Created
October 26, 2019 14:27
-
-
Save ufukhurriyetoglu/f94766e6473d8d5b680c6fb6795aacc1 to your computer and use it in GitHub Desktop.
Created on Cognitive Class Labs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"<a href=\"https://www.bigdatauniversity.com\"><img src=\"https://ibm.box.com/shared/static/cw2c7r3o20w9zn8gkecaeyjhgw3xdgbj.png\" width=\"400\" align=\"center\"></a>\n", | |
"\n", | |
"<h1><center>Simple Linear Regression</center></h1>\n", | |
"\n", | |
"\n", | |
"<h4>About this Notebook</h4>\n", | |
"In this notebook, we learn how to use scikit-learn to implement simple linear regression. We download a dataset that is related to fuel consumption and Carbon dioxide emission of cars. Then, we split our data into training and test sets, create a model using training set, evaluate your model using test set, and finally use model to predict unknown value.\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<h1>Table of contents</h1>\n", | |
"\n", | |
"<div class=\"alert alert-block alert-info\" style=\"margin-top: 20px\">\n", | |
" <ol>\n", | |
" <li><a href=\"#understanding_data\">Understanding the Data</a></li>\n", | |
" <li><a href=\"#reading_data\">Reading the data in</a></li>\n", | |
" <li><a href=\"#data_exploration\">Data Exploration</a></li>\n", | |
" <li><a href=\"#simple_regression\">Simple Regression Model</a></li>\n", | |
" </ol>\n", | |
"</div>\n", | |
"<br>\n", | |
"<hr>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"### Importing Needed packages" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import pandas as pd\n", | |
"import pylab as pl\n", | |
"import numpy as np\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"### Downloading Data\n", | |
"To download the data, we will use !wget to download it from IBM Object Storage." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"--2019-10-26 14:24:02-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv\n", | |
"Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.193\n", | |
"Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.193|:443... connected.\n", | |
"HTTP request sent, awaiting response... 200 OK\n", | |
"Length: 72629 (71K) [text/csv]\n", | |
"Saving to: ‘FuelConsumption.csv’\n", | |
"\n", | |
"FuelConsumption.csv 100%[===================>] 70.93K --.-KB/s in 0.04s \n", | |
"\n", | |
"2019-10-26 14:24:02 (1.64 MB/s) - ‘FuelConsumption.csv’ saved [72629/72629]\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"!wget -O FuelConsumption.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"__Did you know?__ When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: [Sign up now for free](http://cocl.us/ML0101EN-IBM-Offer-CC)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"\n", | |
"<h2 id=\"understanding_data\">Understanding the Data</h2>\n", | |
"\n", | |
"### `FuelConsumption.csv`:\n", | |
"We have downloaded a fuel consumption dataset, **`FuelConsumption.csv`**, which contains model-specific fuel consumption ratings and estimated carbon dioxide emissions for new light-duty vehicles for retail sale in Canada. [Dataset source](http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64)\n", | |
"\n", | |
"- **MODELYEAR** e.g. 2014\n", | |
"- **MAKE** e.g. Acura\n", | |
"- **MODEL** e.g. ILX\n", | |
"- **VEHICLE CLASS** e.g. SUV\n", | |
"- **ENGINE SIZE** e.g. 4.7\n", | |
"- **CYLINDERS** e.g 6\n", | |
"- **TRANSMISSION** e.g. A6\n", | |
"- **FUEL CONSUMPTION in CITY(L/100 km)** e.g. 9.9\n", | |
"- **FUEL CONSUMPTION in HWY (L/100 km)** e.g. 8.9\n", | |
"- **FUEL CONSUMPTION COMB (L/100 km)** e.g. 9.2\n", | |
"- **CO2 EMISSIONS (g/km)** e.g. 182 --> low --> 0\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"<h2 id=\"reading_data\">Reading the data in</h2>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>MODELYEAR</th>\n", | |
" <th>MAKE</th>\n", | |
" <th>MODEL</th>\n", | |
" <th>VEHICLECLASS</th>\n", | |
" <th>ENGINESIZE</th>\n", | |
" <th>CYLINDERS</th>\n", | |
" <th>TRANSMISSION</th>\n", | |
" <th>FUELTYPE</th>\n", | |
" <th>FUELCONSUMPTION_CITY</th>\n", | |
" <th>FUELCONSUMPTION_HWY</th>\n", | |
" <th>FUELCONSUMPTION_COMB</th>\n", | |
" <th>FUELCONSUMPTION_COMB_MPG</th>\n", | |
" <th>CO2EMISSIONS</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2014</td>\n", | |
" <td>ACURA</td>\n", | |
" <td>ILX</td>\n", | |
" <td>COMPACT</td>\n", | |
" <td>2.0</td>\n", | |
" <td>4</td>\n", | |
" <td>AS5</td>\n", | |
" <td>Z</td>\n", | |
" <td>9.9</td>\n", | |
" <td>6.7</td>\n", | |
" <td>8.5</td>\n", | |
" <td>33</td>\n", | |
" <td>196</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2014</td>\n", | |
" <td>ACURA</td>\n", | |
" <td>ILX</td>\n", | |
" <td>COMPACT</td>\n", | |
" <td>2.4</td>\n", | |
" <td>4</td>\n", | |
" <td>M6</td>\n", | |
" <td>Z</td>\n", | |
" <td>11.2</td>\n", | |
" <td>7.7</td>\n", | |
" <td>9.6</td>\n", | |
" <td>29</td>\n", | |
" <td>221</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>2014</td>\n", | |
" <td>ACURA</td>\n", | |
" <td>ILX HYBRID</td>\n", | |
" <td>COMPACT</td>\n", | |
" <td>1.5</td>\n", | |
" <td>4</td>\n", | |
" <td>AV7</td>\n", | |
" <td>Z</td>\n", | |
" <td>6.0</td>\n", | |
" <td>5.8</td>\n", | |
" <td>5.9</td>\n", | |
" <td>48</td>\n", | |
" <td>136</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>2014</td>\n", | |
" <td>ACURA</td>\n", | |
" <td>MDX 4WD</td>\n", | |
" <td>SUV - SMALL</td>\n", | |
" <td>3.5</td>\n", | |
" <td>6</td>\n", | |
" <td>AS6</td>\n", | |
" <td>Z</td>\n", | |
" <td>12.7</td>\n", | |
" <td>9.1</td>\n", | |
" <td>11.1</td>\n", | |
" <td>25</td>\n", | |
" <td>255</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>2014</td>\n", | |
" <td>ACURA</td>\n", | |
" <td>RDX AWD</td>\n", | |
" <td>SUV - SMALL</td>\n", | |
" <td>3.5</td>\n", | |
" <td>6</td>\n", | |
" <td>AS6</td>\n", | |
" <td>Z</td>\n", | |
" <td>12.1</td>\n", | |
" <td>8.7</td>\n", | |
" <td>10.6</td>\n", | |
" <td>27</td>\n", | |
" <td>244</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" MODELYEAR MAKE MODEL VEHICLECLASS ENGINESIZE CYLINDERS \\\n", | |
"0 2014 ACURA ILX COMPACT 2.0 4 \n", | |
"1 2014 ACURA ILX COMPACT 2.4 4 \n", | |
"2 2014 ACURA ILX HYBRID COMPACT 1.5 4 \n", | |
"3 2014 ACURA MDX 4WD SUV - SMALL 3.5 6 \n", | |
"4 2014 ACURA RDX AWD SUV - SMALL 3.5 6 \n", | |
"\n", | |
" TRANSMISSION FUELTYPE FUELCONSUMPTION_CITY FUELCONSUMPTION_HWY \\\n", | |
"0 AS5 Z 9.9 6.7 \n", | |
"1 M6 Z 11.2 7.7 \n", | |
"2 AV7 Z 6.0 5.8 \n", | |
"3 AS6 Z 12.7 9.1 \n", | |
"4 AS6 Z 12.1 8.7 \n", | |
"\n", | |
" FUELCONSUMPTION_COMB FUELCONSUMPTION_COMB_MPG CO2EMISSIONS \n", | |
"0 8.5 33 196 \n", | |
"1 9.6 29 221 \n", | |
"2 5.9 48 136 \n", | |
"3 11.1 25 255 \n", | |
"4 10.6 27 244 " | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df = pd.read_csv(\"FuelConsumption.csv\")\n", | |
"\n", | |
"# take a look at the dataset\n", | |
"df.head()\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"<h2 id=\"data_exploration\">Data Exploration</h2>\n", | |
"Lets first have a descriptive exploration on our data." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>MODELYEAR</th>\n", | |
" <th>ENGINESIZE</th>\n", | |
" <th>CYLINDERS</th>\n", | |
" <th>FUELCONSUMPTION_CITY</th>\n", | |
" <th>FUELCONSUMPTION_HWY</th>\n", | |
" <th>FUELCONSUMPTION_COMB</th>\n", | |
" <th>FUELCONSUMPTION_COMB_MPG</th>\n", | |
" <th>CO2EMISSIONS</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>1067.0</td>\n", | |
" <td>1067.000000</td>\n", | |
" <td>1067.000000</td>\n", | |
" <td>1067.000000</td>\n", | |
" <td>1067.000000</td>\n", | |
" <td>1067.000000</td>\n", | |
" <td>1067.000000</td>\n", | |
" <td>1067.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>2014.0</td>\n", | |
" <td>3.346298</td>\n", | |
" <td>5.794752</td>\n", | |
" <td>13.296532</td>\n", | |
" <td>9.474602</td>\n", | |
