfQ+mmGtHr2VJQvZ5+Lq2e3NPvnVJ2iotn4y3RkTE\nK+OPiu81aT+ET7YS0rw6Lb+H0uBsjRbfa3rnDonXKU/7dtrZySFWlzQntf6PQ6mtRdzPFRMlkeNK\nXldGRMQF8evFc3O5sk9COZ0LE310krrp3u8koXWV7CuNxrbeI5Zqfj7TWbXWWtM9mhMDlKKLv7HO\nmmJZ9WScQPD+tD8D3+a0l8DX1dX5kPdeV1LUcMpDd+Wsh5xxd5Eush20EpGo7TBBkzFLA0fQjDHG\nGGOMMWYgOIK2BNGY0kb4NA7G0d3dGenimNuX4wkREfHjJYUIk+RyvFixrJpuWGNyXyiTfiMm44bc\nOicqfzdtjcjpvJ6KUhqRHu2dcwdT72svjNGZYdJKEvJ0+DTGyxisIliMkF5btmrS8FMywQKjvz+X\nkbNfbJzL1dj+ZGyKiIhViCWorY3FDxffurg8IiKehs+qLXKsV3tZDd9cpQYwjw/sJxVPYDtV6nAu\n/TAdL8otxvwVPXgmfGo974VPPdud8HVHuSLOxblsiYiI6xGjXZFny35SMYZR+NRn8wi70t7ejMYc\nKVRhqIdnNGU07Rh83WPKvqLliFBk7Du9WKHuHvzWd6S9oXguyKjmepT68fjriIj4cImHR0S8Ni2j\nTF3Ps7KkC4qYzGjPKJIJ1Zqbq5T6h8ppDZ8iY6z7K9Iy4YceB9lTKd3ML8GnFj4Gn3rkmhBkU+oS\nWM863saSMqkmNTsLpT5Xzov6GcE7vb7T/kY5YxY3jqAZY4wxxhhjzEDwC5oxxhhjjDHGDARLHJcI\nFFK0pl5f1yinyc2Ujo2mtJGf3VFkExQhSNxT5RASMZ6CUh9Lgdq+nhjon6e9p3i+Fv9fRERvZTSt\nXMPzkxTnXvj0fedDkGPmFrY/TQk/ofF3rn6jdfjWwidh4ziEvDuLbKbKXaZTdvTT+Ow1RXZ2cvGt\nTHkkV1+6rkgbn1t8X0yJ44Uop5QPTMAjWQ+TL3ga+2KlWwdtCuOZq7K3Ya+m9jnda6kdI5DiTZeU\nTZScqUd7K3xaLeqX4dMt+93Fc338+9yqaUKmUja4FVI8tXauCCapJtcTlIBsal7S2rTGhJmA4vRG\nOW1X6eKGlHXyjnRrXr2nYK24naWnqHcMSeqeg8/WFC7XwSvJ5M/C1wmyJ+P3cC53z9gHkwhRjrcQ\nj1vqQXlc3WdbCVBY92oZHyuel+fzwGfjN4rvn2efehs+eXljvUn169f0hN7d70CJ+DN7fxGSptY6\nW5HX0FRvxUl93/lOaGPMwuMImjHGGGOMMcYMBEfQliAal2Uq8C1pOeJ7Snq3lzHFiB/kKBUTN9RR\nMY5xvSMiIt6Iyb4aoWUS3BrV+o/wKj5XRyE1msloisb2boVPyXwZidF0YqcxHz6tKfNMn6/IGWML\nSr6wLf5T8e0ssakPoOSPp63t9A9L2/1blNNo65eK56SMoF3XGwfv4rmjGTWLqCn1ORat7/Q8+HTt\ncXya22YxoYhsTagwkXH7dUgMUdNQMM17FwVjeovxEpF9D7wXp6WGQPFcpntSYvxnwNdFOVaVXr5G\n81pxFLbDbWmZYqE+FMyHJqE1Jsxevzvj1SV6WK9/Rqhnp5mK+OfxlxGhBWA6Ppj3J0YI9a029cqJ\nk+FV7TFphrZfWzy7Mm3/yfFd+PSLMwnHQoyHK+EKU/nfMcNGjGQqmJeg1BMzvdIL4FN/fA/auVrg\nE3rHVeSzJnzZnPU3gmUK9KTB6JtqjZHdldkipxB5nipaBaLWPJ9LFxjz+OAImjHGGGOMMcYMBL+g\nGWOMMcYYY8xAsMRxidB6074D21qZjEkQTi1/q5OvV6R0jCvT/LMUIbwbvqkUOGyAT3v5DnwTJSHI\nC+GVwKEKxb6Y9i0oJSEav5uEbZRqSrLyxDCLkTFsK8EMp3zXNAds0c9OS6GN1uL5efi0jg8FNFpr\nqq6mtj1+qnHkTqJzPs5A5/pSlJK4huI0pWvYi5UHV6SgjCIqs5igjKpLHMLEL09Je0OvnXbC6/HS\nD0bUdaQo0NPqY1wJUm32Zvh0hfwQfJ2gcSKejzPtUutQnLc1e/wRyNIlz6Wwd+GSLalnpyi+u3v8\nQqM05ZqXpOUaW6o5Jhj6alquTbclU/z8UtxUfFXq9y2U1N75O+mceQfqxJebg+gOynRb+sxcy/Fa\nqZfqo91F2ba4QppEpRTPqrVdBZ/az2b0Y5szVdcZEMZekPLaMXxW33wffHtyP9t6v1JXv+uw9uqe\nvL76a9qtKH+tTM+wxiwdHEEzxhhjjDHGmIHgCNoSRON9jBlsz/jShriv+DTeeiGSgWv6OqdtX5l2\nqoxqRWh87NUY9dJnf6V3Npqafhd8n0hbp24rofkNKKUxSJ6LxtCYyFpjzxyrNMOnlRBaCZ63w1dH\nkb4Kr7aPaZT8N/ApXcefFc/qHPndF/8Y5dR6mUyk2x8jY0o2fQ98iv5eDt/e3nh1h9IFeDmIxYVa\n1XSv/+tShy9HJEDJv8+IrxWftAKbe1EYpZOhnkFx1W/Ad2la9naKzv07+P5D2i8Xj6J5t/YWPel6\nyH6sobs+jkESiH0l3dJCJQnhNXxmRETswT1Jcax/gVJnp+W1qf6fCUGuSLull6ali5IxBvbFssXf\nSfcsJvrQ3Yg6EX0nppNX5IdalIWI8nS96Qb8drpDM+6kGOob4PvrtIxKtukS42/D95nOKO85KKXF\nTP4siOKcrP2T8vw+UjwbUvOzq5eYTElCakS5XpuMwhqzNHAEzRhjjDHGGGMGgl/QjDHGGGOMMWYg\nWOK4RKB4Qm/dy3olOikO17uRKODZ8EngQZnD28pW/fRJKUGhSKcmRngOvDozCk862cdGSBUkbeRE\na0kyuOaUhGOcZq2JzJaOLS70G94HX92uk9KnS6vkr67J/OzCNOW9puEYTTEP2/MN5crgSoGSjtW0\nCufGNRER8VaUUmumEE3Sxhshs9mQIs1dSGIynva4MIuTKWw/hH/7HD+rVERfyDuWdhQ+tWf2dq9J\nOw6fJGK/WDznx3+PiH4/LrnfGSU9VMR9uX1TT+7XXVv0PJI96cSMO8jcI8H6xll/+SokjkrgwTuI\ntrk2msTJFCneEE/OrVo7F8XfRETEv0S53097Yy+titaaY9IXHZl3PqUsYWvQ700xNBNjzBddH7Qc\nqTnU39yCVDCrU9L61z0JbCcv3d1LlKS+lGP5aqtVpvjGtKx77WUcEt2R+ExEREz30ot19bICKXd2\nlbbBPX4hbV3xdLrIHjmFwpilgSNoxhhjjDHGGDMQHEFbgmicdwV863NEjYk0NPp4b69cx5nwKWrw\nTvg0hsbU+x8sW/SOpWWqj26M+fnwaEr15+HTWDJHhjWiwGQiTg6yuOG4s9rsZEn9EnFhjrBuQXrw\niTICezo+/eK0taWO5QjxWK/96Yg/C1+Xev/8+HDxvDktx3CVlIDtbyztKRghvzTt9Uiio3jdXCfZ\nNgvDCsTol+doP9NC6Pe9DL5XpP1KLrEQEXFtbp+eEdqImt5jT2zCp38t7XnwddGcX4/rZ53f2dhW\ngijGFWr8r0bz1uZ32tFLtD896xNzB7Ueqs+TZ/2d8Ualff8yfIpgvxq+sbSM/9Qoz53F83fSsm5u\nLGlV6pj1mvjjiOj/xlrc4C+Rgmtd1hPjY9KaTMbF8OqOO5+PXV3vcj88io6uRSKY8fJ7M3qpuz+X\ndVD/ypRjimDVX0nKl0mUqs8V9Wni2Nz3RK/fPisiIqZ6d3/VZo2qrc72wqjC3l5if2OWFo6gGWOM\nMcYYY8xA8AuaMcYYY4wxxgwESxyXIBIgUKAi6RjTIkjiMQafpkhTNjialuuZSJTy9rgQXpV4JnwS\nqLyjeH4ibo+IOt09osoZKaSQgIISTMGJ+AuxuoyZe9TWdvWSEUj6UgVIagcUYU2UFsgW8ydpXwif\nBE9sMU9P+6vFsymlN5wyrzQA34JP0kaugrQnXpBbdTL8FfGp3rnPPH+zeGj1L2pNlJGrD+NNtbXi\n2dvS/g/4zkrL5BjXpyxvTdxUfL+Z9sVR0ZXAda4k7OOqfnVtwSrV1GfHe0Lex3PctjvzzWUVrYj2\nnaCTwI1BCn19SSx0Fsp1K5z9CO6Gn017VfwEynWJrU5Dn6CeaAtK9eWTHXtK6ir2MQda720+01l1\nvyPbrGqI8sOR/N90LymKWnBNY3Rarum3HS39JVmXN+KTWvlvHH35S1LouQXiT8ktJ5p3dfaWEgrX\ntS9PSok7paR7LRg3SxhH0IwxxhhjjDFmIDiCtkTgm7bGCpm+XFOBmZZYY2dM7DyW9lr4fjvtLb0p\n2UrY8Dr4bkv788Xzw5ka91dRSqN7HC/7VFqOAmui8z74NEbK6KD2x9FsM0z4G9VxZI48d5GzF+Gv\nSrRwDUqdmtPSR+F7e0kcUsdYRzJa+5MotyWjZbfCp3Hfq+A7NS1jC2NpN5ekAhERL01bJ8PvznjF\nCCbc67szXYkZJgcbuZRKgcnCT5hhI2ofy2UetH1ioxxTNigpAvUIiuqwTSpeNAbfF9P+AD5tvwQ+\nKSrW4Xrbs2ALluhb8zFEsb83wHddWiaW6JKl3IUIWr2TMelId8/6ZLwWvqvTMv1Ul3Zke/x48WyP\nr0RExMWIPWohjRW4A02VX5zRqHsbvodn2LmCx+juhst7v2eX5mQd7qRSCmztxcG67dPw3fS88GPw\nfTyemFvU4yjNVz2XbfHd3KrRsl3lyqlLktTnBn4PPR3UJxY9G4z3Piu8yI5ZejiCZowxxhhjjDED\nwS9oxhhjjDHGGDMQLHFcIrRWl6FPq4lQQqPVdTjxWYKHLxSBF/f0Avg+kfb9xfPGFEP+DUqNpaU4\n5dNp/wA+iSU4AVijBxTAaX8nNsqZ4UMhSm2fVXojGeC5KHdCw6f2wgQeP5dyp69B9vSutFejnMRO\nlNj+p7RnwKfrgp1kFfXw00odcht834+I/jXYEuaYYcLfTf0LBVitRExKV0CZtiSzTGUjgdsX4VNr\nYluTaOwV8H0gLSW7SjZCwV5L9q2+dR182xrlFh725vekZaIPrfD2BPjeGhER23u1+FdpKSFUD0Ep\nvu58vIZ/IS2v4e6udXP8/qwznoqX4X9PS7sZPu2bLenhhm8uYKKMrrVOoCWtzf6Vclf93hegBd/S\n20OH2hSnRrw8J098Nkj3fddDDqqUSaNYlU1PEB+CwFztcWdvxTmlYaq95nhpwSzHMzNmaeFnW2OM\nMcYYY4wZCI6gLUE0PsfkH4qc7YRPPz5HgesoW313X5cJQS6O3yo+RcQ4gf2taTkuqSjE9+FTQhCO\nSET6w2EAACAASURBVGt88xb4vpCW08CVppfTwPendbr94dP6jdZgW+OljEJoijnbs9LVMDKh9vwL\n8GnhB7Y/XQuMvm1KOwrf59JyKnyN9T0XXp1FnXC/KlvtE1FKafaZ7tosHvZjW73jGHyKvjKmo8Q2\nO3pJZbrY2CakvZFegdEytVP2p6Npvwmf4rfsTxVT4QIWWnyC1wIVCwuPavEe+BQR+SP4lITnx+DT\nZxg3VA8wBh+vU6GYfCtyx9ruamwCqd5rhO0O+BSR47lI98GeTL/KfN6pVKf1l1fq+xG0YCUQewY+\n+W/SMkGYaoj3YPVp58G3P6NkY/Cpprh0yfsydrcSTx01olt712Nyu8bjjDn6cATNGGOMMcYYYwaC\nX9CMMcYYY4wxZiBY4rgE0QRgTqk+f4aNiPh8Wq6X9py0L4S4QLJDCjgkp+H05P+a9knwSehxF3wS\neIzCJ2nbGHxaaW0SU9iPT2kEJzxT2mMWD0oYshw+ybqOg08yLLY/jSxRwCQ5LQVJb0nL9qfts+HT\n2lSUjqldnQOfprbvKVdPRJVlVeGtzplJUbxSz+JkeoaNqDfO0+C7Mi37xF3ZC2s9vm4/Xaul/FXt\n/Wb4JIC8ED6lmWDrEx9qnN/yRjn2nRK97eqJISnmnE9UU3fCJwEmU1c9NS3Fo/o1XgyfeoVR+HS1\nU8wnPoVtSRY5Zn1BWiYskRSSQlHV3b3wPTjDRsz9+mctWvLJrjUcB1mh5Nb81SXQvhs+ycrZB/55\nttzVeHLQPZ/725et7464CN6xiIi4BJ+9uZRvwWRlEpt7MoM5OnAEzRhjjDHGGGMGgiNoSxCNmjJ1\nskZNz4RPSYFvQdpapeTluKSiWx+G75fTMlmHkhwzLb4iCRwj1ejdd+HT6Nl34NNZnYSRP30Pj6Et\nftROW+nnb8e2ptkzAbYmr3P5BkXfXgvf2Y1yShzCa0GjxzwXpYS+Ej5FTM6L8eK7rnyKLb/zrUQa\nBrfZxcnIDBtRE9swwZLiJ5PxSni7VrscqcanMwrDhE2KzHJ/jFoIxRCYTEmR3m2IX2zMKBhbpGI+\n4/DtLJ/ho4AiPfMdSWtdEUrgwfRT+tbXwaeo1qcavp+G7xfTMuKl2mPaIZ0LewpFv6gxGW18Vml/\nGCFTfS70Va/jsbV2rWAffA9le2SiJKWxYbzry2m391Lbj+b+6qI9d+XTxETvqUO/5VjxnJd1yeix\nkutQNfG1skV9jHQOTNtkzNLFETRjjDHGGGOMGQh+QTPGGGOMMcaYgWCJ4xJk9kooEd9Oy2nMko6t\nwvRcrZXzFZSTFOwC+CTcouxM07o5SV7ikFvh25CWkgYdb1dvWnv3TTZC+CNphOViSwf+4pqqzyn9\n30hLkY2kW2x/EiR9Az4JZCjFlfCGqy9pf+vgk9yWiSCUOoeip/V5NexGKpJ1KXtaiLQAZn5RX0P5\n4S3NNAujM2yEWuAUWtt58dmI6MtptYYk265aE/tTtdPVjXIU7e7IxDVrIK3cm5bHXZUyxv56aAuV\nJERXx/2Nv+3FtoTKXFNMKVGYwOP9aX8TPq3W9WfwaRVF9gA6FwqfJbRmD6BegVf2vTNsRP3VhpAa\nSE8EVS6o9sO2oNrg2mPbiwCRa8Z1vfQK/G6aenAWrpLV+feby7VS+QS21eey1FSRSvJO/2DDZ8zS\nxRE0Y4wxxhhjjBkIy/bvX6jRsohYtmwBD7aI2L9/2cELtXneIdbprrQcq1QafkYNlNKZk8t3pOXk\n8h9JywiGEi1wrE0jABzz0v44VjmWlqPFmhLMMO8jM+yj8ZUjqFO300fhCOr09APUaSuMz7HofWUU\nt7IqtkVEv+1qFHccY7EXZiSLk+HVJl8K3xU5YntaIxU1266OwQQPGl/n+L6idAeTKNzpdjr3HEGd\nLjvkOtWvfgJ8arWzk0WsRcxVSeMZv1EkYxI+tb+nxmzYJpXsaSN86mMZaWPfKnRf2NP4G9l/JO00\nIpYtO+sA9cr6UiyPMW9FwZiYQ9GUG+HTb8EU/frMevhUE+fBp7sRj6v0QLyK9VkeQwoUxlgPLcqz\nf/8dR9BWjz1Anc4ee1+J1jVZWtxalFALGoNPd31GERWJYy+temZdqeWyl7427fPgU/KXekWsyHOd\n6iUdkdbiwHf//fsfcp861/g+NfccQp06gmaMMcYYY4wxA8EvaMYYY4wxxhgzECxxHAILIHGUMGMH\nfBJknAofhSBCohMKFSTYYaKP2xrlJHiYvUJUf5027Y8yyg3x2LHEcR6YJ4kjkYRwd2/6uloZ18RR\nq6Q8Sp+h7EzrGlHEdUlapsKRJKmKIUcyWQLbs1IXUGRzasPHxCcHwhLHeWBBJI76hdk61O6YcqOm\nYqpM5icnUEqCRu5PYnG28QfS1rWgRhpJPaaLuJFjsFoL7PCbzfxKHA9GSygviSPXN1NqIdb1dKOc\nfhOmpVD6qQfha623pTsp6/XYRrlDY/4kjpWVeafnfb5KtU+BV/JO3q11B2ebVrvkaqmq32/DpycM\n/m7aphRS9XwXfA/OsBGHGk+wxHEe8H1q7rHE0RhjjDHGGGMWD46gDYEFiKAdLnxz18kxQqBtRsFa\n06I1zsyTbH3ZuU5G7AjaPLAAEbQD0UpywLFrjckygYfGfRmN3ZWtdjUm9WuKO9swp/yLQ42MHSqO\noM0DCxJBOxLUilo95v6DlNPfW1+Rvfbc9qiPbwTtUFEPweiM6uThhm/6IL4DMfIo24fHQkTQDkyr\nR+NuFdFlJEt1xO+t6DEjlepBGalUj8396bdh3R9aQpAWjqDNA75PzT2OoBljjDHGGGPM4sEvaMYY\nY4wxxhgzEBZW4miMMcYYY4wx5lFxBM0YY4wxxhhjBoJf0IwxxhhjjDFmIPgFzRhjjDHGGGMGgl/Q\njDHGGGOMMWYg+AXNGGOMMcYYYwaCX9CMMcYYY4wxZiD4Bc0YY4wxxhhjBoJf0IwxxhhjjDFmIPgF\nzRhjjDHGGGMGgl/QjDHGGGOMMWYg+AXNGGOMMcYYYwaCX9CMMcYYY4wxZiD4Bc0YY4wxxhhjBsIx\nC3mwZctO37+Qx1ss7N9/57LH+tlly850nTbYv/97j7lOY9ky12mL/fuPoJ2+2XXaYP/+9x9BnZ70\nONVpa1xvesHP4tHYv/9eX/tzzRFc+xHhen00jqReXadtXKdzzxHd+491nTbYv/+hg9bpgr6gzT16\nUBjOw8HS5rHU84Ee5kYO4jMmIuLhtNMN36pG+VY5tqtj0z7U+Cy7xKXcFvU9+R213aoXlmvdNh5s\nlDsx7cPwaZv7OFC/wnNxP2+MMUc38/Xcz/0N494/jLMwxhhjjDHGGOMXNGOMMcYYY4wZCotQ4vhY\n3ilbnznUMOmB5HiPZX9DZLqx/XCj3ESj3AnwPdjwqYntgW+kUU6f5XGPn7EPftYsHQ5VWsC2Ienb\nI41y9B2orVE+p32f1CjXklEOvR0erL8SvLYk/Wz1B8fDp32PzdrPypgsnsnymWNRbqThUz3zXFq3\npomGzxhjzNKG9zNN3WrdV2bf90ZiLzy6l/MZYSoiIlb2PLOfK6ZLCU4daz1/zB1Df8owxhhjjDHG\nmKOGgUfQWiPr9OkNmiPrxzTK6e/fL56VMR4REU9AKaWaYaxHTMYG/E+j8d+H75gZlrSiUQv9bqzz\nOqnxN0YIVKffe5S/iyel/SZ8o2kvgU9/f6BxLnfBd2bae+DbnXZ94/wONUJghk8rYsPf9wdp18Cn\naMrB2qngNXhGWl7p6xu+VoIRXfutiBL7g9Y1v5C0knqcCJ+2WfeqP34Pfd8z4dNnngTfaERETPb6\nP9Ulfxf9XrymT057A3zfjtmsbfjE413fxhhjDo/WM34rWrYcPt1jGEHT8wCVMg/nER6Er4uWrUDk\nS1u8S+mojKpNpDpkshdB01sD70063pEnHXEEzRhjjDHGGGMGgl/QjDHGGGOMMWYgDFTiqPfGVlKA\n2Wv0bMAkQAU6p/B3hS73QKYogQ9X0FuX9lT4dhTLc7k77YrGUViuFbJdiHfiAx2D9acQ8Tr4FCKm\nBOmstOPwKRkAm5Bq9Sz47kj7TPjOTnsjfJ30aWXsKx4Fkid6ssfnpaUUjSFss/horYnFdnpcWrbT\nVhvX3yk/lNz2Ivg+lfa/wDea9rvwbWx8VhJhXh86f57zAzMst+ezD2gl+Tl2ho2IuLNRTtc+pZD6\nTrzGOtnyeXF78dwf10RExM54Acp11/Sm2F48W+O83OJv9NUZx49YnT35vp4IXfV2P3zqg/ndjDHG\nDJ/WvZDPAxIg8t6qp3x+9qxGuU6qvxJyRt19eLfQ0+XW2ARvt5/l5Vk/YnXak/DWoM8ej2djPbfy\nzj/dnHp1cBxBM8YYY4wxxpiBMKAIWiupx6qD+O6NiIhdcS58emuuo7Z7yihsjeLsKskrTi++nWVU\nefZbOCM2K/MNehnSPk+Uie58532o/LWyEO/EqsvWqDJHzBUF4GT/j6Q9Dz6NE5ze8LGubkt7C3zP\nTXtCoxwjIjrXXcVTa42fZQIDoWbsRAGLH11n7A/UTtietc1IzJkNn663t8H3jYiI2IAW9sJss89A\nqbdn/9KPKCmqxutY1xGP+420jDy1EqDMNdo3u/bjZ/zt0dC51rG/jXFfRPQnS2us8jXwfSvtJ+JL\nxacUP+xJzst6vh59xO44P7e+Vnz7im9jVLo6HcHvNl0mZztRkDHGLF66ezpVVNLO7IFabSQjYsch\nMrYmtkRExFOwN92ztsCnOzXv6HqSPSe2Fp9SWe0rcbOIE/K87sNn9ddW+qp+ssHHdn9yBM0YY4wx\nxhhjBoJf0IwxxhhjjDFmIAxA4qh3RMqXJJs7Dj4FE1vSJ6671clzJkt6j4iIsbQnwyfpzHeK5/xM\nNsK1wbWXPZBRTub+RkqijIi+jFG01mVaSJnTwZJnqJ6vg0+foVxQ9XwnfJIa7muU48R+yaXG4JPE\nkUHgTp422RNTnTjDRtRfh/U9gGZsHgNqp/wt1YYou9Xfb2v4uD7XJ9M+C77RtBTkddflmvh48Xxk\nhu1K7csjUVar474UPl0zrbXHeA0eaJ22uYb9pBKbsJ+UALGuPbYiNkdEPyXK/0j7RfjUW3DVMu3t\nMvgkbaRIUWLLn4XvK3nc98C3q/Q/TBD07IiImC7y0Yhaz63+1xhjzHDh+mbd/XOyUWoN0v7pjr8Z\nwsJHMkkHnx51T6Ik8bNl60J4W8+3elfYXTw7y7tCvc9P5H32ESQO0ZMLJ/DsKefPxIIHxxE0Y4wx\nxhhjjBkIAw09aKSZ0ZmdaS+F79MzykfUkdRvwad3bo75PjkiIk6Lm4pHEwiviTOK7/zYFhERe0q6\n+AglrViOd/3RTEpyR5yGchrF5uguE17MFxq153H1Xs/xbCVBYCRLo+1fhe/kGbZ+dgQTK6fj9bn1\nVJRTvY3Bp1EJjuh34/JrUafjZRT9XpRTRI6REycIWJxofIjJNVptV3BMSlFVRn81KsY4jtrzs+Hb\n0isdUXuLz8M3Ef9XbjEJkaYcj8GnnoORNrVdfjdd+0zAOxdwnK2VIEjdPK/fP5hxTrUXZS3/67TX\noQ7+fdbBpSj3T9L+GnyKWbLX1a/7PPh0JV8D3/o8xpZmf7rQy5YYY4yZO9RvU68mlVx9np/M58Ez\nEaH6Qdo3IrW93hQu76XKV1I73tF0N6KypVNkvBLHuCuXkPkOSk2V+Nxb4b06j1DfI/R0y2/WjxQe\nOr67GWOMMcYYY8xA8AuaMcYYY4wxxgyEAUgcW/K0lgzwzhk2osqg7mr4qrRoZcrwJnsT9Lrg5TPh\n+XbZqiv3bC7SQEocu7W61sOzrRyrrr82WdYU53uwwrdzXfXTjW3Wo2RVJ8F3e9pT4NP35ZpnEiGN\nwTeSR3oOfFem/WbxrM9j7I4nopxklkzk0v1u471yZ0dExGnx5eKRGHNf77sdLBmKGQ6ta4EyQCWu\nYXtWchCuUqbkEWfBp/1QmPDahq+70pfBIxHt/9PrI9TuvwCfro9WYhOm0tA6X1wFjO19LpCMsXXt\nt6giwmenAOMuyETUC1AIuSbtP8VqMk9P+yqUe0fa0cbZUUCtWmGajz9OuzueD68+1Vrb8IXYvqrx\nd2OMMcNAfXjrmXf2vWsl7q2nNj6hpB+8K++Mi3OLz6NKAlYlkyvi7ojoPzUofccu+CSZZKqyreX5\ngpLJ7jl0W+8Y3fmvDqLvfnjTcRxBM8YYY4wxxpiBMIAImk6hNbLeT1TZwZTrb0nLyfmK3nCi4WhE\nRGyKjxafRs8/2Rsx12g3UzvruIzSLM/91mmAU5l0ZGV8N2bDCMETZtj5QHXJn1fjAxyRVlKP3fCp\nDq6GTyP/TDCiSNzZjePXY+jXOg7JTh/oJT7t0JjJVC+u0R2PqWIeKltMguAI2uKhlYqe02mnZ9iI\n+qsz8Y8+y6TwiqQz+qv+4CH4uhQVF8fniuf9ZeunUW40LeM9iuLxmr42LVuqriNeW3OdzEbfideC\ntnmdaxywnouuwB1IiLQj/346vscb0r4be7s17Z/A99nsb38Co58fKKOa9Xuvja/lMSq7S+yOEVJF\nPJlwSPtmf68exmONxhgzPA70msHn7/sjoh81a70J3JrL6Iz37iJjaT9ZPKtTzbYPCrGp1ITsziW1\nIiJenPa52Ju0MN8MokRjPO6b0tbvOJXPAxO955ou2cnhJdn3Xc0YY4wxxhhjBoNf0IwxxhhjjDFm\nIAxA4igoGdLEdUrXJGthkFASH65eJBlPTYbxM7lGwTaUUoBzrJcmRNPfmRBEEhqmBPle2irV25DS\nRqYOmCxTEU/oeTuY2GSuUb2c3vAxUYG2KVNUXTKpglYtYnNRKgHuT2kDPlg8YyXNAOtZSR94XMlK\nvwdfdy5r4aniq7leS8osPJLhUbL2g1m+1fGliIjYF69GuQvSUn745hn7jWgnzOna5yg815YtTgtW\nG6P4Qe2TV7qu5a3wPWXG8SPqNTif42KSOPJa7dY0XAP5tc5+FXpFrXR2Nz759rRjvWQn6oNZ9/85\nIiI+EP8MPglE6pqK47mf8Z5ctZUQRH3XbfCNzjj7iPp9KSU1xhgzXNTXV/HimuzXx5BeY2U+8VHE\nX98LuMLmntxHfUJU8o9zyhrKNXHHj+KTWtWMT8uvS7s15ZQdun/zeUXn8jT4uqR2T4TEUW8KE4e5\nHpojaMYYY4wxxhgzEAYQQdNb6b3w6b2xRqjOKm/Xnyq+6UzM8XokyNQ08+firfkVaX8DR/jv8aLc\nYtp+RY/qSO7anGg43kte0UXa9vSSArTejJXGngk3VeWtpQSOBI7U6w3/B/B1CTfWY8VzTca8HSP/\nE5nqekOJ9EXsiutyiwkZNGGS9aeoGldaVySTI+Fd/Y3Eu3D2XXr9TTjuybnNmtJY+3gvuroqzGKB\nY0Jqs/wtFb+pI2v74h829qOE7UwioYgNx8IU/Xpb8bwyI0nXotSVZYtRXY2j/Qv4bkzLZPTqw9gf\nKGrEZEDHpZ3rcbFWgiVeE50iYC+WsFidfStLSbfQX/xCkco3xWxYg/o0xzr1GzH5h86V/ZX6dC5T\ncGKj3JUN38MNnzHGmGFBhcQxMyzvT/WePpn30cme3mV26pDT8jn9XJTSE/ll8Omu8jPwSXvx8/B9\nvLwfPA9ePVe31Fs3Ybt73t9e7vcRSoByuPd+R9CMMcYYY4wxZiD4Bc0YY4wxxhhjBsIAJI6CU9O7\n4ORaTLL7obSvQ6kHUqr09+CTPOcr8Em0tLOXZODStH8OXye1OifDpRERt8aG3OK7rEKcnKyutRYo\nGmqtRy4ebviOhJbMaS98W3pnFBGxOWWbm2J/8e3NCY5cwaGu6UTpmJKmMIB8adpPw/cf03ISf/eZ\n6V7igU4OSqHoaFqmU1GqkWt6EzX7U0jNkGnJHI5v/J1JZbT+HsWuksNRkKfPUvaov9ekFPrrH5YE\nNhER/6RxDE1CZgt80gwbUa+Fv4BPSUJ4xVHqPJewH1JdVhnGxdkP3IJSqtEbS/8Wsadcj3tQ8tfS\n8nc7M+0tDd+N8OkafSd8kpxyPUv1yx+ET/ujdFHbZ8E3lpbr3BljjBkWrdcN9tuSLK6f5TutrL4Z\nsTIt0wVqQtOPwKenwlfBpydYruv5L8uz+zvg1fMCE4TpfnY7fF9Py/uUng2YbDAa5Q6OI2jGGGOM\nMcYYMxAGFEGrSTgUOXsp/qop+Rw71Xv2x+D7T2mvi3PgfVtaRnE0Os7R4u4ot8aF8Cka1RrJZfVp\nxJrRnIsbx9D2QiQKqCPr52SUjGMTdyFyJjSu/WT47o+bIyLixrgEXk38fw18182wERFvTMuJlTqv\nlxTPyhyN34lSSh3BsfuakqSVbMIMn1aCB7ZKtd09DR+XYFDvwOQzirow0vu7ERFxfnymeO4pWzzu\nVWnZTtVfXAnfa9N+Ez4dl22yFS3T953rbpfH1bVV6+ARpNcXN8bLcotXnL4HI14fSktlQBeVPCV+\nuXi0QAnTfEzGf8ktjiS+OO0vwvffZ+wlYmNOut4R/wfKSRfB/enXnOukS8YYY+YXJrKbvTzU2kwA\nSE3Ml9JSbaU7OdNWSW3H94Or036yJAGJiPjbtA8cxCfdCd8tlMiQR6aiReh54PCUHo6gGWOMMcYY\nY8xA8AuaMcYYY4wxxgyEAUgc9Y5YJSp7c1L7dpTSX/8MPgme3hevh1ernlHyojQifw2fRJNPh4/r\n9cw8yjr4JLRjogCFQinIk/yGiQw0iX8+ZU6SWd5fPBIoccqjzo5BXK1mxG9bRZtXw3tew9daaV2J\nBJgU4Dtp6/pXEr7tgzTs3kywUFe5i9hepogysURrbSUzfPR7MewvGe2l8ClRBa9VXVP8zdVqKbTr\n5LYUM36grE3GtcwkmeR1pLb7O/BpfTPKGCSzpChbVxXT7ahvmM+kNrPXBVOKk7096XYnbRxBoo/p\nMsWafZhqjn3YS3MPVQj9qpRRvhml/jz+7/LXyn9Ieyl8Wv+m/h474sdyayPKdfW2FgmlxsvWAG5l\nxhhjDgNOs9F9p8oFx/NevRvPsnoKuCEq+/K5cD3W0f3ttGNxGkoqZSBXRW49N+i5v5U07BPwdfed\nFXhbUeqx3SX5SER/rddDxxE0Y4wxxhhjjBkIAxh21EjvsfB0CTS3xVTxaULgVVHZWZJMjMKr6YR8\n93xPWr4N63gcgdck9HvguzQtkxEoAsSR4ZPSMhGJRtEZIWglHZkLjmls1+PeHGekp6YrVTTtInxS\n35yxgI3F1s/+r/jV3OLSBYpe8vsq0sAReI1Y1DqYin+cWzUBwJdLtIzLBWh/TF+uUROn2l5cqJ2e\nCZ+uHybhUKSacd3Zbaj2A++Fr1te4po4tXF8XtOamMwonaLE34Dv3rSMgil10Rh8Gm1jlL2VOn4u\naCUwqrGlHfH8RrmT0sOlBv4qLSduX5H22fBJaVAj5X9eopLV9/qcQH15vK/4JuLlufXVqChKx0VU\nVOd7GuUqirfvc/TcGGMWCeqvqYTSMzQVWF1UjQsy6a/nwndcPgPeWO5DEfVe/lr4FKXjMf5rWt6T\nlGafaQn1vMJ7TZfckHfRGsNj1GwqHguOoBljjDHGGGPMQPALmjHGGGOMMcYMhAFIHEdm2AgJGnfB\nt6vIWzhpXBP+uO6RJhieBJ8m/DFQqn3fCd/xM2xEf0Jgx/qcELg7Pt34LM9FMqxJ+ObrnZhhV0kD\nR+HrzutWyBQVdN2EUkrlwcQhkjty9fXL8tN/ER8vvitK3bP++sfvUNKWW+CTpI0SUcmqngKfZGmU\noc5OjGAWA5Kk8jfXtfod+EbTsrtSf8CJvZw2LHTNvwA+CaXPjtmwP5Ccluuv6RxeDJ/6CK7PJQkk\nZQ76nuzD5hpdAxvgOz/tZng+k566msyPZUKTj8dfFt/GlBfvwBqIG+InIqKf/mR3kZBeVnwnxt9E\nRL9/2VKuX66VKBnjvfCpfq+Gr0sXxPVvas/qa98YYxYHuo9yqkBrLcvunroVnhWNT96YU3j6z/0S\nHnINTz2b/hV8N6U9Hz49r76/eM7IaQPbeoLG7vmCk3DqfZHPK3ruP7xkIY6gGWOMMcYYY8xAGEAE\nrYVGrvnmq0l9NXIyEn8aERHTJcEEYUIBjSbznVtfnckrurfbFZjQp7dhjkcrucb/bq4YzkQVikM9\nET69wbc+eyRwBFnnzwjByVnqJcVzR9bRHSU5SsS6TL/NmlcSEU6XVDptjgfck6lQb+qNhLwhLZva\nR9K+Eb6r0/Kzn0p7KXzdiMpIbCue6ZLOdKDN2RwERq103TK5htLkroVPyePZAsfSMk38dKOcYsJX\nw6eoFheiUJSOkXLtmxFcJf/gVaO2ODuxxfyi8+MSAmtm+TZnVPrCuL34RtOuwHhgTRdSr0v9GjXJ\nfsTXM/X9WEbNIiL+PF6WWzeipK7bdxbPGZlqeVtvBFP9487iWZsR98leKdW5r31jjFlcMEaknr0q\nVi7IewNVE0poz2fy+lzN536l8KeyRWoNKnR0D6wLOp2XCa74FKK/7sH9cX1cHxH9J466FBSTbXE5\ngUPHETRjjDHGGGOMGQh+QTPGGGOMMcaYgTBIXYiClOdCBnhebi9HeFHByg/Fn+DTEuIxKYWkPZQV\nSrZESV0no5wqIcoIVdFurLtVxU1MhqFj1LWVVqQ8Z6q3orgkV3P9btyaJM/z00/9Cvgk56oyzz2Z\nJuRzSCYiYejv4pO/lPYu+OpETgZ8JS2j/GssLZMvKCEIE4fonHmUbn/99ZuExxsWF621UCQR5mRf\nSQW4xonaExP/aO0SflbtisdQ38C1UF6YlmuePS8tVwXcM8NG1B6B58c+RLQSIs01rS5d58prv1sv\n8qb4fPHcVOqlJusYLzLtulrijfH7aSldVB/yG/D9Xlr2Td2abOfGl4tHcunfRxKTPUVyWtdzU+2O\nlWniEXUlNGOMMYuD6Rk2InKKDJ8fb8776CoI23UnooCwPqXeDZ8SV50In+7V9dNn5JSg41PWUSHV\nbgAAIABJREFUSHZiW28WTAgimT8Fk1obrZ9G67HhJ1pjjDHGGGOMGQgDiqDVU9GYLVN6yDcKn6ag\nX4gJeA/mhL//HO9o7PsS+BSnq2/NZ+Ub7zTefMdyRH8KEZsHyjs0J+LvyPOr79za81RvlEARgoWI\noPEYSvHNyOLVaZ8dM9kRzyzbf16iCjV2+J0c2WZc4llp78AoxtYSUWTCEiVV2AaftnkuipKMwaeW\n0ErJaoYP26na58MHKae/3wbfukY5jZQtg0/LNzCCqwgbx+CUdpdJg3RctnIl/WD0VxEnXm/qk3h+\nJzTKzQUjjW127Tp/9leKPJ4Jn5YseB58qnNOvtb3uAg+9a2/CZ8+8074/iIi+ml/NDL5L+G7IZcB\nuBI+fbPVSOK0r/xGA7qVGWOMOQBdb74CiTnqMzaXoenurRNICXJduRMwhYfu27zHSR3SWvqq7m9b\nnsMGvAtI9/UMfPLpM/YaETFWEpcxdVW3vQLvJVWVd3jLwTiCZowxxhhjjDEDwS9oxhhjjDHGGDMQ\nHiddCMN8OoUT8NfOdz0kcK2UEIJTADXt/x8hdCqBzx/Gx1Cyk+esROIQra/AYGWVNFWZ05bymdmJ\nAujZ25NazTd811aA9pvwSeLFddpUczxrhZcpfVKClBoqXh6fjYi+6ExBY4qhtpbz+iq8ChbfD58S\nlvD8VPdMvNLJS6d6Alhum2HTGhNisg7JBdl29ftSqiBp2xR8uka5rtpbZuw3oooUKHuUXILTfXWd\nUzYhmW9rrTXyYKPciY1yc0FLDjoGn5J5vBe+V6X96cb+3oztD6VlH9Fay/HqtEzyo9/rAfi6z4zC\nc1fvL/2jPQ0+pQbhJO19ljYaY8wio+u3p9B/r8mefW8v8Zem5vC5obvHrYyvF89kkRrWNc9GypQl\nJrPS82WdyrAip+vswnrFa1LuyDvr36Ydj03w6r2F66zqeWZXHCmOoBljjDHGGGPMQHichh9b74Wc\niN+NmE9ghHsix1c/jNHxlTkJ73x8ckvan4Hv481zGIuIiMmS2iJCI9znx+eKZ3OJHtVR4JEctZ/G\nW/Oq9DEBdK3eha5mjUWPwafI2G74FDVgdEG00p/Wcooj8JfUr3VTSW8aMZKRtuneWvCjaRl/O77h\n+2aWrpG2muSckQlGQsziRiNSNZ6yNke4xnuRmJfOKldjtz8Pn0bM2MZbiSXGZhw/ol4DTJ/P44mn\npmUkVy2V0cGFGA9Tn3RD8VyQfdNzUerb8ZcREXFdL2L9hrS/A5/Onyn6v532v8HH/lu8acY+IlQv\nV8OjGChVEren5QIlLd1C/b2+H8YYYxYDulfW++3e5jOq0nTMXjJqsvd8q/3RJ56K7S4R1suwfIvi\na+NFsRWxN8/hRiT6qHd3nt/3Z/1VGo8nwnNP6vKmZ7whHAxH0IwxxhhjjDFmIPgFzRhjjDHGGGMG\nwgBmWEtuROGKJuVz3TJN/ntd8UzmhP4bemsXdZKdLxSxYyBIWcOpq3IS4ERP0tQddzPCkGeksGZb\nWcegyhgnIbnSyml9AZRkfa2kKPPJsTNshOp3VWwtnokiF63rQa2Lr0VExGn45OZ4Sm5VGdGPpuX0\ny5tjdW7V9dKmizzsVSj50AwbUddgohStky5yxakaImY9epxhccPfT79rlSWMN5N1SNZ6T8PHNDWS\n+nFtFckbKF3UxOQr4FN7Z9ogyRvWN8pRgqnvwWtQ3/Pw1kI5PCQFqf2pzop903PSfi0+gE922+Px\nT1FSyYJuh099a53MvSquyWO8AOUkNL+0eM7N/uXy0ldEbEwZeV2ZJmJHXudrkARGfSxrdKo3OdsY\nY8zwUb/dSgpHNqelNFBJ5ihrf1Luod6rdedYF39TfEoEyBV49XR7Y9xafLrHTOBJeKq8K1DiqJRV\nsyX2vN9OP8aEgX6yNcYYY4wxxpiBMIAIWguNAvPt+rK0jHiNpWV05sqIiLghzoBP+xktnokyss7o\n23ER0R+11fvzNN7MFW86tiQQqW+6TAEdJerG9+CFHEXnSutdpGEC0+7Xxs6I6McR9M1Pgm9Vjp5P\nxMXF9+n87M74oVnHaCdLYJr9V6f9FnyKenDcoTvGNEbb28kIzOKmdX2w7eqaZ4RK1y2Xg1Cr5QiX\nujimf1c6itnR8+hFgFop6xV1Zsp8nQujeaNpFzqBjb5vvYK3Zl8znqqBiCi946X4pK6sj8a74VXK\n/bpEyabs934Wpd5fSn+p+Goal8uLT3veUkZBI3Zk/e3o9fdKfVz7YsVA9/X6A2OMMYsLPf/WPn9l\nxrUmkWSu6t8YXdO9mvqtLiK3GykDL8zoG9PJKXHHOfBJM8O7yt7mwl46Lu/pkzNshL7TAyVeF/FY\nY2GOoBljjDHGGGPMQPALmjHGGGOMMcYMhAFIHHUKK+Gbvdp3lTcxYCkp0x3wjaY9u3jW5iTBcUiQ\n1mbolKkDJlMGxaQUkv/dB9/dabnOgaSNB5fjzae0ceYxWmuF1Xfy8ZR4jfcmYHZ1sA8eBXsnIEnc\nWRKgfGbWMc6ATHFbOe5alNOa7K0ECgwfH5eW9cjvZJYGHCc6foaNqLJXShI1KZdJZZS0gm1IfQmv\ndE1QphTyrBn7jYi4trE/XVs8v/+fvXeP06s673sfCXTBQkgWFsiAYCyuBmPwDeM7xk5wHN/ixG6S\n3lKfNGly0nvTT06b5rhJ25Mmp/3EJ2maJqnjJK3jOIkvxBd8iQFjbAw2lpCFBQI8QggkBPKIYWCG\ngZnzx35+a3/3OwshoXdGW+Pf9w89W8+sd+/9rnftvddez289S/caynNrt9aFvPZ5/ObuNIYJzyMp\nv7gSpXS3vaqk44i4KP4sIiLOQrnRtP+uUy//T0REnBT/vHj+Xd4LL8LdZFuRWFMiqvvyCHyP5jm3\n616Ode4XYiHq1BhjzPCZmbO1qvSwIyY6ckehZ/6L4NNzu+0jbCnPGj7Tm/7AKKTzY9mXXYXnXn2y\nz9iAjWifs0/MKTfTead5ds8pR9CMMcYYY4wxpif0IIKmN0vGbKYH/hbRjk5zsqBGzPlGq1HxdmT9\nQE4JXIY0mor/tMn4IyJTYS5DYn5NeR/rTBrU+bUj5pPlbfmZkljoO83nu7GOcT98ijwxVbnqkm/6\nzSTLsc730Gj338wp1+XmiIh4pJPEVDXN0W+NaDCqoREIRklUv2ymteigWTyo3T0A34FKuZG0jIJp\n0jBTr786LePio2kZxVH7ZJqfd6b9Gnxqd0xYouMtr5Q7WrdYXh9NJHolJi0rZs6aujTtj8F3zYCN\naK/K83H/e2tGzpgm5cbc+xnwPZSJf/anjWh/8QOdc744LetUMT6OVhpjjDnWmc7+93Snj68IFtUp\nUswxMnZZWipq1L9kAo9G1TGRy700LEvfJvjUP+dzXs8nnov6HydWyh25usMRNGOMMcYYY4zpCX5B\nM8YYY4wxxpiesGR2dvaZSw3rYEvOOMSDKTRYm3RPyYvCimvh0zvnXfB1VydrkPSOoUmFR8+IuTxR\n2aYkZ/mAPXRmZ+97dsuMR8SSJWceYp3WknConh+t+Fin2ub7vMRMlI5JrMQ6ra0nIckak8AorM1J\nmfr9Dz9UPDt777Ou01iyZOEuimOJ2dkjaKfvPcw6pVhOv38tqQwljkooQalCbRKvfCOVz3JtPh3j\nAvieHPhbRFeqe3jMzn70COr0eYdYp813X4n7oK7U41BKSY84LVu1xhVd1qfllOq/n3YUvi+l5dUr\naSX3J6Epf91tJdlS7Tc/OLOzD/naHzZHcO1HhOv16TiSenWd1nGdDp8jevYvP8w+KiWOtf50rf+9\ncuBvEfWpBzpSm/ZvpiSw43NcT61HKj4eV6si82l4aMzOPvGMdeoImjHGGGOMMcb0hJ5G0A5GLZrC\n90y9STP6VvtMzaeR9aUVX21/LKe36r5G0A6XWoKWZ/puqiuOMNSSeajeONrx7COQNRxBmwcWNIJG\n1BbZXtSGllfKMeGQEuAwIYgixrVU/kzqcbC07rW2+2Sl3MFZmAjaweB9rVanqqtaYo52pHNljkhO\ndiL0teh5rV5qo586F5Y/1Dp1BG3oOII2PzjaM3xcp8NnQSJoB6MWS6o9G5ZVyjG6Jc0IT6nWn3+m\n94yDncuh4QiaMcYYY4wxxhxD+AXNGGOMMcYYY3rCgkocjTHGGGOMMcY8PY6gGWOMMcYYY0xP8Aua\nMcYYY4wxxvQEv6AZY4wxxhhjTE/wC5oxxhhjjDHG9AS/oBljjDHGGGNMT/ALmjHGGGOMMcb0BL+g\nGWOMMcYYY0xP8AuaMcYYY4wxxvQEv6AZY4wxxhhjTE/wC5oxxhhjjDHG9AS/oBljjDHGGGNMT/AL\nmjHGGGOMMcb0BL+gGWOMMcYYY0xPOH4hD7ZkyWWzC3m8Y4XZ2ZuXPNvPLlky4jqtMDs7+qzrNJYs\ncZ3WmJ11nQ4b1+nwcZ0OnyOp0wjX69Phtjp8jqBO17pOq4y5nQ6fQ6jTBX1BOzJmBiy3+TWWVsod\nyn65vfzwTu37hlqdLn2Gv69M++QzlDPGGGOMWfywd157g1GPiT0s9aam4XvqMI9r2dyxg38rY4wx\nxhhjjOkJfkEzxhhjjDHGmJ5wDEkcBaVyT6SlJLEmcVS5muSTwWXth++tOt5J8D1SOZdaVS6W91/V\nH7/v8oG/kScrvsmKbyW2F0tdGWOMMWYx8Uy9xxrqhS6D77i07DmNl/Jnw6sSK1Hu/oiIWBsTxad9\nT+GT6k1RCqlzZW/5uJiLJ4z1B/eKjTHGGGOMMaYn9DSCpnGHWgIKjjuMpWXEZm2lnKI3jKpp34zi\nLB+wLLcWvhPTPlg5BscxVlT2d7So1enSiu+0tI/Cd07ak+FbnfYh+M5Iu79yjMcq5/IN+PQ73ALf\nc9OeGHPx2IIxxhhjjg5PVrbZA1yVlvor9VyY3OPMtFvjXnhfmnYMvgvSs714Ts1oGqNlgtGwlZW/\nq4c6VfmbOfq4l2uMMcYYY4wxPcEvaMYYY4wxxhjTE3oqcaxJ77S9Dj7JDp8Dn4LJ98M3WfHtS3sq\nfJLSnQffy9MyQKz9UN4nud598J0Q/aEmNZQM9HmV8iynpCgbKp9l8o+vpv1J+BT43x5zuRDbN0VE\nKwmIiJjI33pZ3F1800VaScmpmrHXVzPGGGPMcKFcUL2aiVgDr/qPbd9pIvuma2N38WlrIz7ZyhNf\nDK+mirT91pUpZ3w1Sl2c9i741CNir0s92FovaRe2lQzFyUKOPo6gGWOMMcYYY0xP6GkETVGZdZW/\nMZKlaNkm+DSK8Qn47omIiP8LqUm1l4dib/H9dvF+CJ9VdO7L8GlEg5M3tV1LbFLzHS3GKr52quvK\nuCEiumlhL407IiLi3Phc8SmO9YHO7/GStHfCN5qWk19Vp2+Fr4mITcSn4GvawXQnOYlg4pVaWn9j\njDHGmOHCHlOLkqSxj3dbRLT9pYiI9Wl3lRQdEW2aEH5W/dp3Fc9k3BwRETfE9cX3T9O+F588Je1v\nwHd72gfgUz+PZ6JoHpOYmKODI2jGGGOMMcYY0xP8gmaMMcYYY4wxPaFHEsfaGmVMBMGVJIROnxJH\nBXIfKZ6LUtp4JUq9Oe1Pdfb32rRcA0zHYCISJRGh7FHHo/RuquJbCGoyyiYovxTTUS9Ke1zsLL7v\npj0AkeON+Zk92NvLy9Zz4dUE15FKSTa1L6X9CHwjAzZiVdwYEV255VhJ6sIkJn1YZ84YY4wxi4na\nRJW2F8W+opJ6tP2Ri7MPuA+lNHFnH9bqXR87IqIrKxwvx3o5vI0UkglGlByEiUPU22IaNk0yYc9J\nx+MkEkkgl4Q52jiCZowxxhhjjDE9oQcRNI1P8FQ0AsEkIRqpYFRNIxDfq+zvxOLRW+gVKHV12j/u\nTPJUiZfC98WBvUS0qfS/VDwr8hymOuMOHL8YPJthJwvh+WkKK8dKmuQgF8Ojv+6IV8LbnNfGuKV4\n9pRy7VTXHSVqyaQjP562FtG8CT5FQ38cviaadi6Oq9r7epC5o1Rtm+hBczbGGGPMokAKHka3Zkpa\nDS4zpJ5Su2zRBWkZA/tO2suRyF49qx0otz9+Mbcug7dJfkc9mY7Bnuxo2tPgOz0te2I6+3H49H2P\nC3O0cQTNGGOMMcYYY3qCX9CMMcYYY4wxpicssCas9j6oUzgRPgVXT4FPUxy5XroCuC+ET4Hc9qtN\nxLciIuIzKPVg2ZqC9/K098H37bRXz/Gtg7SyFSy2YeupIjVkNQ9b2ljbn45HOWgjET2A6a3tXx9C\nueacT4dnV7witxhEb8L5G5Bg5OF4Y0RETMdbUO6SyrkomQiP2yRZodxyR4ocXxN/VHyn5fnfju8x\nWV0vzxhjjDHm2aMe1mMdr/qr7RSPH0mh4FcgGFTPhCnmtqV9PXxaOXY03gTvFWkvh68RJV4FjySO\nnGyyOe1H4ZN88vnwKSkcE7E5atMf/FsYY4wxxhhjTE9Y4AhaLWGpkj08CZ9GJ7bDp0gWxyK0+jo/\nqzGLNiJ3T44ZfB5rqLeTLM+LFp3LH8L3pdzrDXM+y2/xcNp6fGzmabaHQe0dW5Eu1lUz8jKNOthc\n1rS/AOWacaKbSsQyok3G0kYWN+Z+3opSmsr6b+Ka4tsbd+fW+1FS6fXfBZ/WvP8X8G2IiIgbY03x\nXBkH8tswGUutXRljjDHGPHueqnrVVzyjeL6YaqJx6I+eiN0REZ3elBZzuhm+Njr3U/Cqd3Vb8WzK\n/tSLKme0GdtKbXcPfLvSTiD9x+n57VagnOJ/j4Q52rhHa4wxxhhjjDE9wS9oxhhjjDHGGNMTerBw\nlN4Rn4BPKTz2FM+K2BsR3dXNJ2NkTrmIl6VlUoqVuY+WNj3FCLxa1+wE+JqkJPsRFn6sEvTW0Zjq\nZHfZGras8ZnQ6hY8m0bu+HCnnP7O5B9fTk+b7OSp2BIRXSHkT6XdDd+vp+02Kq0pRxnqBZWSCvyf\nE3Npf8vplDh2f02PMxhjjDFmuKh3Md3pJ2k91rbfql7KOMpJCMl1yz6ZdjL+D3iV4oMrpn0o7c8V\nzwfSPg+ltOos0+fdn5YyxYnYmFv7iu/47MuyR6vvy29rjg7u2RpjjDHGGGNMTzhKETS+Fyrawwia\nklG00ZSp3F4Wn0M5RYA4PvGttF+Br4m2MM3+9hKL41iE9sOplRrRaD89GWfl1t7iW5nfY7Sz/rqm\nfrKambhjvtC4DcdPmiUJJkvSjoiVmWR1sowGRehcz4JHYztMCKJUHv8Svh1xfm4x+cd9FZ+Ot7lS\n7kz4mvpjKv82lSyjnKrfhY5UGmOMMWYxUU/rxmT0c+NL+0pkqlV0/UHZB9Pnq5/J5YGkRfoIfB+K\niIh/UPrIWiwp4qso9eG0TLOvlHaTQRoV01J4pWXaGXOZqvjMwuIImjHGGGOMMcb0BL+gGWOMMcYY\nY0xPOEoSRwaQjx+wEW0gl0kumrDwdFwCn5KJXA3fuk75hibhxQQ8b0jf9WU6JWHSEYWyuZq7VqH4\nRvGMli1KNU9Ly+CzmE85nvb9GHx6F2/D9JP53daVxBsRb0jL1eG0lwvh+8u0f9o57ufTUqaoxCuf\ngO/WtKPwKZnINfA1ssdxeE4tW0w6om2PNxhjjDHm2VPrSaxAT2Sq9IrYnzo5IiLOQiq2naXHwr6s\n+mfsE52Yx/j3c0p9A6W+lpZ9sY/F6tx6ceUYt8P3vYiIWAXPaDw9swf5m1kY3KM1xhhjjDHGmJ7Q\ngwiaoh+cdLm0Uk6RKZ6yPnMTfIrePIlSd0RExHqUur4k83gAXkVvmDhEESCm7de+GWfSOd8Hn0ZN\nHoVPEzTn891Y9caEJBrxYT03K95vjO3Fo1QoTPaqlCOMKyo9yr5YA++fpGWSFY31cBxIEbRT4Ptw\nDPLKHMPht3i8bE3Dq+/r8QZjjDHGDIda2nmlp1+BBPX7c8mm4zqLGamv+OXiWZ+RLPYenxiwEW2q\n/Afh2xs/GhER2zuqMZ0h96hPt/3li1MpRUWS0rWxJ7ZkwJqjh3u0xhhjjDHGGNMT/IJmjDHGGGOM\nMT3hKEkcazC4q1AtE3NoXTMm/xCcHKkEHr9fPBLh3doJUl+UlklC7k1LSaKkjT8En9YSWw6f1hx7\nEXwPpWWQeuWAHRb8KSX54/pmY3nUNsA9C2mjmMqVMf4n/qaaugXl9sTrcothdX1fSlN/N+3Pwndd\n2h3waZX7tu4lYnwcpb5XtmrroBljjDHGDBeucKuJNOzBrMk+UzclXDPN5RVYaWwkLSfSaNIHp5Go\nR8xepkpegCkeki7+RdyMcnelbYWK3LdQr4vp5JZVypmjgyNoxhhjjDHGGNMTehB60CkwCYfeG/nO\nr+QanM6oFKKMvumzlxbP3rLu+sWV/XEcQ8cbgU/RoD+DT/vm2IaSYXAs4s6BY0VEbKj4hsHSyjZj\nTz+QR70Xvqb+Tukk3GgibBwt0if2xIriW5lr1U/GPpTUeMwIfOen/c/wMeommsjZasTItCzCUyjV\njkMxSqc6ZzoRY4wxxphnj3oaTK7xsrTUKCkdyF70k1Zlj4X9Kemvvgqfemrs1RyId0ZExIr4JLxN\nb2w7+rLjsTW37kQ5nc2G4tmX/bKzSrL+VofEJajYmzZHF0fQjDHGGGOMMaYn+AXNGGOMMcYYY3pC\nDySOkvoxsKpEIHfB99q0D8GndcYegW9z2ifhk/yQ0zdPq/gUIuZnX5+W8jlJGynVUxKTM+DTNt+D\nlQRj2FXP4Ljq5Xz4Xpq2TU6yIbZERMRtKLUpdkdExI54JbwKk7drb5yV9o4SsO+upyZ2lXD/P4D3\nu2lbeelZsS0iujVPsag4rvpXSxuNMcYYM1zUe2NasgcH/hYRmaojou1bRjyVfR2KD5V0jZNrLkj7\n57k2bUMznYfrkY3khI9Liqwx4pMlrUc75WZZTluZ7kwJagSZnFyjHjZLifGKzywsjqAZY4wxxhhj\nTE/oQQRNp8D3ekXQToNPf+c7pdJXtNGjCzLJxPY4tfjWx7ciImIffO1ow+3FszRmIyLiBESFJkp6\n+nZ1+Mky3sHInSJxI/Bpm0k4NM7CWNEwqCXN4Ll8O+1o8SgK9nWM0VyQdXBqfL349AvtjhcU3x1x\nWW61yxQszcQh3RXo9ekD8KneriyeJRlB210SjURcHrsiIuL5+KRGsTZ32oGO4fEGY4wxxgwH9azY\nY1Ovh5Enxb5OLQqhNgp1D8rtTkuN0h1l68fhbVRl7BmPxuo8Vhvf+tvZv/wG+pmr0t7a6QM27IUK\n7fLs11JHJo0XE5uYo4N7tMYYY4wxxhjTE/yCZowxxhhjjDE9oQcSR70j8lQUQN4A320Df4topXJt\noHl7CemOFt++Ikn8AXz2ExERsTIlfRERkynOOx4+BbhPhmd3Cf6eCO/etAwWKyg+XvENG0ocVacM\nUl+T9pzi0Zpi6/F9R9NSDLqzfPtz4NW019NQTquD/ArK3Zr2y5Xza0PtbXC+neiqs78gWh4tW10h\nZcNMxWeMMcYYc/iotzIF375MzLEBPRdNzmCvVXJGrkirCTxMd3drESWyf/iZtGfB1/SAboTnxkw7\nsiyniURETJfEIYzBNH3n1ZiuszrtAyjFczVHF0fQjDHGGGOMMaYn9CCCpqgHU6VrfXZOrVR6eL5T\narShTdG/KhOCTGA19zYuxP2tjYiIyU5ErqmOA51U+Q27O1WlBBlr4Xsq7V74aqMY80UtacZq+Dal\nbetZk0/HSuQrQslfdw6M70REvDK+UDw70qq+IyJ2xQ/n1h58VpG2K+H7fNp2rGl3jiCtR4IWLRIw\nik/uKFtMemuMMcYYc+TU9DkXY3trRs7Yo1Ta/L/ofFoqqwuLZ20mYLsdpS6KiYiIOC0+UHxaMIo9\n452lT3kuvM1yT9OIoJ2b57cjlWLcUy31nvVI/cQRNGOMMcYYY4zpCX5BM8YYY4wxxpie0COJ46Nz\n/rIstpTt6XhVbo2ghLbvKp6JMtmSgeEz55Rrg9Ncz/0lac+Gb13ae+HTey1XqDgvLSd5SqrJxCE8\nr2HCgLSOtx8+nf/K4llWtijz1HppbWqO1ZlEZAtKrU+7KyeoNrw/7e/AJ4nj1fC9fOCcIrR2G2UE\nOj9OzmVNGmOMMcYME6aJU7IyrmaryS2cRHJtEQq2yePOzQRxO7CurHpqE/jsVWnvhm9fPDciIjbl\n2r4NLx04g4iI16b9VPGM59m+G9/kujwie4WaKMLvoT4W68AcHRxBM8YYY4wxxpie0IMIWi0a1USt\npkvi0ghFWLqnrMjYZvi0vyvgUzr+TfBpBILJMDR+8UL4FF26Ez6NkDCZiCJtj8CnsZLHYmFRXXIK\naxOhvCgOFE87WrOubK3KhKtvRrzsurTnR8uW8tuwTj+W9tvwNRHFEYwXjZao5TeK79Qcr1kfLao1\nxvfaUZ3l8KqePd5gjDHGmOGg3sXD8EmndRJ8F2fvZATLKumzL0I5RbDYu/1u2nXwrc/I2S74lmYk\n7sXwbS5J8tqo2gtjX+6jZfWcUq1vX5g+4h6tMcYYY4wxxvQEv6AZY4wxxhhjTE/ogcSxttqCfFyx\n4dGBv0W0UjomvmjCy9OxHeUkknsrfKNp+Y4q6eKDlc/yXHQOT8Cn8+NxT0nLxCELUeWqD55f8z23\nwbOirN3WnrOmoDKdioSkWzoiR8kUz4NP68PxuM2aZ6PxI/B9ak650yufVNidyUkOFHEB67EHzdgY\nY4wxi5KnsP1kxVdLzXZOWvYy1Xs8Dj5NPHkufO9P+9vwvS7t1s6Z3Zq2TbT31ZiLzm9DxTcRpo84\ngmaMMcYYY4wxPaGnoQfFUZhcQ0khToRPEbR22uN0eefcgXKKz1wKnxKLcH/aZhRMKUzvg0/bnNKp\nc2GSEH0PpvJfCBRB41jJ3EQpU5lEZA0mtSpq9SZ88rNlq62/9fHnWZ4JWrVq/YXwqQ4Y+XxbREQs\ni78qHo0IjaPUnuLjWFMtKmmMMcYYM1yUmIw9GCXUXwGfkuGfEnNhREv7mcZCR5d0kvh0a5VKAAAg\nAElEQVQ33JaWPSz1rD7aKam+cdvfm8r+3n3oUZ0Zc1E6ublHN33AETRjjDHGGGOM6Ql+QTPGGGOM\nMcaYnrBkdnbh1gtfsuSyQzyY3hspY3tOWqaRULCY0zK1uhcTWmgVivfAd13aByrHXQmfZJafK56V\nGRie7AS4KZUUWidteeVvLbOzNy85aIGDsGTJSKVO9T2Y2EQyUMot9T0py2ySeqzAqh9T8YLc4opk\nOuVz4dO+KSXVOVBu+f9GRMQqpP+YKCt28LfU+T0HvuMHbERtnGF2dvRZ12ksWbJwF8WxxOys63TY\nuE6Hj+t0+BxJnUa4Xp8Ot9XhcwR1uvYQ61QHoDRwoiQwa/uoK7LEVDwfJbV62p7ieU2mCXkcpW7t\n9EMb2r7nquK7NFN8bO6UX5O2nSa0MeWO7C3pr+xV1xhzOx0+h1CnjqAZY4wxxhhjTE/oaZIQRcYY\nQdM2127X+yWTwiuhBD+rqZB3w6f12bmuuiJJnA7aRMZWlH208ZzZmCq+qRIt4yjGwSNn84fOfxQ+\n1dVF8ClqxejW70VExFQnUYo+y6muSq/PiJe+71fge3HF15zXRLwKPiVe4e8rnlPxGWOMMcYsLAoJ\nTQSDIOr7tSqlqdK/fBTl1O0+UDw3D+whou1zngCf0uFvRGJ8JSdZhz6q+rwnw6MlAaYqPtNPHEEz\nxhhjjDHGmJ7gFzRjjDHGGGOM6Qk9TRIiuA6aJIsMKTdTKpfFzuJRyHamyPci2vfQh+BTyUvg+3bM\nRXLBM+BTuJpTK7Vm/OHLGoefJKSG6m+ufLMuG+X3uKDyWUkbKY9U6P52+DYM/C0i4sG0TE6i8+NK\naArG87iHhpOEzAOeKDx8XKfDx3U6fJwkZH5wWx0+C5gkhIUlMGRvRb0o9hSnM7ncWogNTz3Iscaw\nrV5UbQIPv7RWWGMEpl1/reVQG5CThMwDThJijDHGGGOMMccOPY+gHSp8z9QYAydMaryBySYUTVtX\nKVfb9/JKuScr5WpjFgdnYSJoR0Ltu4laRO6xZyh3+BGxw8URtHnAo2jDx3U6fFynw8cRtPnBbXX4\nLEAErYYO+ky9JMFySm33RMXHiNeh7ntwH+TZfEFH0OYBR9CMMcYYY4wx5tjBL2jGGGOMMcYY0xMW\nVOJojDHGGGOMMebpcQTNGGOMMcYYY3qCX9CMMcYYY4wxpif4Bc0YY4wxxhhjeoJf0IwxxhhjjDGm\nJ/gFzRhjjDHGGGN6gl/QjDHGGGOMMaYn+AXNGGOMMcYYY3qCX9CMMcYYY4wxpif4Bc0YY4wxxhhj\neoJf0IwxxhhjjDGmJ/gFzRhjjDHGGGN6gl/QjDHGGGOMMaYn+AXNGGOMMcYYY3rC8Qt6tCVLZhf0\neMcKs7NLnu1HX3CU65Rv+DNH7Szm8t0jqFO306fhCOr0JNdplUeOoE6XLHmf67TC7OwHj6BOlx6l\nOl06YCMinjwaJ1Jldnbm2d9PI+JsX/9V7vZzavi4ToeP63T4HEKdLuwLmukVKwcst79XKc/GcmLa\nafgeS7sWvhVpD8Cnz5wI31TleE+lHa/8zXz/oC7rcfBp+4lKed711P44eKD2txq+VWnZ1ibSLoPv\nqZjLzEH+Zr6f0B2SL1lqjbxT1oQry9OyFc1tWUvLX9gqlw/8lZ+t+SYrvsXDcRVf7dqkTzWyHD7W\nsDHGLDSWOBpjjDHGGGNMT/ALmjHGGGOMMcb0BEscTZF3RUSsS7sCPsk+Riq+B+C7JO1z4NMIwG3w\nSUb5CHy12RaPpt0LnyRo02EWC4c6j5HSpeWVv2s/lOxKYEZRlz5bOxbPZWPaCfhqn3mqUu7Ybp/P\nJHs7WM0tfQZfTYCm2loscruaGJwtUILuU+E7Ke0e+E5O27asmbKfdSinVk7RngTnvFJUv/vhmxz4\n2+B2v2FrOthoM8vp2UYpdG2SzGTFp1+WNf1UxWeMMUeKI2jGGGOMMcYY0xMcQVuEaDSwliKG0bIX\npeV46mlpfwy+e9M+Ct8ZaX8evu1p74JvJO1j8H0xLZOJ7Er7fPgUYdsI30NpGbnT6OixHbX4/oXt\ntJbaQDEAjmjrNz8FPrXPWjT2LGzvSFtLPnNGpdz+Tjy5ic+tQtobRYxPRimd64Pw1aJ+/UIpV1iD\nMxUfY+Si9iippXDZUPHpDsTIzVjFpzvG0Xps1eIsjNeqBbClqt5G4FOUjK1cd1neKZvvvjEennO0\ndbGv+PSJrZ20N/LyCtHx+Bvojko9w8JSi9etqPhILR2L7gn8lfTtzoFPsUcmrlozsN+ItgYfrxx/\nN7Z1Dny26vzvr5yfR8WNMYeC7xXGGGOMMcYY0xP8gmaMMcYYY4wxPcESx0VITSYmGdkIfBIMPQ++\nM9NyCvp5ae+D7ytp/wt870x7DXzPTUuZiM6Fx1AikFs7YjR9g9HiWZkCltNiLl635tiE0lTdkFZW\nfJzor7bLNAtKx8C2oTa7Gb4T0rL9ia93jtwIlZZBDDWdR5mI1xTfRNweERH7OrdTyQB3Fo/2fEQr\n/j4rDrYIck26SDGmklewXiQ/pJhZ3/3vwCfR87fhk5yR4k+dF4VokuFRTllbx0v7m89FnWuicYnY\n1sAnURzPpanLtbGleFSTTCoznuLudWhrL0tp4xWVM7oa25emPROiXZ3JExCD3512T+ce+5xSsoUy\ny/mnNkrMmpZws3ZPoDxS+2HLOm3gbxERX0v7MHzvSssULbqfXAyfBKMUhGp7O3yqQcoelUTEo+LG\nmEPB9wpjjDHGGGOM6QmOoC1C9NbNUcgXpmW0bCzmIt+t8I2kHYXvlrQci9W+ud9Xpz0RPo1/vw8+\njcX/PiION+T44wpM+9a4Oo+rMfRaWmTTf5ieWu3kBPgUGeWIt8b9OQn/wrSPV8q9vuK7Bz5F5x5A\nK5rJs2Dqhf2ltTF6VItZN1fB6fA8PlB64dBtnjFDfU+m/jnYmTEuqfjA5fB9Oe2fwPfitPyVdDzG\nQ5SuaBt8r0vLJBeKVdSScMwnzZ10Ge5D06VV1pKYkDdHRMRYp7Uposi7YnOn3A+dwmlxbURE/BuU\n0l/ZnhXvZFRnbMDy77+Fe+yuEglsnwxLM7Y3cxRivbVU9bo2WbtKkcLv98q0D8Gne8Yu+F6R9lz4\nXpWWrVLKEUbVvjGw34j26roSPi0rMwpf7XlrjDFPhyNoxhhjjDHGGNMT/IJmjDHGGGOMMT3BEsdF\niEQ3lIRITEOhjab/19ZnYkKQC9K+GD7JNUbg0/H+A3wSI1Em8o/SXgifJnbf0BGZNEecwtksS7HK\nc1FKYjMmkTDHDkzuUlvLTtJArtd3UVpKjUbTcn2zHSkyvBgrF0ketQct5oIUV70qWm6sjl81wqeV\ncUfxqN3v6VwNzZU2V/TYTRwwfGYGbER7FT5SKcckHHoc3AmfrlKmQNAvsQk+7Yef1Z2FtSB539vg\n0+pzPGcdgxJMJeTg/rQ9n8LR5hjdtnl8/qVdj2ymtLyzUe72yv4k/H4zfFodsv2+f5xt93q03e+l\nPRA/gc9+JCIiVkGCqcQhr0Spt6f9Afiui6mIiLgHx6itOzgf1H4x1SAlibq+eD5aG5NJgkbTbsUq\nauvz+/FZ84NpuRqc1v0chU/nx5avz3wRPrXol8Mn4S3vT1NpnczKGHMoOIJmjDHGGGOMMT3BEbRF\niEZ6OV6uUVHGp+5Ny8nSN6XlCKbSQXMCt5IyMzKmfZ8En0YXvwafImjvh0+joz+McdJPl9Hkf1Z8\nO+JX81hMfd7gCNqxRW10SCPo3WhFk6zgXEQINKq+A6WUYmKqxNci1qWXbVJtdwNa9Pq0TEkxkuPf\n98K3OyNnvBZ2ljFxJg6Zm6pcSRdm8D2Gj8buGW/QN2ZMXREqxjFqCxqMpL0NPl2XTGiuOPt34FOE\njbWqZBS1VO68OylqzvTv2h+jfgsRQTt+wEaszFjWVSh1e9b5yUh2oojXHZ24ieI5/wu+0dxvmxZ/\nMuO5o53EKz+d9uPFsy7b0360+/vyHEbxSSWKYnr/VlHRnt9sNY49fGpXwfPT8nodzetmPT6haDSj\n5ZszwroGz4Z9cX5ERGxBxFtLurD1/uLAfiPaBD+MjH047XQngtm0711l8ZmITfHNiOi2StV7LZWM\nMcYM4giaMcYYY4wxxvQEv6AZY4wxxhhjTE+wxPEYR6IPrlgj+dUB+CRo4opEklz8DXwH4u/mVit+\n+V7cGBEROzurjzVr6VwMzwfK2kXvhVcrx3yieM7JM/tgzOWmzv8aKdPS+JfFM5PnsBWpTc7CRH3T\nTw4mP+W6ZSo3At/J2crfDp8m318A30vTvh8SMyXkoPBOsiPKFHUdfQEJBiS5W4sraSxO7vytoZHh\nbUI7vCfTM+yClG9pbE07bGryPq6xJUki0wFJdsg7grZ/Ej4JPJmsY0PF9/m0FP3pm3INNQnL+OjR\nVc81zbTNtdtq32O4tam1zqara4C14sCaxHtHygTXQiJ4R/xBbv0nlGyE37+GFqg75i+g1BdK2/mZ\n4lsd342INqlFRMQflftu+3tIKnhTuZ9HPBh/GhERl+GzX017HM6Z32nY8JpTq6X4U/I/JtfYkL/J\nHfhN7ijXKdNFNRLT7r1mJCIixiBoHCvtp63X/XFF+WtbrvnMtvgS9veutEwToskEv1Q89xS544eL\n79S8P3hU3BhzKPheYYwxxhhjjDE9wRG0Y5zaOK9GEDnVWykDOFo5muOsSzExfWWOsk5W9/wQtt8U\nERFb45zK2XCKt/7+08UzlaOUvx7/s/jenZZj6BFb5pzzCRm5Y6pyHZWjrqZfaOSco9saA2c7Vfrs\n8+FTrIdxGLUTRlw19s2lJKbjBbn1PHib294ypK7ZEi/JrTNR7rLc71/CpzGtNun/BZminMl2dsfX\nIyJiChE5jdvPZzqLWkKLNtrHmlGK97n10i2nCBpTGyhSw/ilEnhMwaf7BdOsKCJ2HXy6R1wKn+qX\nyUQUuWPikOHWZi1ytiK/E/8ymS15Rycm1Nz3bulE/XTOVxTP2+OPIiLiLSilxQm6D2T9Rm2SkNen\n/aPOXVFXQxt/uyn+MLfOK76/Tvu38EmlK9kLX7s0CpOxDB9dSfwmuoczLf7WstXW66osOdGpsab+\n93cirGorPw2fIl2fgm807fvgU7tlzPGjadkuFa2+Gj5dDy8qnkfj2oioP7ONMWYQR9CMMcYYY4wx\npif4Bc0YY4wxxhhjeoIljouE2poyTGMgWcX6TolGRjRTppRHRJE7vrl4dqbkaXXcXXzj5d2eqT7e\nlPaH4RtJy2QEvxUREVsh//qplBG9DaW+k2IbJoe4Ie09+OxIftbry/Qfjgjp5jMB0c+KbMkUsWkF\nLrZniYq+C5+Ed6+D70tFivSN4vvHeYzfQ7n18a2IiHgqbUTETHwyfS1aaepk+M5IW09V08p9V2SJ\n+ZU41lIvSEBH6dftafmLXJ728/CNVD4rydd++CQwvRk+Se8oEZNM7Tz4XpyW8lKtoMjaksiVLUHb\nTFgyP1CeuzRbxf4ijY1oz5919ZG0rRy0JkLVqmb8Ziviv0RE+6tEtClWLoYweGtpgUxmod+83eNN\ncWpERHwPgkYJMPn8aNs719IbPlMDNiJi9YCNaK+10yFi17ff1qnFK9OOFs8bMwXWtZ20Q7+etrYW\n34ex/W/S8hmnX4C/1EMDNqJtA+35KRkSRcXGGPN0OIJmjDHGGGOMMT3BEbRFAseZNbWbo5AvS9tN\noTySth0JnyzxKqZfeG3au+FrRrh/GCO598Y1ERGxNf4hymlk+wfha/a9KRMpkOuwvb9EVtrxXaUR\nGMG46+icvZi+wriOomDn4vdVO2bL2J/Rh8tje/Ep4vAAyqm939CJdTSxuKtwDI19M5WDYgWnwKfx\ndcZmFIF+NXw6Kx5VqUnuRlxNx62N2x8ZvPrbFA8tikdugE8JEJgIQmfGCJCiQqPw3ZqWyYC07zH4\nVMPPtD/V8Gb4lGSh9ohiKqH5iqC17WUqUxJNdcYz1VJG4FNdcokDpbto4yYfz3QyH49dKPcXaX8f\nvuZ3PS4+XTyq5b/uxHD1+38VPmkRzoDvHRERcUeJ6kWckFfaOEq1d/Thx3qZIGNP+e3ae7ki6LyW\npO9g69UnT0MM/f5MOrUtzp5z3JWZmCUiMo7YVVwoNsu47kMZfWOrVEJ9fnZriaIy4njPgG3vfU4S\nYow5FBxBM8YYY4wxxpie4Bc0Y4wxxhhjjOkJljguEvimLWEKBRcSJ94ec1kNGdZ4kR4xAUDjoyRs\nPKUz90Fk9itp39NJvyB55Dfga2Q/98Sa4vm1OBAREWNlJawISaiuj23Fo/XStqLURFoKqUw/YZuU\n1Iciuy1F3MRVzxoJFNv4T6Sl1EhpaH4JaQ7+V3xvznE1lf8AfO9M+234dpRzadM0fCFujIiukG/T\nnFLtem4fg4+fGS611Cv8xjpDyt1Uv5SxSTjGWn2i4tMxNsGn5Am8CpUwhMk/tD8mVJBwjHcYHY+i\nUyW+4Pedr6t+rky2ey66rz0Cn6SXO+GTDLQVyr0hdkREt/29MKXld8HXyhmfC6/qnse9sOJTap1/\nBd81aX+8eLReH9eVXFrZGhbc48psoyvgWztgI6I8Ja6FT3LmrXEWvM33vwhSfLXoi1FK6VoolL0i\nLVcAlIyZ5yIJJK+aD2diIUqXH487cn9tOzohrUfFjTGHgu8VxhhjjDHGGNMTHEFbJHDisd66OWKv\niBPHqDUiPR6/CJ9G3pkAoBlrZExNI+A/Dk8bfeCRfyftb8H3mYiI+LcYQ/5a2v2YOK80Bu/BJ+W7\nDT6n1z82UdrpJzpexdPaaMD6bCf/HaXeUNmf4sBs4xrVriVmvwC+LWm3Y0T+0oyE3JtRs4iI/Zkm\n5Aa08edkWoUXYX8aLZ+GT1cWYzPDoRZBY2RJNfJS+JREhEm/lfyD6Rj06zDpiOKDH4FP0bRLKj7G\nhXTlngOfzoGxVNUWYxqKWzAhyHxF0BgjUUSW9zVF0xhFVLx0BD4l82iXGbk+fjQiIv5b/FXx6Vuw\n7f63ks7io/Aq8vkL8N058LeIdukCRk0V9WuT7awcsBFtm13aWWBi+CgKxnQnqk0mCdJ1xaUAWk1F\nG51dnYuw8Gr4bF5t5+O7KNbLCOafp30XfPqFGZfcXvEpcs7WcV3aU3Fc3ROYKMkYY54OR9CMMcYY\nY4wxpif4Bc0YY4wxxhhjeoIljouY2tpo3+6UkIzx9fBJ5tQ2jfelxOtPO5+9IiIibsE6NEpAsiZu\nKb4DcXpuvQOf/XJEdEWPWl/qZ+H7fNoH4fvzlKxcCemI1vDZF+ZYQqsffa/jfXPazxTPvpLCoF2l\n6HNFctdOzX9NipYoqJOoj0I5yZQehm9XyslORYKH3Wn3d0RYTZqaFfE/ikfXFq83pYR4HL6FkTZp\nzI1yQSXkYKIeSQwpMK0lm5CckIkvJMhj8g+lVLgPvu9Ujvvuik/SPArtJBjjGKK+B2t6XaXcfEHJ\nnxKgsK60SiPrVAk+KMW8LiIi/jU8l6XtrpGn7/kf4HtfWkpEJQJkYhj9ljfDp7Uo29Q1kvneiVJK\n2jEzzyt2qUYoXdRThyJWtbwzK772edXW1nqU+6f5m1EGrzq+Ab4fSDsB3xfTMpmIfidKUVV3bB08\nB6F9T1f+ZowxgziCZowxxhhjjDE9wRG0RQzHdjWezpTGE3Fibn0IXiUIaEeBP1giGEwo0KRs/vvw\nKObxPzrpF5Tg+ET4mn2vhkcjnNfBd20mWN6I6dyn5zjluSin8WDuz/QTxj4UXZrqxJYU8zoPPkVO\nmPBA7bNNVHFjjrHf2Bl/b8a/L0DyGV0DuzrpOppo8l54lpX/cQz95jnnfHyOiXeT6DQwIjKZx1s1\n9OQLSyvb9On8mehDMb574VME6G3wPT8tU6AoHslvpzgCI2N6vPB+oPM6Hz61CkaZ9JszsYl+c/4e\nte87XNReliNCtTKuj4huYojpEqH6CrxK8MG0Rs25TsQriufaEpt5Hcr9UVpGwVT374Pvw2mvhE91\neQJ8+m2uLh7FLNl225gkY1vDR88kpqNSK9qJa3Nn+W3buNW5eW3uQGxsIr/NLYiNK53NhdFSS6I1\nkvaL8KkFsvUqccjn4dPV8gH4FEFjtIz3PmOMeSYcQTPGGGOMMcaYnuAXNGOMMcYYY4zpCZY4LkIk\nbnk+fFrdiRKusUyDsBHr8eyMfxAREavLymSt/GNrZwr1f4yIiB+Jf1s8b5jziYhW7vM78DXikXF4\n9sTbIyLi9Pjr4tuU0kZKYDYNWB7NSUIWA0rh8Vr4tNLQrfBdkZbpDUbSUh55Ye71y/D9RtpWCrk0\ndkRExEyR5EZMl4QlTK0jwdPm4pHwjgI9bU9CqrVsnteVatAtnZJiiZ1bOePGTOQzglL3Zh3sLOKu\niHalQ9bpa9I+AJ9SszA5iRJZ1NYPY0IQ/Q78ffV3JtzQd2IyjPl/hEmaNgKfBK77ShIkcj+2mzvV\netyd9pU2wXXL1MZYL5+LiK6M/I9L++Pvq+vjY/BJ2vhn8DVCxp+D3Ffrf61CqbWd0vOHrobaddMV\nFjbt9yyc946SwIRtoblex7Fu3HEp0+TzQsdgS7254vtHaSlnVGs7FT6lxDoLPokx2RL09Jzf1CvG\nmMWCI2jGGGOMMcYY0xMcQVuEaGo3U/1qVHQ7fIpM7YwXFN8bcmL611Fuaxkv5uhuM644gxHka8uo\nLtN1vCUtm1qzn25a4iZyxiQm98RFERFxVmyb8z0Y0+AopTl2qI8kKxLDyMmPpn03fErS/+vwKWLD\nFqHFH5hoWwm721H6mZJ8geP5arPt/tbFlojoRhwUb2KC+bXFtq1cY/3DT7c/U9lmInAl82gTeCjm\nwmtQKSYm49riuy63d6BcG1lhlEM1wvTvShvEBCNK13BN5fyY0EKJgZjERL8HY+pMGDI/KN7F+6ni\nrCeUxRgibozfyy2eX5Pk5LH4G/ia9ndJfKt4RtMeQJxOaUCYyiYycVLEp+BTfIiRTy2KMlo852cM\nh1fC/tIa23a/J8vxbj+fsA226T0YIWx+9zMQQWsTh7wL5RrfMiQ3UcoVpq5Rq7wBT5vT837C1DWK\nzfNKUnoVxu1qyU7uSMtrXXc0p9k3xhwKjqAZY4wxxhhjTE/wC5oxxhhjjDHG9ARLHBchEn9ROiK5\nypnwSdTyYHy3+K5Py6nvy1KUMRo/X3yn56ovu+OqOUdZFX9RPBNxdkREnFrW9GmTl6yJFp0LV/zR\nuk1MdiIRFKUjnNhtjh3a9kkx1YNp3wyfBEOj8N2dlpJEyd3eCJ9aCpOECCalkEBxA3xaN+zk4tmf\nEr79+Owr8oqjsFIpITgCpjOZ31QhtTXFGlHbaki/dK4Ukr4yLWteVzzvG1rR604Ipn8y7XRHECYJ\nJMVff5KWK1PpCubj6DtpuT+lOOL+hr26lH6xdr/6vbgqmFpa996jz7y6eC6P34yIbgKJz+T9dktH\n5CvRaSvZ+2CK7H4bCZvadv+f4NPvwF9J7bkVNE6ldJEJM96Y9/brIbzTt2DbOFK0z9qIMGXt64pt\nRfaS1N4Yz0VJrT7WSmDPjS9ERLuaX0R7hfO5Inni3ypPyva8/hLlVCP8jbW/y+FTCh7KHk8e+FtE\nK+kevsTZGLMYcQTNGGOMMcYYY3qCI2iLBL5pa7SSI/qa4M7xaI2x/z34lKj5FPg0Dj6aUTMeb3Om\ngo6I+HqOEzOVw5M54nsbfBoHZeoAjdYyvchFOWWcMY1rBspHtN+DiwCYY5M1GV040EluvTXtuZVP\ntK18dbaX8fjD4ntFxj84MX9zSbvAseyXp+U4uFr+o/BtzjNpR98VAWAaCMUEmWCeiUXmH0aWmitk\nPDYWz7cz4QLTcijlOtOrK/7yPPiU0uN6+KZL2gwmbVBdfhW+l6ZlQgvdTRj1U8yJ3+PkSrlhxnl4\nPN5RmzbEelEdbITvh3LhkLtKTbb1yyVAxkuL+SV41dY+BN/rIyLi9zsRNKXm/4WKj0nqm+QlL0Ap\nRX3Ymh9PS5WCYtjTQ0wIr9rkdair72T4VE+MgunqPy6+V3x7Mpa1EQmklI6KSVCUQojPkJ9Jy0RT\nL07LlqqUJI/DV0vRrxbI31jfkwleZgf+ZowxB8MRNGOMMcYYY4zpCX5BM8YYY4wxxpieYInjIqGW\neIBJOLSOEServz7tT8J3RtoH4dPUc4qXJFm8DL7fiJ0R0ZVW/kpaCpF+Ku1fwfdzae+ET6MHnOAt\n2Qkn7A9b5GQWlmUpDYtopYFTcUvxTaYo9pIidmplTzNIMPIv0q7D1fBP0n4Qx/tQ/v1elNtZtjhm\npTXUmHyhkeY9DM+X0h5Aap0DpQRTIByI+UfpK5ieQHX0gziTL6Vt1xHbkyKxWztXsBKlnAGftimW\nkyj6NPgkY/xl+DZXzlmpF3jXeXnFJ8EY73bzNcY4N/kIhZUjaT8O3w+k5epwEnlS4v2alMdujn9f\nfBMl2RJTtDRCyq1lNa+I9rds29J7MnkKpX1vTUtJu2qSMr6bOu1TTFV8w2FZZZsyW317rtepFkM5\n6Z5MGMQrU9/vLvjUGvmcUg1Sarh04G8RXZn/4DmzdTxaKVeTdA47nY0xZnHjCJoxxhhjjDHG9ARH\n0BYJtenc9ClJyDfgUwStlnCDaYQ1QshE5Yp0/Sp8etv/V/BpAvjPwaeRxB+CT0kIPgqfEiyMVo7B\nhAs6/+FNaTcLgdoBf0uNpnPk+exMDvAm+N6R9k4k9TgvLdOI/35axpMEEwcsjxsjopuk5taM3K2K\nbxXfRKZT2N8Zk1cUimP3ilW3sTl9z/lNZlNLkq4a4XjcaQN/i2jjF4xjK47AR4XiFoyGKX7B9A7X\npf1U5bOMJ+gcmHpBMRSm1Ge6BjH/Y4w6AhO+bEnLxBBKEsPo6s6SfqOtv41FB0D0e30YvqY9XYQI\n87ZsoUvR7hXPfCxark47Ct+Vae/pHLeJGa1BRE6teb6TLqlGeG3qOzDyp+UfmOhTjioAACAASURB\nVKhmY57dKHxqgQ/Ap1gwo4Y6Hven78yrQc+93fCpNa6v+Pg9dP+i0mN+l9cwxiw2HEEzxhhjjDHG\nmJ7gFzRjjDHGGGOM6QmWOC5C9NZNeYXkVRfC95m098KnNcr+IXwSKP1n+CbjFRERsR3JHL6T9jUo\n94a0lNVoIjbXFZJYiglB9uXZrMD6N5KTcH2ZmYrP9B+1UyYOUNug/FAiMcoPlbCG7UqSpE/Ap79T\ndqZ9UxImSRLlliPZ7l4I32fLiknnwTualnI8SdBasebCrtPHW7uuEKavGE3LVAiqLV6ZV8Zc/r+0\n98GnNBhvg08yRaZekBCMIjat1jUKnz5DWaOEaBxXnP8xRtUe05V8My1lchIiUmo9koI7yiN3Zfqm\nn4Ws8L64NiK6AkfdEz8J36V5FCbHEPwlfyctW4FaJ2Xu+nYLkb5mEEn+RuGT0JNiV11J/KVPTLul\nk+Rkak45JRHaCEmoWjlT4aglMznJ3rzzXALRpFovj6GnE39jPYt4P/H6Z8aYw8ERNGOMMcYYY4zp\nCY6gLWImsa3R3RPh00R3jhpekfYP4PuvOQ64FDGAV2bk7DsopygFJ2lrVJHH1agzx99rY+1vzLFJ\nphNQyoWFSLRtFga2Uy0NwWiZ4jkfg08j7Iy0XZ/2bvgUc/kafJrgvxfj2xdl2+Yot/762RJXjmjj\nFHvg07g6W3mTYn4pWqra8fy2V93SeRTFFhkD0rkyfq4EH0yVrzgDE4Jof/y+P5+WdwTV1ZPw6bMP\nwcdt8VjFd3QSlesXZPJ5RcmY7kNtZxxRnVX5KSoX7s141Rfgk9KAiSaUsOlU+LS8xFfgG0nLX2N3\nvCy32t98V57tTGePzaeXxdfnfI/5RgoPprP5dlouGaDWczt8igYuxa8yk5HYmU4E+EUREbE5kwBF\ntL8F0/Z/snPHaXhlPsnYEtWimVpfT0UqOGqLF9QWiTDGmKfDfVtjjDHGGGOM6Ql+QTPGGGOMMcaY\nnmCJ4yJEQiBKciSNobxCcsJxTGvfk8KTW1DunSni2Aqf1knjhHOJRCigkRRlQ8VHKaQENpSGaN/8\nrCRwtQQP5tiEo0QSJ3Fy/Whaigp/Ny3lkdo+UORdEa3UsF2PrF27qk2rMBrfjYiuGG+qrMB0Bry6\natgCJS5rBWpLU/DL77GwUA4oCSFreiTtOfCNpmW6Ca3tdht8kkBSkCcpHdOxaD21d8AnqST3p3Ng\nyo3aynUS/S3suOJM3h/Z1kbLXYnpLLTdpvCYyDr9ZmzD/tSuWlHiPbmKGgWir0t7E3w3pFDupbiT\nK23NdZ2zbkSCq0o6k4iJTjqehpV55+3K7hZmRUm1UB5bHRLKHl+edi98WtfsbPh25DXcpam9i+FR\nqpxtnXKNaPF0pNaqrdOm82JCEMkxa/ciSvYtbTTGHA6OoBljjDHGGGNMT3AEbRHD8VKN/M0gRrUp\nY2wnYdRQI3978OlPlpHhNr4wnlE1Rhz0CaYv1ggARxI/kpbj5een5eRr7Xs5fHOTl5tjHY7XKy7F\n0e125HxN2dpZWlbbYlaVVjFafGszojMWr8Ie5ybNmCj7ZkvVGP8ofBpPZ0p9pS9okxPMjVUcTfQ9\neLUqHsmECqoXxgL0WcYMBCNtSvPDzyrKxJQWo2kZldRjiMeopVQ52uOJfFwq+sW7mNoTFwtpvtNM\nvAm+V6dto2+rMoLGGvjNbIuXo05fkXEYxil/Oy7JLbbJZk8T8ZLiWR/fioiIaVxRSnAxvUBRM/LU\ngI1oE2kwqYrqhBE0tayT4VPE8c/hW5F7Z6tUK2dSj7PyGci4s+5BY7iaN+Q9hues34K+E9L6OWWM\nebYc7SeeMcYYY4wxxpjEL2jGGGOMMcYY0xOWzM7OPnOpoR1tyQIe7BhidvZZ60tecIh1KqkFJTQS\nPFGkIzEHJ0afnnYdfBJGUTqiFZUotFHikFqyhFpyCO6P0+8HeaYK++4R1Knb6dNwBHV60iHWaU2M\nN5W/9rKYu4uRyj4osZ0oKWsonpVolok+JLlrV+dblxJgSmz3lJbcyvtWZHICCuAOdeTrkSOo0yVL\n3neY7bR2RfFKf7JSTlI+Sj/1TfkrCV7BuhOwnnUHYg2trPj0mdoxDs7s7AePoE6XHmKdqg42wac7\n6ZOVchTtqYXeBZ/aH1cAe2lapglRQhXejSVX/Rv4zk3L3/KLaWty1YOvMTc7O3NEGsizD/H61/Pi\nPPgkHeRKfEr0MwHf89M+Dp/+PlWeYhFt4iCuoRbpa5EEchpiyLV5NutR7kgSgtzt59TwcZ0OH9fp\n8DmEOnUEzRhjjDHGGGN6giNofWABImgHg2/pBx9HnQsPrnFGjh4uqZSroTHnWtaaZ1M5jqDNAwsQ\nQTsYnHCvtlZru0zRrc+shk9/Z2RMMLlH7e+1JDVHMsq1sBG0Q2Wmsl2rDUaK9HdG0HQ11+4q8zc2\nuDARtBr6TmxF2h3rSrGWWsyVkV5FyRiBPNgdmnVfS1NzXKXcod3xFyqCdjB4ptoZT0pxQV7rqlXW\nvp5PXNKFNTJ4PCYTWVHxPVXxHSqOoM0DrtPh4zodPo6gGWOMMcYYY8yxg1/QjDHGGGOMMaYnLKzE\n0RhjjDHGGGPM0+IImjHGGGOMMcb0BL+gGWOMMcYYY0xP8AuaMcYYY4wxxvQEv6AZY4wxxhhjTE/w\nC5oxxhhjjDHG9AS/oBljjDHGGGNMT/ALmjHGGGOMMcb0BL+gGWOMMcYYY0xP8AuaMcYYY4wxxvQE\nv6AZY4wxxhhjTE/wC5oxxhhjjDHG9AS/oBljjDHGGGNMT/ALmjHGGGOMMcb0hOMX9GhLlswu6PGO\nFWZnlzzbj77tKNfpDLb79Lb/qSOo01OOUp3W6m+m4jtaPHgEdepr/2lwnQ4f1+nwOZI6jYglS050\nvVaYnX30WdfrkiVrj1Kd9vtJNTs75ut/2BzB9X/02qlgez222unCvqCZXjEzYCMiptOueIZyT6Q9\nDj59hpeDGthk5RhPwVe75av1nlD527HOwb4veWrARrR1vrxS/riKr3Z7eqJSzhhjjn0OtUPGu6r6\nkLwL1+6mi4XjByy3+bSeqZRbPvC3iPaJUnsqzVS2j3+avwv9hrVzMd/fHCwUsLSyXWs3j5WtZTEV\nERHTsRJ/X32Ix5jfHlWfgh7GGGOMMcYY832NX9CMMcYYY4wxpidY4riIeSahh3wUESjwOw2fGsmD\n8E2kZVB4fKB8RCsYeaRy3DXwPTdtTfa4Dr7nDPyN++srOlfW6WOVcsdX/jYdy3LrJHgfjoiIDfDU\nSun3olBHvxfrmdvGGNN/lg5YbvOpJMndk5V98Mmhuy4lerojP/o0n1kM8Puq3p6o/J1P4Vq3UU+e\nVfBp0gPrT9sH4Hs4LX/L2u9mYf7i41CzGPBvaqdsG9p+DnzPOUi5tg1Plx4w23it/Y0N/G3weGKy\n4nt2sTBH0IwxxhhjjDGmJziCtgipvXVrHIBRnP1pmRBE0ZRR+M5Muxa+F6fl2JjGNcbgq41pat9b\nStwnYn+e2TjiaqtylK0tFTGS9iz49N0WerThUKeQ6/z3diagzz3bpVn7MyWeGLEuvhcREVNllDFi\nIp4fERF74oHiU/0ygva6tLfDtzstx600BlT7Po6uGWPml1qyDnZNand2RbxOQqnmXjnTeWKcmPa0\nyvFGi2dVjnrzqEpOtR4+jY3v6vj0BOVou865ljRjIahFFnl+qjeen+qK2oz70lIDoyjZSyrHZbl7\n0t4Pn3oTrNVaghbV8DNF1cyxTS0iXYtQHbx3tyL2RUTEVDwOb9OjWVX0Xm1fl/0kxc1migYs4u60\n451kIaekPRE+tcVawpwjz3bqCJoxxhhjjDHG9AS/oBljjDHGGGNMT7DEcRFSW/1B0sYp+DamnYDv\nuAFLzsF2LYj7F2nfDt9taSmaOLlstbKT8dIU9xSfQs+7o0VCPyYYkbxvPqdvSxRTqxfW33iWWAfZ\nTju1+QyUlGC0FYnOxEtzqw3A7y+fuQmf1TemYPWaiIjYBs+2lPq8EeW+l/aizjk33A2fPkFpqjHG\nDJ/aXbWWvKJNn7Qm769Pljta+3yawv1uexHc8+l1S0REXAnPqWlrCbMo7d9ZOeNd+VSd6Hi1fbTS\nWdXWHuO30wQH9ggkAGPiAz29KElUz+Eh+H4sLeVfHxnYR0TE89JycoT+PgLf3rSUrOl71OSb5tii\nth6efsu2R7Uye3yTmPbR9mJaKbOu0TG0cbXsEXxyW16XJ6B/dmuR1rZtdzXkji1qp6Pw6cgXwLe0\nUo4p9g4dt25jjDHGGGOM6QmOoC1CakkzNF72KvgUoXoAPo2TMXKikUQ2Fo1LXgrfJzN1xy1lnLEd\ns9uJCcBXlUnBHOXTBMx2pGFVpdSu3M/aso92DGM+oz21MV6dKSecnpsjMyfDp7GfEzG1/G9ye39n\nQnsTZ1wWf1U805VvtSZr9QBGNSfLft6Gks0o9LWdX+5/R0SUWF1E5PTabiSQo8bGGDN/MOmDImen\nwNdEdNbGt4pnLBMl8am0pTzR7omWTWnbO7LufftQSk8TphLReDrvi69Oe2Pls/djVH78oNGyQ00v\ndSTw6a+Rf9ZzU6crke5+spwX040r6ccJ8N2c9uXw/Upa/m6KWr4DPkXdbi6eFfHdiIiYKr2UCEXY\nVqFO2wgln2fWeByb1HReTfs8FVEw9QGnEClXf3UG7XQsI65TnUQzTRs/sXMFN32sF0GX9Xhewech\nanZh2g+WiG/LelwzT+X2/s71pl4xVQDaPrylIhxBM8YYY4wxxpie4Bc0Y4wxxhhjjOkJljguQvSj\nUnqnoDGn5mpaI6cESwTxIvgkEuH037vSvgW+d6S08Rr4JJV7EpJEBYBPgeRvd26/AZ/9WNniqmeN\nDOIRhKOVRmM+RxskpGCwXALDV8OnZCj3wqf6vQG+/eU7ceJ2kwiECTwezr+PwKd9nwSRjgLna+Pj\nxacVZzjd9c6034Xv7LQ74Js7Ld8YY4aJnlQUVOtuSWlRc1cd68iDdKf9CnwSRL0fvkZKtz7+vHgk\nmrsCpa5Lez18Mymp2wCZnc70J1Fuc9pvwXdvPu/2dxI5LaQcj9KxyTx6+z2OS6HYsk6p5elrU01N\nx1W5RVG8EladC9/LB/4W0Uoc/wQ+PVHap/UL01JuKfiLS0K6x93WRcDS/Lf9zWdSnrgXUzdOzz7O\n7nJtR7Q9yHbF3TNT4ngc+pnbs8fKddAuTWnje7G3t6b9DHytCJk9pUYmzSvhc2UCy1VzynV7TzpX\nSxyNMcYYY4wx5pjEQxGLBL5pazoip/pODNiINs3wdvjuT8u4zifSMqmuokZ3wddGcVpenPbb8Gks\n4Zfh+1Laj8K3Je1ZSDqys6QCbtE05vlMbKHxSK4rr0TA34FPYyYXwqdIIOtUywmsRZrjsTg9IiI2\no6ZH8u83xAuK79Ic1bkYe9Ok9bnjpt1lCvbn6M4Ly4IFbf1xNLWW0NgYY46Mp7Bdi5ZJw0ENwmVp\n74fvurRcuuT8tBwLbyJt+4pOIOKUXFCEz5rnD9iIiMdLxKYdT9+Rvq+j3IpSvqWuPKglRhg2tX03\nPsa79EzY34nqNeWmOxoOcTO2lUqFT0N9t83Fsy7jkf8dpWpxBD1/HoZPy+jwF1d0cxzPTCZkN31n\n7tIPx3U8upLOLL4HikqIPSpF0K4untG0bAUXZQ+NyYDEb2Fb/eSvwqcY2OnwbcoW+rlyn4loNWRj\n8ClJ0SPw6SjUsD0z7n8ZY4wxxhhjTE/wC5oxxhhjjDHG9ARLHBcJNYkjk3+8Ii2lBR9OS+mdxAs/\nD9/rK8f7ctqtWFntf8bXIqK7OorEK5RC6lz/M3x3p2UiEv39y/DtTXlDVy44XGqjFvJxNRgJPBjw\nVnCbK7pIXEMJx1gJjX+y+E5P4cnuuKT4RjM0fmpcW3yaQvunkHuuznoZj43FtzYTr3Ctul15Zjdi\nXaC355lx8qvkpZQ9GmPMs0PSRt5RdFfdA5/W0aJgXeLB2+DTXY2SIckdz8MR/mlERPwESkmExyMw\nBUFb7kcjImI11qVUIqU9uPf+n3nv/SI+O5kJD1ZA0jlVnr7z2e2SjGyulHQfBIH78xszgcJEERZy\n/SadK5+4EoO1MtSr8nivRal3p6U4TQnEuN6cnpVfgk9/Z8tQK+g+n5eE6TszAzZCv2J3ndenOn9r\nPvGe3KJoWL3JtseihHMU3Wpv20oij4g1uZ7agXgJSupO0ApqJ+OOiIgYw/ntLqnaKBZW75QybZVj\ny/9G2sOTNzuCZowxxhhjjDE9wRG0RcjyARvRptxnBE2jU5wcqTGEA0hB8fnYGhERU5jSeUmOT6zO\nqFlExG+mZeRO45w/B59GMNfDp3gOP/tjae+DTwk5GMnSdzsnhoPGOI6r/I0TwTVOyzT2GvljBO2b\naTliuyIjZz8E30ja3ynxq3a8eS+mr38hR41X48jjcWqWb5cu0AjSaOcbKN73QPHovGqTaU+v+Iwx\n5vCo3U2VYpvRnpG0vJsr7Xv7RFubd9WxTtIo/f0vi0eRs1NR6h1p+dzTFP6Px5/C20SIxjESPl6i\neO3I+l2Zwp9Kk/uQ7ltMzWtykEEYqWwSpTxVWUhloiy2E9F2BxmtUOTslOJZkek6fgyl9CswqYdi\nC/8LPqW/4jIFelYyzYLievyNdlbbkGKfT1b+ZvpBLTmOfG1kVvHbqbil+CZL74Qp6pQ0qI2equ3s\nhjLob6cy6O9n1Cwi4sG0H8CiGDPxmtxqr+mx0q54H9Jdgsk/FM3jq9STlXLN+a+uLCVxMBxBM8YY\nY4wxxpie4Bc0Y4wxxhhjjOkJljguQhT4ZUD5K2lPgk9v55QW7CtikLZpSNp4CaQoWzIg/cMI2X66\nCB1aIeUvptTjVhxDIhEmDlEg+c3wSbCyreJjIhKd/66YPySuoKDmzoHjR7R1yqnLkyk3eW9MF5+k\nIFxDTdNIT4ZvNH4kIiLOio/POZd7sDaaJsxO42z2x99ERHeidSttbMdmJCvllFYlNKnJHo0x5siR\nUL0mqTsTPt2hRovn1JQtjcXfQ7nmTrcmbiieK9K+DaU+mJbPx48X6TdXBZVgnVKlR+aU01kx3cGL\n0vK5N7/rn4mlAzZC9bKvIxHclJaTHgTTRTUCxbV49mvrapRSTd3REZP+eFrWTCO3/INOSpDaOV+X\nluvcSQw5nynCzMLQTNNYA496kly/d7Ksv/dieHU/eHXxTBRJ8UeKT0l7KLFVSiG++GzIVWTZnu9I\nu6ezHmPTa1uBXpH2M9GZUCRZ5u3wNdfZ+GGu1+cImjHGGGOMMcb0BEfQFgkcG1NiB44zKXJ2HXyK\ntXTXNtco1WXFc0lOqPwZlPq1HO9gCvzICcerkeTiX6f9KZRSog2m5H1XWo6raeyCSTgUwboBPiWW\nZ3Rw2Oi4TFgyUUYL25QgGzNKtgtJVi7PJCscq9QE6w/At6OMJ10BbzOaubOT6qM53sr4bvFMllGl\nNgY5WkZrvo3PNhNYl2ZK/4g2uspxYk3Srk3LNsaYZwfHhLWoCrsh0lUwab2eRe0o+h3lbk/dRHP/\nZLqIj1WOoCRV9wTR/XMEPj0ZfxA+pdNuR+rvyNQDq5CMoJb06sC8RdC439oIveJb7BEoxrcZvgcr\nvuY3GutEMKR3GS2eO4oy42dRrpaiRU/QTfCNpP0UfKpn/prSnfB51u29mD7TRmHX5zavj/aKfg28\nSpzPpDtq77wu5ya42Zv9pJ+PTxefWh0VWIp9/TP4FLfbg2v6M2W/7aIcU3POk+fA1Ptqp7WI9dPj\nCJoxxhhjjDHG9AS/oBljjDHGGGNMT7DEcZHAALDkaUxeoenYXPVEQgaKIl6ZEr3b46+LbyTtX6Gc\nxHh74h/D20zHfBc8G9J+Ar5/kpbrgkkkuAW+reUYc+Fa7menfaRS7khgnSq9x+OdEnvTtilB2rrc\nWra0Zj1/D0k0u9Od9etwwqlEpPx2Z+Zn25V3fijX7/lska5ERNydlhKYRtrI+tuWIftNpeW07YUr\nFBljzPCQ3Kc2wZ4rSf7lwN8iIv5O2tvga+RwJ8KjdThvgk+dHgrvdhd53zcqJbkW0jVpmUijSQXy\nMDwSkHO9zgPzNh7O/UoSeBp8kloxLZfWlWIyFtVW+6Q6NZ/Ie/EMWR1/FBFdedreeENujcL7a2mZ\n9kFCNtaz0kPwqaTfleenxCxsL/qNvA5a/2nX5nssez5MD9S2km/C+7fSsj2r5f1h5dMb4LsoIiL+\nO+4b/zz+d0R0k/foTnMlfLqHMInb3tI/O6vy6Y3wae/suSqxyOH1qBxBM8YYY4wxxpie4AjaIoHj\nR3pX59u3xh843qgxMUbVRtPuiedi381Eya0oty/TvzPVqRKVbsXEyuMrpTTFl6MYSm3BsYmvpuU0\ncB2V4ySPDtj5QBE0johq6vp+xNoUQXsPyv1J2ovhe13a7R2vaotjwBotbFOgLMtY5ulIlfLZMoLD\nseJmhHpNmcAdcSBHKSdjR/Gdm5GzHUGa9CBrHUMzxgwNRvOlH2A3RNGqdjL9qlQCTHSeIlIUcJR6\nJCIi9iK10Z/l/euVlTNgvObWcjwqFRSx4fkpokPtQ5MKfieeQBvyiUHVxMJ2t/g9lOCDkSzV2yh8\nqoM2ucHeeGdufaX4tBcm71LPYn1cXzz74qrcalN/nZX1wmVoRktk5Rp41RNgnE61ybrXr8momukn\nbY90Iq/RNehftL/0q/AZXTOMWKtt836wuVJO1+p1xfO7aadKDyxCPeDPxefh25n2KviaxEWrscTG\neNnPV4tvQy4MxZ5Tm5h/VRwOjqAZY4wxxhhjTE/wC5oxxhhjjDHG9ARLHBchEgAw+YekjRSYSKKw\nsVIu4pSy9emyLhcn7I6kpZSiCQu/BJ5vpaWcROKKN8OnqZZcJULB4zfAp+/GlVCUFoPTyoeN6m0Z\nfJKVMi2HVnKhCEMixgfg+80S6m5lMetTRLqvs0rHeWn/a/FM50p3q7CW2bIUgvI3vygtQ+0bU8jI\nVTvaxCznwzua+7XE0RgzLKaxLSkiV7DUE6AV7U/ED+QWxfhKL0ARoZ4KlxfPvrgxIiJuQSmtztVN\nK/ELafk803nxuJLSXQ2f0mL9XvGsTlHTnrKCZkRX2Ddf6EnFb6dnzO3waZIAn5r6nqxTrT3WyiM3\nZDqUM1DqvTmt4Y/h25dSsJX4zXfm0/xHIIUc7Uj6xQvT7i2eZZlMZLqzOqe+L6WQpv/o1aPtX7Tr\nEvKaUSv7KnzvSMtJMrpvsO1qu+3hTpV7Ca9ztfsH4Wva/br4XPFckfYOlNqW0sqlEPxqOtHdKKek\negcO85XLETRjjDHGGGOM6QmOoC1CNLZY+3GZqFhTMZk+/0BGZ7rjY5p4+cvwaQTiN+BbHxERl2FK\n5JaB0hHtqMBn4Ht32tr0X46daCyEyU4UnRv2NGGOd2o8cgzesUwOwno+e8BGtFNU9yEWuDpHEMcR\nQdsXb8mt38KnmzT7p2I8Zm9OXD0FETTF2e6PFk3vHoFPiZY3wTdattr45eqYigin2TfGDBPeURRZ\noa5D+go+CfTE+BZ8erIwBb7uxG1CC33yIpT66bS/G+SLaX8GPj0t3wbfv0rLyJMSZLTPvfZZxO+2\nkIksGA24My3PedOAjWjPtX0mrcjnDr+F4hZUYaj2mGhqaSpqJjuamuYZ8/E4uVOy4a3wfT3tgeKZ\nLonLmDBrZ/7NafaPLZqI55PZz4hoNVuPIFnMeIlXUW/14bRsL+oBsYere8PH4PvMgI2IuC9te32s\nzXsT27hiuozv3ZmRs2mkt1uebfJAvKByjO7CSs+EI2jGGGOMMcYY0xP8gmaMMcYYY4wxPcESx0UC\nJQjHD9iINgDMtcI0TZdTdCdTNjfVCcUqvMx13x9K+4nOpyMiPgKPRHic1isZBFNSLB+wEe36Z/fC\nJwnfFHxrK75hMFv1tmMaT6Rch2uySYRDqaEEop/DpNbxeGNuMfGKvsnvwddITfd2RDpNLVHEopVu\n/it8I2n/GXyaDkvZaDvptZW7jOfvu3ZgtRtjjHn2cExYEsfd8OkOxSfa5jm+dfnZ5yP10raUn6/G\nnfv9af8F9qYn1m92hOivHTh+RCsNpBhS8qtWqrki16O8EKXuKlsLvT5XU0dLcX4z5UlxKsopoQqf\n6c36Z5ciMcdE2h0dmWIj6ZzGMbSC1FTnGJIiUn6odTq5XtXg3yLaejsFvrnyV/UrpjvpxUz/adoE\nk679WFomOvtCfDciIk6IPyg+TW8Zx/pmUaaHXAmf0nWMwKfJNrzOJW1s11QcSzntRqzpqzQ07I9O\nZ7K39WXdtIhvlq22B651EfccZqIgR9CMMcYYY4wxpic4grYI0Tgjx5QU72IS0m2Vz07Fy3LrUngV\na2NaU03ybWNyqzPasg6lNBrCOMxr0nJsTGNsfwmfxhruwKjDWTk6+qMop1G++RxD01jvCowa3pHj\nPzNII6zv+yZ8ViM+P4Ja+HhJecwU06rLu+BTWpTT4GtGPzl1/fVpOUVWY71M0KILnklW9pTEMO3I\n5Io813oU0Rhjng0cQW7iH+d37qlNPH8Z7jyKpTBCpbsnU1lLJ/IWaAKUPJ9qg39etj4Ir+6M98Gn\nKM9lMchG3Mt1zz8Pf/9G2WL6d0Wr5j/10gzqeXVGAcY7ao0mWrYpl3aJiLgnE3IwqlGnecoo3X4E\nY6Ft9G1lbk9Ei575DyPOMF0WotmJksfluUygnL5T222dLDG0hY5UmmHAK0F9U/Yf1RaZsk4x2o91\n+kmK4Y7Cp4Q+L4ZPfax7YpDVSHEznpExqqP+Ou1NndQhzXW0LyN9DU3feCP216YfYYqRZ8YRNGOM\nMcYYY4zpCX5BM8YYY4wxxpieYInjMY7esGcqf2OaD0kungffeKbp2ABJyFtSevAXHalHIx84q6Tt\niNgZ/3dutULF8ZxkeTPSdWjqNQWTCjK/CL6PpqUEU2ujbYPcRcISyvbEhPvn2wAAIABJREFUsCWO\nrFOF2rtTPJvA+45O6pVG8HIn6kqrcTAgr0tvJD5ZPJreOopSXyryj/bbXZThdB5V0+ivg091ykm3\n15ZjbIT3vWm/EYMMO/GKMeb7GaaLemrARozkvX4fSk2kBPuWzppnjcjxIpR8aT7HeL+TtP9X4RuN\nf5xblOxLWMXUVV+KiIhVkDPq+cljnJCW8vL2bl1bn+u4im/YtGPv4+Vs+XRtUoPdg/WbIiWJt3Rk\nWE/m3to16Gby99iBcqvySaGkCRER61KeOI5nzZ4iNuWTRTJLnsvS3EcrHXs028ZERwQn8ZhX7Owv\n6kktneMbx7Uwlr8h+3ZKZcMJHurXvhv9wi/ktb8Wfdld8Xdzq22TbXvhmoCPzjk7td2H4dP2CO4H\nmgqyB+XGO59qeLxsHd6kEUfQjDHGGGOMMaYnLJmdXcA0AEuWOOdAjdnZw8u9Cd6WdVqbIsvwqEb0\nOJ6n5MYcrVTK/Ts6EyHbFBniDTmh+CGU+k5ajldoeuYm+DRe9nb4lB5+oiQpiViR0bypkpAk4soc\nnWg97Xfid7v6COr0lKzTueM93eNuz7jaUiQJ0e8w2VlFXolZ2zHWtfk9/iVK/aO061GDF+RIzvZ4\nPkpqsnd7hqvjaxHRTcaiOu9Oh31dWqZoUeSMMcNdeS4tDx5Bnfrafxpcp8PHdTp8jqROI2LJkhOz\nXnlXbcbCN+D+qTgII1S7yr305fBeHRERlyMSo9gXUwLoaL8M30RRLTCi9OG0HAvX/bBNrrEmPp3H\nbdHZM2G9FA2THc0FE4Y0zM4++qzrdcmStVmntSc9a1BPJaZKEXwOKBUD1TOKVzAqsCYiIi7PPkBE\nuyDBfkTBlmbSjxOiZaJoUbi4j56L7RN8WT5/pjspS5QmhjWtBW3aOpidHfP1P2yO4Ppv2ymjpqrm\ntp2+MdsT06bp170YPi2TwZahFjHe6bfq+n0zfIrP3Vw8K7KPxd7PdFyVW62qSH22sU4PV2dLbdrW\nLN8yViKFbbs/lHbqCJoxxhhjjDHG9AS/oBljjDHGGGNMT3CSkEVCLUEGQ6ySIjIxh97OuSbWSNli\n05AMol1D/fqydhbFlc0k7nEIGsfif0SEpls37M5V32fLSl0RE0Xw2Ka+mMrw9+mQV2i6MSeSShhR\nS5QyLBRC39eRrJyUx+W6LNpmWH17RES8L24onq+n/SJKfTXtO7H2i37X7R2RqLy3F894nJtb7ZjL\nPeXXrLUEphhpanNVrpfT3YsxxgwL3qUbuc+DuO9IUr0rXlF8S+OWiGiTI0W06xNxfSQJIHmE/5B2\noiQMiIj4WO73j3FWz82t9smyNgWXY9ijVkarJS14qOOT1Ir32fmiloiEd3DJyEbw12aNpovLRIeI\nLeUpd2W0NM+uV+AZfG9K0ZiEbH85RiuPnEkR2kQnKcqatCfBs6NzlhERe8tzlglB9BmWpCTV9Bsm\nn5lJTyuTXRlzUav7KnwSGLIPqKkdZ2GSh1rLVrTJdtrMP8Sn/yAiIqbjAviURKTt29VXMFN7noav\nabtjHbFm7Rp9ZtwPM8YYY4wxxpie4AjaIkTjfQfgU9L3l8KnEYu1lXLLMKp5QW5v7YxCahr0L8Gn\naNqXi0eJkT9ZIjwRazNy1iZEjVBC1VUYJZ3IsRKm6K8lQ5kvOBLbjgKeCa9qc7TiYxrXZpTvg52U\nG82IykWo57em/SZKaTxoVdxYOZfXoqRGajmu1E3s36ARSY5XNSOnnOaq0dH5jEoaY76fae7mnOyv\nONZeTKaXVuNtKPfogI2I+FBaqkn2xhsq3i0RETHTSfmkiF3rG8tFS86PbcWniN390aJx8nuDNPfX\nZRjRny6j6PPZ7dIdmwlQtL0OpZpa39MZ+Vc56joa9cyd8BzICMFypAzfkE+MbjxL35MJrh7N8juK\nZ09clPttn5lr44E8I8YlR9IySYg5NmliQ2x9n812tQntSv297fEqlNQV17aDEaiTRJvKo42gTZWI\nV5s6bSTtHfESfPrW/Nve4hktfabzKufCvpbiXuytqkd1eNe+I2jGGGOMMcYY0xP8gmaMMcYYY4wx\nPcHroPWBIayDRmpv3Vr14TXwSdRBMZ6CuJS2fSjt7pQiREQsS9nHNALJl2RyC67FJXEDJ1VrnZqP\nwCeZJaUUSmjClVoERQ41Gd6nhrAOWu143QnPb9En4JOMZBS+0yo+iUHab/KerFOKcfRJBtW1mg33\n9rm0+zuyHYmCuBKapKntrzR32nZbpzwXr4M2D7hOh4/rdPgMbR20uSxDUiQlgeL9XcK7n4BPzwmK\niLQO5544FV4lvPgofEonwon7kkG1T6qV8a2I6K7BpLv/hfApzcZ2+HaWc+Ad9PGBvQxrHTQyM2Aj\naoL1S1NGRtG9nggUR+o7bYBPNXRrR5yq78S6FxQ+Np9eh6kMWvuOT657SkqGc+DV78X0JJL0t9/N\n66DNA0NZB60Gr0ElQmsliRtzCsiuInSOaNcT5LWlftd34NO0GgqSJZ3mhA71fJhy6Ctp2TvWOm5s\n4/o7k9moLdZ6qYfXTh1BM8YYY4wxxpie4CQhixC9o3NsQhGqHfApusXozJ+lPRe+V6Z9GSZLKw5z\nBkY/lZSEMSaNADDRx2+lZePTWAgjbRp/4IjeaQN/Wyg0nre6jPdFPB6fjoiIA0i4cVGO7m3rJGVV\n4pA2IciyHJvk9/3rtBytVL1thk+JXLbBt79Mrz8RXk1wZUtQKtnR4pmJfRHRnbBrjDHzS3OvfAoe\nPTvOhk/T778Gn55n18M3E6/Lrfvg1ZOC0Z7mDvvS+GTx3Fp0BO39U3fwWzqxnYabkXZeUbzJyhIs\nrd5hodAT9+Bdu81Z6xsRjdIzmFHJNQN/i2j1GEvxxJjJiMSq2Fl8E6Xe2jpdmZGz/Z3nY/NrHuhE\nK07r/K1B0TLWqdNYHds8B9u6Vtse6a5MHrcay0GMx3tyi5FZtY2p4hmJrRHRTd4zU/RbvD6k1fo8\nfIqys+elnijbqSJ7bM/ddEFHgiNoxhhjjDHGGNMT/IJmjDHGGGOMMT3BEsdFDKUKmip9YuXvlAtq\nNidXlXh7Wq70sDotxXOSTFJ0cFNaTqqWaOHVc0+5E7RWIHmm4uPIwkKIHCS9WQOfZKBnQiaic9mE\nUPstKc45C5/VhfcwfJqw/U74JC3hajAKtL8Yvi8USQhFk1vS8lcfjYiIVRVB4+PYXsj15owx3480\nssMZyA9H815KSZ1WnqQYSs8BCheX51OLvqmU1PGzp6W08fbOuYykbRMKHCgJsLje5NI859uKZ7I8\ntZi8QjI8Pp0o/p9veNya7LGpkV2dcnPXUFuVz7ErUUo1xHVMV+S6ZXs7yRwk/W97CZNFijaCci9I\nuxU+fYYt4f6Kz13YYxu2P8kY7y4e9YnYT2qvXP72mhjyjuIZjc/kFtOf6TNcB1btnb2syUo5SXa/\nB596zFyRsTYBZ2XF98w4gmaMMcYYY4wxPcFp9vvAkNPsC44vaBSSES9FSR6BT+ksOM1a41ZMJqIo\nGKNqOgajYBqH4P50DpfBpzERjsopxsMRUY1hPFOEZ9hp9gWPq5TQHBdVfbDuVVdM7Hr/wN8i2pTG\n453J5pqs2o7Yrs5RzfEy8hixKkeKmQB2X1qOwiiR7AR8+o04Wb+G0+zPA67T4eM6HT7zmGa/xkrc\noTQ2/gr8XUmtb4JPKo3PwjdWIjqMoSn10nXwSWXAkXAlVOITUsqIdpkSJjCI8lc9tQ7+pBp+mv0a\nSwfs0/k08t9GqE7P78sIxmRJ4cIn2vHlry3azwh8iixeWvGxd3J7xTc5YOs4zf48MG9p9luWZpo5\nxtQUw55AL3B99gz3daK1an/saSpyxvjvt9OOVD5L9ZHa3a2VM+WySmqLvG/cP/C3Ok6zb4wxxhhj\njDHHEH5BM8YYY4wxxpieYIljH5gniSOR2IDyQ8nrLoBv9YCNaAUelDNKYvKWyrEYZFbgl9MvNSrA\nqZu1aZq19dgPlfmSOBJJArkqhgLxq+CrBbqfqJSTCIeBe61kRpmnxD/j8OnvDNLXVu2gpPJwscRx\nHnCdDh/X6fBZYIljV9qmJwHlgpLXnQOfnm7bi2dp3qVn4odRblPar8CnfTMBhZ5UvIPqqUUhVi1J\nyKGlrloYiWMNfbdakpDj/3/23jxOj+uq8z6SrcWWZQl5UywrbpR4yergrEAcjLNiEhYPkJBhSZgB\nhnUYXoYwTGBgPjAvYV4CYX+BgYQEyAIh+4KzyHEWO04cO44TeYnSjixbbdlKy+22u9VW9/xR51f3\nV09fa+2luv39/qFTOk/1U/XcunVv1T2/e25lPx/LVxltM9+pA5/593gvp1RUtfLxFU9VprV6cGiQ\nOM4DCyBxLPegPxnq6a88ua6N2V+nqS/+/DiZa8NutaQeqsUjtt9Eu4aZr0A7mvvvbz3T7WQWl0sP\nfvORg8QRAAAAAABgCUEErQ8sQAStRm1srIbGM3waZG1MU4lEa2OQtTE5309Trw9W9jv6MbSFiaAd\nLV7OKjcfcz048Jl/7hG0Ewasf7eXz8EBO3gO4kjLlAjaPECZzj2U6dyz4BG0GofrqWanda+jEXDv\ngdQKHu4YDw/YiHr0re8RtLmm1lvXrketXI607I8MImjzwIJE0A7F4e4nPZ169K32pHlg4LNHOoa2\nPT2+nqT8aWzwWEcOETQAAAAAAIAlBC9oAAAAAAAAPWFhJY4AAAAAAADwiBBBAwAAAAAA6Am8oAEA\nAAAAAPQEXtAAAAAAAAB6Ai9oAAAAAAAAPYEXNAAAAAAAgJ7ACxoAAAAAAEBP4AUNAAAAAACgJ/CC\nBgAAAAAA0BN4QQMAAAAAAOgJvKABAAAAAAD0BF7QAAAAAAAAegIvaAAAAAAAAD2BFzQAAAAAAICe\ncOKCHm3FipkFPd5SYWZmxTH/LWVa5zjK9OmUaZXPH0eZrlixmTKtMDOz5zjKdBtlWmFmZift6Vxz\nPH1UBOX6SND3zz3H1U89d5HL1GMm04t2FoPMzHySejrXHEE9XdgXNAA4KtREewunu9qb8hOO8nsP\nHvMZ9QX9+lonNl3Zr/a3/tnDc3FSj2JUlt6l1Mr0xEPs59dtuuIDAOg7KyvbD1d8vp/aQ2/vHh6w\nEREH0q49wnNYXfls4jB/C30BiSMAAAAAAEBP4AUNAAAAAACgJyBxBFgEasItyQ6nzDdT8Z2Udk3l\nO3zEZbLiO1opZL+oSUecmqROkpBjkZNov8ONYy23cS4vg5ocplZ+2s+lN6ekPdl8myr77Utbk5w+\nUPEhewSAheZIpfMuK1Rb6dON1le+Q/t526vtUfOpLfV28cG0Z1b+1r9Pbe7hZOjQF5bbkwUAAAAA\nAMCShQgawBxywoD1bR/zqsURxL22rTGxh8yneMMZ5tPY3l7z6bv9bxWJO2C+dWlXVb6vH8lEahGb\nBwY+i4i4LyK65aIy8DFIfT5uPpXpVKcUVFpbzXd/5Vw0YtrX5vRIE6poNPX+1rMuxiIiYqjybevM\nV2Jk+9utnTESERHDcZbtuTHt6eZbPWAjyvU91Xy6ivvMV6sbAADzidobb/PV23jvr1byFPNJbbDf\nfGoj/fv0JOAKBLV9Hvm6deCziPLk4MetRdWgzxBBAwAAAAAA6Am8oAEAAAAAAPSEvmpyAHqPhAwP\nmk+SwA3mk2DsJvNJZufTevW3T6kcy8VfSg7if3tO2u3mk/DB0zyclvZc82mUxgUXOpfjW532cBxK\nerex4run4iu/Tt+2xT6VcOTLlb98jG2P5NVcZ+lYJA2d7ghChV+R6YpP57XQY2A6l8Ml3JDA0+U4\nze88w8pAdex5ttfZab3zuDPtXea7u916qnmfltbFvTo/F/fqGx9vPt1pfmSkjQCw0Eh26BLCWn8m\n2aEL6muoTftn86m9O8d8TQt7SZsCrExN+JhJ0yM2p32S+e5Lu8d86qf8nI80ORbMN1wBAAAAAACA\nnkAEDeAYUVzlq+ZT5Kmb7v7Z6bu29T0jrcc0bkh7q/mUkPfp5lPMY8x8n0i7zXyXp33vrDPvxnqU\nWOQ+822KhWB6wEaUM/OJ0V9P67HKJsnE2tjdek4b2Dsi4oY2VlgiNmvilojo/t7yWUFRzmGLLa7K\nEcepTiqSWsIS/Q6PX64csPNB7bsPDNiIdXleXsqqu2ebT6V2vfl0tbyOKPb1pcrfTsYu816W1stK\nUTL/a43yevnV6kstYggAMNfUokxPNp9axE+aTxG2F5jv1ln7rY0PRUTED9peH0p7dnyt9Umh4DEw\nxco22RPBvtg5cHw/P0/QpP08cYj+hjZ1seEKAAAAAAAA9ARe0AAAAAAAAHoCEkeAI+CEim+68tlE\nfNPApxGbUtroAonb0/o6Y1rx6ZnmU8ILX+HksWk9zcJFad9e+b6TzHdHWp+yLJmbr2slgd78roMm\nWYULLk+u7CfRncvdRtNTznp3K+F7rO330rQfaz1q9HyFrf0p69hn8o99mZRkjUlHJlshZZGOrEyR\n6HTnG3WuC53QQmNutbVuyrmolKfsU21vNp9Stfg6cpKQXmu+IiX1dCK6Nk8wnya8X2M+lblLWGtr\nntXWS6slcAEAmCtqcQy1oC6UlwDR27HnpPUW9HNpv6f1TGRL++a4qvVJDH6d/aV6or2W4mpXpmOa\niO+0PZ+b1uWWkpD7E4vSmfnEAEkhScC02BBBAwAAAAAA6AlE0AAegdr4kUeUlIK+mwT3GxERMRZb\nW9/zM8nEOyz5/mi8JCIiLom3tT5N191u3/fDaT3ZuMa/Xm++70/riRsUTfO401gmt1jVpgYpiUg8\nsb3iErXI4dyhGKAfWVEoTxms9PolcrImz3+ys2DASH5rSdsyEe+KiIhz29hhGd/0CGQpJZ9+fXke\n452tZ2OOmI5anGm6vdY+IVvfs9CTr3U8r72zU/6PDXzS0NSET1vEUPHCbmLmV+eWp6T55bQeAdWo\nsXczupZ3mq+2JMHGyn6qGx41I4IGAPOJ2lRv29Q/fcV8Us+81HxXp/XFc34q7RfN1/Tw51kEbSTt\nmC12c3HMRETE9W18LWKiTScyZN+ntGElvZOUIJPxcttv/4CNOLQKAxYSImgAAAAAAAA9gRc0AAAA\nAACAnoDEEeAIqK1qpW2fEuzSRlHWOnuaeZskCS7Q2p0yiDPiptYngZenn9D2i82nddU+Zz6d3y+b\n710pDfyy+WpJR5REZO4ljj4mpCN60gedze0VX1l7bLKVCw7bfk0pnBCfMl8jFLkjLjTfqoiI2NuZ\nGC35iq9MJ2ljKf3R9oq53EWJLLwE1bTW1kGbK2prgMlXS05SZI8TrbDVxbPN36y1aelT7f7n2X4q\n+x8wnyQ/ntRDq6N5rdTfuoRVE9nvbT1b4/Oz9trf/q0LjfXbmdAOAPOB2hiXsKt99fZTckJvi7SC\nqU+E0IqnTzTfmRERcVf8n9ZTpiuUpFfXt08E66MgSaUfQ+dcVrWcbH03xGw8RZik6bWEXbCQEEED\nAAAAAADoCUTQAB4BH70Yr3yuNAZnme+xsWuWT+NRT7MJwIpH+A24JyNnd9ho1lVtfG6m9b1k4PgR\nZZzsMvMpdvMR82ls71nm07igJwLeN/DZ3OGjiyphjyPqiM8xnyZTe0KQobQ3ma9J4OHjfuNt1O0i\n8yoF8WfNpxTEfn7Ncbdk4peIiN1thHTM9lNpeXp/RQXnvgQLtfG12gTviYpPv9MjXs2CDHvjOyr7\nlcjiyviT/MST9Cvts5dpE6F8tV2jWuoUTZ+/zXy6+p833zvbazQUAAALg9pyb2+lhrnHfC9K+wzz\nKYGHJ+FQbOx08zVagfE20UjEL2W/M2wJrv4hfiG3/rv97V9XzvkVaV3BoVbXI2h6vnCtgn6vP2HA\nYkAEDQAAAAAAoCfwggYAAAAAANATkDgCHAESc11gvtrohqSGt5pPIjsX6EkI5iKCP037ChNUSpRw\nlaXreFwmSbjW/vZtmaDiXJM0PDntvTGby21bwjEXQ2gK8prK384dks95mhU1SV66Q2ldTqKSdrHc\nT0dExN74c/PpV51pvt8aOFZEEUa60LP59bs7glUlFvEJ2cJXC9P37TXf+oHP5hOXaqqWefnpt7u8\nVNIbl2rqXP+59Xx32vfGX7Y+1XEXPf4/aV9rPk2j32m+S9O+3XxKy+JpXM5Lme9tnfrCRHYAmE/U\nF3kCKfWqw+ZTX+Stm/ofT1L1wbTe9r4nIiK+y+T0v5P233XORd+9y3z6nsdXfN5PqTX1JwL9Jl/T\nUr+3u0omLDxE0AAAAAAAAHoCETSAR8BjEBqn9xENjeP7VF+NR10Z39L6tsUXIqKkUYiIeFXa55lP\n42/j8STz/l7a32w9B/P7fsb22pmjXTeaT/EST2K/Oa3HevQ7PO3FqrQrYq7xEqylrFepe+xkOG0Z\n+TsjdkdExN42nhMRsT2tR1iavzk3E1tElPjQF22v/RnfXGcjmCqD0U70TZOp72w9WzOyc49N5p5s\nE72sisJ8pYKvJV7xpl3bnta5FldVuX3JfE2t/PZMwBLhV6bUjr0Zbdxio66qd55kXylJ/IprMQNP\nCKIYso9Zlxiye7W0AWONADBXeHui9vMu8yn5k/eu+hvXz6it2mQ+KRre2Xr+LG6JiG7yrt9Ku71z\nXjruDvOpDfQeTanEfEEd/c2TzaeInP8OXgv6Ar0aAAAAAABAT+AFDQAAAAAAoCcQywR4BHz04mDa\nu833uLQ+vVbigT0pQ4yIVvg2ZPu9NK1PHb6i3fLJuVqzpEjSJF283vaSbG+r+bT61Anmk7Rxs/lu\nTzs7PUbYimzzgUSdLqSUTOPU1rMxhZujJv3c257tB1rfC1Nq6AJH7fVX5ntjWl/55cYYiYiI8U4a\nGMk/rjNfc67rbV06lakLU8tKM6ea1xOazCW1cbaTbFtXc7j1bMx1eUY7NUYSyCJ3WRNvi4iIT3Vq\ngiQ1TzPfJyKie38oVctbKn/5I+ZTPX6X+U4ZsBFdYWNBZbq6+ikAwNHjsnFJ8b1nuWfARkRcnNYl\nhE9Iu3vWEb47ZY0RRZD4Hvv8t+N7c+svzauniQ+aT4lAfFqAyzGF2khfp03Sy9GYDUlCFhsiaAAA\nAAAAAD2BCBrAEaAYz7j5NLr/yYrvZ81XSwgvn0cSPtJuefJ9TTguiSq+kCl2D1b2eqr5dsSWiIhY\nXxm9u8229T0+jVlJHDzFxdzgI5NqfvwoewZsxGgbq/S0xOcM2Iivx0cjoptQ/5cqZ/DWtB7xelqO\nFt7QicQ0ccmnxFft7JrI2d42sXyEYnH3xaT5NNrq13J6wC4sazNqFuEjc/57FaU9v/VMxjflVm2S\n+0fN960RETFtMa+74spZR1ByaI9oaux2v8V6z8xaOVXZr1vzF7dMAWC5o7bF4/mnDtiI0m56NEqp\njz7ber4/o2DfZnt9Ou3vhaOUIa53uSqtt6o6nqcrU//j6cB0FF9kRz29J4ZSJI74zWLDFQAAAAAA\nAOgJvKABAAAAAAD0BCSOAEeARjLWmk9rOrnwQSICFyBoSq5L796X1teIGov/nVs+GblJu7DRVok6\nLa1LJiWC8LWkfjCljVebb08rFyy3/pacrOwiNhcTzi3TlW1P16Htc8wn6Z3/bfP5GpPZ6Xq4bPRF\naV9svrH4zxER8dl4Q+srqTJ8fbDmartIRJO53x57W58Sveyy/ZREZKwz0Xohm1sXBzbSwYk4q/VM\ndKSXQnIXl8TqOuxrPRuylnkd39smICk1Zyo2RETEZpNW3pZSyNHOSmgP5H7Xth7dAV5iD7VbnrBk\n5YAFADheau1JLeGTr1ym/snbtiaJyDpbI1Mtr69apkRKI/HsyvH2mW99Wk/QpPRKLoXUhImbzffC\ntN63am00l2Xqd/B6sNjQqwEAAAAAAPQEXpEBjgJPT6BRfk+qq7Gul5hPMZk/MJ/GvHbGe83r8TnR\nTN71NBo63g7z3ZgpedfHu2d92xNtv/sy4cWUfePpA/tHlDjIwqReKCnh1+dI41gnPqNEFSWGckZG\ncTxJ/A+nfZX5drTWFzSYzO+YfQabLFG8xip9jFRTvR9vPo2l+jXa16aV8VjkQkR7dMU8cqdz8BFW\njfLW0tN7iv5mFHdVu2hDxFhaX76hxF897XTzOz/b2e+itMPmG+6cUUS5Ntd2lmDQMbzb0l3IWCMA\nzAe1iNJwWl9kRym6vGduEm6MW2t5bz5FeLtY0nv49z2z8x0NSiPi7az++mPmU/TtceZTlOztMRvX\nz6hHI83+YkOvBgAAAAAA0BN4QQMAAAAAAOgJSBwBjgKXOEoc5gIEicP+2XyfSHtlO0k3oqyE5jIC\nyQzeab5mhTMXPihpxZc7Z3ZDRESMmehve6atOM/20toreyyJhAvaBpk5xGfHj6QUZf0wjRhtjpHW\ntyf32xr3tT5JSF24KIGJT+X+m3brJ83bCBRH4gutZyRekVt/2fr2pSTkjs76MpKvuCREwtbammfe\nxK4e+Gw+8WNI4ujJZ5SMxVPNCBe7NrVtynxbs856apf97e90QW3z3ZMd8aJSqXy89ZyR19/r4bUp\nGN1g9XR/VQL8QNr5S2sDAI82am30A7YtQbvHONQiDptPvdEzWs/1mQzJW7M7Z+0fEXFj2rPNtyeP\nWlYyLWfqyUT07WUNz5Xx/tzfZeNKqeX9QK1PgMWACBoAAAAAAEBPIIIGcARolMqTl2vKrccHlHL/\nTvNd2W55atzHpv0B8/1tWo+/NaNye83zrWmvMN8dmVzDEzcoja8nTdf43Ij5bsm/Otfigxp/6yaC\nmAt8TEilOjprL4+HXJSRs+ea7xfTehxLca6/Mt+b4km59cvmVUzzm8x3S1pPQawj+tkoPYhP0tbn\nteQVPqo5PWDnEz8XRWl9QQj9Tp/QrujXDeZrrteLLdKryO3+2GL7PS+tRxuVCse/T5+XRSf25r2w\nt3PXPDWPsd18SnLiSyGoRteSnQAAzBXebith1a3m+2RERKyx1PYX/hvjAAAgAElEQVSPSTtue0kH\nMtGJoZ2b9o3mUyTL9TOb8ky8Z96Y/97SekbbaF/52+k26Yi3n2pzPe2V2lIiaYsNETQAAAAAAICe\nwAsaAAAAAABAT0DiCHAEaEqwJ0aQeM1vIgkKXt/565enfan5JIF7rfk+lHZP63l1JlC43faS8MDF\ncz+Y1hOWSKjwbebbmdaTnUx1/rcYFCmFEkX4GmUSg7pA70tpXVCn3/4zne/+9bQ+wft/pj3TfB8e\nOFpEkV66QOUraT25i0rapZqSjLgsZmFWlWvwWnlKxadzeWplP6+nb4mIiOvMsy8uya3LzKtJ8O9r\nPasyCYvLUEfaRCovM6+Ewy4X+lzMRtIcTyeiurOQZQsAjx7UvrvUXf13aae+K1eI/KTtpQiI9zSa\nEnFHRyJ+V9pXmk+Sbk/upH7ne2ady2gnHZj+1nvI5olhbXzNvk1tqrefalOJ3yw2XAEAAAAAAICe\nQAQN4AhQjOkx5tO4mk+vVfLbvZ0JwEpG4Ynxtf0nrefn0n7R9lJ8Y7/5lDDk282nJPEeg1ACXY+q\nKUbi0TeNyU1WfHNPbUyoHE2xqifYp0oD4ees1BY+jfkjaafbNCoRJeri45pPrnyjUq54rPKzaf1a\namSyJL7YlCW3L77Z9qslDtEo5XxOvtZ37zHf5sp+Sr/saW9ULn7OF0dExL4433xKCPJp8/1RRESs\nio+2Ht0fXioj7fW4xbzNRPW1lgpnoo2h+giwYnE+kq36RFcGAPOB2pjTzKc42F2t54Nt+1na3rG2\nrSpt1rq2nRtufa/OJ4x3x9+1vqJUcGWG2nJfYEZLw9SSkHmCpgc739CcwemdzxpoU/sCETQAAAAA\nAICewAsaAAAAAABATyCGCXAE1NYD2zhgIx5JGvgvERHx7FaKUMQNF9tedx/iGPeZT6tzPcN8Sprh\nYjyJL1wgIXGFC9tqArhbKr65oZbMoawktzbFnC4ClEjDk02onD31x9WtmM7lHxKJfsl8Wu/Lx6e0\nNppP535R2s+aT0cupbavXUvGv68mY1yIRBa1MTf5xszXrI631Xx7U/bodX28ldl4zf5Y2g+Zr0mf\nM2U1cH3+jZdeuYqe8mV1HmGD+VS+ftxaQhDGGAFgPpE80dsaPTq7lFx9h096UO9b2qzxVi5eWsa3\npMRxqpPoQ22l9+pqnV2SqNRlw61nTXw8IiIm7W83ZVvqZ1x+k7ezJwf0A3o3AAAAAACAnkAEDeAI\nUJKQWqLdO803nPYSG5E6kNue1OMFaX2ERDGeVeZTFOz8is9jQmen9WiFIm0eb1C8xKc7K9nvbbFY\neAyyiaDtNo+ihx7bUjKU7migFhTwZu11aV9uPl0xjwBp1NBjckoj/2Tz/VvaWqz0QMW30Gn2VaM8\n3qjyeKj1rM2a4GOlG9vP/NuujoiIsWq5eKp8JcIpZbqv/UZPma/ELH41te2194EBG1FGiv0MVaaM\nNQLAfKC23tt3pa56kflqbZt6Zk/VJe1LaX2n4srccr2L+invz9SmelupNrBocCbj+blV+oFV8Y6I\niFhvfznRqhJWm5fXgr5ArwYAAAAAANATeEEDAAAAAADoCcQyAY4AiQhcCCDxla9uti3t7RWfy/au\nTfts890xcKyIIqjzddBuyDWizrN1oyQ6c9mjxBAuxtMqVE81n6SantZCMsuDsRAUGdveFGCMWfIK\nCUs+3sro3HuO+bTW2bPMd13area7J61LKyXD85LZmdavcG0tMyW88NohvImdz/XPhM7PjyuZy47W\no9LwVcYkrvEEMmPtpHUfy5NA9x7z6fOLzPeZtHeZT2Xld4OSg7h0cXhg/4hSvrW15QAA5gO1bS5x\nVLuzzXy+DpnYnrYm0C8yRbXH91ifviK3J+LF9rfqk0q7uCFmIiJif5xk+6mv+UjrqQkwC7wK9BEi\naAAAAAAAAD2B12aAI0AjGZ4IfDjt2eZThMrjOj+f9s/Np8Qcw+a7PiNj9RQeN5iviST4dGLFRjzi\npXPxScEaPfNYhWJVno5hYSJnwiNLSrnu0TKV5mPNpxhlSeCxMpczmO4kyKiNauqXerRMf+PnooQX\nflyNonrTeXrFV19wYeHwcxlPW676gfR5BE2/0hM4n5+pY75ivj3xgdy61by6C4bMpzLw66GRZ49o\nqqZ6ja5FI3VtGFcEgIVC7Y1H86Ux2We+K9J62rDfSPtC863Oby26GKkWJivLlEy0ypCI52S77cvu\nrG7tN1rfaFyV37vGvi9m/W3pJ2hT+whXBQAAAAAAoCfwggYAAAAAANATkDgCHAUuXJMIb4f5JCjw\n1VG0AooL6rR+1zts1bMLclLwTpsovCm//SX2t5KiuXhP042/aD7JFM8wn6YRe3qH69OOmW9hR268\nGZLEw5M/SCK33XySyF3TetalHeusOSNcpnhx2ptaz5qUM07GubafUrhMmk+JRXzCeG2dHK1xsxCJ\nQZzalZOopdRelfL9s/aNuNC2dRX8l90Tf5KfnWdeyXpczih8tToJcq42n2qln01tfbMTBz4b/BwA\nYK5RG7POfOonnmg+9areJv2XtN6CNm3gtEkmx+JtuVUSfaxq2+uyXto1bctd+szLYiQiugLMa9sn\nkVNb3762h/eJGv5XgrUl+wJXAAAAAAAAoCcQQQM4CnxKsMa3LjCf4gM7Kj4fQ3tHJgJZZVN2h9Je\nYfsppjBsvlek9RQNGvN6hvnuHfgsokTzPKah+NDijdbMTpu+Me5uPaPtLzjV9tOU55Ku/fK0X7Yy\nvalNPOHRGY0aljiirtFkJ+Klc7jXfCo5T6Oic6mV4EKXau14+r2lBmpJh2Hba0XaD5lP5TIW32xe\nJWbxhPwzaf/NfE2CkTUWuZtsE+B4XFd3lS97IPx6kFIfABYatTvj5lOiqevN9560J5tPPbInDvnH\ntGe1nvH46dwqC/Tsa/snT+UkhUJJGvax9vPyt2uzV5/oPLE8Pu0K83m6MOgbRNAAAAAAAAB6Ai9o\nAAAAAAAAPWHFzMzM4feas6OtWMCDLSFmZlYcfqdHgDKtcxxl+vQjLFNN5/VpthrxcFGchGUuK9QK\nKM83nxKLfNp8WgXNV4j6lrS+XpW++w7z6Ue4gFDntT+Ons8fR5muWLH5COtpI4fbaGc40dottp9k\nJMOt57yU3LnwLtq9Tmi3N6Q80Vfa0jXab/sV0alLK3Ul7jafJmQfvVxkZmbPcZTptjm4970UdCon\nmW+0sp/K3iWHkiLWVtDz06xNQK8Vga7i0csaZ2Z20p7ONcfTR0VQro8Eff/cc1z91HOPsEzVLrmE\nUO2i9wNqF70duyutpxzT5483n75vm/lG0nriKp88MXjcWuKqo0+yNDPzSerpXHME9ZQIGgAAAAAA\nQE8gSQjAMfLQgI2INv6yuuJ7jPmUov8B830grUfLFBnzVAmaHuyxHo3Z+TRmfe4xDT+vftL8ktFq\nNMpLQUk/ygTq29pYppegRhBL+vf97d96aZw4YCPKSKNfJX3f+sp+S5Ha6OtkxXfgEbaFxvqWclkA\nABwJau88gcf0gI0o/YnHQpRkyTUw+hvvkxRhG67s59+3uuJTX+n9GfGYpQZXDAAAAAAAoCfwggYA\nAAAAANATFjZJCAAAAAAAADwiRNAAAAAAAAB6Ai9oAAAAAAAAPYEXNAAAAAAAgJ7ACxoAAAAAAEBP\n4AUNAAAAAACgJ/CCBgAAAAAA0BN4QQMAAAAAAOgJvKABAAAAAAD0BF7QAAAAAAAAegIvaAAAAAAA\nAD2BFzQAAAAAAICewAsaAAAAAABAT+AFDQAAAAAAoCecuJAHu2zFipmFPN4g07bdpzfTj83MrDjW\nv12xYvWilmlfmZk5cBxlehJlWmFm5qFjLtNY5Hu/txzXvX82ZVphZuYu6ulccxz1NCJixYqNlGuF\nmZnR47j/z1ykMq09PU1XfIvDzMw9x1ym5y/y/X/Qtk9YtLOYza3Hcf8PLVKZ6oS9th6s7bhIDB9B\nmS7oC9rxULv95Tvcy9bDlf1WV3wTR3Cswx1vyRRoRBz6l9Z+yfQjbAv9zcPm073pdVElWCvVmq9P\nr9NzjTfDteZjVdrVlc8O2PbUnJ0RPBqYHrAR5b71ula7Lw8MfBZx6PbC99P2wxXfcr7PYXE40jpV\nq6uH6s19P/3tgdqOPeVo77UTK9t+D+u3rzXfyWknzOfbR0J/XvyOFO/FdfarKp9PV3y1q+LfN5nW\nnxpWVfY71NWtPUn0ldUDNqLUvgcr+3u5qCb626H+ptbD+ROUvsevmz6vle2Ybc/l2yg9IgAAAAAA\nQE/gBQ0AAAAAAKAnLC1FXnSD6g9XPldQ/SHzjad9rPnuTXuq+WpCBYU1N5hv/8D+EXUhmgq3/2/B\nJTiu3zFVkTOutODtCe1+NRnt6sr2Kea7/xDnUpNNOP0vzdmotE4236GkXr6fOMm2VQPHW8/KlI54\niH+qvZq1MjuuKSWwbDjc/VaTGEmmVKtD62xbLaDXZ/3t0UrPjuZvYPmjeuGSOdVl79VrIqmazG7t\ngPW/cfGYxEw12a6z2HLHw80Tq0k6a09UKgP/24kBG3Fowdmk+Wp9m66XP47qeLVz6rfssSZddKmc\nenJ/ClKtcnmcSs9bVOGlsibtN8ynlrkme/S7w2t7n/GaoXOuTZo5z3yb0vr12JjWa+sDaW833760\n31Q5B29JarW+di2PFXo8AAAAAACAntDLCJrejEfNp0iWj0vpc48tKHI2Yu/X5+W77N22n0YlNptv\nT1qf8KdRDj+GRkMerOy313xDlWPUptcvBCuzBKetXNZkufgIg8a3pm3sZaz1Fba0vjJOsLuNknm1\nenra9ea7Pq1fzWZ7Y4y0ntH2XDfGbO6zbY01LXSpNmW0qpKgoztRWGNcPl6l2nOG+VRGp1W+aaf5\nmvGzDTaCOVQ5u415XneYb7g9Fx/fqSWM0DUk0rb0qY0416ZLq6752G5zT621Oq4aW8syNtwZVX9c\n5fvUQnodr7Ub+ptanWRc8dGJ14Wm/m6wlvab0061CoOI23PbW97SnxXvxqyXo50xc8Ua/ElE98vT\nzSclg/f+imf4/VBLuDNf+L3UnMM66zP1DLPG9lKLMG6+UkbrOt6Gy82ncrnWfGohyjVaFzsiotuj\n35tHnOwcQ9+3yXwqv33m0++c/zI9XIbFWlx244D17ZpSa9h8+pVPNV8tQYZKZbf5JvNuWBlfa31S\nkHlt1jlvrvgWgtrThbfuZ6a913yqES8wn8rjTPNtG7AREf+U9v2VY3yr+dQjnW0+XY93mE9lea75\ndH13mU/329HG1enpAAAAAAAAegIvaAAAAAAAAD1h0SWOtRU1ams9KOx+Z8fXpO44wyQNe1uJQpEv\n3BanR0TE5rip9dWkhjqHS8ynEOf7zCcp5BXm+0Da55jvnrR3mU+SgtrEz/mkyOyKZGCyMjm3lOTs\nqZCr4pbWIzHHkO11Sco6hs23q72a/osvTevTVZvSH42/Nd+ZecYlTF8TnYy24oP5rM6z5RqqPV2B\nY23abW1asILynjzl+Wk9KK/a9oD5mmPst/LbF1/tnKUfwcWM6/J6+FHFSGcqs64/66stfdTKnVjx\nefojtYBFjrwq7/RaW7yv87eeCEAMpf1y65GUZk+nfVEr6wKQ2r0sQYzXydo0bVga1BJVyFcmGmxN\n62LwJ6V1Od5TKkfYM2AjIranfYKJuST+m7JUC+P53NCtixIwuURX94u32zsHbESpqwsxLu73UnM8\nb901FWS041XZu+CteXo5y8pKd9++Tk+vtsN7G5Xb41vPeJyV1kVrzZPSRpOIjmb7sCb7tYjyBLGv\nI8zU9Zj/R9naiqXe+qgkLzSfzq4m1PSnAW37s+cPpR0yn2rT35vvpsp+E/nM5MJP3R83m09PEP7U\novNbiJbVa4vOwctP5+K9xU+l9Wdt1aZPV3ynm0+91JD5/kvad5pP279ivto0Jk2b8gk8teurunu0\nSVmIoAEAAAAAAPSERY+gadzFJwsqVuBvyF9Ke0ubniJiQ06L7K6Mrm+81HzNyNaeTsSm+elXxVWt\nR6Nyt9peeuP9lI3aKApxj+33Y2k9svOetJ6k4YlpFyZRrMclVUo+yqexBX/X11jPsPmaq+Nv/5pw\n+kTzadzN91sVH4+IiJ2dEce/SetjNG9Oe775mlLa146hRqzLqZe1JMfT81qqBwdshOJQKy16cFqO\nNHqd3Jg+n3B6ZbvlkbF/Tvt48+kaDrWe58TbIqIb+9DUbL+6GrW5wXw+miRK1LSbpB+WCxpL9Bqo\nu3TEfOekLVPap7LNvNhGsq9rt3w6+SvSegsoSq3ck1Otz7KUTSPt9paYTa2LqqXehqXHI6eC9xiJ\neiRPy+FL5gi1ua/ptIy1MfimTn3N0iqMtL3/c22/d6X1Hk0tqLfb2vb0YvobP66iWgtRf/0YTZl6\nXGw47dpKO3+GlcuuuCgiIkbs9z4l24J9nejgM9J63/W5tB4/Uvl+1Xz/JyIGo3lNurKTLKJZPnX9\nx8LFGPxISqZWSxzirexdAzailMb3mU+16t/Mp9b1JeZ7fVqP2OyIl0dExFn5XBAR8Wtp/YlIz9Be\nyrrPPN6qmrMQJbuisu1lpXPwRCn/mPZ15tPvuDZeY95npf3l1nNhPo2/2vb6/bSfMp80T17TFJ0b\nMt+laQ8XO1eZ15LLHAoiaAAAAAAAAD2BFzQAAAAAAICesOgSxxoKK7qMQSK8z1r4fX8GDPfHz9qe\nkvNsbz0X5uoHHl58dtpbzKcJx9vNJ9HNC03GpvD2S20/+T5mvovTeiFLrOdiiPnDV9/Qu/jXzacA\nuAeVt0dExAabvqm0K8PxmNZ3cwbCd9uUyZ9Me04UJFj8s06wWNfI5R9DaZ9kviaYfa7JoRR+dzGU\nhJITCyJx9FrUnM0TzKPJ174GRi1Fg37lV2xtmumcQN2d7q7tt7Sea1J2siZubH2Sr3yv/WVtSrrK\nzwU69XVP9HsZw1la1Jp0tQPeokqK6FIoiXPKfaRJ+i7y0upmz7E28VPxpoiI2Nm5f2tTopv1eUY6\n08MbMcgWa9t3V6fcS1Tey24Ljhq1LV4Hm1bLhXeqZSebb3b6iSJ96rZZzfdtNqncnpRAjphocl18\nPiIixi2FgmrgVPxo5cjvMZ/qucsjJRz3Pq623uR84WXaCNj8mUOtu9+haiWebL7d2cdMWxnc1J7/\ns2zP4QEbUe5dTwjSrIG6pl2RqrRKt8V3235NuY1aOZ+XZz1lfWZJGFJLezW3uBxPJeBH1Vl5368V\nX19oPskZP2s+9cHbzadycYnjT6T1++OMlDb+ufl0Xf/AfHrW/QnzSYbnzwO3x/xTE/nqnH3q0Lel\nfZr5dJ/fEC8zr9bk80k3Wrnsx1rPjvjFiIh4TUecKpl/uRvG408jIuLVHcm+np1Lff5U+lba3VXu\n7pLWaGU+J9dW9D0UPH0BAAAAAAD0hEUfitSohCdh10iEp8bVCMMPmO+f8n10bfxJ69Porke39CP/\nwXxvSOtjXhqpeIz5rq6cs97HT658NmTbSi69qbLfTMV3fNTetX18TCXoCxUcyL1KogBFwfxNX9HL\nYYtkvTtHIX2y6lBaX+Fdowl/YalSptsRiF+zPRV3+8cY5I5O7Wh+50EbsdAY2sS8jjfou2cn0njI\nPPrUJ2TvyqjBhC0XoLiYj1zd0Sax8ZTlqr2vNV8zxvVN8Z9nneV221aJXmw+XQ+fwFquvo/L6ff6\nuCH0H9UXH9vVPe8JghWt9RFHjRCWaMNkjgLe2PnbBq/jZeL5A5U9StR+S9wWERG7O/fRpvR5S6nR\nz9vM58kfYGkyXdku7c7K7Blryzp4SinVFG/H/rXtjfwpoVGH7IlPtp51Gd0at9QIeg74sLV3a/Nc\npuIa+z5FmfeZb6j9i4IiaLWlIxYiSYj3hc1xH7B+ZSrvpUstRZTu1jfHBfa36s39t+m6efyylkJB\nTw6vNF/zHDJp6apua6NkX7T9lBbiYttPzw0lqrEm26rJTgK4uUWxFr+Sen7zo+p50GuGYigeh/me\ntF82n6JbXlK/mdZL+by019s1msgn5X12LX837bAlWFubsT1Pgif8flPPUUv3NFfonvaEJd+a1u9z\n9Rye6OxT7W/315cdaT0xvloJL1XFh3/LfGem9cULlPTGn/JVn/3NpIkiT3f6WyXHKYqQY42dE0ED\nAAAAAADoCbygAQAAAAAA9IQFlThKPODh1No0YU2r9XCgwq0eZtb/HmceSfN8LQpN1PRw7/YM97rI\nTmsj+Ipd+j5fKUz8s20PpfVAp2RsPh3xpphralI0BY69BCVRGDLfRP5b5AtfT9+Ztpd+u6/nJgHd\nLgtIfy6lKl4Gul7TnVKVMMBX/Xhr2k+0nlUpqfSpyJIzuhjv+lgIVEOnZ/nGzTOSZT/UOcPmb/a2\n6VYitqc0wye/nppyrps6iVwk63ChomQ7T5+13za7Slqbw0dhJHbzG39ta0tNnV+5KMwtfq3Uenr9\n0/3mgmThLaqkGd6iNlKjUZv8/x2ZOMQnuReZrLe8jaxsq0mrJDp5stW1D7fn4G1YU5/XmBh8spU6\ne+19uOKD/uJ1VW3pjHlWzPKpfXVhkQRIXgfrK0cpAVapb5viQxERcbH1xjqrjXbc0RSorTWZ7US7\n7Su16RjD5pNg0HtDl//OBWq5Pc1Tbd23pgcfMs9NKYf7vPlKwo0fMa/knTvMd0XaT5hPKSqGzSfh\n6FvNp+/xqRZaQ9GTlUkA6OXXfL7O2hOfXjAX1FKBqZZ666SnHl9XVP2tl5QSXviavnpu9Pqs7/HU\nM2rtPMWK5JOXWHo7ifBccn5R2m9YypJL07oAWOf6NfPNFrMfHypL75H0hOoCQm37XfKplOJ+xuSb\n5Yn0XeZr7tuLzLM5W44n2YppKrX3x9/ano2I9GXx7tbz3naiU5kYtTGn1bgA+Nr2DeEK8+qp7n2t\nZyLvtKN9quIpDAAAAAAAoCcs6LBjLTGG3hB9DEjJDXyMRSMRLzbfpnyj9anlGiv2sRiNJV1howmK\nurzJ9pvIZKi72zXXI16eUZzX25jKb+RZ/7iNCej7fJqrJoP6KI/GqDwV/fGh8Z3ZySvqcUkf4W7O\ndpOVvkaGPNXp2gHboPGacpXuzFEOn+RZxtjON+9wWp9iq+8rqcBX5ki9j/FrPO0k82nkxSNZc49u\nlXI2W7JG+4jPRVn2fn7Dbfy3jLdN50IP18fHW9/aHBm8wEYI74z3RkTEeHy7faNGbXws7K15lnfM\n2ssn0qt++miWRuq6KWVq9Qr6SW0hBY/06p7yad/eQgrdXZ6UR+O8pRZpcQdPqK/0HaOd4zZ35i5L\nObQqY23eRpS0TCUt8eYc2/XU4JPtHe41lTHG5UXTT01bG6i4r6sNpCcY7vyt2ip/Ijhl1p67MvXX\nU63HULvocbEfzViCp9FRL/ouOz/1lbd0nlhm9xelNtcXNjl6DvU95b7QkjkeiZlONce+TlLwpv/e\n2+kxLsnP3t96VscfRkTEboslvDBTnt9nf3l9W5p+PfT88X3mU8Tzj+3sP5/n+Ru2X9NqnBPXtR6V\n+PiAtupYqfV2tfRgtcidrsaw+bTQgEfa9KzoD9+6CjeH85q0f9p6Lsg6+wzbS9/3x+ZTnf0p8ynG\n472ASs21FUptMRxzw8GKT89sXqZKXnJlZ89Gy3WJRdAezGfy6yym+dtpL7O/VKRyq/l0x++1OrQ6\nt/+X7Xdz/GVEROy0vnA0+51rO2kE9Qzm96Kea5/aeqby100e5QJb9G4AAAAAAAA9gRc0AAAAAACA\nnrDoM6slVhkxnyYsuiRSwcJzzad1xH2NBE1zd6GNUi544ov/EX8dERFntCt/+dk8ufW8PiVDK23q\n5LoM2vrEz59pg7XPa33TKV97tu0nyd9wzCdrKj4J8coqGJsz3OprnumN3ZOiqHxvjP9k3iekLcKJ\ny1P85HsV0ceF5pXMwa+IAuslQcbkwN4R5cp80nxzI244HLPXsLk/68GYBepvT994JwwuQatPH26u\nx3qTyoxlIpVbOkKRf185F0nW/MoN5ZFubD2qiZ5yxKeOC8kduxJWCRMWvYmAo0J3sIuUJbBxcYvq\nmItb1Gp+m/k00fnS1jOa8sj7bKJ6qTs+qV/fU+r9znZPlz02dXbK6v2elK9s6SSLOJQACZYeuna1\n1YHKtR7JtsiFd6qVvpZUkcq6fFdrIL3PfE1SgE9YWyn5pK9hpXQgnnxBLfl55ivTGlxEqHbTe1L1\ny77601wj8Vi5L/anb38nvYHWOiw99N5qv/LG/Kzw8rRftvtfZXWJ7bcl+7b3diZ06Lx+03y3zzru\ndEr7u+X3lojoTowoff/89VPqH73v1POot5763BNfSNzpEzxeldaTzOnsPxg/at5G0nmuSXFVsz0x\nWk3U7ldQqG4PmU+r1/nUnFWV/eYaCQJdTF+mwzzfvI2Y86r4ffPpKfB7Ws//iL+KiIgvWU1VnfS7\nUvXFn8T0+eXme/2sY0WU5y6vgRJQujBTrYPXmKYWHe2EEXo3AAAAAACAnrAow+P+VqjRBh+hUSoP\nn9ynt1sfMVMqD0+1q/HZbebThPQ3d1KMnJ7H/a/m09Tj2fEjf9PX+X8sZrPekj78a1ofnXio3W+u\n8VE5jWJ7kpBm9PwMm6R4cueTBo1h+zUaaWOAnqhC69uXcSDF5j5te5XRJI9zqdptN1+T+nhzJgaJ\nKDEc/xW6lj4ls/yi+Rxv0FmUKa/luGXsaryduOpjsU2ihQ0WDdif47JjNpH03ByF8bjidW0ZeVRD\n42OPNV8zBvwFSxWrESlP56v7wxOqaITQJz6vGvgM+ozXe11hH+XTKLmPZGv7M61HkYI9nfi04rDe\n8jZt54SNoA+30QvvUjQ26W2TPi/nV+4oH/dtWqVxq4FrstZOdsaoifAufXxcWW1kicRqGZjhTA4Q\nUSIJnn6i/O8j5lM9816ueXLYYp6rM0HNKnsSUc27xvZTGnDApB8AACAASURBVBs/bumL/P7S3bTb\nfBpR93OZC2an1O+eofpUP64iAy81n56kPmi+Rs/kPb8ULf6UpDv38sp+05WkHjd2lCE6V08ddP3A\nZxFKcL7LksKX1mFu+/5av+cKE/02j66qx/cEYerdXVX0R2k90fvu+M7cKulEVmYyln9n+2lhCH+m\n1BPHHnuq1HPeN2w/3VH+7PSqmI3imV+ofHY8+BVSTfTn/un2id/7LpXHa82npDL+S5o+6x2dJSKa\n+/yGznNmE9X9osXQFD1/W6ef0tm68ktX1rV9V6f1K6JnXe8z9bdHlyCICBoAAAAAAEBP4AUNAAAA\nAACgJyyKPsTDxxKOeXBRQe1dFlS+LkODL7T9JL7xULFC7Z8zXwmS/7x5FYx3MaREk0Ve8ewMwt5m\ne12a9qvmuzCFOjtMODGWgsHvsrCmUnW4PGBuqJXqPbUdWxSS93UqxuKZueUBfa26UZNwlDCuSu0D\ntteftVsuXxpOW9K7rMyA+p6O3KVZzeOjbWA/4qNpT7O9ptvJ1yti/lgxYCMUij/D1uhY335Skn8o\n+L2/nV4dEfG2iIjYZDXruWk9qUcRnbqcUfJSD79vj4iSuiWiCHa76980uNhFEsj9nd8m2cx8linM\nDT49XO2A36tqdVw8KxnYRa1nT7ZT603cMtZOb/f2oJGHdFMRaazvuebTef25+XSvrLC9zsotTzDS\n1O0tdu/f3LYNLoVSu1JLNAH9RtfMRWGqZy5sb1ooH03WX94ejvokX2NrOO2rzNf0WWO51lZExFOy\nn7/J0n+sybbZpZA7U4q21+SW0W57r66+16XutRW15oJamiy/H745rfcseu5xGdZX0n5369ma97pP\nI/lUrnq4zvq9X0zrEkc9B3zFfEXw6ecscb2nA1NCE59c0vSfB3M6xHxSS+PiLaBE1p78QyXuglMJ\nSX06zFvT7u7Uoc0Dn0ZMZ7KMq9unnoJLTt8ZP5dbE+Z7Y0REPNOe7jTlwQWEek72mqHnhblOvuY1\nckXr87R/6rN+yHx/U/Fpusffm09P+d7XNPfbKksG9BNpv2R76Q44156h74jfyy1f7VNiZ78bvph/\nW9Icnp+S3is7z07N9a2tCXcoiKABAAAAAAD0hEWfYa2xUI+vaLr5sI0IaFreK2w/Tbz0EQGN/b7L\nfNPtW7BPiNUI3ePNp2+6uPVc2ybzL3GI0ZxY7+NgO3JUaYONEb2oPX7h3opvbvCJiypVv7zNuM6T\nLT2ERh/9LX2sjcp4jEWRLh/VbFZa32ijDv8ycPSIEuO5ppPmuBkpPzdubj13tOPxJfK0PkfPPcZ5\nY45K3N35vQsxeq7j+fhYU3I+KqIIlifc0JjsLfF28/5gRETssxHMt2d5eHKccjf4SKxG2XzkuRlV\n/DHz1NLsK/2DX936tFUiZ0sHr/+Tlc9nJ+boRtPEvlnfVmqKT15vog3eZm/Ndm+XjQCXKIK3G9+b\n1lMJfX/aW8zXRP38PlqTd9pk5x4kcrZ0WTlgI0pdKb3Id2TbO2R7qR3b3vk+aVq891dE12MYTdxj\nt0Vsdrc6gtLPK3K2s41ARZRR/mHzNZEkjyjVEjLsb+tqd0GT+cGPoScRT+yunup086l9eEnr2ZW/\nYF28v/U9K39nLVWPpy/Xs9r/Nt/O9l73ZxM9Ofya+Z6S1kuwSRyyt9NDqp7MX6xB0TSPKGnJBz+q\nniQ9rYnO7t/Md22bSO495pXO5q9azzPz2ep7bC99el0nrltTSDTX/xR73nti2tnpcrq/Q1fGny7m\nAj+GlEYTHX3Pma23oGiVKzPemNbrs5KDeNqWJj44Zc+ZUuJdb88327J92RWO3iT+xXxKJ+J9V3P/\n+JJbeiLuJoVr2pfaAliHgggaAAAAAABAT+AFDQAAAAAAoCcsisTRxWkSNPhUQQXnz67s91fm01oo\nvk7JjfH03PJ1EyTy8gC8vsknyd6R9pXmU9i1TEyViMhXPtiWYX9PAyHBwDvMJ8GaywDnhlqigCJC\n2Jjnt9P2UjD4unaSfkSpEiUQvjHXehi19eu/P4/h4qX3Vib772lXAimh7G35fTttQrbkUGtNojWW\nstE9Jh3ZmLXH1/FaGJFTTfLXSAtcCqDS22A+iRFGrOZPZa0Yt0QfU1l+O6sTy7ebT6H2vzHfcOeT\niJL8407zKbnKHVHDx2v0qx6q7Qi9wu8A3ZEHKr7Z8txui9Dct+PxH8ynulgS+kxnC73FpChKdXOG\nyUn2tve3J7jRvexyS8mnvDs6M8/OpTw16TYsLbyuqg66HE/XtqwyqakEd9le6p08rUxpaW81n/p8\n79OVHMQTUDRC+nNtza7SA7ow6f4BW9rc8cpe3s+vyfZ/cs7HxWs94AO2reefXzWf2oQXmU/iPH/y\navrt8fhvredTKfHaFle1Pk0K+WP7y1el9bWuyspgnujjP6Z1ueUXB2xExGVp/8l8+h3z/xTg1/e0\nR9yr26JK8H1b/KR5Rwc+dV9JO7Iy21JflXJXm8TNhYrnt39RaCYA3Rp/0HqG0roQUveP/7ZaDzLX\nqCc6w468t30Wf73tqTP0BDzNc+hTTHZ7UyuBdDFp05astH7q+vZeLs/GP5Orxf3XzvPoO9M+y3x/\nHRERP2yekTx/F+crvY2vXPu5zlvPkUMEDQAAAAAAoCcsylCkR130busjYUpYWXvn9CSaN7ZrrHtS\nfY3+eGoETRD2aIBGdf/UfD+b9hPmU+SnTAPU0X7J9npdnBEREaM2XqRxQY+HaIxvYQq+TFddkyPX\nPoZeRvf8imic0kezGl5mkSxNm/7/O3tozOAF5mtGyra1K65H7GxHLj11ajOqOdFJKfucPM8Ptx5d\nXR8/GmlLej7HfMTsRKln2LbqsSfAf0vaUYurrW3Lcn/MZrPt10x8n+hMPdZE9TKm/Bc54uwjtqqn\nvuyBys0XZZhoo4N+F6osawmHoV/UImiewuMzaT2yoPvbU/BoOQ0fY9X3PdF8wxHhKbNLvHV3J3XS\nUFqvV4rCe9REbeYF5lOC6jL6qXTJU60Owb/bIwawNFC99XZbPWNpVT82MH0/oiQZ6EYymr6jm47/\nW3LLR+VV5/1+mK0I2RePi4iIDaa82Z+j7R5zqCVZ0t3n7Wy9v51rVKaefEHPPz6mr0QHfl+r1/LE\nadIneUrz5np9h0XQhgeOHhHxv9L6809J4OIJ6hUlc0XIUGU/PZd5nzn/kTPVJ29R9RzliVLUa3us\np/TQV5v3+Wn9OUltbolBqq/uql2+OGu/EoH0RGy/EhHdhZZUT/3JWHFqj3Kqds71YhCOys2fptbl\nPfViW1pF5bcm/rD1XZXPUSXGHlEShvjCG80d589nI228u/RJd7bPnM+PQS7JZHgRpYz22OeK+V1m\nPmlDPA7tceCjgQgaAAAAAABAT+AFDQAAAAAAoCcsisSxtuqJC1Q0ja82ZfTGzpokCtb6JHRN6nP5\nggKqf2e+JoD8nSZCuDXeEBERuztSmyaY/WpL9aHwtoe8N2YA1CeIKhTqCSM8JD5/SBxaRBWSjbrk\noojXXPqgAH1JN6HUH0+t7DXeSkgiSmIWF/g1sgSXQ0VcntalHkoO8hLzNSI9F8BILtEVGk7FQrHK\njjWVIgD/bao5fmOVqeil5k+09dhXOWkmpg6ZpEerwdxsk9d3ZmD9d01mozVnfCK9BA++7v1kWxtd\n7KoSPrnim085Dsw9ErLcbT4JEF18ozbTJ0FLxu2i2GaK+nkmtJEAyv/yt9t65TIltYC+/p/ugRdU\n9nO51UfSFgFZufO8TkoIROKQpcfUgI0okjUXJjWCxrUmahqr7FVW0vT+W8kDPEGYnhuKlFeJsHab\nfFby8q6IrumBttg5S25Z64X8yWRPa+daij/7iWql9Q3TrXTZZfISYLn4Svef369KnOAy5eGI6K4s\nd0f2heutZ9ZTwLg9s61NmfJER3ynqQ7bzafS8v3UJvgVObHimx88pYxK3KdaqJ918fZ4u2bbM837\n7rT/0XzN5J1NJu/T8fw5c08rHL3IvGqvSzqRjZm26YW2l2q2Sxe/VjmGngKOds2uY8GPoRr5bPPp\n6n6f+V5bma6zKafI/Lb5tILxSOfKqT6V+vzmdqsceXO8OiK6KydL7OsTqkZyesgDNiFLolyXYGpy\nlZ/zkUAEDQAAAAAAoCcsegRN2z4mur6y31DaGzvpmTWRvKwovq0dCStMxnfnVpne97v5Fu7xi59P\ne8CSZiopiY8L633cE/RfkXa4cs4+iqaxO09rOvco6YNPz12fxy3v9Zem/XBn7E8jjm9pPRoR+qDt\nVUZhfFTeE7qLeyu+5hvXxOtaz2R7zpfbfmfn3iUaoJjgeGcc6NhSmB4L3VHSZtRub3xT67kxJ5Ff\nGLM5q51gHjHSjta8wfZovmfYfttMjkj6RPQfz9rjU7l1tTxJiFKfe+TzunYP31Oxap/Wqljwwixi\nAMeDt5Qao/MImtcUoWvtSgPdyz6NvInJerTsl9Nu73yfpknXNAJPqpzLu8ynFtKjHBqb9pqvkXiP\nQEwPWOg3tTFhv8ZqYT3aszL3Wm++RnOzsxPZUVTWoy6NguOyjNxElJTYuy3+oaONWj2aiG+NiIj1\nbZKdiLHs1XebVuacbKO9T9evcKXHnraPO9px9KOheaTzktrf/jqPk6iMPCGQ7snN5lOf5enZmjbh\njk4CqabcPHr09crWd6T9cEcf1cTiLrQS3NG2J+X5Yk0mJZnsLMok7ZU/F84P/sSh51VPSaE4Zffq\nqpy9ffqRtJ5mv3k29Se2fa12aci8ul4en9E9VZYu+MG03rrrnP0YuvO+UfHNToc29/jdK53H7DQf\nJX1fRMRPpfXltd6Y9iPme03a13Xq/VDaohrb19bjsojXy2I26lH9Sr44nz29tdI5+J2lunO0T6pE\n0AAAAAAAAHoCL2gAAAAAAAA9YdFnVitc6G+KWtvEEx68P4OEF5pU4aLc9pV8NIFvZysniFAY/Cxb\nP0M/3Ff3UNDYJyQq3DpkPp2Xi3kURPWVFBRS9sQhCtkuRPi4e4ZNEg4Pv5fArwtCNe26rD8ylAkC\nXPigMPh1HVmjRKLPnbXnZCeZSBN4d8+uDP7u7hxlOCK6a93c1251V7tZOFzooJXqi0BAk14/bXtd\n3249xbzNL/Hpq1vze/xq6Le7ZEWhcz/GcFoXf0kw1h2FuTiti1F0NzxQ8cHSQtetO4W6wWuCWiWf\n5i4JeJEkbU6xlotEJE7yydJFtjNsPrWuLjl7MM+krLwz3da7IdtP9dPPr7bSkH4nY41Lj6YtdaHc\nVFvTbjOvS2TFV9N6H3dPZb+mXtxnniKkK2KvnW3b7O3eFyIiYm+n3W7+5gLrwbW2ae1MXCxcBF3z\nWVebvrC+htXf2raeYlyIpfvfBc0SyRX58RXZJnifpLRWt5hvd64jt6a9VhEfbp+QSoqRZ2fff23n\nmU2tTJkiob5yspokxCX784OvFaZWyZNwaFrDk813aj53/YVNw9kY/9D5jgY9d/nTjp6yXKKuv/Lk\nLvrtRSo8NLB3ROkFfDqRWlQXl0uGN5/roOnucWmg7st3mE/n59OJfjGti+S1yqH3SXoKvcKeqK7M\n7aH4eOvTp2XCTSnJt5hP1/e7zKfzclmm7u4VFR9JQgAAAAAAAJYoizJMXnuz9OQLGjPxcdI35zu3\nv0kLj9coOfz/Z9Px/jwnl3oSZ42d+fiRRkP+1HyvSnuj+TR10yN8Go/+AfPp7d/HRDTSNPdvxv6N\nGpP0ibPN2Y5Z6b+vLSOP8WnkqozGaFTMJ2UqIfcVbXr8iKvz1+21dK8RL0pbYpUagfMI0J42TbdP\na222PdpYRn9qJTifkbTZ0ztX5W8/33waI/Vp70Nphzt/3fy2cRs/3pEjjtHaiOvbVe7LN47EbHa0\n5edncyDP02uvxnm9rDSG5L9RsbjJgKWErqtHSGtLJehzr01KHFLuraen9VFhpfTwyeYlTdIN5tMk\neI/MPj7P0qeHKwpfxnHXZL2b7PwO9QyMKy5dZrfR3Z6riXVNdeIzqh/nmG8orcdslKzJdQnNI463\niuqXP9w5F7V3/tTRtM3nWupz3UneKio+5NEKbXcT6uspZ64TmM9Ou7avE5dUtOU88yke4JEnxTO8\nD9adX/qkd+YvPtee2lSSXnqbcr99naWRmuux0fqaa+Pbc8vjC3p2KYvElE89lqWnq/lbDka/bdh8\n6m29ZdPnl5rvd9L+kNWY2uIjH8/f5PqhHfFzueWJ1pqljH7G1GCKBXldU52s1Xtvt3X1PVqmJ8S5\nVnn53aZruanyubf4qrH+oqJn7PeYTzXW78vfS+uRbSW48gUOFCXzRCRTeY9usm+UUs/vDpWv93qi\nttTS0ZYpPR0AAAAAAEBP4AUNAAAAAACgJyyKxNGFVCcO2IgSqvXQpMKL/2a+X0nrYVzJ5jzc+8q0\nLtFTSPLd5vvptO8033BaX8vMp9oOnp/LHhWk9xUrFEqe+4D8dGX79Mp+ZS248XY/lxY0a76sNUnd\njgzQXmTTq69O++1R+KG097dCzog359ocW0wO8c42iO1/LcnT5CzfqCXhGG+Dxb7qzEKseT+b2uiG\nJoe71GOknUbuE9+fmfZp5lMtcyHvf0tb1jjZ0Qpz99h+Eiu4DKg5i6lWlBtRpq27BOaEzv6wlNG9\n7O3Bzsp+EpdcMOuTjZZSQVveXn0i7fXhfCCtr6WnVSY9yYOkOV531TY8pvWUtQ9LOzTZCou8dSeZ\nzdJidqu5xbYluJ3q9P5NXV4fN7eesVZy532c1sfylDaNRM7lh7pDnmKCo3UplbymXakrQvfIHZ32\nuLkTPEnIcNr91ckb3s769nyh+8HL5XlpXXgvObGv2Kk2wydl6Inm58zX9BNj8d9bj8rUj1DuUr/m\nzR6jnT5JV8fv5UbA5tdILcZKO8r0AqyDqN7RpXe1VvZTaV0C90dpXVYoqaGXvJ5+hs23I6W9P2pP\nqdsr3/eEtD6RQU9Jvgaqys9LWSXvU4zmK4Gd1wIdw/sVrSM3bD6dqyfh+Ke0LpytySOVWuXj8abW\n99j48YgofVhEmSLla5/993wO/R3zDaX13lTn6vVgdMBGdEXXRwMRNAAAAAAAgJ7Qm+FHj5todMDH\nsl6b1sdO9Yb6++ZTBMMnEGqaq6+Wrjd4H2sbTvtT5lPCEH+D//W0nkJXU1l97Elv87On8M43OsoD\nFd/l5mtGaNbG51vPRI5nTnRKuhlJPMkmZCvu41P9NWLxts65NKW/21ZuL+NPQ+bTRGafANyU4P5K\n6tm1szzzjUZHyy2jOnugMxLbMNz5W5XSM8ynEc43mk8jnV5LFBMuNXV9J+7bMNaOQ9cSvvpVUmn5\ndGSPZoiFXLoA5g7VT78rFI0YMp/aBu8Cmvty1O6ua3L8+AKLWKvd3dsmZYgo48Y+bigNgY8fKibn\nyQn0PZe2nv1txNjrrs5r/hICwELStDGepuahgc8amnbMNRMbMw3CqNWts+LD+X2+2E0T7fERc428\nP8Z85bjeszR1er09nQzFbEptrGmDnPnq/WeXVVd/pFh3Lam5pzcYSvs1851T2a9JKuXxQJXfVGdJ\nAkXfyvIHF+R18+e9lZW0VztzEZ6bLL66KY873Tmy2odu0vq5RPocf1bUr/QSVc1xDYvSv/szpbdo\nQinU/Jddlv28J9lX3NOXglJaek//rhrh6fP1jFpTq/lxxyq+uUZRSU9/olRlfiX1pPNB86lmD5vv\n1WmvNZ9itP+SUbOIksrqtbaf7l+vuVLE/ZD5lPrOdUZDaWt6ENd1EUEDAAAAAABY4vCCBgAAAAAA\n0BMWXeL48ICNKOFAX8VLghwPKUsU53/7Z22guQgkd7WiSRclPi2P9eHWc1vnk+5fbDPfl9IOm09v\nurvNp1DxPeZbGOGYjuIpSyTDc+nDSyIiYqJdxT6iyBs8kNtMi/yqeZ6V9qRZe0Vck/KEBkkjfLqq\n5HUuc9J5eZWUDPCmGKS7voxqwEKMN/gVbMr0NltFZH36XA6xt/2fr/PUyEUvs/3ujvdHRMQNnfVq\nVG7lWqqkXmF7/UnWvPOtBu5oxTx+zfW5l5WutSeL8WnDsHSQtNHrqdpEbw90/V2coRa3iFsuzlbM\nkyRpVaozTDS+t02k4KIafbdPadc97aKfzw2cu+/n56zWvyYaR5K79GjayvGOGEgJkEqiqaG0ftXV\nt64z4eNIR3IrGon9pPUYO7Kn2lGR8ZfevSSq8ecQ3RneOpbnj7WVPRd6DFz9Z/lt6zN9xFinX740\nracwU7o1F55p2+/NRnY4ks8PDV9J609o6t9LCd1SSZilRCA3deqB+szy9FTK3Mt5/qSNorYSqGSK\nLmfU85GfnVoln3Kj3vaV5tMz53PMp9J7g/m0OqAnqtBalV7T1EZ7Iiedi7fGKlOvBQuRykZ476P0\nUb6W8JuyTkzEd7a+iVa8WKbwvCf+JSK6tUG/wydz/GbaWn82ZL7htC5HVW13sa/WshvrCKab89po\npXqsiVeIoAEAAAAAAPSE3kTQ/M1X0Sp/u1a6y7ea7xdyPOEn7U31ZTnSc5NFxjTqcFOb2jzi3Pzc\no2/6Fh8DfnemoX65JcjQREQf76nFG5Ta4kzzLcwb8YE8VjkrRbrG419tv1el9emlr4mIiFU2YrY1\n7ZDtpdSkft1K+tgvtL4npv1oXNn69rcROx/bUFX0yF0Tv/RolD7tjpcv5DhDqTFbWk8ZH1HqXL/m\nX88a4/VZ48MfM99kXJJbXgaKIJSkvCPpe0OnFJpvv9uu+RkZDd3bSUi7prN/gyJn3hwoKjhfSXdh\nfqgl0NCYqUesT6z4mtHyDXbNNTrrI7saNfS7d2+rZ3Cvtj0Gobo9XDlnT1DdjLB3kwHVkt7A0kVt\njEdn1KM8rvUMt1EcTx2vZFGuWdGTg7eLTRLylfGXrWc6vje3vO43sYYLbIkJxXg81db4gI2ImGpr\nqcceFMGqxVPms786MGDL0c6yfnmkTSb1IvvbWuIgaYi8TKXIOMF8aiG8THVfl77mgoxHeYuwetb+\nEUUfVeI9pWdb2MdWpX7xRRT0i7xGqk74M6qek3yJJ/2i15lPtf1XzafEIf/BfIpPeiowld+w+dTK\n3mk+RY38SvrVEmr9T6h8NlfUniqU8Oe9nbtLbb3/hfqJL7ae3W2S/E+3vsfnvfyz9pdqIfz5TN/i\nyjmVs9c0aUROqexXloWJmMiSqy1kdLRPU0TQAAAAAAAAegIvaAAAAAAAAD1hxczMzOH3miMuW7Hi\nEQ/moVZJ2jxlgYLqd5jvmgw6v9DWH5FYwkOTCj564FQCgBFbZ0MrIfxyuwZPSZmx3/aS9MHXp4jK\nfpIGuoCjm9yi4WMzMysq7iNixYrVlTLVe7dLBhTU9XQnQ2l9UrBCxDWpUgkpX5G/dIPtpXD6bebT\nX/rvllTBhXx3tNI7l4Q057/erpy2pjsC09kJAmZmDhxHmZ50iJvCg9TN+W20+vftaf3s9On55pO0\n0cPlqjs+CVVh8kmbJFvw9DO65kUmtiHlJF4nlYDHa8ZkW+ae8uWhGGRm5qFjLtM4xL3/qOa47v2z\nD3Hv16h95lPGdZcWMdEPp/Up0LoD3ln5lvGOsENrLnrrrm2/zyUq9/rcsM7OZbxNArF21n7OzMxd\n1NO55jjqaUTEihUbD1GuJQ3D2sqqlpJ/ee3Y20q+SzKRDdk7eKqQ4bYX9n6vHK3QSCvPs5WUJC7v\n9l2+JqeYHrBHzszM6HHc/2ceokzvn+U5w8pZv8KnKKh8pzuS+GaPcy0h0B1ta1CuiJJjjdkTwUXZ\n8/iThI7nvtsHPosoz2zT7QSViLq0eXbZz8zcc8xlev4h7n9vPXUAf/7RM6r/tkvT+rQZJRbxlHV6\nsvLn253tby/t5wVZzrd0Eok1T1xew9Uen2U+3Rdenycrvhq3Hsf9P3SIMvUELN9ofX5fqgyGzKcS\n9tUN9dbgT1kSol5ovqbOPimuaj36i5+wvVR+/2w+3VFeC29O609LesbynlC/0wti+AjKlAgaAAAA\nAABAT+hNBM2jZZp4+RnzaSqwv3LqndlThI7Hv4+IiK3xD61PiSo+bfuN5SjR5jZGVr5n3I7ytHzn\nLVMAy/u7xxu0CrknhdaoRG3avjP3ETTh0zw1luJnU0u8evbAZ/43Ps6iiJxPQ9UYznDrWZnjIkO2\nl6JgPq6hsr/PfCNp11T2mz5MMtj5i6A5zWiWJ2PR2KJHcFV6W82nNCk+QqKRRF/OYKJNHOJjcFrk\nwKdaf3nARpSxnjLNfW2eq5femH16KIigzQNzHkE7WsrI+MqMXviY9fel9VZD8XaP9I6044a+nMYD\nAzai6A6uNJ/f4UK9gEcCVD8PnSSACNo8MK8RNKeJunhbua6yl3ozbxUVZxirLHvivdl4W4/KN6/M\nnuekzn61I6vuect97Es8zF8EzdHdW85zVZazJ+BSkgR/FlOMzH+teh/X3egpwFVKKsuLzadFDK4y\nX+nLSyuzMp+7pjt9kr7Rz7B8i5ivCJqjJyG/8nouPDMOjf72ys7T7Jr8jhJBVll6ZKz23Xpe8Nqq\nY3h9VrvuMWrdM4sVQav1K/479GwyZWUlxdJoR9ehxD8ey3pTWo966yp52ivV8rIowbp84xi3GOm6\nvGdqvY/X0hMH7CNBBA0AAAAAAGAJwQsaAAAAAABAT+iNxNFRuPUr5lMo+ayYjQtoFKz0VA4KmdYm\nq77AfJoevNPCmpICXG77Sca4y3wXVM5LHO4teP4kjs50nstB80hadLLtp6BzCdCuTRmUB4p1jfZ2\ngruauFrEDxtSHOo/UILAVRWfSyRK4Pjo1+JaGImjcCnpoVYRcUGJytdFEvq9w+aTQPeeyn4u9ZBY\nwada6/PayidHXzxIHOeBRZc4eutUk7g29/KmTqqZhrFZnoipVrwbsS72RkRXdFIkSy6kVJvje6q1\nOZbEC0gc55wFkzgKv+61HmPlgC1y+mlr2ySVczG44qxmrwAAIABJREFUapmvXVr6Qv+Zasu9nZ3b\nNbgWRuKo8/dVu5S2wNeRa56k1sWhv3b8EEml1piAbjL7wHXWf4+3/aKnWtD5eVukfsqfTcSh24SF\nkDgKr0OqV35w/Vp/rlHLt8l8aks9ndKe/KZVdj1UGi51VOn5E4JK3OWC+ttjEeTOl8TR0e/wclEt\n9YQqZUKO9yEqQT9NfZMnDmn6szWWym6yLaVa/SulpfuilqrG74QjrUBIHAEAAAAAAJYQvYygHQqf\nVKi3S49V6E3Wp5ZrlMPft/W5j8/Upv/WfBoj8omVtXjJkf7YhYmgHYramErt3b2W7qQ2YddH4jUG\nUkvq4eNPKkE/horFf+KRjf8sbATtWNDv9XJWefjhFXV7sLJf7ftq5Tc3EEGbBxY9glajFlXzqeUP\nD3wWUU9CrHvV24haVFfb3qKeWPEd6b1PBG3OWfAI2lyhOtPPseiFiaAdDyo/jxyqLA+XWkL71RKO\nrT7MfhOH2O/QLGQE7VhQ7+2/pvb8eLS6IS+92rPx8bAQEbRDcbiWXxHKkyqfHaxse62qPdXqGtXS\nBNX2q6W5OhxE0AAAAAAAAJYQvKABAAAAAAD0hAWVOAIAAAAAAMAjQwQNAAAAAACgJ/CCBgAAAAAA\n0BN4QQMAAAAAAOgJvKABAAAAAAD0BF7QAAAAAAAAegIvaAAAAAAAAD2BFzQAAAAAAICewAsaAAAA\nAABAT+AFDQAAAAAAoCfwggYAAAAAANATeEEDAAAAAADoCbygAQAAAAAA9ARe0AAAAAAAAHrCiQt6\ntBUrZhb0eEuFmZkVx/y3lGkdynTuoUznnuMo06dRplVuoJ7OPcdTphGU6yNBXZ17KNO5hzKde46g\nTImgAQAAAAAA9ARe0AAAAAAAAHoCL2gAAAAAAAA9YWHnoAEAQK+pCeN9EsHDaQ+Y72DaE8yn0b9p\n8+nzVZX9AAAAoIG+EQAAAAAAoCcQQQMAeJQyfZjPNYL3sPkeSjtuvn1p15nvjLQbK9/r0TdF1Q53\nLqQCAwCARwtE0AAAAAAAAHoCL2gAAAAAAAA9AYkjAMCjjOkBG9GVMYqptA+ab08rStxs3vsiIuKC\nmGg96lzOsb3k8+Nqe6f5dDwfQdT2avMdHLAAAADLASJoAAAAAAAAPYEIGgDAowCPWmlkrpYWf635\nRtN6oo89sSm3PIJ2SkRErItbWs+WtCfbXoqMPWC+oYFjRUTsGDgn388hcgYAAMsRImgAAAAAAAA9\ngRc0AAAAAACAnoDEEQBgmeFyRq1Xttd8p6U913wSLJ5tPskO/y5Wmfd/Vo7y6xER8XzzvDLtNea7\nK61LJiWp3GM+JSfxo+5K+1jzKbEJHRkAACwniKABAAAAAAD0BAYeAQCWCbX0+doeN5+iVp7aflva\ne8y3vd36T5WjlfQfq2J/RET8kn36l7P2ijYJf21kcJttPzvt58y3L+2p5lOEjY4MAACWE0TQAAAA\nAAAAegIvaAAAAAAAAD0BZQgAwBKmJmd8uLLfattWQpAD5tPaZC5JPD3t7viseZX+o4ghL638rXx/\nb77npP2i+bT9oPmuiq25tav1rUl7v+23NQAAAJYfRNAAAAAAAAB6AhE0AIBlgiJnHi1TYo4h8ylV\n/W7z6fNbzbdn1qcREaekvb31XJl2n+2lzmXYfPemfXLFd0M4OvJjWs9JcXdERKyzvSbTTgQAAMDy\ngQgaAAAAAABAT+AFDQAAAAAAoCcgcQQAWCaoQfdkHZIEnmu+1ZX9JHvcY76ROCG3nmHejWmLsPCH\n07o8UmusPdZ8WovNU47clXYqnObMzkpZY0TESZX9DqZdHwAAAMsHImgAAAAAAAA9gQgaAMAyoRZB\nW13ZT4k5nmM+JRgZ7uz50rQ/Zb470/5C61Hi/S/bXtvTelp8pdI/xXyXVo67K/ZHRDdapgigJwQh\nOQgAACxHiKABAAAAAAD0BF7QAAAAAAAAegISRwCAZca0ba9N63LAr6W903x70+6JJ5n319Kear7f\nj4iI37BvHE7rEsd70j7NfF9Pe5f5zkx7jvmujlUREbHZRI6TAzaiyDIZaQQAgOUE/RoAAAAAAEBP\nIIIGALCEqY2y7bft09I+ZD5F1W7o/NXWtD9qPqX1KElCXh1viohu56FEJKebb1taj6op4nWT+UbS\nnmC+czNy9rD5htOeYb5VaWcCAABg+UAEDQAAAAAAoCfwggYAAAAAANATkDgCACwzPCGIkn+4nLGk\n/LjAvErn8VXzNQLE8+KvW89o2i/ZXp8eOFZExPPT+ppskl76+mZ3p32q+Q6m3ROzWVvZ72BlPwAA\ngKUKETQAAAAAAICeQAQNAGCZoKQaY+bbkNYjWWVkzrsAxbc8Sf/XZ/3thWmHzPf3aT2Bx4G0O82n\nlCMeLVOCET+GUu5/xXzjA/v7MYigAQDAcoIIGgAAAAAAQE/gBQ0AAAAAAKAnIHEEAFgmnDhgI4pw\n0dcoG0q7J25ufVPxQG6d3fq2xGcioitJ1F7D5rs47Snm+0jFd37aK833zMo5Swq53nye+EQwwggA\nAMsR+jcAAAAAAICeQAQNAGCZcZJtK/K0xXwb0z7XfN+IOyIiYmXaiIiz0o7bfvem3WQ+JfV4pfnO\nTHuN+ZQi37/v/rTD5tO2R/10zveb74QAAABYfhBBAwAAAAAA6Am8oAEAAAAAAPQEJI4AAMsYyQqH\nzCe5oK8ptjntqeZbV/m+0bTnmU+yw8+aT6upeYIRlzuKT6cds6OtTBHkPbbf+vazwkzl+wAAAJY6\nRNAAAAAAAAB6AhE0AIBlzIGK7+S0D5pPo3U3mO/OtLvN98K0TzDf19NOmk/bntTj1rRD5rsuVkVE\nxFZLHaII31TlnKdjNkTSAABgOUEEDQAAAAAAoCfwggYAAAAAANATkDgCACwzVlW2TzafRuZ8nTGt\nbzZhvofSnmW+qwe+I6LIKD3piKSIw+bbmfY0852VQkZPTqJz9rXWxMO2/UDlcwAAgKUOETQAAAAA\nAICeQAQNAGAZo0iWR8YUeTqlsp+nxVfq/bvMpyiZR68UffOEJMNpPXI3FVsiIuIhSztyZlqP+imV\n/7j5lIS/liQEAABgOUEEDQAAAAAAoCfwggYAAAAAANATkDgCACxj1MjfbL6DaVeYT6N1vpbZOWnX\nmk9SwzXm25b2I+bT3xzs+Bppo6+/JlnkXvNtjEfGpZCSbTLSCAAAywn6NQAAAAAAgJ5ABA0AYBmj\niNh6842kvc98ikyNxbmt7+Y2qX0Zy1sZuyIi4hud79uSW/e0vm2ZPt+Teihd/41tHC7i3kwF4hE5\nbXvqfTFV8QEAACwniKABAAAAAAD0BF7QAAAAAAAAegISRwCAZYaPvJ2Qdsx8Wv/M1zIrn7tXaUIe\nbj3TcUZERIyYb0Mm//DkHsNpawk/zrMVzvT5sH2+J+1q80na6ElCGGEEAIDlCP0bAAAAAABATyCC\nBgCwjNEo3CbzKbW9R6iU5n7UUodszO0J20/p8z2ph77nfvMpMnap+RSb88Qhdw7s79/jx9UxGFUE\nAIDlDn0dAAAAAABAT+AFDQAAAAAAoCcgcQQAWMYoSYg39pIpusRREkiXFa5IW0vM4aN7Wq/s0+bT\nymgPmk9pRW4z30lpzzTfyQEAAPDohQgaAAAAAABATyCCBgCwjJlJu6/y2QkV38HK5wcr+x2wbUXG\ntphPo3+7Kt/tETl9jycYURIRH0FkNBEAAB4t0OcBAAAAAAD0BF7QAAAAAAAAesKKmZmZw+8FAAAA\nAAAA8w4RNAAAAAAAgJ7ACxoAAAAAAEBP4AUNAAAAAACgJ/CCBgAAAAAA0BN4QQMAAAAAAOgJvKAB\nAAAAAAD0BF7QAAAAAAAAegIvaAAAAAAAAD2BFzQAAAAAAICewAsaAAAAAABAT+AFDQAAAAAAoCfw\nggYAAAAAANATeEEDAAAAAADoCScu6NFWrJhZ0OMtFWZmVhzz31KmdSjTuYcynXuOo0xXrHgsZVph\nZubrx1Gmz6NMK8zMfOLY7/0I7v9H4rju/++iTCvMzHyQfmquOY56etIilekJFd/BBT+LR+ahIyjT\nhX1BAwCAHlETUUwf5vMa+hvvUlannajsd7jjAsD8ocdXv1+1PRGHZvUhPvP7enrAOidW9ouKb/Iw\n5wKPBvwNTzWj9gLm+z2c1t+C1gx8R0TEWH7TGnt9U+30F7ra8cR8vfghcQQAAAAAAOgJvKABAAAA\nAAD0BCSOAAAQRbp0svnURfhY3v1pR813ZtoHzSdxySnmk/DkXvP58URNCrmUZZHe1ep3+LkfqPzN\nygHrPGzbhyqD2t8yLguiJnGs1UW/h9VOnGq+tZX95HvAfA8P2IiIeyrHq9VR5I7LDZcNHkomOGXb\n01mvpuI086ruuvy2qXdPirtbz815xG12tOncHrfvWxH3RUTEufZtOyvnsu4Q5zwX0FIDAAAAAAD0\nBCJoAADLDh97UzP/cOVz7wI0nukj40oY8Fjz7Uvr0681Sj5d2c+/7/S0G823I61H0u7Js/SRzsfk\n1tqYzWJF0o40qudlr/LwaIPK+U7zKcq4x3z6m6HKOYxWfLUIydqKj7Ha5cuqtB4ZO6WyX+0e3p12\nr/l0715mPtVRr+diyLafmtbrpert/eb7cuV79Dv8/PqUlw+OlCNNuDHVXnOvV4pbnW8+1Z2XmO+z\nERFxs0Vo1Z/sjCfZfpvSXtN6LknrLe+WtMN29qfk93mMeLySdEQcbSpMWmUAAAAAAICewAsaAAAA\nAABAT0DiCACw7KgloHAJoSROd5mvJk/SlOinmU/TpX2KtAQgO8ynCdsuADm7cn6bZ53LxpSHjMZT\nbD+XQIlawo255kgTbdTOYSity8sk86ytGTdkvo+l9bKXXMcnw0s2do35JJX0Na10zf3cldzFv49x\n26WLVoJyMZXuYa8Lqh9eZ7+R9iTzaeWoJ5tP9fbr5tM9fKb5PBGQ0PFqclyXXep+cRmbBGfeDiBx\nXIrUWu1Vlf2mco8ttsLZ7nZryPZUH/NF8zXt529YHXl72rvi5tanu8J7GtW0080nIeTF9n26Uz5v\n++2o9AO6G492xW5aYgAAAAAAgJ5ABA0AYNlRS0/viTkUrfLIyba0tUjbB8ynsUQfLdek/m3me1na\n/9d8Shzi0Tp9Xxn1H61OBL8+rY+gL0QXphFRP1YtyUItMYeiDB5ZVMTLf5siEL5MQS3aoGQtN1aO\nsc98TZmusZHiyXgotzx5NCwvdA95GgbdLydX9tttvvVpN5tP295ODKf1+nZH2gvMp2Q4fj8oMrbT\nfM8a+I6I0rb43yq5jd//+p1E0pYSatn8qo3n9d1kkd61ucdD4agOfch8TczrZRajUsvnaZduiW+N\niIit8ZnWtyteExERO+N1rU8pRM6xv/1se04FxZz9/DblOfiiEONpa1HCQ0EEDQAAAAAAoCfwggYA\nAAAAANATkDgCACw7XEIoeZJL5SQT8jXKJDzZZL7npL3HfEpa8dbWsyHui4iIybi79U208ihfQ02T\nuR9vPiXD8CnZT0/r6yE9teKTHKaW4GSuUPm5RExJUTaYT9IbXz1HY6BeBkNpt5pvJK2XgSSQPvFd\n0rBnmE/l4mXanIvLbIo0zWWUkr0yVru88MQ8ut6eJER11e9/3a/Xm08JRlwyqeQfLnF+XuUcJBBz\neaSSjbgUWt9zQ+X8vmE+icv8nF1mCUsFvXiMdwSDj4uIiH2dtqipu0+Jr7aep8RYRETcmzYi4lfT\nupxRvZj3XN+f0sYvdM6mSa7005Xz+wfz/WFaT33zp2n9V+yP2dRW7jwSaJUBAAAAAAB6AhE0AIAl\njY+zabTa07pru0SZNuQ43/7OqPoTB74jokRvfsF8Sir8R61nf/vd/2j7aaT7V8ynCNv/be98g+ws\nyzN+J7DZQBKIUdLEQFhDYmkSUFBEU2A0owgMovUDTpnqB2f6oTOM7dhpO7adful0/NDW6b9pbaft\n0D92qnbaKkKtf2AJBgNBC4YAIRA3pEJCTNhtiCQu7PbDua/3uc7ZB7ObbDLvWX+/L8+Za99zznve\n87zPu+e5r/d6Bk3TzP1ITMXnP7UvXsnSPOlsx+z7MZ3oaSNKBc01VQy8AqlKpR9Tsc4e6/Zxr5bp\n+/CK4TWV99V7+Pyx/l7rBx6yoH31fwWYt+1fFLvg/UPVNA/heF22voSDzlevzqpC5aEe6pdbTLsl\nWw++UWXXK/dD2XqVbqSync5779OLe9oIwkH6k/porfGp1KiWZAXV463Ucy437UvZ7jTt9mzdL6Aa\n7S+Ydm7cFxHdo94N2XpPU6yWezV0Jnj9+FeasJ3y7MG87vniF9OBkRgAAAAAAKAl8AMNAAAAAACg\nJWBxBACYM7zS00aUYb5Y2/yW/0LnZulBu835ePxGPvKb9R/uaSNK0Mdzpj2Qrd9WvTvbW03r2P+W\nxj81ymizhtr6RluTazbtaYILTiduwtHxc6ONLIkjpul4uG1sKFtfB03Wlz8zTcfI7ZEy5/jr6fje\nbJrWQXPbmGxtbzStE1Qy3264n2jew+dqz61o0B/UzGPqC37Wv6WyncYH7+eyGM6vaFea9o/ZuqW2\n01cHYl+jjDf2L99OlDHrorQuuhl3rAnkcRvl6yuvA21CK5O5vU+9dIlZ7M/Ka4MHauzPIKVR60Ob\ns/1SVx/ujIGX2XVKI6XbFGXi/ZZpisHyNcqermx3V9ryP90TvRTRvSJbGbdLH5fBfaZXLkZgAAAA\nAACAlkAFDQCgr5moPK6FXBRNwdaHmwpPxKrYFRHdNZft8dmIiNhgkcY7m5lsDxjRbdIega2KztOm\n6dbuWxplVc5IXmhbPZiVqRWxo9HOaR55MID24WSDjKfDwp42ooSd+G3pmrPdHb1cZhW0q+KbERGx\nwf6ub+Ye0+5sjvO7TNXx9YAG1Rm8UrkyW6+kdmZ2J7ri/YV/tlofgv6g9p3pbPe4BFUBapV2j7vX\n3P8m0+7O9j8bZV3WBryue1O27zVtIscRr7Or9ua9V7WHh0zbPmU/I+r1GWgTtR8Z6qVetVJd9Khp\nm7Jy5poqYtfGo42mytRK2+6/K1qtlvzFbG8y7R8q+6xP8qmusbLzST5ilbuL8/o0YdepI3FyMAID\nAAAAAAC0BH6gAQAAAAAAtAQsjgAAcwYN6W5d6tzUP9jYgSKebCxBxfb0g7TUXW0hIW9Pc8Zqe7U1\n+Xc3Qm2O+yMiYtg0PV7c2AEjbkkb5WHbblu23zHt/Wlt9MgMrQY2YLdan4m4kGKjfMk0rVdWjFdX\nZXuNbbUx24+b9li2vrLU32T7ja73PS+mIgPqv5mm/XKr62XZunFMR32FaeonCyoa9C8ewqHvdnnl\n777OmPqFrzOoABrvR3qdjY2yIv4nIiJXlOqglcz8mef2tI6PCYop6Q4zUj/36BC90kBAu3Fjeq0y\npFXwnrRv/Wg+a5FtJ7O4R8Xc2vO3iNKfPmTaSLbDpqmf3mHaRBM+U3rqxWm33NusIRixJq2NfrbJ\nAOmjsSyOM62IUUEDAAAAAABoCVTQAADmDKp+lDm9VVk5G7StVL15n8UXK+bDQ0LWZPuGyjt4UP6f\nZOuz5Qr98JB4VcQ8JEDvt9U0zaD/sKL57PtYM+/q1YHZRnOhXvPqfIKfNUU1q/Wm6fN6+MfvZLst\n3mTqJ7L1iHO979fs9f48IiIOxxWVd6nN2XpAiy73taNai2eH/mCyoi2oPD6vor1gmuoPa0zb1PM3\nf+7mRrk/rs5H5Sz+bm73ua7K89qIiFgWdzVKrecpjP9ol6oz3/9t1WhEBa2tqHLmvVRVJq8QKTR/\npdXaFDPlvXlvrMu2VFLXxoGI6A6a0hXwbtNUVdto2ta8Ml5l8fm741BERIza1XB1XisvsUCQgz2v\n6zxjj+VAOVTZ7idBBQ0AAAAAAKAl8AMNAAAAAACgJWBxBACYc5Twj7XZunHpF9Nw4jdQyyzkRigF\ncwyZptWPvmraX1f2YCRNf5+3dcEWZeDG39t2Wq/GTXujPW1ExP5sx7rWPHLzy+lCR2aqkWWX2RQP\nx/cjothyIoqVZ1u8zdRPZnuDafq+3JDTsYYNxOftPWTl8rnVjvVrSdzZKEfi0tfc5+7oFa0qxFzt\n3KJmSvZwDRkL/WyXQcwtsLLIuvX2wWx9HUTZD1eZpr662bTbIyLicPxaZf+KHXe0iXPw9z1a0U7n\n+ocwm/iPDYU7eVyR1stzI7n+fty0J3OLa80K+VfNWPpztqX6uF8j7oiIiNHGnBihq9uPM8AqovTY\n79o6nBpJ/czakXbLT9o17jNxQT4qYUsvpy1ypkZyRmUAAAAAAICWQAUNAGDOUQLoNY/n89iqoew3\nTYHaHp+v2/v/xbT/aGbJvf6m2I8R03QrdplVPzfrbr9nW9UWBtjVVMnKbPlAc3O2B4LM72lPJ4vt\nsSoGZT71YMasHOya1dfj60z7cLb/bpq+CQ/16Hwj410h0/rsj5nWmdu9wJQjTajDB0x9KFufx1VV\nxatqUdkO2otXlHUeeNVAfdDr0aoHbDJtOFuvtA1l6zUMRZBPVLYbMu2pbLeYptd5h2kaOzywRNU8\njyzS370qXPu80HZ0dfJ4+toIrsVM1nSpnarvDgvriPhmtjeadlu2w42yKP4wIiIe7TpnOmOuj4A7\ns/V6nM6KHRFT1M9Y9H6JxSpRWAeac8UDc04MFTQAAAAAAICWwA80AAAAAACAloDFEQBgzlFWPXsp\nb+Z3Y5BW1rrTNN3Sf7DLUqeIEbftDWU7bJrsjG5dkq2jmEIOxkez9ZXQOtalDbbd+RliMmaXqPFm\n1THfF9kOn43Tj5tg9Nl8VTbd0u77p+PhBk6tGudxIjL7ePDC5dn+r2n6nG63HImIiB907evKyj7r\nO3ILm6xh/q+APpsbkKA/kHXLvzt9t25xHMrW+5aMZI+b9obKdopxWG2a+v7lFe0Lpm3Idtg0BZW4\nnVHnlfdfjWDe93Ve+SqP0Ea8GqQRZsQ0BUftNG00g6Z2dgXDrM6/eVzHHZV3VB8qdvCyrt5Ntl1n\n5cp7u16j89xjsbdRZAb29c3KOXOpaeqfQ6bdHxERC7vWEzwxVNAAAAAAAABaAhU0AIC+xm/W15xb\nCdI4EGMREfGnttWeZsbZb67XzJ/PZKvq8mXTdPP/LaYpHt5nvDXDucQ0zeJ7yEVnn3fajdYfyBvA\n74wjtp1iTjzaRDddeyVrttEx9ffQpdNjynUsff8UJ36JaToeXlXblu2VpmlBA3+9m7P1RQ46M8DH\nu+ZbFcxyjmn6+0bTns/2ZdP0OZi/7T8UPe6BG+o/XnlSv/WxQ9Vb/95/XNHenG0tyt+DbzTGvNk0\nVYBHTFPVzSvPCssZMm19tl7N0+uczvMfZgPvQQoJmbDK09Y4lI+8GqXrmDsuvjFluxV5jdvf1Tc+\nm627K349W48dGcn2E6bdExERe80RMhFfzPdYZ9tpSQp3Pqzu+VtEpCPkWONTmR6MwAAAAAAAAC2B\nH2gAAAAAAAAtAYsjAEBf4/NsZ0/RZBza02XN0LpcvuqZ7ExDpg1n67YT2QrdKieLo1smZZXcY9o9\n2bo1UHtYbtzeFn+XfynWkWPN66yPguxbZ2Ku8dXKY7cfeuiH0D67bbQYfAqy0vzINH0ffpx1PFaY\nJquZ2yhlpfGb64WvmKb3OGTaWdm6BRP6F/UFt1zJQujWrJrtUcEc3hcUteBjwvXZfs80hdG4dfGf\ns/VxQueIW9HUv/1f1FpgSW0VRWgj3qvKSLrKVIVT+VphGjdLIM3S+HZERIxav9LKfPu7gnBky/fA\nHNnkbzVNVsjfNU0W4WKd3Rfvrzx3e7Y/b9pXsr3CtDc1ezgTqKABAAAAAAC0BCpoAABzhqlD+kh1\nO800+s3XH8x2u2m3ZfuUaQ9n6zOOmt0eb5SleVP1aFcE9juzfcA0zdyXCtTBnBNdZ5Wd3c2s+4X2\nXEWC+yICs43mfsdN0yx+OX5LMtDkSLMcQESpYG1plKvzhvER2+pAMxv8LlM1e+tVjvOzrQU0eNC+\n5l69cqfAEJ/FVeyzVznUh3zOG/qD2vIPI9l6dVaBIV6tGMrWz3U9x/uRKh0+dqgi56+n6rzXAfS+\nXs1bHq/NscpjP9cJtOkXfDQZb6q6XvkcyvaoaZ1lXhbGHzTKaFybj0q1tsTfDDePNsfuiCiejYiI\ngXRmjHeFdbwl2980Tde9j5mmc8EdHC9m+7em6do2ZtrXIyJifpcL48TQqwEAAAAAAFoCP9AAAAAA\nAABaAhZHAIA5g2xAq01bm63b2GQ4ud002ZTeapqsTb6+kW6S/oJpmusrto7R5sZoD7mQNdDtJLJU\n7TCts6+7m9eIKNZGDwnQ5zidlzK9tttiFGxQwk7Kim1TAwsG09YYUVaA88iW1fm9be9aH04hDP69\njTfPKMjy5dbF2nHR6zxumuxEHiai/Wf+tn9xQ9mFFU391u2C6j++bpn6hQfg6Hz258py64EMsh++\nUtHWmqb9cgumQhpq9ki3b8pSiR23rShyyM19AzmOjXd95+qnbpPt2OmPxQ2VVy7XlV2xNSIi3pO2\nxgg30Zd1OMfj480zCr+ardtp92Zb1vocjD+OiIjj8a+2nay6fs3Uun77TOuMwxMzHFMZgQEAAAAA\nAFoCFTQAgDmD5txqM+j/Z5oi7beaphlEDwRQteqXTFP16EbTNEvpVTCFjew2TRUgv3Vbs++LTNN8\nay3e32ddj/W0s4XPXWrG3sNJdIy8OnBWPvOZRlGdYjQua7TjsSwiIh6JB+25qrBdZ1ot4lzVLz8G\nuow/aZr21StyCoZZXtFqFQiqEv2LV3tVba0t4eDV2drYoQrB201TtWCLaYrP9wqaKnHeB/V