" <td>11.580881</td>\n", | |
" <td>26.441425</td>\n", | |
" <td>256.228679</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>0.0</td>\n", | |
" <td>1.415895</td>\n", | |
" <td>1.797447</td>\n", | |
" <td>4.101253</td>\n", | |
" <td>2.794510</td>\n", | |
" <td>3.485595</td>\n", | |
" <td>7.468702</td>\n", | |
" <td>63.372304</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>2014.0</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>3.000000</td>\n", | |
" <td>4.600000</td>\n", | |
" <td>4.900000</td>\n", | |
" <td>4.700000</td>\n", | |
" <td>11.000000</td>\n", | |
" <td>108.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>2014.0</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>4.000000</td>\n", | |
" <td>10.250000</td>\n", | |
" <td>7.500000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>207.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>2014.0</td>\n", | |
" <td>3.400000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>12.600000</td>\n", | |
" <td>8.800000</td>\n", | |
" <td>10.900000</td>\n", | |
" <td>26.000000</td>\n", | |
" <td>251.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>2014.0</td>\n", | |
" <td>4.300000</td>\n", | |
" <td>8.000000</td>\n", | |
" <td>15.550000</td>\n", | |
" <td>10.850000</td>\n", | |
" <td>13.350000</td>\n", | |
" <td>31.000000</td>\n", | |
" <td>294.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>2014.0</td>\n", | |
" <td>8.400000</td>\n", | |
" <td>12.000000</td>\n", | |
" <td>30.200000</td>\n", | |
" <td>20.500000</td>\n", | |
" <td>25.800000</td>\n", | |
" <td>60.000000</td>\n", | |
" <td>488.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" MODELYEAR ENGINESIZE CYLINDERS FUELCONSUMPTION_CITY \\\n", | |
"count 1067.0 1067.000000 1067.000000 1067.000000 \n", | |
"mean 2014.0 3.346298 5.794752 13.296532 \n", | |
"std 0.0 1.415895 1.797447 4.101253 \n", | |
"min 2014.0 1.000000 3.000000 4.600000 \n", | |
"25% 2014.0 2.000000 4.000000 10.250000 \n", | |
"50% 2014.0 3.400000 6.000000 12.600000 \n", | |
"75% 2014.0 4.300000 8.000000 15.550000 \n", | |
"max 2014.0 8.400000 12.000000 30.200000 \n", | |
"\n", | |
" FUELCONSUMPTION_HWY FUELCONSUMPTION_COMB FUELCONSUMPTION_COMB_MPG \\\n", | |
"count 1067.000000 1067.000000 1067.000000 \n", | |
"mean 9.474602 11.580881 26.441425 \n", | |
"std 2.794510 3.485595 7.468702 \n", | |
"min 4.900000 4.700000 11.000000 \n", | |
"25% 7.500000 9.000000 21.000000 \n", | |
"50% 8.800000 10.900000 26.000000 \n", | |
"75% 10.850000 13.350000 31.000000 \n", | |
"max 20.500000 25.800000 60.000000 \n", | |
"\n", | |
" CO2EMISSIONS \n", | |
"count 1067.000000 \n", | |
"mean 256.228679 \n", | |
"std 63.372304 \n", | |
"min 108.000000 \n", | |
"25% 207.000000 \n", | |
"50% 251.000000 \n", | |
"75% 294.000000 \n", | |
"max 488.000000 " | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# summarize the data\n", | |
"df.describe()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Lets select some features to explore more." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>ENGINESIZE</th>\n", | |
" <th>CYLINDERS</th>\n", | |
" <th>FUELCONSUMPTION_COMB</th>\n", | |
" <th>CO2EMISSIONS</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2.0</td>\n", | |
" <td>4</td>\n", | |
" <td>8.5</td>\n", | |
" <td>196</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2.4</td>\n", | |
" <td>4</td>\n", | |
" <td>9.6</td>\n", | |
" <td>221</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>1.5</td>\n", | |
" <td>4</td>\n", | |
" <td>5.9</td>\n", | |
" <td>136</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>3.5</td>\n", | |
" <td>6</td>\n", | |
" <td>11.1</td>\n", | |
" <td>255</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>3.5</td>\n", | |
" <td>6</td>\n", | |
" <td>10.6</td>\n", | |
" <td>244</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>3.5</td>\n", | |
" <td>6</td>\n", | |
" <td>10.0</td>\n", | |
" <td>230</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>3.5</td>\n", | |
" <td>6</td>\n", | |
" <td>10.1</td>\n", | |
" <td>232</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>3.7</td>\n", | |
" <td>6</td>\n", | |
" <td>11.1</td>\n", | |
" <td>255</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>3.7</td>\n", | |
" <td>6</td>\n", | |
" <td>11.6</td>\n", | |
" <td>267</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB CO2EMISSIONS\n", | |
"0 2.0 4 8.5 196\n", | |
"1 2.4 4 9.6 221\n", | |
"2 1.5 4 5.9 136\n", | |
"3 3.5 6 11.1 255\n", | |
"4 3.5 6 10.6 244\n", | |
"5 3.5 6 10.0 230\n", | |
"6 3.5 6 10.1 232\n", | |
"7 3.7 6 11.1 255\n", | |
"8 3.7 6 11.6 267" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']]\n", | |
"cdf.head(9)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"we can plot each of these features:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfZxdVX3v8c+X8PygIY6EAIFBTXkJxlYbEYvVUaE8arAIDSIQC+XWgoJGJXgRpFdatBd8hNsbCyVIBKM8BdTyVKYUroCEohACEiRCJCQCQhhEauB3/1hrcOdkn5kzJ3PmnDP7+369zmvOWftp7T17/846a629tiICMzOrlo3anQEzMxt7Dv5mZhXk4G9mVkEO/mZmFeTgb2ZWQQ7+ZmYV5OBvZlZBlQ7+kj4s6S5JA5JWSvqRpHfmabtLWiTpWUnPSbpZ0p8Vlv0jSVdL+rWkpyVdJ2m3wvQvSPp9Xvfg65nC9JC0StLGhbSNJa2WFIW0fknHFT5/TtIjeX0rJH23MG0PSddL+o2kZyQtlnRgntYnaUXN/h8s6U5Jz0t6StICSTsVps/O+fxMzXIrJPXl9xMlXSjpiXycfi7plCb/JdZh6lwjn8/nbk9hvs0kLZX0PyT15vNm45L1fUHSJYXPIeleSRsV0r4o6aL8fnBdg9fQKknXStq3Zr3LJb1Qc719M0+bLemlnLZG0k8lHVyz/LGSHsjn8CpJP5C0zagdyA5U2eAv6VPAV4F/ACYDOwPnAzMlvR64DbgX2BXYAbgSuF7SO/IqJgKLgN3y8ncCV9ds5rsRsXXhNbFm+jPAAYXPBwK/GSLPxwBHAftExNbADOCmwizXADfk/GwHfAJYU2ddHwK+A3wN6AH2AF4EbpW0bWHWp4FTJL2qTra+AmwNvBF4NfAB4OF6+2DdY4hr5FXAtaRzZ9BpwEpgXhOb2gGYNcw8E/M5/8ekc/xKSbNr5nl/zfV2YmHaj/PyE/M+XCZpIoCkd+d9PCIitiGdywub2I/uEhGVe5GC1ABwWJ3p3wZ+WJL+f4Bb6iwzCQjgNfnzF4BLhshDkC6Y7xXSvg/8z/RveSWtHzguv/8m8NU66+vJ65xYZ3ofsCK/F/BL4LM182wE3Af8ff48G7iV9KVyRmG+FUBffn8fcEi7/6d+je6rgWvk1fk8OAh4E6nQ8vo8rTefixuXLLfOdZHnOwV4aHB+4IvARUOtC/g0sArYKH9eTioUleV1NnBr4fOWeZ1vK6zrqnYf87F+VbXk/w5gc1Jpvsy+wPdK0hcCe0vasmTau4AnIuKpEeTjKuBduepkIvDnrP/roeh24GhJn5E0Q9KEwrSngGXAJZIOkTR5iPXsRirFrbOPEfEycDlp/4s+D3xS0qQ6eTpL0kclTRtim9ZdhrxGIuJZ4GPAPwMXAmdGRLO/+K4g/UKdPcJltiOdyw3L18xHgd+TCkAAdwD7STpT0t6SNhvJOrtVVYP/a4AnI2Jtnek9pJ+wtVaSjlmxWoRcT34e8Kma+Q/Pde+Dr5trpv+OVKr+K9LP3kU5rVREXAJ8HNgP+A9gtaS5eVoA7yGVgM4BVkq6pU5AHqyrrbePPcWEiLgHuJ5UQqv1cWABcCJwv6Rlkg4omc+6y3DXCBFxDenLfyPg6xuwrSAVME4fQeB9PP8tFkiuqrne/qYwba/c5vY74H8DH4mI1Xk//hP4S+CtwA+ApySdW1O4GneqGvyfAnrKGqSyJ4EpJelTgJcp1MtLei0pMJ4fEZfWzL8wIiYWXu8pWefFwNH5dfFwGY+IBRGxD6nu8m+Bv5e0X562IiJOjIjXA7sAz9dZ55OF/SnbxydL0k8HPiZp+5r8vBAR/xARf0oKGAuB79X5lWDdY7hrZNAS4IH8q7FpEfFD4FHg+AYX2TH/fbqQdkjN9fatwrTbI7W5bUsqZP15zfZ/FBHvJ32ZzCT9CjmOcayqwf/HpBLAIXWm3wgcVpJ+OKnh6LcAuWH0emBRRJzVZF7+kxRwJ5Pq1xsSEb+PiO8BPyPVudZOf4z0a2S9acCDpPradfYx97g4lHUbkQfX9wDpp/bnhsjTGlLD2VakhnLrXsNdI61wGqnNq6xatdYHgdWkc7lhETEA/B1wlKS3lEx/OSJuAv6d8mtn3Khk8M/1lacD5+X68S0lbSLpAElfBs4E/kzSWZImSdpG0sdJpfNTAHLvl+uA2yJi7gbkJYD3Ax/I7+vKXdYOyvnZKFev7AHcIWnbXGf5hjytB/hr0s/ysm1+Gjgtd+XbIpfo/4XUk+MrdbJwJqm+9JVeS7nb39skbSppc+AkUi+mEV2U1lkauEYasZmkzQuvIeNNRPSTetgdU28eSZMlnQicAZzazC+O3C73L6T9Q9JMSbPyNSRJewLvpuTaGU8qGfwBIuJcUh39acCvgcdI9dZXRcRDwDtJ3cqWk+rBDwX2i4jb8io+CLwN+GhN3+KdC5v5q5ppA5K2K8nLkohY0kC215BK3o+SAuyXgY9FxK3Af5N6RtyY57uP1HVzdp39/y6p2+gnSdU89wNbAHvXa7SOiEdIPaG2KiYD/5rX8TipsfigXMKyLjbUNdLgKgaAFwqv9zawzGmsW48/6BlJz5O+HA4k9UK6sGaea2qutXodOiB1YT1Q0ptJ1bh/Q+pxtAa4BPiniFjQQH67loYpbJqZ2ThU2ZK/mVmVOfibmVWQg7+ZWQU5+JuZVdBwN3CMiZ6enujt7W13Nko9//zzbLXVVsPPWDGdeFwWL178ZES8tt35aFSnnfed9j/ttPxA5+VpQ875jgj+vb293HXXXe3ORqn+/n76+vranY2O04nHRdIvh5+rc3Taed9p/9NOyw90Xp425Jx3tY+ZWQU5+JuZVZCDv5lZBXVEnX836537gxEvs/zsg1qQE6uyZs5D8LlYZS75m9UhaYKk/5J0bf48SdINkh7Kf7ctzHtqfpbBg4NDbJt1Mgd/s/pOApYWPs8FboqIaaRhr+cCSNqd9DCePYD9gfPH+4NArPs5+JuVyE9nO4g09O+gmcD8/H4+fxjrfiZwWUS8mEc+XQbsOVZ5NWuG6/yzenWmc6avZXaT9anW1b4KfBbYppA2OSJWAkTEysLw3Duy7tjvK/jDk6bWIel48tOqJk+eTH9//6hkds70uk9bHFJx+wMDA6OWn9HQafmBzsxTsxz828CNxJ1N0sHA6ohYLKmvkUVK0krHSo+IecA8gBkzZsRo3TDUbAFl+ZF/2H6n3cDUafmBzsxTsxz8zda3N/ABSQcCmwOvknQJsErSlFzqn0J6jCCkkv7UwvI78YcHjJt1JNf5m9WIiFMjYqeI6CU15P57RHyE9ODvwUcMHgNcnd8vAmZJ2kzSrsA04M4xzrbZiLjkb9a4s4GFko4lPUrzMEiP4ZS0kPQozLXACRHxUvuyaTY8B3+zIeSHivfn908B76sz31nAWWOWMbMN5GofM7MKcvA3M6sgB38zswpy8Dczq6BhG3wlTQUuBrYHXgbmRcTXJE0Cvgv0AsuBwyPiN3mZU4FjgZeAT0TEdS3JvZmNOd+kOD40UvJfC8yJiDcCewEn5IGsPMiVmVmXGjb4R8TKiLg7v3+ONMrhjniQKzOzrjWifv6SeoG3AHewgYNctWqAq2bVGxhr8hbND5o1mtp9fGqNpwGuzKqo4eAvaWvgcuDkiFgjlY1llWYtSVtvkKtWDXDVrHoDY82ZvpZz7m3/vXDFAbg6wXga4Mqsihrq7SNpE1LgXxARV+TkVXlwKzzIlZlZdxk2+CsV8S8AlkbEuYVJHuTKzKxLNVKfsTdwFHCvpHty2ufwIFdmZl1r2OAfEbdSXo8PHuTKzKwr+Q5fM7MKcvA3M6sgB38zswpy8DczqyAHfzOzCnLwNzOrIAd/M7MKcvA3M6sgB38zswpy8DczqyAHfzOzCnLwNzOrIAd/M7MKav8jqszMStz7q2frPmFvKMvPPqgFuRl/XPI3M6sgB38zswpy8DczqyAHfzOzCnLwNzOrIAd/M7MKcvA3M6sgB3+zGpKmSrpZ0lJJSySdlNMnSbpB0kP577aFZU6VtEzSg5L2a1/uzRrj4G+2vrXAnIh4I7AXcIKk3YG5wE0RMQ24KX8mT5sF7AHsD5wvaUJbcm7WIAd/sxoRsTIi7s7vnwOWAjsCM4H5ebb5wCH5/Uzgsoh4MSIeAZYBe45trs1GxsM7mA1BUi/wFuAOYHJErIT0BSFpuzzbjsDthcVW5LSy9R0PHA8wefJk+vv7RyWfc6avbWq54vYHBgYayk8z22pmPydvMXbbalSjx6gbOPib1SFpa+By4OSIWCOp7qwlaVE2Y0TMA+YBzJgxI/r6+kYhpzQ1Bg7A8iP/sP3+/n4ayU9T4+0UttOobyy4mnPuHXmIamZbjWr0GHUDV/uYlZC0CSnwL4iIK3LyKklT8vQpwOqcvgKYWlh8J+DxscqrWTOGDf6SLpS0WtJ9hTT3erBxS6mIfwGwNCLOLUxaBByT3x8DXF1InyVpM0m7AtOAO8cqv2bNaKTkfxGpB0ORez3YeLY3cBTwXkn35NeBwNnAvpIeAvbNn4mIJcBC4H7g34ATIuKl9mTdrDHDVqhFxC250atoJtCX388H+oFTKPR6AB6RNNjr4cejk12z1ouIWymvxwd4X51lzgLOalmmzEZZsw2+HdvroVn1ehU02+NgtLX7+NQaT70ezKpotHv7tL3XQ7Pq9WCYM31tUz0ORlsrezA0Yzz1ejCromaj2ipJU3Kpv+N6PfQ22e2tkzWzT36cnZnV02xXT/d6MDPrYsOW/CVdSmrc7ZG0AjiD1MthoaRjgUeBwyD1epA02OthLe71YGbWkRrp7XNEnUnu9WBm1qXa35JpLdNs24fbCszGPw/vYGZWQQ7+ZmYV5OBvZlZBDv5mZhXk4G9mVkEO/mZmFeTgb2ZWQQ7+ZmYV5OBvZlZBDv5mZhXk4G9mVkEO/mZmFeTgb2ZWQQ7+ZmYV5OBvZlZBHs/f1tPIcwDmTF+7zkPv/QwAs+7ikr+ZWQU5+JuZVZCDv5lZBTn4m5lVkIO/mVkFOfibmVWQg7+ZWQV1fD//Rvqcm5nZyHR88Lfu0MyXtG8MM2sfV/uYmVWQS/5mZmOk2WrsVvxKblnJX9L+kh6UtEzS3FZtx6xT+Jy3btKSkr+kCcB5wL7ACuAnkhZFxP2t2J5Zu3XrOV8sidYO1lcljZbIi8eo29usWlXtsyewLCJ+ASDpMmAm0NEXgtkGGLVz3j3cbCwoIkZ/pdKHgP0j4rj8+Sjg7RFxYmGe44Hj88fdgAdHPSOjowd4st2Z6ECdeFx2iYjXtmPDjZzzOb2Tz/tO+592Wn6g8/LU9DnfqpK/StLW+ZaJiHnAvBZtf9RIuisiZrQ7H53Gx2U9w57z0Nnnfaf9TzstP9CZeWpWqxp8VwBTC593Ah5v0bbMOoHPeesqrQr+PwGmSdpV0qbALGBRi7Zl1gl8zltXaUm1T0SslXQicB0wAbgwIpa0YltjoCN/oncAH5eCcXLOd9r/tNPyA52Zp6a0pMHXzMw6m4d3MDOrIAd/M7MKqnTwlzRV0s2SlkpaIumknD5J0g2SHsp/ty0sc2q+ff9BSfu1L/etJ2mCpP+SdG3+7OPS5SQtl3SvpHsk3VUyXZK+nv+XP5P01hbnZ7ecl8HXGkkn18zTJ+nZwjyntyAfF0paLem+Qlrd871m2e4c1iMiKvsCpgBvze+3AX4O7A58GZib0+cCX8rvdwd+CmwG7Ao8DExo93608Ph8CvgOcG3+7OPS5S9gOdAzxPQDgR+R7lvYC7hjDPM2AXiCdONSMb1v8Bxs4bbfBbwVuK+QVnq+l+T5YeB1wKb5Oti93f/nRl6VLvlHxMqIuDu/fw5YCuxIui1/fp5tPnBIfj8TuCwiXoyIR4BlpNv6xx1JOwEHAf9SSK78camAmcDFkdwOTJQ0ZYy2/T7g4Yj45Rht7xURcQvwdE1yvfO96JVhPSLiv4HBYT06XqWDf5GkXuAtwB3A5IhYCekLAtguz7Yj8FhhsRU5bTz6KvBZ4OVCmo9L9wvgekmL81ATtdr5v5wFXFpn2jsk/VTSjyTtMUb5qXe+F3Xtue/gD0jaGrgcODki1gw1a0nauOsrK+lgYHVELG50kZK0cXdcxom9I+KtwAHACZLeVTO9Lf/LfGPcB4DvlUy+m1QV9MfAN4CrWp2fEejac7/ywV/SJqTAvyAirsjJqwZ/6ua/q3N6VW7h3xv4gKTlpJ+x75V0CT4uXS8iHs9/VwNXsn71XLv+lwcAd0fEqtoJEbEmIgby+x8Cm0jqGYM81Tvfi7r23K908Jck4AJgaUScW5i0CDgmB79HgV0lDQCfB+ZIOk5SADOAOwvrWyGpr/B5mqTLJP0692J4SNI3cn36YC+GFYX5+yX9TtLUQto+OR+Dn5dLekHSQOH1zTxtU0nn5HwMSHpE0ldqlt0nv19Ss44BSS9KejkiTgU+AuwMvJrUkHUIqTH383l1xwBXF47XLEmbSdoVmFY8LtYZJG0laZvB98BfAPfVzLYIODr3+tkLeHaw6qPFjqBOlY+k7fO1iqQ9SXHrqTHI0yLSeQ7rnu9F3TusR7tbnNv5At5J+on2M+Ce/DoQeA1wE/B70k/OSYVl/iepBPAS8CzwqsK0FUBffv8GUgPSucBOOW074GRgVv7cB6woLN9POqnnFdL2AZYXPi8H9qmzP2cA/wHsQPo52gsc3eCyW5MavM8s5o1CT4vCcXko/609Lg+Thig+oN3/20555WP+AjBQeH24+H+v+f8fl99/IZ9/xeWeKcwbwBvqbHMKqVCzEngOeAA4E9iD1Bvlp6ReNU/mvD0N/Bupt5ZID6VZk7dxTGG9b0gh45XPewDXA78BngEWAwfmabOBW+scj33y+4vyNj6Uz/tX5/Sv5vT5+fO38+eXgLWkXnkHA0cWjs0LpPapV45X2TlPKpkvyNt7nlRIOZj0xbMyH/PI535P4Xx/BPhOXscOwA8L6zww5+lh4PT8v3sor385cCHQW5j/4Lzd53M+FpBjROHYBXBuzbE7JKdflD/35s+D+7wKOB/YpKFzs90XRye/ak+cmn/OrcA1wBmF9GLwvwS4Zpj197F+8D+DdMG+IaeNJPhfS2q3GNH+5GmXkS7kjcry5tfonUP1ji3rB/9LhlhvafAHJuVtfmcw4JCqJb4GvDl//kYOTu8gje+1Rw5GVxfWc1EOTNcX0mqD/y+Az5B+GW5Kqi58Z542m8aC/4PA5YXpGwO/IvUYm127LlKp/+PAb1m38FHvmBa3N3hs/hXYHtiC9ItjDfChmmP7FPDhQtoXyUF3mP/3IlKB8W15X14NnAAcm6d/KG/vyLz97UlfDsuBbQv7uywfh40L674iH6+L8ufenNeN8+ftgP9iiBhQfFW62mcUfB74pKRJJdP2IbUljNSvgG+RLv6Ruh34lKS/kzR98KfycCR9gnThfjgiXh5ufutonyIVHj4SEcsBIuKxiDgpIn4maRrwd8CREfHjiFgbaQC6Q4H9Jb23sK75wJslvbt2I7nOfVfgWxHx3/l1W0TcOsL8XgPsXbiBan/SL/EnymbO5+eFpMD5uhFu65OkEvKxEfFERLwQEZcCZwHn1FwvXwbOlNTw4Je5SnVfYGZE/CQf22cj4ryIuCCv/xzgixGxIG//CeC4nK9PFlb3BHAvsF9e9yTgzxiiSilSO84NpPtuhuXgP7yrJD1TeP3N4ISIuIdUWj6lZLkeCiewpBPz8gOSvjXMNv8ReP8QXdrq5ekfgS+RShV3Ab+SdEyddQzmay/gH4DDIqL2CUU71GznmVxXbJ1rH+CKIb7E30cqIa/TJhMRj5EKD/sWkn9LOjfOKlnPU6TS6SWSDpE0ucn8/o7cZpQ/Hw1cXG/mHIwHg+VDI9zWvqRfGbXHZiGpfeuPCmlXkEros0ew/n2AO/OxLLNb3s46PZpyfi5n3WMP6Tgcnd/PIrU5vFhv45J2IH1Z3N5IZh38h3dIREwsvGoD9+nAxyRtX5P+FKnuFYCI+GZETCTVZ24y1AYj4tfAN4G/H0meIuKlXMrYG5hIumgvlPTGspXk0tv3gFMj3dBT6/Ga7UyMiOeHyruVKn5Zj6Sb4uE1X7w3N7DMa0h11/X0DDF9ZZ5e9H+BnSUdUEyMVM/wHlJ1xTnASkm35F8WI3UxqZH51cC7Ke/KuZekZ0gFqiOAD0bEsyPcTr19X1mYPihIv+xPl7RZg+tv5NhTZ56yY38l0JePy1Bfik/mY/MrUjvC9xvJrIP/BoqIB0ilhM/VTLoJ+MsNWPU/kS6uP20yXy9ExHmkxrj1fgZK2ohUL3xbRHxjA/Jpwyt+WR9CarQsKwBsQmpwHLSw5ov3PQ1sa51CR4knh5g+hZrn00bEi8D/yi/VTFsRESdGxOuBXUiBZzBANbqP5Kqi1wKnkToXvFCy3O35GPRExF4RceMQ+1hPvX2fUphezNcPSb39ym6GK9PIsafOPGXH/gXgB6Tj0hMRt9VZb08uWG4J3EZqvB+Wg//oOBP4KKm0PegLwJ9LOlfSjvBKSbu0FF4rIp4hlag+22gmJJ2cu49uIWnjXOWzDakRqNYXSA2BxzW6fhs1jwI9SjcXAq90O94F2NChDW4EPpi/3Mv8OzA1d5l8Re5evBep0FLrX0kNlx+st9Fc1XEe8Kac9CjpF8MrXxiStiQ1Spbt4yXAHIao8hkFNwKHlhybw0l36f68ZJnTSD3Ztmxw/XsOduUu8SCpU8hhxcScn0MpP/YXk47Lt4fbeP6yuIh0N/Sw90E4+A/vmpq+8FfWzhBpPJtvA1sV0n5Ouph2An4q6TnSt/Lj/KGv/HC+Rure1mieXiB9YQx24zsBODQiflGyjtNIDWZPlPT33znPs0PJtEMbzLvVERGPkoYR+ZKkrXO1wmdIpeWG6muzTSVtXnhNIHUtfhUwX9IuAJJ2zIWQN+fz8p+BBZL2Uhq5dQ9SnfONZSXqiFhLKiy80rYlaVtJZ0p6g6SNcrD560L+7yDV58/NedsKOJvUFlUW/L9OqvO+ZQT7P1JfIR2bC5TuHdhc0hGk4P6ZXJW1jojoJzW8Dtl2lue9kdTgeqWkP80FsG0k/a2kv87r/zRwmqQP50La9qTxs16V81frP0jHZdhf5/k8Oop0/Q9/H0QjXYL88suv5l7U7y48ldTeMvhFfR2F0SAp7+c/AGyXp0fJa7Cb6A6kHjFP8Id+/mcAW+bpG5EC+TJSgeExUu+WzQvbv4jUK4XCMvfxSnU/W5F6Ay3P+XqC1Fd+x8Iyu+f9epLUB/37wNR626g5PrdS0tVziOPcxzBdPfPnnXM+nyZVU/2E1DunuMw63WiBt1PoXz9MPjYl1QQsy+v/JSm471yYZ2be7vM5H5fWHJe6+0uhyynr9/N/hvRl8bZGzk0/xtHMrIJc7WNmVkEO/mZmDZJ0ZEk72ICkJe3O20i52sfMrIIavnW5lXp6eqK3t7fd2eD5559nq6265wbWbssvtDbPixcvfjIiXtuSlbdAp5z3Zbrx3Bot3bTvG3LOd0Tw7+3t5a671nuW9Jjr7++nr6+v3dloWLflF1qbZ0mj8vg/SZuTuhxuRrpGvh8RZ+TxVb5L6mWxHDg8In6TlzkVOJbUNfcTEXHdcNvplPO+TDeeW6Olm/Z9Q8551/mbre9F4L2Rnhz1J6QBz/YiPcT7poiYRrohZy6ApN1JY6/sQRqY7Pzc596sYzn4m9WIZCB/3CS/Aj/A3saRjqj2Mes0ueS+mDSG/XkRcYekdR7oLan4APvinbl1H+Kt9ND04wEmT55Mf39/i/ZgwwwMDHRs3lqtKvs+LoN/79wfjHiZ5Wcf1IKcWLeKiJeAP5E0kXS7/puGmL3hh3hHxDxgHsCMGTOi3XXL9a6VOdNf4pxbywdwHe/XSjfV+W8IV/uYDSHSAHv9pLp8P8Dexg0Hf7Makl6bS/xI2oL0kI4HqP9Abz/A3rrOuKz2MdtAU0ijYk4gFZAWRsS1kn4MLJR0LGnI4sMAImKJpIXA/aSROU/I1UZmHcvB36xGRPwMeEtJ+lOkxyCWLXMW5Y87NOtIDv4byI3LZtaNXOdvZlZBDv5mZhXk4G9mVkEO/mZmFeTgb2ZWQQ7+ZmYV5OBvZlZBDv5mZhXk4G9mVkEO/mZmFeTgb2ZWQcMGf0lTJd0saamkJZJOyumTJN0g6aH8d9vCMqdKWibpQUn7tXIHzMxs5BoZ2G0tMCci7pa0DbBY0g3AbNLDrM+WNJf0MOtTah5mvQNwo6Q/8hC3ZuODBzMcH4Yt+UfEyoi4O79/DlhKej6pH2ZtZtalRjSks6Re0jjndwAb9DDrVj7Ies70tSNepr+/v6kHNze7rdHQjQ+a7sY8m41HDQd/SVsDlwMnR8QaqeyZ1WnWkrT1HmbdygdZz27mZ+mRfU09uLnZbY2GbnzQdDfmuRs0UxVj1dZQbx9Jm5AC/4KIuCIn+2HWZmZdqpHePgIuAJZGxLmFSX6YtZlZl2qk2mdv4CjgXkn35LTPAWfjh1mbmXWlYYN/RNxKeT0++GHWZmZdyXf4mtXwjY1WBQ7+ZusbvLHxjcBewAn55sW5pBsbpwE35c/U3Ni4P3C+pAltyblZgxz8zWr4xkarghHd5GVWNaN5Y2NeX0tubmzmZsOhTN5idNfZTTf2VeVGRAd/szpG+8ZGaN3Njc3cbDiUOdPXcs69oxceRuvGxrFQlRsRXe1jVsI3Ntp45+BvVsM3NloVuNrHbH2+sdHGPQd/sxq+sdGqwNU+ZmYV5OBvZlZBrvbJeuf+gDnT1456lzkzs07kkr+ZWQU5+JuZVZCDv5lZBTn4m5lVkIO/mVkFOfibmVWQg7+ZWQW5n3+X6C25/2C4+xKWn31QK7NkZl3MJX8zswpy8DczqyAHfzOzCnLwNzOroI5v8C1r6DQzsw3jkr+ZWQUNG/wlXShptaT7CmmTJN0g6aH8d9vCtFMlLZP0oKT9WpVxMzNrXiMl/4uA/WvS5gI3RcQ04Kb8GUm7A7OAPfIy50uaMGq5NTOzUTFs8I+IW4Cna5JnAvPz+/nAIYX0yyLixYh4BFgG7DlKeTUzs1HSbB1q60YAAAZVSURBVIPv5IhYCRARKyVtl9N3BG4vzLcip61H0vHA8QCTJ0+mv7+/dENzpq9tMosjN3mLsdlevX0dSlm+hstvM9tptYGBgY7Ml7VWMx03fId6a412bx+VpEXZjBExD5gHMGPGjOjr6ytd4Vg+VnHO9LWcc2/rO0AtP7JvxMuUHYfh8tvMdlqtv7+fev/rTiLpQuBgYHVEvCmnTQK+C/QCy4HDI+I3edqpwLHAS8AnIuK6NmTbrGHN9vZZJWkKQP67OqevAKYW5tsJeLz57Jm1zUW4rcvGsWaD/yLgmPz+GODqQvosSZtJ2hWYBty5YVk0G3tu67Lxbtg6DkmXAn1Aj6QVwBnA2cBCSccCjwKHAUTEEkkLgfuBtcAJEfFSi/JuNtbGrK1rpEa7rWqs2r+G0q62oaq0Sw0b/CPiiDqT3ldn/rOAszYkU2ZdZtTbukZqtNvGxqr9ayjtarPqlnapDdXxwzuYdZBVkqbkUr/bulqs2aFd3EuoMR7ewaxxbuuyccMlf7MSbuuy8c7B36yE27psvHO1j5lZBbnk3wZ+RoGZtZtL/mZmFeTgb2ZWQQ7+ZmYV5OBvZlZBbvAdx3yHpJnV45K/mVkFueRv6/FTl8zGP5f8zcwqyMHfzKyCHPzNzCrIwd/MrIIc/M3MKsi9fcxsXHFvtca45G9mVkEu+Zt1GA/5bWPBJX8zswpy8DczqyBX+5hZ5RWr2uZMX8vsBqreur2R2CV/M7MKcsnfzKwJ3d6ltGUlf0n7S3pQ0jJJc1u1HbNO4XPeuklLSv6SJgDnAfsCK4CfSFoUEfe3Yntm7eZz3hrRSQ9YalW1z57Asoj4BYCky4CZgC8Ee0W3/2yu4XPeukqrgv+OwGOFzyuAtxdnkHQ8cHz+OCDpwRblpWGfgB7gyXbno1GdlF99qeFZNyjPw2xnl2bXOwqGPeehM8/7Mp10bo21Ttz3Ic77ps/5VgV/laTFOh8i5gHzWrT9pki6KyJmtDsfjeq2/EJ35rlBw57z0JnnfZlx/H8aVlX2vVUNviuAqYXPOwGPt2hbZp3A57x1lVYF/58A0yTtKmlTYBawqEXbMusEPuetq7Sk2ici1ko6EbgOmABcGBFLWrGtUdbxP8drdFt+oTvzPKwuPufrGZf/pwZVYt8VsV61pJmZjXMe3sHMrIIc/M3MKqhywV/SVEk3S1oqaYmkk0rm6ZP0rKR78uv0duS1kJ/lku7NebmrZLokfT0PK/AzSW9tRz4L+dmtcOzukbRG0sk183TUMa4ySRdKWi3pvkLaJEk3SHoo/922nXlslXrxoAr7X7k6f0lTgCkRcbekbYDFwCHF2/Al9QGfjoiD25TNdUhaDsyIiNIbTyQdCHwcOJB0Y9HXImK9G4zaIQ978Cvg7RHxy0J6Hx10jKtM0ruAAeDiiHhTTvsy8HREnJ3HKdo2Ik5pZz5boV48AGYzzve/ciX/iFgZEXfn988BS0l3Z3azmaQLNyLidmBiPqk7wfuAh4uB3zpLRNwCPF2TPBOYn9/PJwXEcWeIeDDu979ywb9IUi/wFuCOksnvkPRTST+StMeYZmx9AVwvaXEeHqBW2dACnfKFNgu4tM60TjrGtq7JEbESUoAEtmtzflquJh6M+/2v7Hj+krYGLgdOjog1NZPvBnaJiIFcpXIVMG2s81iwd0Q8Lmk74AZJD+TS2qCGhhYYa/lmpw8Ap5ZM7rRjbBVWGw+ksktqfKlkyV/SJqR/9IKIuKJ2ekSsiYiB/P6HwCaSesY4m8X8PJ7/rgauJI0gWdSpQwscANwdEatqJ3TaMbb1rBqsOsx/V7c5Py1TJx6M+/2vXPBX+kq/AFgaEefWmWf7PB+S9iQdp6fGLpfr5GWr3BCFpK2AvwDuq5ltEXB07vWzF/Ds4E/WNjuCOlU+nXSMrdQi4Jj8/hjg6jbmpWWGiAfjfv+r2NvnncB/AvcCL+fkzwE7A0TEP+fb9D8GrAVeAD4VEf+vDdlF0utIpX1I1XTfiYizJP1tIb8CvgnsD/wW+GhErNcldCxJ2pLUDvG6iHg2pxXz3DHHuOokXQr0kYYyXgWcQaqGW0i6Lh4FDouI2kbhrjdEPLiDcb7/lQv+ZmZWwWofMzNz8DczqyQHfzOzCnLwNzOrIAd/M7MKcvA3M6sgB38zswr6/2Vb6j24kZMKAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 4 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"viz = cdf[['CYLINDERS','ENGINESIZE','CO2EMISSIONS','FUELCONSUMPTION_COMB']]\n", | |
"viz.hist()\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now, lets plot each of these features vs the Emission, to see how linear is their relation:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7SddX3n8fcnJwEJlxJKoLmRUAztnGNrtGeYaXE51hwKg1RkpmpooNBxJpeNI70qMZ2lY1c6TMcL9kIgVkZKtmJW1YFStSURlnbqkgaMQIKUdEhCAkOCQjXEoST5zh/Ps0+enLMvzz7Zz75+Xmudtff+7efZ+3eenOzv/t2+P0UEZmZmANM6XQEzM+seDgpmZjbOQcHMzMY5KJiZ2TgHBTMzG+egYGZm46YX+eKSdgE/BI4AhyNiVNJZwOeBRcAu4F0R8WJ6/BrgPenx74uIv673+meffXYsWrSoqOqbmfWlhx9++IWImF3tuUKDQuoXI+KFzOObgC0RcbOkm9LHH5A0DCwDRoC5wGZJF0bEkVovvGjRIrZu3Vpk3c3M+o6k3bWe60T30ZXAnen9O4F3ZMrvjohXIuJpYCdwUQfqZ2Y2sIoOCgH8jaSHJa1Iy86NiOcA0ttz0vJ5wDOZc/emZWZm1iZFdx9dHBHPSjoHuF/Sd+scqyplk3JwpMFlBcB5553XmlqamRlQcEshIp5Nb/cDXyLpDnpe0hyA9HZ/evheYEHm9PnAs1Vec0NEjEbE6OzZVcdJzMxsigoLCpJOlXR65T7wS8DjwL3Adelh1wH3pPfvBZZJOlnS+cBi4KGi6mdmZpMV2VI4F/hbSd8h+XD/q4j4KnAzcImkp4BL0sdExHZgE7AD+CpwQ72ZR2Y2OMplWLQIpk1LbsvlTteof6mXU2ePjo6Gp6Sa9bdyGVasgEOHjpXNnAkbNsDy5Z2rVy+T9HBEjFZ7ziuazayrrV17fECA5PHatZ2pT79zUDCzrrZnT3PldmIcFMysq9Waee4Z6cVwUDCzrrZuXTKGkDVzZlJureegYGZdbfnyZFB54UKQklsPMhenHQnxzMxOyPLlDgLt4paCmZmNc1AwM7NxDgpmZjbOQcHMzMY5KJiZ2TgHBTMzG+egYGZm4xwUzMxsnIOCmZmNc1AwM7NxDgpmZjau8KAgaUjStyXdlz7+sKR9kralP5dnjl0jaaekJyVdWnTdzMzseO1IiHcj8ARwRqbsExHx0exBkoaBZcAIMBfYLOlC79NsZtY+hbYUJM0H3gb8WY7DrwTujohXIuJpYCdwUZH1MzOz4xXdfXQL8H7g6ITy90p6VNIdkmalZfOAZzLH7E3LzMysTQoLCpKuAPZHxMMTnloPXAAsAZ4DPlY5pcrLRJXXXSFpq6StBw4caGWVzcwGXpEthYuBt0vaBdwNvFXSxoh4PiKORMRR4FMc6yLaCyzInD8feHbii0bEhogYjYjR2bNnF1h9M7PBU1hQiIg1ETE/IhaRDCB/LSKukTQnc9hVwOPp/XuBZZJOlnQ+sBh4qKj6mZnZZJ3YjvMPJS0h6RraBawEiIjtkjYBO4DDwA2eeWRm1l5tWbwWEQ9GxBXp/Wsj4mci4mcj4u0R8VzmuHURcUFE/FREfKUddTOzfMplWLQIpk1LbsvlTtfIitCJloKZ9ZBSCW6/HY5m5hDu3g0rViT3ly/vTL2sGE5zYWY1jYzA+vXHB4SKQ4dg7dr218mK5aBgZlWVSrBjR/1j9uxpT12sfRwUzKyqDRsaH3PeecXXw9rLQcHMqjrSYO7fzJmwbl176mLt46BgZlUNDdV+7tRTk5aEB5n7j4OCmVVVmV000fAwHDzogNCvHBTMBlypBNOng5TclkpJ+a23wurVx1oMQ0PJ4+3bO1dXK54iJuWc6xmjo6OxdevWTlfDrCeNjcGWLdWfW706CQrWnyQ9HBGj1Z5zS8FsANULCJBv5pH1JwcFswFULyBA45lH1r8cFMwGyNhYMnbQSL2ZR9ZZtcaAWsW5j8wGRKMuo6xaM4+sc0qlJOVI1pEjx8paNQbkloJZn6t8s8wbEDzI3H2qBYSsVo4BuaVg1sfmzYNnJ+1fWN3SpbB5c7H1salp9KHfyjEgBwWzPjU2lj8g9PDM9IHQ6EO/lWNA7j4y61N5u4uWLi22HnbiGn3ot3IMqPCgIGlI0rcl3Zc+PkvS/ZKeSm9nZY5dI2mnpCclXVp03cz6UWWHtDzcZdQban3oS60fA2pHS+FG4InM45uALRGxGNiSPkbSMLAMGAEuA26V5IlxZk0oleDaa5Od0epZvTrpMnJA6A21Uo4cPdr6SQGFBgVJ84G3AX+WKb4SuDO9fyfwjkz53RHxSkQ8DewELiqyfmb9olyGs89OZqg0Gh+YO9ezi3rRrbfC4cPJv+/hw8X9GxbdUrgFeD+Q3czv3Ih4DiC9PSctnwc8kzlub1pmZnVUWgff+17jY5cuhX37iq+T9a7CgoKkK4D9EfFw3lOqlE36ziNphaStkrYeOHDghOpo1uvKZbjttsatg4UL3V1k+RQ5JfVi4O2SLgdeA5whaSPwvKQ5EfGcpDnA/vT4vcCCzPnzgUkT6iJiA7ABkiypBdbfrKuNjDTeQxmSwUjvkGZ5FdZSiIg1ETE/IhaRDCB/LSKuAe4FrksPuw64J71/L7BM0smSzgcWAw8VVT+zXtZMQFi1yhviWH6dWLx2M7BJ0nuAPcA7ASJiu6RNwA7gMHBDRDhXo9kEpVK+gPDjPw6f/KQDgjXHm+yY9YhyGVauhJdfrn9cpXXgGUZWS71NdpzmwqwHlEr5BpQB7rrLrQObOqe5MOtiIyPJN/886w8AhocdENqtsoJ82rTktlzudI1OjFsKZl0q72ByxfAwbN9eXH1ssnI5SUFx6FDyePfuYykpejU4u6Vg1qWaCQirVzsgdMLatccCQsWhQ0l5r3JQMOsypVK+LTMh6bLwpjids2dPc+W9wEHBrIs02mGropId88gRB4ROOu+85sp7gYOCWReobJmZJyBMn57MMHIw6Lx162DmzOPLZs7s7RXkHmg267C8rYOKV18tri7WnMpg8tq1SZfReeclAaFXB5nBi9fMOm5oKMmLn1cP/5e1LlFv8Zq7j8w6aN48B4Ru0m9rDqbCQcGsA8bGksHiZyflAT5eZYetCAeEolXWHOzenVzrypqDQQsMDgpmbTZvHmzZ0vi41auL3WHLjtePaw6mwkHBrE0qKSsatQ4ATj3VwaBolX+Pyk+tfa17ec3BVDgomLWB1NwK5dtvL64ug65cTqb15v336OU1B1PhoGBWsFmzmjt+7tzentLYzSrjBkdy7tTS62sOpsJBwaxAIyPw0kv5jx8ehn37iqvPoKs2bjDRwoVJy27hQtiwYfACtBevmRUkb/4iSFoHDgatVSolH+pHjiSzuFasyDc+sGtX4VXraoW1FCS9RtJDkr4jabuk/5qWf1jSPknb0p/LM+eskbRT0pOSLi2qbmZFaiahHSSzjBwQWquySrzSTXTkSPJ4YkqKiYaHi69btyuypfAK8NaIOChpBvC3kr6SPveJiPho9mBJw8AyYASYC2yWdKH3abZeMjaWb7pphdcetF65XDttyI9+lASGal1I3o8iUVhLIRIH04cz0p96/wWuBO6OiFci4mlgJ3BRUfUza7VyOX9AOPNMB4QiVAaSazl6NOlSyo4bbNyY/Fs4ICQKHWiWNCRpG7AfuD8ivpU+9V5Jj0q6Q1JlbsY84JnM6XvTMrOecM01+Y4bHoYXXyy2LoOikl1WSm5Xrqw/kDw0lAwc79qVBIhduwZvILmRQoNCRByJiCXAfOAiSa8D1gMXAEuA54CPpYdX64Wd9F1K0gpJWyVtPXDgQEE1N8uv2TEEfyNtjZNOmjxu8PLL9c+p14qwRFumpEbES8CDwGUR8XwaLI4Cn+JYF9FeYEHmtPnApLWfEbEhIkYjYnT27NkF19ysvrGx/GmvTznFXUatUAnCzaYQ9w51+RQ5+2i2pDPT+6cAY8B3Jc3JHHYV8Hh6/15gmaSTJZ0PLAYeKqp+Zidi5szkgynPGMLSpUkwaDQ/3hprdu8JSP6tNm50QMiryNlHc4A7JQ2RBJ9NEXGfpLskLSHpGtoFrASIiO2SNgE7gMPADZ55ZN2oma4igM2bi6nHINqwofEx06bBggX9s+lNuxUWFCLiUeANVcqvrXPOOmDAFpVbrxgZaS5/ESRdRtY6edJTrFzpVsGJcJoLsxxmzpxaQHCX0dRMnFVUKiXlQ0P1z5sxwwHhRDkomDUwNpYsesrLYwgnptZq5FKp/uyhM8+Ef/7n9tSxnzkomNXRzII0SAY0PYYwNZWtMGsNJG/YkLQCVq8+1mLI7kzntR+tocgxR07SbOA/AYvIjENExH8orGY5jI6OxtatWztZBetjzY4heLrp1FVWIjdqXfkat4akhyNitNpzeQea7wG+AWwGPCPI+t6sWflTXk+blj8/v1WXJ6V1o/EEa428QWFmRHyg0JqYdYmxsXwBwQPJrZMnpbVXI7dH3jGF+7Iprs2KVulfnjYtuS2X2/O+IyP5F6Q5ILROvS0vK+MGnlXUHnmDwo0kgeH/Sfph+vODIitmg6vSv7x7d9KHvHt38rjowJB32qkHk6em1jRTSBaYTdzroLIS+fBhB4R2yhUUIuL0iJgWEa9J758eEWcUXTkbTNX6lw8dSsqLMGtW8kGVZ9rp8LBXxzarXIbTTqs9zRSSazoxpfUgboXZDXLNPgKQ9HbgzenDByPivsJqlZNnH/WnadOqzzKRknTHrdRMyoozz/S0x2aVSnDbbbVnDQ0NJS0Ba696s49ytRQk3UzShbQj/bkxLTNruVr9y/X6nZs1b15zAWHpUgeEvLLdROvX159G6llb3SfvmMLlwCURcUdE3AFclpaZtVyt/uV1LcqKNXMmPDspKXttw8MeQ8hr4mrkRjzNtPs0s6L5zMz9H2t1RcwqiuxfLpWaS1lxyineFKcZebKYZnmaaffJu6L5auBm4AGSHdLeDKyJiLuLrV59HlOwZjXbZeQWQnPyXt9p05zNtJNOeEVzRHxO0oPAvyQJCh+IiP/buiqaFavZPRCcTmFqhobqdx1JsGqVg0E3q9t9JOmn09s3kmyasxd4Bpiblpl1PQeE9qnXHbRwIdx1lwNCt2vUUvgtYAXwsSrPBfDWltfIrEXmzcs/oOyUFa1R+cDfsCFpMQwNJYHCgaB35F6n0PQLS68Bvg6cTBJ8/iIiPiTpLODzJBlXdwHviogX03PWAO8hSbr3voj463rv4TEFq6WZgABuHdhgacU6hXdKOj29/3uSvihp0labE7wCvDUiXg8sAS6T9K+Bm4AtEbEY2JI+RtIwsAwYIZnyemu6v7NZ05oJCHPnFlcPs16Td0rqf4mIH0p6E3ApcCdwW70TInEwfTgj/QngyvR80tt3pPevBO6OiFci4mlgJ3BR7t/EjCShXTNjCHPnwr59xdXHrNfkDQqV+QRvA9ZHxD3ASY1OkjQkaRuwH7g/Ir4FnBsRzwGkt+ekh88jGcSu2JuWmeUiNb8pjgOC2fHyBoV9km4H3gV8WdLJec6NiCMRsQSYD1wk6XV1Dq/2/W5ST6+kFZK2Stp64MCBnNW3dmtn6mupudbBjBkeQ5jopJOOXUcpeWyDKW9QeBfw18BlEfEScBbwu3nfJD3nQZKxguclzQFIb/enh+0FFmROmw9M6hmOiA0RMRoRo7Nnz85bBWujdqa+nsp0U2/ufryTToJXXz2+7NVXHRgGVd6gMAf4q4h4StJbgHcCD9U7QdJsSWem908BxoDvAvcC16WHXUey1Sdp+TJJJ0s6H1jc6D2sO7Ur9XWzAWHGjNa+fy/LtuQmBoSKWuXW3/IGhS8ARyS9Fvg0cD7w2QbnzAEekPQo8PckYwr3kaTLuETSU8Al6WMiYjuwiSQL61eBGyLCORR7UK2tFfNsuZhHsxlOIQkIbiEkuZ+mTYNrrjnWkjPLyrtH89GIOCzp3wG3RMQfS/p2vRMi4lFg0rTViPgesLTGOeuAFuXCtHYql5OWwJ49tTeyb0Xq62bXH4A/+CoqGUzN6skbFF5Nk+L9GvDLaZkb4wYcG0OodBlVCwitSn3tgNC8sbF8+05P5O62wZS3++jXgZ8H1kXE02mf/8biqmW9pNoYAiQpDlqV+rrZGUYRDghwYgHB3W2DqbA0F+3gNBedVSody3FTTau2z3RCu6nLe+1mzvSeyINkymkuJG1Kbx+T9Gjm57F0ANkGVJ4dtloxhtDszlwOCMdvh5nHaac5INgxjcYUbkxvryi6ItY7yuXGA5atGEM46aT8LY1BDwZT6SZyBlOrpm5QyKSj2A0g6YxG51h/K5XgtrpZr5IxhHXrTnwMIa9BHxCdSkDwrnJWS64PeEkrgY8AP+JY6okAfrKgelkXKpeTgFDvW/nQEOzaNfX3GBpqbhzCA6IOCNZaeb/1/w4wEhEvFFkZ625r1zbupjmRjdg9oJxfo0H+iYaG4PDhYutk/SFvUPhHwPtSDbhGK5JXr556/3QzAaHW4rh+NzLSXBbYrBMJ1jZY8gaFNcDfSfoWyeY5AETE+wqplXWNPCuVpWTv3amMIThdRT5TWcldsXSpB5Mtv7xB4Xbga8BjQAtmnlsvyLNSWYJVq9oTEGAwA0K5PLWA0IoBfxs8eYPC4Yj4rUJrYl2n3krlo0eTdQhT/dAplZo7fhC7jJrtLvK4gbVC3qDwgKQVwF9yfPfR9wuplXWFWmMIR4+e2EplDyg3NpXxA48bWCvkDQq/mt6uyZR5SmqfO++8JL1ytfKpckCobqo5iiqGhz1uYK2RKyFeRJxf5ccBoc+tW5esTM6a6krlZhPanXKKA0IeQ0PJrK/t21tbJxtcjXIfvT9z/50TnvuDoipl3WH58mQu/MKFJ5btdCqtg2pjGf2oXG4+ICxcCBs3Jtfp8GG3EKy16mZJlfRIRLxx4v1qjzvBWVJ7g7uMJiuV4Pbbmx+bGR52q8BO3JSzpAKqcb/a44lvukDSA5KekLRd0o1p+Ycl7ZO0Lf25PHPOGkk7JT0p6dIGdbMu12yXEQxOQFi/3gHBulOjgeaocb/a44kOA78dEY9IOh14WNL96XOfiIiPZg+WNAwsA0aAucBmSRd6n+be5GBwPCets17RKCi8XtIPSFoFp6T3SR+/pt6JaYbVSpbVH0p6AphX55Qrgbsj4hXgaUk7gYuAbzb+NaybOCAczwHBeknd7qOIGIqIMyLi9IiYnt6vPM6dsFjSIuANwLfSovemm/XcIWlWWjYPeCZz2l7qBxGbgnIZFi1KFoMtWpQ8bhVvmVldMwFh5sxkENkBwTol7x7NUybpNOALwG9ExA+A9cAFwBKSlsTHKodWOX3SR4akFZK2Stp64MCBgmrdnyppK3bvTj6Md+9OHrciMEwlZYUd79RTvQOadV6hQUHSDJKAUI6ILwJExPMRcSQijgKfIukigqRlsCBz+nxgUsaXiNgQEaMRMTp79uwiq993qqWtOHQoKZ+qqQwmw2C0EPKqrDU4eNABwTqvsKAgScCngSci4uOZ8jmZw64CHk/v3wssk3SypPOBxcBDRdVvENVKW9EoJXYtUw0GgxYQli6t/dzq1V5rYN2lyK01LwauBR6TtC0t+yBwtaQlJF1Du4CVABGxXdImYAfJzKUbPPOotYpIW9GMQQsGFZs3Vx9sPpH9J8yKUnfxWrfz4rXmTEyFDcnAZrP92N4D4fidz4aGkuvqD3jrFSeyeM36SCvSVkxlumk/BoT164+l8j5yJHncbDpws27kloLl5vUHienTq+/t4P0MrFfUaykUOaZgA6pfg0FFrc1+Bm0TIOtP7j7qI6VS8i1WSm5b1Z0x1Wmnva5UOva7V37GxpIWQTW1ys16iVsKfWLi7JZKPzec2ADooHYZVcYNJtqyBebOrb5nsnc+s37glkIfqJeTf8OGqb3moKesqHfdnn02mU5aaRlUFp959pH1AweFPrBqVe3nptLPPaitg2xeqEbX7dZbk0Flb3Rj/cbdRz2uVErSI9TSTD/3II4bQHINb7utf4Kb2YlwUOhxjbqH8vZzTzUg9PoHaa2xg3rqpa0w63UOCj2uXjfH0qXFdWv0ejCoaHbMxfscWL9zUOhxQ0PVA4OU78Nr0DOcNho7WLgQdu1qS1XMuoIHmntItQ1yanUP1Rt8rpjKgHI/BQSoP+YycyasW9e+uph1AweFHlFrg5yLL57a9MhmAsKMGf0XDCpqBdXTTvOGNzaYnPuoRyxaVD3tdbPdG4M63bQeZzy1QVMv95GDQo+YNq36B7QER4/mew2nvDYzcOrsvlBrI5yiNshxQDAbTA4KPWLdumTgMyvvQOisWc2nrHBAMBtMRe7RvEDSA5KekLRd0o1p+VmS7pf0VHo7K3POGkk7JT0p6dKi6taLprpBjgQvvZT/fXq4N9HMWqCwMQVJc4A5EfGIpNOBh4F3ANcD34+ImyXdBMyKiA9IGgY+B1wEzAU2AxfW26d5kMYUmjXo6w/MrLaOjClExHMR8Uh6/4fAE8A84ErgzvSwO0kCBWn53RHxSkQ8DewkCRDWJK8/MLOpasuYgqRFwBuAbwHnRsRzkAQO4Jz0sHnAM5nT9qZlA6EVG+QM6mY4ZtY6hQcFSacBXwB+IyJ+UO/QKmWTvr9KWiFpq6StBw4caFU1O2pk5MQ3gu/nhHbVVnKbWTEKDQqSZpAEhHJEfDEtfj4db6iMO+xPy/cCCzKnzwcm7W8VERsiYjQiRmfPnl1c5dugVEo+6HbsqP78VDfIyaNXuoxqreR2YDArRpGzjwR8GngiIj6eeepe4Lr0/nXAPZnyZZJOlnQ+sBh4qKj6dVolZXO9D+a8G+T08yrltWvh0KHjyw4dSsrNrPWKzJJ6MXAt8JikbWnZB4GbgU2S3gPsAd4JEBHbJW0CdgCHgRvqzTzqdXlaAY02yOnnYFCxZ09z5WZ2YgoLChHxt1QfJwCouk1JRKwD+jov5dhY7f2UJ6q3Qc4gBARIVmxXy/lU1Epus0HnFc1tNDKSPyAMD1dPytbsDKNeGTuo5URWcptZ8xwU2qRcrj2gPNHq1bB9++TyQZxuOtWV3GY2Nd55rQ3y7ANcRMrmXm4hZC1f7iBg1i4OCgXLuzH84cO1n3PKCjNrFweFguWZZbS06rB7YlAGlM2sO3hMoWCN1hoMD8PmzZPLmx1QPuUUBwQzO3EOCgWrt9Zg48bWDChHTF7gZWY2FQ4KBau11mD16uqDp82mb5gxo/k6mZnV4qBQsFtvTQJApcUwNJQ8rjXL6Jpr8r92N22Z6aR1Zv2hsE122qGfNtk56SR49dX8x3fTP1slaV22C2vmTK8nMOtWHdlkx/KTeisgTNz7YdUqJ60z6xcOCh00MtJ7KSsq6y6yez8cPFj9WCetM+s9XqfQIUNDcPRo/uPrrWVol3I530K8CietM+s9bim02bx5SeugmYBw5pnV1zK0U2XcIC8nrTPrTQ4KbTRvHjw7aS+5+pYuhRdfLKY+zai22U1WJVmdk9aZ9TZ3H7VRswGh0+MHWY3GB1atam0yPzPrDLcU2qRUyn/s3LndFRCg/vhAvXUXZtZbityj+Q5J+yU9nin7sKR9kralP5dnnlsjaaekJyVdWlS92q0yfTPPAO20aUkw2Lev+Ho1q9ZmNxs3OiCY9ZMiWwqfAS6rUv6JiFiS/nwZQNIwsAwYSc+5VVKDHYq738Tpm/XMnZvvuE7xZjdmg6HIPZq/LmlRzsOvBO6OiFeApyXtBC4CvllQ9doiT9ps6L6uolq82Y1Z/+vEmMJ7JT2adi/NSsvmAc9kjtmblvWksbHk23Seb/6rVxdfHzOzvNodFNYDFwBLgOeAj6Xl1db1Vv3+LGmFpK2Sth44cKCYWp6AWbNgy5bGxzVKjGdm1gltDQoR8XxEHImIo8CnSLqIIGkZLMgcOh+oOoEzIjZExGhEjM6ePbvYCjehVEpaBy+91PjY1auT7TcdEMys27Q1KEiak3l4FVCZmXQvsEzSyZLOBxYDD7Wzbici7z7Mbh2YWbcrbKBZ0ueAtwBnS9oLfAh4i6QlJF1Du4CVABGxXdImYAdwGLghIrp4Lk5iZAR27Mh//OHDxdXFzKwVipx9dHWV4k/XOX4d0DPZcppNWdENCe3MzBrxiuYpKJebCwjdkNDOzCwPB4UpaGbzmG5JaGdmloeDQhMq+xDv3l3/uMqAcoRbCGbWW5wlNadSCW67rfHq4+Fh2L69PXUyM2s1txRyKJfzBYS5cx0QzKy3OSg0UCrBNdfUDwgLFybZQrsxu6mZWTPcfVTH2FjjlBULF8KuXW2pjplZ4dxSqKFcbhwQJO9DbGb9xUGhhkbTTqVkC0qnkjazfuLuoxoa7Ul8110OCGbWf9xSqKHRnsQOCGbWjxwUaqi2JzEkK5Sd5dTM+pWDQg3V9iTeuNErlM2svw1sUCiVYPr05AN/+vTk8UTLlyfTTY8eTW7dZWRm/W4gB5onrj84cuTYJjnuGjKzQTZwLYV66w82bGhvXczMus3ABYV66w+OdP1eb2ZmxSosKEi6Q9J+SY9nys6SdL+kp9LbWZnn1kjaKelJSZcWVa966w+Ghop6VzOz3lBkS+EzwGUTym4CtkTEYmBL+hhJw8AyYCQ951ZJhXxE11t/sGJFEe9oZtY7CgsKEfF14PsTiq8E7kzv3wm8I1N+d0S8EhFPAzuBi4qol9cfmJnV1u4xhXMj4jmA9PactHwe8EzmuL1pWct5/YGZWW3dMiVVVcqq7mAgaQWwAuC8en1BdSxf7jUHZmbVtLul8LykOQDp7f60fC+wIHPcfODZai8QERsiYjQiRmfPnl1oZc3MBk27g8K9wHXp/euAezLlyySdLOl8YDHwUJvrZmY28ArrPpL0OeAtwNmS9gIfAm4GNkl6D7AHeCdARGyXtAnYARwGbogIrxowM2uzwoJCRFxd46mlNY5fB3gfMzOzDhq4Fc1mZlabIqpO8ukJkg4Au1v4kmcDL7Tw9fqNr099vj71+frU187rszAiqs7U6emg0GqStkbEaKfr0a18ferz9anP11AR/Q0AAAdoSURBVKe+brk+7j4yM7NxDgpmZjbOQeF43lGhPl+f+nx96vP1qa8rro/HFMzMbJxbCmZmNs5BISVpl6THJG2TtLXT9em0ZjdJGjQ1rs+HJe1L/4a2Sbq8k3XsJEkLJD0g6QlJ2yXdmJb7b4i616fjf0PuPkpJ2gWMRoTnUQOS3gwcBP48Il6Xlv0h8P2IuFnSTcCsiPhAJ+vZKTWuz4eBgxHx0U7WrRukCS/nRMQjkk4HHibZP+V6/DdU7/q8iw7/DbmlYFU1uUnSwKlxfSwVEc9FxCPp/R8CT5DskeK/Iepen45zUDgmgL+R9HC6Z4NNVmuTJDvmvZIeTbuXBrJrZCJJi4A3AN/Cf0OTTLg+0OG/IQeFYy6OiDcC/xa4Ie0eMGvGeuACYAnwHPCxzlan8ySdBnwB+I2I+EGn69Ntqlyfjv8NOSikIuLZ9HY/8CUK2iO6x9XaJMmAiHg+Io5ExFHgUwz435CkGSQfeOWI+GJa7L+hVLXr0w1/Qw4KgKRT08EeJJ0K/BLweP2zBlKtTZKM8Q+5iqsY4L8hSQI+DTwRER/PPOW/IWpfn274G/LsI0DST5K0DiDZY+Kz6f4OAyu7SRLwPMkmSf8L2AScR7pJUkQM5GBrjevzFpJmfwC7gJWV/vNBI+lNwDeAx4CjafEHSfrNB/5vqM71uZoO/w05KJiZ2Th3H5mZ2TgHBTMzG+egYGZm4xwUzMxsnIOCmZmNc1AwM7NxDgrWUpKOZNL+bpO0SNL1kv5kwnEPShpN72fTlm+T9Edp+Wck/UqV97hQ0pcl7UxTD2+SdG763JskPSTpu+nPisx5H5Z0SNI5mbKDmftr0zTGj6b1+FeZ+p2dOe4tku5L718vKSQtzTx/VVr2K5nf9UlJ35H0vyX9lKQvpe+xU9I/ZX73X5hwbX5M0p9L+sf0588l/Vj63KL0ff5z5r3/RNL1Df6Nfie9No+ndfq1tPwkSbek7/OUpHskzc+cF5LuyjyeLunAhGtxIP09tkv6C0kz69XFuo+DgrXajyJiSeZnV87zfjFzzvtqHSTpNcBfAesj4rUR8S9I8sXMlvQTwGeBVRHx08CbgJWS3pZ5iReA367yuj8PXAG8MSJ+FhgDnslZ98dIFh1VLAO+M+GY5RHxepLMoP8jIq6KiCXAfwS+kfnd/27CeZ8G/k9EXBARFwBPA3+WeX4/cKOkk/JUVNIq4BLgojTl95sBpU//AXA6cGFELCZZrPjFdPUtwMvA6ySdkj6+BNg34S0+n/4eI8A/A+/OUy/rHg4K1mt+FfhmRPxlpSAiHoiIx4EbgM9kUhK/ALwfuClz/h3AuyWdNeF15wAvRMQrlXMr+bBy+AZwkaQZaYKz1wLbahz79fT5hiS9Fvg54PczxR8BRiVdkD4+AGzhWOqIRj4IlCrJ6SLinyLizvQb/a8DvxkRR9Ln/ifwCvDWzPlfASpB9mrgczXqPh04FXgxZ72sSzgoWKudkukK+VLjw8c9kDnvN+sc9zqSDUmqGany3Na0vOIgSWC4ccJxfwMskPQPkm6V9G+aqHsAm4FLSfYLuLfOsb9M0rLIYxjYVvmQBkjvb+P43+lm4LclDdV7MSX5vU6PiH+s8vRrgT1VMplOvH53A8vSFtvPcizdc8W7JW0jaUGcBfwl1lMcFKzVst1HV6VltXKpZMuz3UefmOJ7q8Z7TSz7I+A6SWeMHxBxkORb+QqSb9+fz/TN53nNu0m6jZZR/dtzOf2wvBj4nfq/xrhav89x5RHxNPAQSStqKq/XzHs9CiwiaSV8ucrxn0+7xX6CJPj9boM6WZdxULB2+B4wcbOQs0j695u1neTDu9ZzoxPKfg7YkS2IiJdIxh5KE8qPRMSDEfEh4L3Av0+fmlj/SXWPiIdIWjFnR8Q/VKnb8jTgvSMi8o5VbAfeIGn8/2l6//UkO3Vl/QHwAer8n05bAS8rSQA50U5gYdqayHojE64fSUvoo9ToOkrfK0haCd6XpMc4KFg7/D1wcToQTDqz5mTyD+RmfRb4hezgsaTLJP0M8KfA9ZKWpOU/Dvx34A+rvM7HgZUkWXFJZwQtzjy/BNid3n8QuDY9bgi4BnigymuuIemzb4mI2Al8G/i9TPHvAY+kz2WP/S7Jh/cVDV72vwF/WmklSTpD0oqIeJlkEPzjlW6odFbSTOBrE17jDuAjEdGoG+xNQLWuKuti0ztdAet/EfG8pBuBL6ffdA8CV6cbiVQ8IKnSd/5oRPxaev92Sbek95+JiJ+XdAVwS1r+KvAocGP6PtcAn0q/8Qq4JTsonanTC+mYR2X84jTgjyWdCRwm+eZcmc76+8B6Sd9JX/OrwMYqr/mVpi9OY+9J67Uzfe9vpmXVrCMJIvWsJ/ld/17SqyTXr7K71xqSFsA/SDoKfBe4KiakUo6IvcAna7z+u5WkhZ4G7AWub1Af6zJOnW1mZuPcfWRmZuPcfWTWhyT9KclMp6xPpmsPzGpy95GZmY1z95GZmY1zUDAzs3EOCmZmNs5BwczMxjkomJnZuP8PgjC7itdQiLQAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.scatter(cdf.FUELCONSUMPTION_COMB, cdf.CO2EMISSIONS, color='blue')\n", | |
"plt.xlabel(\"FUELCONSUMPTION_COMB\")\n", | |
"plt.ylabel(\"Emission\")\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
}, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEHCAYAAABBW1qbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2df5Qc1XXnP3dGI6GRjIGRzAqERoQAiUQcbCYkXuUHscA4sg/Y2dgr72DrxDkRlkiCk/VxrNVubCerLJs4icluBFHMD9mamGVjZ80hBBsJnKwdYiIwYCTMIi8SyGhBgH+AwYCku39U9Ux1T1XXj67q6un5fs6p01Wv6lXd7pHerXfvffeauyOEEEIADNQtgBBCiN5BSkEIIcQkUgpCCCEmkVIQQggxiZSCEEKISaQUhBBCTDKnypub2X7geeAocMTdx8zsJOB/AMuB/cC73f074fWbgF8Lr/8td/9iu/svWrTIly9fXpX4QgjRl9x7773PuPviuHOVKoWQX3T3ZyLHHwF2uftVZvaR8Ph3zWwFsBZYCZwC7DSzs9z9aNKNly9fzu7du6uUXQgh+g4zO5B0rg7z0aXA9nB/O/COSPtN7v6yuz8G7APOr0E+IYSYtVStFBz4kpnda2brw7aT3f0QQPj5urD9VOCJSN+DYZsQQoguUbX5aJW7P2lmrwPuMLNvtrnWYtqm5eAIlct6gGXLlpUjpRBCCKDimYK7Pxl+Pg38LYE56CkzWwIQfj4dXn4QOC3SfSnwZMw9t7n7mLuPLV4c6ycRQghRkMqUgpktMLPXNPaBtwAPAbcA68LL1gFfCPdvAdaa2TwzOx04E7inKvmEEEJMp8qZwsnAV8zsAYLB/e/c/XbgKuAiM3sUuCg8xt33ADcDe4HbgSvaRR4JIWYXExOwfDkMDASfExN1S9Sf2ExOnT02NuYKSRWi/5mYgPXr4cUXp9qGh2HbNhgfr0+umYqZ3evuY3HntKJZCNHzbN7crBAgON68uR55+hkpBSFEz/P44/naRXGkFIQQPU9S9Lmi0stHSkEI0fNs2RL4EKIMDwftolykFIQQPc/4eOBUHh0Fs+BTTuZq6EZCPCGE6JjxcSmBbqCZghBCiEmkFIQQQkwipSCEEGISKQUhhBCTSCkIIYSYREpBCCHEJFIKQgghJpFSEEIIMYmUghBCiEmkFIQQQkwipSCEEGKSypWCmQ2a2dfN7Nbw+GNm9m0zuz/c1kSu3WRm+8zsETO7uGrZhBBCNNONhHhXAg8Dx0fa/szdPxG9yMxWAGuBlcApwE4zO0t1moUQontUOlMws6XA24BPZbj8UuAmd3/Z3R8D9gHnVymfEEKIZqo2H30S+DBwrKX9N8zsQTO73sxODNtOBZ6IXHMwbBNCCNElKlMKZvZ24Gl3v7fl1DXAGcC5wCHgTxpdYm7jMfddb2a7zWz34cOHyxRZCCFmPVXOFFYBl5jZfuAm4M1mtsPdn3L3o+5+DPgrpkxEB4HTIv2XAk+23tTdt7n7mLuPLV68uELxhRBi9lGZUnD3Te6+1N2XEziQ73T3y8xsSeSydwIPhfu3AGvNbJ6ZnQ6cCdxTlXxCCCGmU0c5zj8ys3MJTEP7gcsB3H2Pmd0M7AWOAFco8kgIIbpLVxavufuX3f3t4f573f0n3P317n6Jux+KXLfF3c9w97Pd/e+7IZsQYmYwMQHLl8PAQPA5MVG3RP2JVjQLIVLZuBHmzAGz4HPjxu4+f2IC1q+HAwfAPfhcv16KoQqkFIQQbdm4Ea65Bo6GxtyjR4PjbiqGzZvhxReb2158MWgX5WLu06I+ZwxjY2O+e/fuusUQoq8ZGAjezlsxg2OtK5D6WIZ+wszudfexuHOaKQgh2pL03tjN98lly/K1i+JIKQghep4tW2B4uLlteDhoF+UipSCE6HnGx2HbNhgdDUxGo6PB8fh43ZL1H1IKQoi2bNiQr70qxsdh//7Ah7B/vxRCVUgpCDHDqTp+f+vWQAEMDgbHg4PB8datnd1X6w56EykFISqmyhj/pPj9jRvLHXC3boUjR4JnHDlSjkLQuoPeRCGpQlRII8a/lTLetCEY8A8cmN5u1hwdNDzcWzb4JLlHRwPTkKiWdiGpUgpCVMicOVOLvqIMDgZv3J2SFL8fRy8NuFp3UC9apyBETcQphHbteckTp//448Wfk2YCy+sf0LqD3kVKQYgKsbjSUW3a8xIXv59076IDblqaiyL+Aa076F2kFISokDJWA7d7S4+L3//AB8odcK+9tn17kbxEWnfQw7j7jN3OO+88F6ITNmxwHxx0h+Bzw4Zy7x8M//FbVvni+qbJWeb3SvsOZvHnzIo/U1QLsNsTxlXNFMSspRvZPxux/VnbW9m2LV87BGab7dubv9f27dWFe8o/0F9IKYhZS5EBNy/r1+drb6WIo7rbaablH+gvKlcKZjZoZl83s1vD45PM7A4zezT8PDFy7SYz22dmj5jZxVXLJmY3VUcGQeergYvMNJKijIpGH6WluRgfh3Xrmr/junXyD8xUujFTuBJ4OHL8EWCXu58J7AqPMbMVwFpgJfBWYKuZZZxkC5GfTk07WelkNXCRmUbZ5pw0xdZtc5WolkqVgpktBd4GfCrSfCmwPdzfDrwj0n6Tu7/s7o8B+4Dzq5RPzG46Ne10g1WrgoijKHPmBO1JxJlzhobghReKp71op9hUFa2/qHqm8Engw0B0jeLJ7n4IIPx8Xdh+KvBE5LqDYZsQlVBVorcy2bx5+srnI0eaB9zWhWPQHO45MhJ8PvtsNXmGyjZXiXqpTCmY2duBp9393qxdYtqmRXOb2Xoz221muw8fPtyRjEKUneitbNIG3KSFYzCVZnrhQnjlleb+Zb7JK/qov6hyprAKuMTM9gM3AW82sx3AU2a2BCD8fDq8/iBwWqT/UuDJ1pu6+zZ3H3P3scWLF1covhD1kzbgZjHdVP0mX1X00cqVwQynsa1c2dn9RDYqUwruvsndl7r7cgIH8p3ufhlwC7AuvGwd8IVw/xZgrZnNM7PTgTOBe6qST4iZQNqAm2XAr/pNvorVyStXwt69zW1790oxdIM61ilcBVxkZo8CF4XHuPse4GZgL3A7cIW7lxgcKMTMI23AzTLgd2MdQdlV0VoVQlr7bKLK+hyA0lwI0Sk7driPjgZpHUZHg+NuPnt4uDm9xPDwdBnqlLEInaYH6VeKpj1pBaW5EKIa6q4gltV00/omDyqFORPpxip8KQUhOmAmxuhXocjKdgqvWJGvfbbQjVX4UgpCdEAdMfrRwdcMLrssfYCPrmVYty6/IrvwwuZnXnjh1LkqnMJ79kxXACtWBO2zmW6swpdSEKIDuh2jn6U4T+sA3zozSHqrjKuZDIEC2LWruW3XrinFUJVTeM+eZsv5bFcI0J1V+FIKQnRAr2YIjc5U4kxccSS9bbYqhLR2UR3dWIUvpSBEB/RqBbHoTCWrKatMu7SojqpX4UspCNFntM5UspqyRkerkUfMLKQUhOiAukNSoyTNVOJMXHGsWRPfvnp1vnYxs5FSEKINrRlIWwf7boek+rQUkVPtSauJW01cSb6D226Lb9+5c7oCWL06aIfu1aUQ3UFKQYgEsswC6ghJbV3PumFDetqD6OK1Y8emn0+TeefO5mc2FAKUFxFTefoGkY2kpc4zYVOaC1Elo6PxKQVGR6euGRmJv2ZkpDq5NmxwHxxsnwqiXdqDLN8rL6tXN99r9er836mM9A0iGyjNhRD56cXiMRs3wjXXpEcKXXttstmr7DDaiQm4++7mtrvvbn5mmhmuG+kbREaStMVM2DRTEFWS5Y3aLP4as/LkiCazazc7aLe1JskrM0Fe0u80OBjcf2TEfe7c9vIoAV53QTMFIfKT5Y06KdxzYKCcZHOtfo2ivPhikN4iWrKzXarrdmktWklaCX30aCDzs8+mV36Ts7p3kFIQIoEsC9OSwj0bA2KnIapZVyNnIatMaWktyiJqhrvggvhrktpFdZh38vpRM2NjY7579+66xRCznImJYPB+/PHgTTzO3j86OpWyOg8DA53NENoxOBjMFJYtC5RbQ9ml5VcaHAyUSmMlbZZ8THFEf5Ply+NnHEV/N9EeM7vX3cfizmmmIESHdBru2S4Us6rEetA8c3j/+7PPZo4eDZzdDTmLmHhazXC96NSfrVSmFMzsODO7x8weMLM9ZvbxsP1jZvZtM7s/3NZE+mwys31m9oiZXVyVbEJUxYIF+dpbo4laB9wf/dHyZYzjlVfgyivz9WlEBp19dvq1Q0MwMpJshut2tlnRhiQPdKcbYMDCcH8I+BrwM8DHgA/FXL8CeACYB5wOfAsYbPcMRR+JXiBrdFAcSesNBgfbn69qc5++5iDt+nbfO2t0U9ayoqIcqCP6KHz2C+HhULi1s45eCtzk7i+7+2PAPuD8quQTogw6jQ5Kq6TVbj1CY/jcsaPZGT4yEn/94GA2+39cWouk+zXkSCIpuqmVXs02Oxup1KdgZoNmdj/wNHCHu38tPPUbZvagmV1vZieGbacCT0S6HwzbhOgaeVMtdBodlBaKmSVU86tfhYMHg8H54EE499z4UNrt24NBOklpRNujaS02bIi/vszCLjC9jrQUQj1UqhTc/ai7nwssBc43s3OAa4AzgHOBQ8CfhJfHvcNMewcxs/VmttvMdh8+fLgiycVsJM2+H0dSjH5Wkuzxjfakgffo0ak1BK0y79oFb3pT81v3unWBAhsI/8e3KpuhIbj66vhnpRV2Oe64+H5J7aK36VpIqpl9FPiBu38i0rYcuNXdzzGzTQDu/l/Cc18EPubud8fcDlBIqiiXOXPizTWDg0Exkzx9WkkKVW2Ehba7fuPGwJSSpwhOVOaGiSs6oxkaguOPh+eemx6SmpdFi4IFaq2MjMAzzxS7p6iWWkJSzWyxmZ0Q7s8HLgS+aWZLIpe9E3go3L8FWGtm88zsdOBM4J6q5BOilTT7ft5zUZJCVbO0RyttZSUqV5yJ69VXg4G8YXL66lez37uV557L1y56mzkV3nsJsN3MBgmUz83ufquZfcbMziUwDe0HLgdw9z1mdjOwFzgCXOHuKhAousbgYPIg33DQrljRXEB+dDSbCanbVc2i5qG0WP+GmQyKlXZMmkkpRcXMpMroowfd/Q3u/np3P8fdfz9sf6+7/0TYfom7H4r02eLuZ7j72e7+91XJJkSDqGM5y1v/3r2wcuXUcdaqZt1ab9Ag6ovIGutfNCNpkmktqV30NlrRLAqTlg6512VISkOdFra5d+/UfmsoZRJf/nJ2udpxwgntz7c6gSG74srjsxB9TNIChpmwafFaffTCYqNOZUhbOFYknXPePnmvL1qMJssCu8b3zkuR30nUC20WrykhnihELyQw61SGdm/27unn48gbwZT3GUUipFppzJBaaZ1hZKXI7yTqpePoozCS6D+Y2bZwwdn1ZnZ9uWKKmUQvJDDrVIa0hWErVsSfb22PmrDmz4/vU9ZCryIRUq2sWjW1XqHBwEDQXoSkxW1J7aK3yepT+ALwWmAn8HeRTcxSeiGBWRYZ2vkc0grO79kzXQG0Rh+1prl44YXpA+7q1clv4Elv2UntZRSj2bx5eijssWPNRW9a6QX/kegSSXal6Abcn+W6bm/yKdTHTPApZJFxw4Yp38LgYP5C8UmlKLP+Lt3yKUTJW0I07XdM882I3oM2PoWsSuE/A2uyXNvNTUqhXjodUMugXa3hLDWWO7m/e/a6yUnPLCJjVYqsqIxyNM882imFrOajK4FbzeyHZvZ8uH2/kqmLmBFMTAQJ1qI5d7Zv7y2zQqc+h1bTUFwZy6zmsqRnZqkD3Up0hfORI/mdw2vW5GtP+x3zmsBEj5OkLWbCpplCfZTxFt4paWaNBQviZVywINv9s3zHHTvc585NnykMDibPNro946pjppA24xLdhU7NR8E9uAT4RLi9PWu/KjcphfrIa5fOQt6Bo2qzRtbBbmgoXSkkKa64/kND7b973PV5KNunkPY77dgx/ZlmUgx10rFSAK4CdgHvD7c7gKuy9K1yk1Koj7JnCkUc12mDWzeUQtLv0JgZJDlhG7/TyEj8+ZGReJmSFFAexVDkb9dOYaf9Tkkzqblzs8ssyqUMpfAgMBA5HgQezNK3yk1KoT7Kjj5KGqhGRoo7kruhFDpVTHll7PQ7ucebvObOLf63q1o5i/JppxTy5D6KZl15bXEvhugHyi6fmOTMfPbZZEdvESdt2aStlShjXUEVBO92ycd5+MAH8rWLHidJW0Q34D3AAeBGYDvwGLA2S98qN80U+ocs8f5xZo5OzBppZOnfqb29qplCO+d1FUEC7Z6nmULvQUmO5iUEzuZLgX+VtV+Vm5RC/7Bjh/vAQHbFEDf4tJLFodpOqaxYEd9/xYrpsnfLxJXFp5C2wK2KIIF2rF4d/7zVq6t5nkinsFIAfiz8fGPc1q5vNzYphf4haSDLsiUphoUL469fuDA4n8W23qoYWhVCGp3OJOJIiz5KUq4DA9l+lypoVQxSCPXSiVLYFn7eFbPd2a5vNzYphXopM/Y8KUon64whjrQBN2/kT1Zaf5cNG6ozccWRds92q7C1jmB2UIr5KO8GHEdQY/kBYA/w8bD9JIKQ1kfDzxMjfTYB+4BHgIvTniGlUB9lRx8VVQjtBtAq6iWkkfd3qUMpZPk9u53HSnSXdkohUz0FM3sXcLu7P29m/zE0H/2Bu3+9TR8DFrj7C2Y2BHyFIF3GLwPPuftVZvaRUCn8rpmtAD4LnA+cQpCR9SxvU6dZ9RTqo+x6Ckl1ArJQtFZBFXUA8v4uVcgwMBDf1yzIhpr1t+5mbQzRXTqupwD8p1Ah/CxwMUEE0rXtOoQK6YXwcCjcnMBRvT1s3w68I9y/FLjJ3V9298cIZgznZ5RPdJmkYvVZitjH0Um9gaS+Cxe2bx8ZiT+f1J6FpNDaAwfKSzsdrSs9Z05wHCVJmTTaL7gg23O6WRtD9A5ZlULjveJtwDXu/gVgblonMxs0s/uBp4E73P1rwMnufggg/HxdePmpwBOR7gfDNtGDlB1/H1f4JYsMq1fDbbfFD7g/+EF8v0b71VfD0FDzuaGhoD0P0UG63du9e6AcfvVXiyuG1rrSR48Gx62KoR379mW7rpu1MUQPkWRXim7ArcBfAt8iWMQ2D3ggS9+w/wkEzulzgO+2nPtO+PkXwGWR9uuAfxNzr/XAbmD3smXLSrSyiTxksYXncUTnWafQcIiOjEyPHsob2dOps7xo1FTDmV22nyTtnllTfef1KSjh3cyCEtJcDBP4As4Mj5cAb8nSN3KPjwIfInAiL4nc55FwfxOwKXL9F4E3tbunHM31kRa5U6bDNe9WZp7/+fOb+82f33y+XdRU2gCc5XfM8zuV8VsWGdSLJPUT9dJOKWR1NJ8BHHT3l83sAuD1wKfd/btt+iwGXnX375rZfOBLwH8FfgF41qcczSe5+4fNbCXw10w5mneFSkiO5h4krYB8mQ7XvDQcqkWcuBs3Buk62jli58+HF1+cela7Z6SdX7gw3sy1YEFQ2rOVLN+pk98yw3AwjUWLgnQkrYyMwDPPFJdFVEcZjubPAUfN7EcJzDqnEwzg7VgC3GVmDwL/QuBTuJUg4+pFZvYocFF4jLvvAW4G9gK3A1e0Uwj9Ttk1cdOck3lJKyDfaYGbTihqC2+11yfx0ktT+536VtL8HjOBOIXQrl30OElTiOgG3Bd+fhj4zXD/61n6Vrn1q/mo7DUAZdT1bSXNjJE3v05ZpqNOVgvnWUCX9bdNu0deGas2HxWh7PuJ6qEEn8LXCJLiPQScHrY9lKVvlVu/KoWyE5ZVUVg9bSDotk+hjNXCRQfPdsng0nwGVSiFvE77xlY09URVK8NFdbRTClnNR78KvAnY4u6PmdnpwI7y5isiStmmlzRTTxWUnVo7jWPHAl9FVfePMn9+8/GqVbB0afA9ly4NjhuUFfbaYMOG9Pa4lOIN0yEEpq1TTmk+v3o17NxZTKarr4a5LQHqc+cW/46iZpK0xUzY+nWmUPabV1qCtCKUbTLoJPdR0jPz/o5ZwjVbf7MsM6J24ZpFMohmqekcfebIyPTooLLTWCgkdWZB0ZmCmd0cfn7DzB6MbN8IHchiBtD6ZpvWXgdVzFrOPTdfu3v6PY8da3bSb948FYnU4MUXYd26qSABCGYxcbOZs86Kf05SO8DWrUGEl3vwuXXr9GvGx6eeuXAhvPrqdBk3b05+Rl6iz+vWjE1UQ9uQVDNb4u6HzGw07ry7F0xqUA79GpKalrum7vs1+iaRZXBt5TWviQ/BzErcM9PCZrNe365/0m8bZXg42XSWV0ZoDpsdHAzSfMQphgZV/P3FzKZwSKpPpaM4ECqA7wDPRzZRAWklHuu+XxVUEYKZ15eSNf9StH+W37DdW3leGYukuejG37/sEGpRI0l2pegGXA48BewnKMX5GPB/s/StcutXn0LZhdWzRgLlsQuX7VPoxJ8Q3aJFcIpEXUXt9UlbtH/cb5vnd8krY5HvVHaIc7fvL8qHEkJSHwUWZbm2m1s/K4Wy0wakDfh5n1lEKRStp1xUMRRZnxFVCkmO59b+0e+VRZG0Pi+PjEWVcZWO4CpqPotqKUMp3A4MZ7m2m1u/KoU6/pNVkYMnSidlKYtsDbJE6kSvbXfPtP5Ffpe8Mlax5qRTul3zWXROO6WQNffRG4AbCBaxvRwxPf1WaXasAsjRXB55HcdZrp+YCGzpjz8efKc4O3kjF1KZuY+iMuShDOd53lxGeVm5Evbund6+YgXs2dP5/YtQdsElUT1l5D76S+BO4J+BeyObqIDWhUdp7b3IxETguD1wIBhQkxynRYvy9Cqt4alp7Xl55JF87d0gbrHc8HDQLmYeWZXCEXf/HXe/wd23N7ZKJZvFRBOuZWkvg7KrkMXF78dRtChPO1asKP+eWUmaUbSbaeSJ3KljdXoa3V69Lqolq1K4y8zWm9kSMzupsVUq2SwmyURUZUx52akKss4Ayh7MOjGjJJmPyjZtRZmYCCqxNWZUaZXZyq54VxZavNY/ZFUK/46gCM4/MWU66j9jfh/R+va5cWP7t9Hxcbj++ua3veuvL/6fO+sg1Uk95CgN92arQsjzFv6BD+RrL4Mrr5y+2vjVV4P2OJLWUnRS41qIJpI80DNh69foo6Jhhw2yxM4PDHQWlpgmY9YooSzZQrNscaGWReLn80QCFfldOr2+DBmrQLmPZhYUDUkFPhzZf1fLuT9s17cbm5RCPFlTJy9YUJ2MSUn4OlUiaVt0kV8dob3dUAq9hhavzTzaKYU089HayP6mlnNvLWmyIlro1Omb1Z5fZXWvPP6PgaxGzAy88sqU6aWO6m95/3ZlO/jrICkpYJkJ90T3SPvvaAn7ccfNJ81OM7O7zOxhM9tjZleG7R8zs2+b2f3htibSZ5OZ7TOzR8zs4lzfpI+Ybfnpg4lneTTKQNaR8ynv364f/tZ1ll4VFZA0hQhmGEEZztb9uOOYvkuAN4b7rwH+D7AC+BjwoZjrVwAPAPMIakB/Cxhs94x+NR+5d2ajzWpqiasNUFbuoyy1CarcGt+nDrNG3r/dTLfHK83FzIM25qM5KTrjJ83s+wSzgvnhPuHxcSnK5hDQyLL6vJk9DJzapsulwE3u/jLwmJntA84H7k6RURTk8sun9huLzRpmgAMHpiJaikQglf32X4SG3I1V1cuWBQuqqg6XHB/P94y81/caW7Y0/9sBLV6b0SRpizI3YDnwOHA8wUxhP/AgcD1wYnjNfwcui/S5DviVdvft15nCjh3T37TNsr9Bpr1Fx0Ws5H3bS3tLT8ql1M2Zwmym27OPmT7bmW3Qae6jTjCzhcA/ENR3/ryZnQw8AzjwB8ASd3+/mf0FcLe77wj7XQfc5u6fa7nfemA9wLJly8470G95EoB58wKHaStz58LLL09vb6VIDp+8+ZbSnrFo0ZRtvw56YaZSF62zPmhf6EfMPsrIfVT0wUPA54AJd/88gLs/5e5H3f0Y8FcEJiKAg8Bpke5LgSdb7+nu29x9zN3HFi9eXKX4tRGnENq1l0HZTtnnnisui+gMRQOJTqhMKZiZEZiAHnb3P420L4lc9k7goXD/FmCtmc0zs9OBM4F7qpJPNFN2UrOTlASlNhQNJDqhypnCKuC9wJtbwk//yMy+YWYPAr8I/DaAu+8Bbgb2EtRvuMLda0zz1Z+YBXWBW8s3diup2cBAtbmExMwovyp6l7Too8K4+1eIX8twW5s+WwDFLFRMo64vtC/43o7jjoMf/jC+HZLNR+6Bj6JKxTCTFn5VgaKBRCdU6lMQ9ZA1dfS2bVP7ExPwvvc1Z+t83/uSE8j9yI+0b6/rbXVoaGYt/KoCpbIWnSClUBF5snOWTVxlrjiiaasvv3x6lNGxY81rGbI8o9G+Zk38+aT2Tli4cGrwu+EGDX6gVNaiOJWZj2YzZS8EizIwUM0irKQ8SEXzI92WYCRMau+El16qttaEELMJzRQqoMqQwIZpZ/36zmcfVdr1uxkBU2fVMSH6DSmFCujGgFiGkqlygVc3fQp1Vx0Top+QUqiAbg2IvRx3nrbuocyBXFXHhCgPKYUK6JaTtZfjztMiYM4+u/NnDA7Chg3Fw2qFENOpPPdRlYyNjfnu3b1XKjop78/ICDzzTHr/LLb+drls8vgKGn/+snMfpTFnTnFfQNYcUEKIeGrLfTRbSUoEV0aCuKrizrtdtL4T5/DP/Vx5cgghmlFI6gyjqtDLhglm27ZgwB4cDGz1VZlmBgeLK4Yvf7lUUYQQETRTqImNGwMTSlIuojrYuhWOHAnMP0eOVGur78Q5rBBUIapDM4UKMEu2z0OgABq5h6CcXETdJu07ptE6M8mDQlCFqA7NFAqQlsIiydHaaI/mHIqS1N4t8sxefvzH87XHEZ2ZnHJK9n4KQRWiOjRTyEkZKSyS3ozrNIvknb08/HD8fZLa0xgaim9fuDBIY9ENP4cQQiGpuVm+PFAErYyOBonHID1cMykcc3AweHPuNNyzSEhqmkx5nlHkn1TZ9xNCJKOQ1BJJKgmdp1T0BRfka6+K+fOn9uuevST5CeQ/EKK7SCnkpIzB6+j8eQkAABAUSURBVP7787VXxUsvTe3n/V4LF+ZrT6NupSSECKiyRvNpZnaXmT1sZnvM7Mqw/SQzu8PMHg0/T4z02WRm+8zsETO7uCrZOqGMwavKxW1FSXLeJrVfe21gcooyZ07QXoTR0XztQohqqHKmcAT49+7+48DPAFeY2QrgI8Audz8T2BUeE55bC6wE3gpsNbOeMx7MhMHrhBPy99m6Ncgj1JgZpOUVGh+HG29szm10443FV1l3syiPECKZypSCux9y9/vC/eeBh4FTgUuB7eFl24F3hPuXAje5+8vu/hiwDzi/KvmKMhMGr+9+t1i/vIvXyqzu1c2iPEKIZLriUzCz5cAbgK8BJ7v7IQgUB/C68LJTgSci3Q6GbT1F0iC1bdvUugWRn24W5RFCJFO5UjCzhcDngA+6+/fbXRrTNi0Y0czWm9luM9t9+PDhssTMTFKU0dGjU1XRqqSOms/doJtFeYQQyVSqFMxsiEAhTLj758Pmp8xsSXh+CfB02H4QOC3SfSnwZOs93X2bu4+5+9jixYurEz6BukMkyyzH2UukFeURQnSHKqOPDLgOeNjd/zRy6hZgXbi/DvhCpH2tmc0zs9OBM4F7qpKvKL0SIllWzedOSEv3kYfxcVi3rtnRvW5duenBhRDpVDlTWAW8F3izmd0fbmuAq4CLzOxR4KLwGHffA9wM7AVuB65w9x4ZgnuTJHv7ggXZ+udZ+dxKI93HgQPlzF4mJoJw1obSPXo0OO6n2ZAQMwGluchJJwMpBANoWkqHrM+IptaIcuGFsGtXev8FC+CFF7I9q5Us6T7ycNxx8dXU5s2DH/4w//2EEMkozUUf0s7efued2e7xgx8Uf37Z0UJJ5TVVdlOI7iKlMMPIUo6zG5M/RQsJ0Z8odfYMo6pynHnZsqU5hTgoWkiIfkAzhT6kU79HFsbHg9lKNM1Fu9lLGqtX52sXQlSDHM05qdvRXGY9hZEReOaZbNd2g1YH+erVsHNnffII0a/I0TzLyJqc793vrlaOvJx1VvM6hbPOqlceIWYjUgp9SNzq4Dg+/enqZclKoxxodJ3CNde0rxMthCgfKYU+pNXen0QnIalls21bvnYhRDVIKfQp0bTWMwFVXhOiN5BSqIGkNBSN9rIjcZJmC92IUhJCzCykFLpIoyJa2iC9b1/8+aR2IYQoCymFLvLa1wafSfmGGu1JNRmK1mpICmPtpWjkmVDmVIjZgJRCF1EVsWRUT0GI3kBKIYaNG2HOnMCcM2dOeWGRJ51Uzn36kbJXSAshiqHcRy004uUbNOLlIb2Qfa+yenV8Ku1eSyExPi4lIETdaKbQQlq8/MhI8Xs/91zxvp2wc+d0BaAUEkKIOKQUWkiLl+8kNUSdaaV37gwcy41NCkEIEUeVNZqvN7OnzeyhSNvHzOzbLeU5G+c2mdk+M3vEzC6uSi5oX1u4kXunlUb7bbcVe+bQ0JTTNC0kde7c+PNJ7UIIURZVzhRuBN4a0/5n7n5uuN0GYGYrgLXAyrDPVjNLGJ47I6228Pr18f0a7VkiiIaGAgd1lKgiSAsRvf766YrDLGgXQogqqUwpuPs/Almt6JcCN7n7y+7+GLAPOL8KuTZvbi4MA8Hx5s3B/tatsGFDc7bODRumnMxJJqDBwamomeOPhyNHms+/8srUM9Ji8sfH4TOfaY7E+cxn5IQVQlRPHT6F3zCzB0Pz0olh26nAE5FrDoZtpZOltvCqVbB0aTAgL10aHDdIiqffvj3IM7R/f7JDufGMLDH50dxF+/dLIQghukO3lcI1wBnAucAh4E/C9jgre6yRxczWm9luM9t9+PDh3AIkpZRutKeZl+Li6detC2YBDR9F0nqExiwjS0x+O79HFjrtL4SYpbh7ZRuwHHgo7RywCdgUOfdF4E1p9z/vvPM8LwMD0RicqW1gIDg/Ohp/fnDQ3Sw4v2PH1P127HAfHm6+dmjIfe7c5rbh4eZ+7Yi7Z97+rc+fOzd7fyFEfwPs9oRxtdJynGa2HLjV3c8Jj5e4+6Fw/7eBn3b3tWa2EvhrAj/CKcAu4Ex3b5s4uUg5zrRSlwMD6TmBhoen3uyXL4/PSTQyAgsXBiajZcsC01BWE1DSPUdHA1NSGosWwbPPxsvUS+U3hRD10K4cZ2VKwcw+C1wALAKeAj4aHp9LYBraD1weURKbgfcDR4APuvvfpz2jiFKYMyd+LcLgYOAcThqQW2kM0ElKxKx4LYNO75mWEntwMDCJzdQV2kKIzqilRrO7v8fdl7j7kLsvdffr3P297v4T7v56d7+koRDC67e4+xnufnYWhVCUtJDTNWviz7fScBonRSN1slAtySdRVu4klboUQiQx61Y0p4WcZl2c1hj0k5RIVuVSBVlTcajUpRCilVmnFCBQAEeOBCaaI0eazShZFqdFw0eTlEjRlc+QHNKaNXfS1VcHC+jSUKlLIUQrs1IptCPL4rRo+GiWdQ9lyZDVJDU+DjfcMBXymkRSSg8hxOxFSqGFLIvTolFERQfwdusIyig4E138lpQi+4ILst9PCDE7kFJoIW+xlyIDeJEFcp0UnFHNZyFEVqQUYsiTYqLIAJ6Wf6lsqjBxCSH6EymFArSafiBfnqKkdRCN9rSZRF6qCJsVQvQnUgo5KWPATqvZUPZMogwfhRBidiClkJMyBuy06m5lm3vK9lEIIfqXOemXiChlDNijo8m5jSAw68Sd78TcMz4uJSCESEczhZyUYZ9PM+fI3COEqAsphZyUtYagnTlH5h4hRF1Umjq7aopkSS2DiYnAh1AkLbYQQtRNLVlS+5kySmWmVUZT5TQhRB1IKZRA3gE8Lay17HUKQgiRFZmPOqQxgEfDVKOV2eJIq6zWaeU1IYRoRy2V17pBLyiFIgN4WmW1Kqq5CSFEg1p8CmZ2vZk9bWYPRdpOMrM7zOzR8PPEyLlNZrbPzB4xs4urkqtsiqxbSAtrVVoKIURdVOlTuBF4a0vbR4Bd7n4msCs8xsxWAGuBlWGfrWY2I7L9FxnAtU5BCNGrVFmj+R+B1lphlwLbw/3twDsi7Te5+8vu/hiwDzi/KtnKpMgArnUKQohepdtpLk5290MA7n7IzF4Xtp8K/HPkuoNhW8/TGKjzrltISzuhtBRCiDroldxHcUUjYz3gZrYeWA+wrEeM7BrAhRD9QrfXKTxlZksAws+nw/aDwGmR65YCT8bdwN23ufuYu48tXry4UmGFEGK20W2lcAuwLtxfB3wh0r7WzOaZ2enAmcA9XZZNCCFmPZWZj8zss8AFwCIzOwh8FLgKuNnMfg14HHgXgLvvMbObgb3AEeAKd0+oOiCEEKIqKlMK7v6ehFOrE67fAijoUgghakS5j4QQQkwyo9NcmNlhICbJRGYWAc+UJE5VSMZykIzlIBnLoW4ZR909NlJnRiuFTjGz3Un5P3oFyVgOkrEcJGM59LKMMh8JIYSYREpBCCHEJLNdKWyrW4AMSMZykIzlIBnLoWdlnNU+BSGEEM3M9pmCEEKICLNSKcQVAOo1zOw0M7vLzB42sz1mdmXdMrViZseZ2T1m9kAo48frlikOMxs0s6+b2a11y5KEme03s2+Y2f1mVm85wQTM7AQz+xsz+2b47/JNdcsUxczODn+/xvZ9M/tg3XK1Yma/Hf5/ecjMPmtmx9UtU5RZaT4ys58HXgA+7e7n1C1PHGHCwCXufp+ZvQa4F3iHu++tWbRJzMyABe7+gpkNAV8BrnT3f07p2lXM7HeAMeB4d3973fLEYWb7gTF379n4ejPbDvxvd/+Umc0Fht39u3XLFUdYpOvbwE+7eydrmUrFzE4l+H+ywt1fCtP73ObuN9Yr2RSzcqaQUACop3D3Q+5+X7j/PPAwPVZjwgNeCA+Hwq2n3jLMbCnwNuBTdcsykzGz44GfB64DcPdXelUhhKwGvtVLCiHCHGC+mc0BhknICF0Xs1IpzDTMbDnwBuBr9UoyndA0cz9BGvQ73L3XZPwk8GHgWN2CpODAl8zs3rBmSK/xI8Bh4IbQFPcpM1tQt1BtWAt8tm4hWnH3bwOfIEgIegj4nrt/qV6pmpFS6HHMbCHwOeCD7v79uuVpxd2Puvu5BDUwzjeznjHHmdnbgafd/d66ZcnAKnd/I/BLwBWhibOXmAO8EbjG3d8A/ICwxnqvEZq2LgH+Z92ytGJmJxKUHz4dOAVYYGaX1StVM1IKPUxop/8cMOHun69bnnaEpoQvA2+tWZQoq4BLQnv9TcCbzWxHvSLF4+5Php9PA39L79UoPwgcjMwE/4ZASfQivwTc5+5P1S1IDBcCj7n7YXd/Ffg88K9rlqkJKYUeJXTiXgc87O5/Wrc8cZjZYjM7IdyfT/AP/pv1SjWFu29y96XuvpzAnHCnu/fUWxmAmS0IgwkITTJvAXoqMs7d/x/whJmdHTatJqh/0ou8hx40HYU8DvyMmQ2H/8dXE/gLe4ZZqRTCAkB3A2eb2cGw6E+vsQp4L8HbbSPEbk3dQrWwBLjLzB4E/oXAp9CzYZ89zMnAV8zsAYKKg3/n7rfXLFMcvwlMhH/vc4E/rFmeaZjZMHARwRt4zxHOtP4GuA/4BsEY3FOrm2dlSKoQQoh4ZuVMQQghRDxSCkIIISaRUhBCCDGJlIIQQohJpBSEEEJMIqUgZg1mdrQli2bhFblm9k9lytZy7zEz+/Oq7i9EOxSSKmYNZvaCuy+sWw4hehnNFMSsJ6xl8HEzuy+safBjYftiM7sjbP9LMztgZovCcy+EnxeY2ZcjdQYmwpWqmNl5ZvYPYZK7L4bp0Fuf/a4wr/4DZvaPkXveGu7fFpnZfM/M1oVJCP/YzP7FzB40s8u79VuJ/kdKQcwm5reYj/5t5NwzYUK6a4APhW0fJUiN8UaCfETLEu77BuCDwAqCbKKrwrxV/w34FXc/D7ge2BLT9/eAi939JwmSuDXh7mvChIO/BhwA/le4/z13/yngp4BfN7PTs/8MQiQzp24BhOgiL4UDbByNtAj3Ar8c7v8s8E4Ad7/dzL6T0Pcedz8IEKYRXw58FzgHuCOcOAwSpEpu5avAjWGxldjUDOHs5DPAu939e2b2FuD1ZvYr4SWvBc4EHkuQT4jMSCkIEfBy+HmUqf8XlrNvtL8Be9y9bclKd/+Amf00QSGg+82sSWmFFcRuAn7f3RtJ8gz4TXf/Ykb5hMiMzEdCJPMV4N0A4dv5iTn6PgIstrCOsZkNmdnK1ovM7Ax3/5q7/x7wDHBayyVXAQ+6+02Rti8CG0ITFWZ2Vo8XvBEzCM0UxGxifmjeaXC7u7cLS/048NnQ9/APBOaf57M8yN1fCc07f25mryX4v/ZJYE/LpX9sZmcSvP3vAh4AfiFy/kPAnojcv0dQWnQ5cF/o1D4MvCOLXEKkoZBUIRIws3nAUXc/Er7xX9PGJyFEX6CZghDJLANuNrMB4BXg12uWR4jK0UxBCCHEJHI0CyGEmERKQQghxCRSCkIIISaRUhBCCDGJlIIQQohJpBSEEEJM8v8B1Ou58Axie6kAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color='blue')\n", | |
"plt.xlabel(\"Engine size\")\n", | |
"plt.ylabel(\"Emission\")\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Practice\n", | |
"plot __CYLINDER__ vs the Emission, to see how linear is their relation:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEHCAYAAABBW1qbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAczUlEQVR4nO3df3Bd9Xnn8ffHEnZwQhp+CNbY2HKJobVpYlLVGy+ZLMGmMITB0G4YZ5XETZiKRaSQ/tgE17sTOh1vmTY0YbIrUwUo3kYbxxPI4KGEHxbQbLIpjhwowSIUd22MsIsV0iaAWSeWn/3jHF1dSffK99r33HOl+3nN3Dnn+5wfenyxeXTO95zvVxGBmZkZwKy8EzAzs8bhomBmZgUuCmZmVuCiYGZmBS4KZmZW4KJgZmYFrVmeXNJe4HVgBDgSER2STgO+DrQDe4FrI+Jf0v3XA9el+98UEY9Mdf4zzjgj2tvbs0rfzGxG2rlz548joq3UtkyLQupDEfHjovYtQH9E3CbplrT9OUlLgbXAMuBsYLuk8yJipNyJ29vbGRgYyDJ3M7MZR9JL5bblcftoDbA5Xd8MXF0U3xIRhyNiD7AbWJFDfmZmTSvrohDAo5J2SupKY2dFxAGAdHlmGp8PvFx07FAaMzOzOsn69tFFEbFf0pnAY5J+NMW+KhGbNAZHWly6ABYuXFibLM3MDMj4SiEi9qfLg8A3SW4HvSppHkC6PJjuPgScU3T4AmB/iXP2RkRHRHS0tZXsJzEzs+OUWVGQ9HZJp4yuA78JPAdsA9alu60DHkjXtwFrJc2RtBhYAuzIKj8zM5ssyyuFs4DvSPoHkv+5/21EPAzcBlwq6UXg0rRNROwCtgKDwMPAjVM9eWRmzaGvD9rbYdasZNnXl3dGM5um89DZHR0d4UdSzWauvj7o6oJDh8Zic+dCby90duaX13QnaWdEdJTa5jeazaxhbdgwviBA0t6wIZ98moGLgpk1rH37qovbiXNRMLOGVe6pcz+Nnh0XBTNrWBs3Jn0IxebOTeKWDRcFM2tYnZ1Jp/KiRSAlS3cyZ6seA+KZmR23zk4XgXrylYKZmRW4KJiZWYGLgpmZFbgomJlZgYuCmZkVuCiYmVmBi4KZmRW4KJiZWYGLgpmZFbgomJlZgYuCmZkVZF4UJLVIelrSg2n7VkmvSHom/VxRtO96SbslvSDpsqxzMzOz8eoxIN7NwPPAO4tiX4yILxTvJGkpsBZYBpwNbJd0nudpNjOrn0yvFCQtAD4M3FXB7muALRFxOCL2ALuBFVnmZ2Zm42V9++hLwGeBoxPin5b0rKR7JJ2axuYDLxftM5TGzMysTjIrCpKuBA5GxM4JmzYB5wLLgQPA7aOHlDhNlDhvl6QBSQPDw8O1TNnMrOlleaVwEXCVpL3AFuASSV+NiFcjYiQijgJfYewW0RBwTtHxC4D9E08aEb0R0RERHW1tbRmmb2bWfDIrChGxPiIWREQ7SQfy4xHxMUnzina7BnguXd8GrJU0R9JiYAmwI6v8zMxssjym4/xzSctJbg3tBa4HiIhdkrYCg8AR4EY/eWRmVl91eXktIp6MiCvT9Y9HxK9FxHsi4qqIOFC038aIODcizo+Ib9UjN7NG1NcH7e0wa1ay7OvLOyNrFnlcKZjZFPr64BOfgKPpM3svvZS0wRPYW/Y8zIVZg7n++rGCMOro0SRuljUXBbMG8+ab1cXNaslFwczMClwUzMyswEXBzMwKXBTMGswNN1QXN6slFwWzBtPTA6tWjY+tWpXEzbJ+h8VFwazB9PXB44+Pjz3+uF9gs+TvQFdX8u5KRLLs6qrt3w1FTBqIdNro6OiIgYGBvNMwq6k5c+DnP58cnz0bDh+ufz7WONrbk0Iw0aJFsHdv5eeRtDMiOkpt85WCWYMpVRCmilvz2LevuvjxcFEwM5smFi6sLn48XBTMzKaJjRth7tzxsblzk3ituCiYWUPr7obWVpCSZXd33hnlp7MTenuTPgQpWfb21nagRI+SamYNq7sbNm0aa4+MjLWb9RHdzs5sR8v1lYKZNaze3uriduJcFMysYY2UmXuxXNxOXOZFQVKLpKclPZi2T5P0mKQX0+WpRfuul7Rb0guSLss6NzNrbC0t1cXtxNXjSuFm4Pmi9i1Af0QsAfrTNpKWAmuBZcDlQI8k/6c3a2JdXdXF7cRlWhQkLQA+DNxVFF4DbE7XNwNXF8W3RMThiNgD7AZWZJmfWSOaM6e6+Ex20UXJE0fFWluTuGUj6yuFLwGfBYonFzwrIg4ApMsz0/h84OWi/YbSmFlTKTeURTMOcbFhAxw5Mj525EgSt2xkVhQkXQkcjIidlR5SIjZpYCZJXZIGJA0MDw+fUI5mjWhWmX+V5eIzWT2GdbDxsvxrdhFwlaS9wBbgEklfBV6VNA8gXR5M9x8Czik6fgGwf+JJI6I3IjoioqOtrS3D9M3ycfRodfGZrB7DOkw3y5YlL66NfpYtq+35MysKEbE+IhZERDtJB/LjEfExYBuwLt1tHfBAur4NWCtpjqTFwBJgR1b5mVnjq8ewDtPJsmUwODg+NjhY28KQxwXpbcClkl4ELk3bRMQuYCswCDwM3BgRfhrZms7pp1cXn8k6O2HlyvGxlSuzfaO3kU0sCMeKH4+6FIWIeDIirkzXX4uIVRGxJF3+pGi/jRFxbkScHxHfqkduZo3mjjsm9x/MmpXEm013N/T3j4/19zf3+EdZa8KuK7PGJ03dbhYe5qL+XBTMGszNN08exmFkJIk3Gw9zMd7SpdXFj4eLglmDee216uIzmYe5GG/XLjj55PGxk09O4rXiomBmDcvDXIy3ejW89db42FtvJfFa8XwKZtawRudM6O1Nbhm1tCQFoVnnUpjY6X6s+PFwUTCzhtbT07xFIA++fWRmZgUuCmZm08SqVdXFj4eLgpnZNLF9++QCsGpVEq8VFwUzs2nkvPPGHsltaUnateSOZjOzaaK7GzZtGmuPjIy1a9UZ7ysFM7Npoh7DfrgomFlD6+uD9vZkUMD29qTdrOox7IdvH5lZw+rrS15WO3Qoab/00tjbzM04fPasWaUnW6rlrHy+UjCzhrVhw1hBGHXoUPPO0VyPWflcFMysYXmO5vpzUTCzhuU5musvs6Ig6W2Sdkj6B0m7JP1JGr9V0iuSnkk/VxQds17SbkkvSLosq9zMbHp497uri9uJy7Kj+TBwSUS8Iekk4DuSRqfY/GJEfKF4Z0lLgbXAMuBsYLuk8zxPs1nzevLJ6uJ24jK7UojEG2nzpPQTUxyyBtgSEYcjYg+wG1iRVX5m1vg889p49Zh0KNM+BUktkp4BDgKPRcRT6aZPS3pW0j2STk1j84GXiw4fSmPWBLq7obU1mYu4tdUTs1vCM6+NV49JhzItChExEhHLgQXACkkXAJuAc4HlwAHg9nT3UlOTT7qykNQlaUDSwPDwcEaZWz2Nvro/+tvf6Kv7LgzmmdfG6+mBG24YP/bRDTfUdr4JRUx1R6eGP0j6PPBmcV+CpHbgwYi4QNJ6gIj4s3TbI8CtEfG9cufs6OiIgYGBTPO27LW2lr4d0NICR47UP5+8qdSvR6k6/XNtKN3dnnmt1iTtjIiOUtuyfPqoTdK70vWTgdXAjyTNK9rtGuC5dH0bsFbSHEmLgSXAjqzys8bh+8Y2lZ6e5JeDiGTpgpCtLJ8+mgdsltRCUny2RsSDkv5G0nKSW0N7gesBImKXpK3AIHAEuNFPHjWHlpbyVwpmVl+ZFYWIeBa4sET841McsxHYmFVO1pi6usYPB1wcN7P68hvNlruentKzSfk2gVn9uShY7vr64HsTHif43veae4hks7y4KFjuPBKmWeOoqE9BUhvwu0B78TER8als0rJm4pEwzRpHpR3NDwD/G9gO+Ikgq6mFC5PJU0rFzay+Ki0KcyPic5lmYk3riitKP310xRWTY2aWrUr7FB4sHuLarJYeeqi6uJllp9KicDNJYfh/kl5PPz/LMjFrHqVuHU0VN7PsVHT7KCJOyToRMzPLX8VvNEu6Cvhg2nwyIh7MJiUzM8tLRbePJN1GcgtpMP3cnMbMzGwGqfRK4QpgeUQcBZC0GXgauCWrxMzMrP6qeaP5XUXrv1TrRMzMLH+VXin8GfC0pCdIZkj7ILA+s6zMzCwXlT599DVJTwK/QVIUPhcR/5xlYmZmVn9T3j6S9Cvp8n0kk+YMAS8DZ6cxMzObQY51pfAHQBdwe4ltAVxS84zMzCw3UxaFiOhKlx+q9sSS3gZ8G5iT/pxvRMTnJZ0GfJ1kxNW9wLUR8S/pMeuB60gG3bspIh6p9ueamdnxq/Q9hY9IOiVd/y+S7pc0aarNCQ4Dl0TEe4HlwOWS3k/yGGt/RCwB+tM2kpYCa4FlwOVATzq/s5mZ1Umlj6T+14h4XdIHgMuAzcCdUx0QiTfS5knpJ4A16fGky6vT9TXAlog4HBF7gN3Aior/JGZmdsIqLQqjcyh8GNgUEQ8As491kKQWSc8AB4HHIuIp4KyIOACQLs9Md59P0ok9aiiNmZlZnVRaFF6R9FfAtcBDkuZUcmxEjETEcmABsELSBVPsrlKnmLST1CVpQNLA8PBwhembmVklKi0K1wKPAJdHxL8CpwH/udIfkh7zJElfwauS5gGky4PpbkPAOUWHLQD2lzhXb0R0RERHW1tbpSmYmVkFKi0K84C/jYgXJV0MfATYMdUBktokvStdPxlYDfwI2AasS3dbRzLVJ2l8raQ5khYDS471M8zMrLYqLQr3ASOS3g3cDSwG/tcxjpkHPCHpWeD7JH0KDwK3AZdKehG4NG0TEbuArSSjsD4M3BgRM3o+6NWrQRr7rF6dd0Zm1uwUMem2/eSdpB9ExPskfRZ4KyK+LOnpiDjWY6mZ6ujoiIGBgTxTOG6rV0N//+T4qlWwfXv988mTSvUmpSr46znj+PuwrEnaGREdpbZVeqXwC0kfBT4BjE6uc1ItkmtWpQrCVHEzs3qotCh8ElgJbIyIPek9/69ml5aZmeWh0lFSB4Gbitp7SPsCzMxs5piyKEjaGhHXSvoh498ZEMlLy+/JNDszM6urY10p3Jwur8w6ETMzy9+xRkkdHY7iJQBJ7zzWMVaZlhYYKfHAbYuHADSzHFU6Sur1kl4FngV2pp/p+Sxog+jqqi5uZlYPlf7W/0fAsoj4cZbJmJlZvip9JPWfgENZJtJs7iwz8Hi5uJlZPVR6pbAe+D+SniKZPAeAiLip/CE2lXJvpvqNVTPLU6VF4a+Ax4EfAkezS8fMzPJUaVE4EhF/kGkmZmaWu0r7FJ5IJ7eZJ+m00U+mmZmZWd1VeqXwH9Pl+qJYAL9c23TMzCxPlY59tDjrRMzMLH9T3j5K508YXf/IhG3/LaukzMwsH8fqU1hbtL5+wrbLa5yLmZnl7FhFQWXWS7XHb5TOkfSEpOcl7ZJ0cxq/VdIrkp5JP1cUHbNe0m5JL0i6rKo/iZmZnbBj9SlEmfVS7YmOAH8YET+QdAqwU9Jj6bYvRsQXineWtJTkymQZcDawXdJ5M32eZrOJTj8dXnutdNwsa8e6UnivpJ9Jeh14T7o+2v61