+vi/q\ng2sq++Jx/Krm+XP1mH9l24pG8oGK1l3NVwW3XH+W5Bh5JH6m0S6KAxHRHdmk6KR7Lbb/xgxNesW8\nDV9vgmvcOfK1bP1c+H62dzXK8eYT+LVG1y70Ru2AAAAIt0lEQVQfo5/IdtK0s/MdPADlxFBBAwAA\nAAAAaAn8QAMAAAAAAGgJ1IUBAOYMWuvK7UIa5v3mf9nh/NZt3YTvVsjaOkjSvm3aL2frwQGyliw2\nTa/tNhFZF68xTWss1exMjixVs23H89fTvi4zTTeCe3jC2nxmOQajjW1mlW2nY36xaTJDrq1oXzbt\nocp2H8rW16/S/ntwiD6Hf7+1IAfoXzTnfpZpsjieZ9pXs33ItPdl66E+svc+a5qsjb6+oc4NX59v\nXrabTdN57SE3CgTxPvi6bI+bpj59vmk61+YFtJv6CF2uDYsyVONsC9f47Wx/K22NEZErZEZssFcp\ncVXFYqszYZNtd1PcFxERv59tRDHOvt622552xveYkVIj/ZidR4MZJjIvnm809U43TO7t6sfThwoa\nAAAAAABAS6CCBgAwZ1BYh89Ga5j32cVPR0R3LIfmCo/FtaYqHMCrV+/O9grThrL1CGwFyXtIiG60\nPmjagp42osziv2DaCxXtTAZZeOVJFUqvUGk22CttL2Z7r2kfy7YWgOCBCqq0+bFX7LM/V4ErXqnU\n/O0e0zTzO7+ynWuEg/Q/HtahYIIVpim23PuRghFeNE2VYq+Mqa+Omqbz3l9PfasWx/+cae/M1vvd\nY5XtxIKKBm3HvRpltJka7jRm1d+/bJ5VqqaP5Dj8iIVwKEJk1K4rqvmut9dW5NRHTFMv9T25Oa+G\n95l2fbZbmgj+cv306A+93xNx6lBBAwAAAAAAaAn8QAMAAAAAAGgJWBwBAOYMCuZ42jTNww01ykRa\nIY90GTtkzXPrUi2UQrdk/9A02f+Wmrb0J2z3XtO01pqHXMgy5SZMfTa3GrqV63Qh65Vbtd6Rra+N\n9kC2fgz0HL8FXZ/Tj72Oswe5zK9oeo7bPPUebnEUfqy0/pkfM1lhfa6Wedv+xy3Osok9YpqCefxf\nwEt7/hYRTWCD2x5rlmT1KT9fZf+dqGy3v6J5X9U+eJ/+Uc/fIsr+u4EO+oWBGGseL27a8l3KlLvS\ntrskW1+Fb1+8LR8Vs+FTGYTlhnMZ9j22Rr3YY3BkxN0bU/HQEe2f91JdBTwkRGfFTHspIzEAAAAA\nAEBLoIIGADBn0AziEdOGsvUACs2WlyrO+bEjIiLGrAK0IrZGRMR+q76VipeHfygW26szihZ+plEW\n5s3Xx5qY/4hSAfIZeQVaHDLNP5PQHOPpDLbQe/jlUhUAvwV9WWW7oWw9VlyVAJ+LVVXSj58qCv56\nqkb6fK9eb7lp2r/FFc23q/0LcCaOKZwe5ve0Ed2VKaH5fR8T1Pe8YqvQoX2maXzwABpV2P181fnw\nPdPUBz2wROe1V9o1Fnh8vqoovoQAlbN+RN+qew10JVppmkaqEdO+U3nuUKrucRAftsfD2d5mmhZ3\n8d6s6twHTVPv/JxpGiF9RFVgyUhlX2YKFTQAAAAAAICWwA80AAAAAACAloDFEQBgzqA5Nw+gkI3J\nb1vu2BQHzJJUDIRvbR7tb2xPfkv21Fc71lxKyg38A/F8RESMx6dsO1nzilGkrCXj5hbZ9tzy98Zs\nx+LMosAFDydQSIdfQmXb8nlP2UF9fTi93ldM03fkdrQrs33cNJlq3B75cLYevFCzui2vaDWwNvY/\n/h3LnOV9UNbXS03TOedrnsk05vZD4TZFjTe+Zp/OdX+ubI++L7JR+tqIHnIiXu1pI7rtjtBv+Len\n0WnANI34HlGlnuFXOPUmN8FrlU6PcVJMzl+Y9kfZXh5T8aueTPy7TNNZdoFpMv77lcuNujOBChoA\nAAAAAEBLoIIGADBnUPXDZ6g1l+e3QXdusR6Pq03TnKTH3T+f7SWmdWbBBy044NWc/R6PjzbaeFM9\nutue+WhEdIdx72vmUT06XrP4fol6LtszPa+oY+qVAC1F4BUD7bPvn+Zv/bNpDtiDPlS19NvN9fcR\n0zTP6++hUAcPBNG++v4J5mXnLpqr99pEraouzatlOte8MqaAD6+0XV9531qVWUt9eA1DFWJ/PVXp\n1pimMeu4aVTL5hq+oIu+cV+QZCRb7xlDldcZzvYJ0xRN9W7T1NsfME2v7a+r0XOjad/K1kfZXVnv\n25fhVxHFWXKyVTOHkRoAAAAAAKAl8AMNAAAAAACgJcybnJw8g+827wy+WR8xOXny1VCOaR2O6ezD\nMZ19TuGYzpu3eprHVNYmvwlfdiG3H8m84fZIrUfkVjlZks4xTabFZabJ1uer08jIMr+ieTiFjCIz\nd+FPTj57Csf0ulnopxOVxx56oDXe/LMt6PlbRH0lHZl0/D1qgSr+uPc9Zs7k5JZTc+xw/tc5pfP/\nxlk4pjXbYG3e3vubQjrcqKwxw58rA1vtfFhY0V6paDNf52xy8r+4Ts02p9BPz5nmMVU4iF9B1DsX\nVbYbN01/9yuSX8WEXtvjlGQqr9ktnzOtdlbI5D9e+duJeu7L0zimVNAAAAAAAABaAiEhAABzGs1W\nX1T5m89u6wZ+v9Ffl4ja7PbLpumxh2HUqFVxapehWgWoX5hfeeyf0cMaercbrWiOvqNaVcI5+WoZ\n/DRRm+efbtXqqD1+qfL3WoFAxZTpbg8/LagKdcA0VdAGYipetRqsbKfe5KOtKmgex18bjYWPwLWF\nH8TM67zTgwoaAAAAAABAS+AHGgAAAAAAQEs4syEhAAAAAAAA8JpQQQMAAAAAAGgJ/EADAAAAAABo\nCfxAAwAAAAAAaAn8QAMAAAAAAGgJ/EADAAAAAABoCfxAAwAAAAAAaAn8QAMAAAAAAGgJ/EADAAAA\nAABoCfxAAwAAAAAAaAn8QAMAAAAAAGgJ/EADAAAAAABoCfxAAwAAAAAAaAn8QAMAAAAAAGgJ/EAD\nAAAAAABoCfxAAwAAAAAAaAn8QAMAAAAAAGgJ/EADAAAAAABoCfxAAwAAAAAAaAn8QAMAAAAAAGgJ\n/EADAAAAAABoCfxAAwAAAAAAaAn8QAMAAAAAAGgJ/EADAAAAAABoCf8P6hPKe8wCeM0AAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5a6404b50>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f,axs = pl.subplots(10,10, figsize=(15,15))\n",
"\n",
"c=0\n",
"for ax in axs:\n",
" for sax in ax:\n",
" sax.imshow( np.reshape(sess.run(W1),(28,28,hl_size))[:,:,c],\n",
" interpolation='nearest', cmap = pl.get_cmap('BlueRed2') )\n",
" sax.axis('off')\n",
" c += 1\n",
"pl.show()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAHVCAYAAABWsjp6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE4VJREFUeJzt3W+wpnVZB/DrgYOACrtCzjkgsEtKSIwSCyZKkwERiToK\njO6QOSXWQDnEH9MCQqWGFE1HcKBkAisVY2BFJ5MxE8aShJR/Zq6KyALBnh0TOKzgIix3L3yTMRPn\nujjX85xz+Hxe/77Pde/uzfPlefO7RsMwBADQY5tJPwAALGeKFgAaKVoAaKRoAaCRogWARooWABop\nWgBopGgBoJGiBYBGUx0fetxolL5ualVhzjuS5w8rzPj5Qqbi/kLmOQv+FE+0ZyHzoWEYLfiDPIm9\nC+/chrgkPee8eEvq/KXpCRGPFDIVGyJ/K9zq6P+nfU0hc8EE3rmIiNFoh/Rf4nML/8IPJ8//MD0h\nYhTbF1J5v1D4898ylmc7Np0Yhsvm9d75RQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJA\nI0ULAI0ULQA0UrQA0EjRAkCj0TDkLxZ/MpWlAhsKc1Ynz28tzNi2kNm1kPlcIfOLyfPjunV93RJZ\nKlBZmHB38nzlKvTKUoEHCpkjC5nsO3dhYUbFHUtoqUDEzxUmfSd5/vcLMy4qZHYuZE4qZL6XPH9l\nYUbeMGyxVAAAJk3RAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0\nalkqcELhgveLC3PWJs9XLpH/m0LmiEJmsTqvkHnBBC54H41enn7nto+vpOfsljx/V3pCxG8XMtcU\nMovVywqZyya0VGDnwnfd4YU5n0mup/jZwmqKzelExPdLazMWq8PSiWG42lIBAJg0RQsAjRQtADRS\ntADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0arnr+C2F+z/vL8yZyOWmS9grCpkvFTLr\nJnLX8W+m37nV8YmOR+F/2RDvTWdWxx+nM3dM6K7jAwvfdfcU5iyvO4X7rSjc9TxX+Dsehi3uOgaA\nSVO0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNWpYKHFe4aPtT\nsU96zrFxW+r8uvSEiHcUMs8sZL5ZyGwtZMZhEksF9i68c6sKc+5Mnl9ZmHFLnJXOnB7npjM/SCdq\nSybGYVJLBUajHdLv3ZrChfc3pS+8/3F6xv6R74Lt0omaWxbpUgVLBQBgEVC0ANBI0QJAI0ULAI0U\nLQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFs1SgfxKgYhfSp7/aGHGuNxbyByUPL+x\nMOOThcwzlshSgZ0Kc/4jfit1fnX8bWHKeKwoZGaS579dmHFUIfNXS2ipQMQuhUlnJs//YWHGuKxJ\nJ94UX0md/1hhCcHvFpY9XDzP984vWgBopGgBoJGiBYBGihYAGilaAGikaAGgkaIFgEaKFgAaKVoA\naKRoAaCRogWARooWABotmqUCFQ8lz7+hMOPBQuZfC5lx+FEhs2Mhs26JLBWo2BCrkolTC1NOSydW\nF6aMw4Y4Ip1ZHV9MZ+5YUksFKg5Onv+N9IQD4q3pzK2Fy/vH4a2FBQEXFv4sw7DFUgEAmDRFCwCN\nFC0ANFK0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQaKrjQ1cWMjcUMt9Nnn9W\nYcbaQqbi7kLmq5G9z3xNesYxcXM6MwlvK2ROjjcXUvemTq8uLAjYEMekMxFXpRN7F6a8OHn+/Phy\nesYd6cTkrCpcXn9nvLAw6ZDk+dPTE76dTtS8sfB39ol4fur838Xt6RlNdRgRftECQCtFCwCNFC0A\nNFK0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADQaDUP2vtwnd9xotPAfOiEPFTKVO5WX\nk3XDMBr3zL2X0Tv3YCGz84I/xdJyxwTeuYiI0WiHZfPeRVT+CpfRH79gGLbM6y/NL1oAaKRoAaCR\nogWARooWABopWgBopGgBoJGiBYBGihYAGilaAGikaAGgkaIFgEaKFgAaTU36ARa7NxQys4XMjYXM\n2uT5ywszthYyPDUPFzL3xXbpzOp4NJ3ZENsnZzySnnF2OsHCOKuQub6Q+ed04qjke/T55Hv6E1sK\nmfnxixYAGilaAGikaAGgkaIFgEaKFgAaKVoAaKRoAaCRogWARooWABopWgBopGgBoJGiBYBGo2EY\nJv0MALBs+UULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJA\nI0ULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAo6mOD91t\nNBqymb8szDkmbk2dXxEHpGfsmE7UvKuQOWfBn+KJji5kLhmG0YI/yJNYWXjn5uL56TmHxu2p89fF\ndukZK+LRdKbi8UJmHP9nfkQhs24C71xExEzhvdsURxYm7ZA8vyY9YXos3ygRm2JtOjMdlzc8yU+7\nqJA5dp7vnV+0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0A\nNBoNQ/pO7CdVWSqQv3o90lev71SYsbmQOayQ+WScWEjdlzo9E1cUZuRtXDJLBXZNz1kRP0idr/xF\nVP6LnCv82749Xp/OvC95fmV6Qs0DS2ipwDjeiU2xbXrGdGxNZz6UTkQcX1gqEPG11Onp5PKPqllL\nBQBg8hQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkCjlqUCo9F7\nCx/64nRiJl6VOj9bWl1wZjoxE+cU5ixOs3FgOjMMN439gvfDC5e7XxvT6TkrYlPq/FxhRcDhhWvn\nb0wnFq/8qoeI2ye0VOCIwnt3Tbw2PWc6PpM6/zvpCRHnxnvSmek4ozBpcfpyIfMCSwUAYPIULQA0\nUrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANCo5a7j/Qr3f34rrk3PmYnD0pmn\ns9l4ezozE+9PZzZO4N7Z0ejr6Xfu7DggPeeCdOLpbS6OTGdWxBfSmQcmdNfxaLR7+r07Izam51ya\nTjy9zRYyM5U57joGgMlTtADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAj\nRQsAjVqWCuxWWCowXZizKXl+Nl5WmPLr6cSb413pzO7pRMQlhcw4TGKpwMrCOzcX56TnrEj+287F\nyekZr40PpzP/kE5E3FDI/GohMw6TWiowU3jvdi7MeTB5flPhOyjilenEGXFIOvOeuDudmY4905lx\nsFQAABYBRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0UrQA0GjRLBXY\ntzBnc/L8vYUZ43JPIXNq8vwVhRm7FjLfWDJLBfKrLNYkV1ncnp4wPnOxTzpzc9yWOv8r6QkRc3F8\nOjMMly2ZpQKbIv+o50VuzAfTE8bngkJmbXw1dX46XpKesSn+MZ0ZhqMtFQCASVO0ANBI0QJAI0UL\nAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFs1SgYq1yfNfL8w4upD5QCEzDrPx\n3HRmJr6fzmxcIksFKh5Onn9dYcZ/FzI3FTLjMBcvTWdWxA3pzAMTeOciaksFKrILRCq/oP4o9k9n\npuM/C5P6HVLIXF/IzM7zvfOLFgAaKVoAaKRoAaCRogWARooWABopWgBopGgBoJGiBYBGihYAGila\nAGikaAGgkaIFgEZTHR86GwemM/vGzQ1P8tPWFzLXFDKVpQKVP/2VyfPXFBYEXJ1OTMbKQubOwpKF\nFyX/Dv8pPSFiLj6SzqyIEwtzDkpnIu5Knv+v9ITN6cTknFTI/Ekh83jy/F6FGa8pLAj498KcTXFK\nOnN+nJ86/530hIhNcXIhNT9+0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNF\nCwCNFC0ANBoNw7DgH7rbaLTwHzohPy5knrHgT7G0bByG0bhnrlxG79xcbJ/OrIhHGp5k6XhgAu9c\nRMTMMnrv7itkdlnwp1haZuf53vlFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsA\njRQtADRStADQSNECQKOpST/AYre1kJmN/D3jM5G/E/2o5PnPpydEzBQyPDVnFxYE3FWY8+lC5mvJ\n8wcXZszFswopnqpH46x05pfj3HTmX9KJiE3J79TpwvfpptgznZkvv2gBoJGiBYBGihYAGilaAGik\naAGgkaIFgEaKFgAaKVoAaKRoAaCRogWARooWABopWgBoNBqG/AX4AMD8+EULAI0ULQA0UrQA0EjR\nAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI0ULQA0UrQA0EjRAkAjRQsA\njRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI2mOj50NNpvyGb2j2+l57w6ef68OCw9\nI2JjIVNxWyGzz4I/xRMdn04MwztHDQ/y/xqNptLv3JrYmp5zU1yRTHw8PSPis4VMxc6FzIML/hRP\n9Lp0YhiuHPs7F1H7rntl4bvu6tg7mXh2ekbEo4VM3ocLf/6T44UNT/J/XZJODMPL5/Xe+UULAI0U\nLQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAo9EwpO/EfvIPLVy0\nPY5L9WcKl1nPFi6zXlWYc2Y6EbFH8vyrxnIxd8QwrF8SSwWisFQgYtvU6ZsLMw5MzviJb6YTh8a+\n6cx18Ugy8cz0jIpheGzJLBU4oPD9cGvyv91jCzM+Vfh+GApzdk0nIu6L5yUTOxWm5M33u84vWgBo\npGgBoJGiBYBGihYAGilaAGikaAGgkaIFgEaKFgAaKVoAaKRoAaCRogWARooWABo1LRX4tfSHnhtf\nSM85K30J9kPpGRHvLmTeX8gsVivSiWG4fgJLBe5Kv3OXx6r0nLXpC/8vTs+IOLWQebiQWZxmCosY\nNg7DRJYKXDwapd+7E2NdYdJZqdPbFS77PyidiLh+TItKxuMD6cQwHG2pAABMmqIFgEaKFgAaKVoA\naKRoAaCRogWARooWABopWgBopGgBoJGiBYBGihYAGjXddbxH+kP3iXvSc25bVvdsjsPrC5kr0olh\nWD+Bu453KbzIPypMerSQeTrbq5C5K50YhscmctfxXoW7ju+OlxQmbS5knr7WFO56vqnQJ/P9rvOL\nFgAaKVoAaKRoAaCRogWARooWABopWgBopGgBoJGiBYBGihYAGilaAGikaAGgkaIFgEZNSwX2S3/o\nFwuXQB+RvAT6gMKM3dOJiKvj7wuptxUyOxUy/SazVGCq8CKfUJh0aer0R2NresJUOhHxptLCiDML\nmYMLmX6TWipQ+a7bp/A9lF2gcmJhxrvTiYjd4kWF1KsLmasKmX6WCgDAIqBoAaCRogWARooWABop\nWgBopGgBoJGiBYBGihYAGilaAGikaAGgkaIFgEaKFgAaLZqlAhHXphOHxW7JCbmLucfr0ELmncnz\nRxVmnJJODMNJS2KpwFC48D+7LuL42DY9Y3wuGkPmG+kJdxf+XfYYhiWzVCDijYVJf5A8/9LCjPGY\nLiw8+GHy/EOl7/qr04lhWG2pAABMmqIFgEaKFgAaKVoAaKRoAaCRogWARooWABopWgBopGgBoJGi\nBYBGihYAGilaAGi0iJYKVOyYPH9fYcZfFzInFzLjsL6Q2S+dGIb1S2KpQM1jyfN/Xpjx6ULmpkJm\nHLKLLyIi/jSdGIbHltBSgYrfS57fqzCj8q5uLmT63VNYXPC8wiKC+X7X+UULAI0ULQA0UrQA0EjR\nAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAo6mej11VyHwvnTg0bk6dv65wafQ2\ncWQ683hhTsTHCpm/SJ6/Mj1hKFzOPQmnx9Z05oPxkXRmm8jdXf94bJuekV9cEFH5T/m0wt/Zs5Pn\n/yz+LT0j4rpCZlLyizqOSb5DERGfi1NS5x8pfQe9opD5UiFzWiFzYur0zxQmRPLvOMMvWgBopGgB\noJGiBYBGihYAGilaAGikaAGgkaIFgEaKFgAaKVoAaKRoAaCRogWARqNhGBb+Q0f7LfyHTszqQmbD\nAj/D0jIM6/OXuT5Fo9HUMnrn9ipk7lrwp1hKhuGxsb9zEcvru26Hwr3mW0p3Ki8f8/2u84sWABop\nWgBopGgBoJGiBYBGihYAGilaAGikaAGgkaIFgEaKFgAaKVoAaKRoAaCRogWARlOTfoDFb/t0YqZw\nOfds6XLuG5PnDyrMOL+Q4an5biFzQiHz8XRih9iaOr8ltk3PODk5g4VxYSHz2cJ33VWl77r7k+ef\nk56wqvBnmS+/aAGgkaIFgEaKFgAaKVoAaKRoAaCRogWARooWABopWgBopGgBoJGiBYBGihYAGila\nAGg0GoZh0s8AAMuWX7QA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0UL\nAI0ULQA0UrQA0EjRAkAjRQsAjRQtADRStADQSNECQCNFCwCNFC0ANFK0ANBI0QJAI0ULAI3+B7cG\n9a6UdQBlAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fe5a0f8d310>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f,axs = pl.subplots(3,3, figsize=(8,8))\n",
"\n",
"c=0\n",
"for ax in axs:\n",
" for sax in ax:\n",
" sax.imshow( np.reshape(sess.run(W2),(10,10,10))[:,:,c], \n",
" interpolation='nearest', cmap = pl.get_cmap('BlueRed2') )\n",
" sax.axis('off')\n",
" c += 1\n",
"pl.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Problem: create a network with 3 hidden layers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's try and create a network with 3 hidden layers. Below we have the starting point, we the first hidden layer is connected to the input layer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Size of the first hidden layer\n",
"hl_size_1 = 100\n",
"\n",
"x = tf.placeholder(tf.float32, [None, 784])\n",
"\n",
"# Propagation to the first layer\n",
"W1 = tf.Variable(tf.zeros([784, hl_size_1]))\n",
"b1 = tf.Variable(tf.truncated_normal([hl_size_1]))\n",
"y1 = tf.nn.relu(tf.matmul(x, W1) + b1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Complete below the other 2 hidden layers and their connectivities. Use ```y``` as the output layer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If everything is defined correctly, you should be able to run the rest of the code without errors."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"y_ = tf.placeholder(tf.float32, [None, 10])\n",
"\n",
"\n",
"beta = 0.0005\n",
"\n",
"loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=y, labels=y_ )\n",
" + beta*( tf.nn.l2_loss(W) + tf.nn.l2_loss(b) + tf.nn.l2_loss(Wo) + tf.nn.l2_loss(bo) ) )\n",
"\n",
"train_step = tf.train.GradientDescentOptimizer(0.05).minimize(loss)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n",
"\n",
"sess = tf.Session()\n",
"sess.run(init)\n",
"\n",
"perfEvol = []\n",
"\n",
"nepochs = 1000\n",
"intervalCheck = int( nepochs*0.1 )\n",
"\n",
"\n",
"# Evaluating training time\n",
"tic = time.time()\n",
"\n",
"for i in range(nepochs+1):\n",
" batch_xs, batch_ys = mnist.train.next_batch(30)\n",
" sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})\n",
" \n",
" if i % intervalCheck == 0:\n",
" correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))\n",
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
" \n",
" currperf = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})\n",
" perfEvol.append( currperf )\n",
" print \"Epoch %5d with curr performance %4.3f\" % (i, currperf)\n",
" \n",
"\n",
"\n",
"# Printing the elapsed time during the training process\n",
"toc = time.time()\n",
"print \"Elapsed time: %f s\" % (toc - tic)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"print \"Optimal performance: %4.3f\" % max(perfEvol)\n",
"\n",
"pl.plot(np.arange(0,nepochs+1,intervalCheck), perfEvol, 'o--', markersize=12)\n",
"delta = nepochs*0.05\n",
"pl.xlim(-delta,nepochs+delta)\n",
"pl.ylim(0.0,1.0)\n",
"pl.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment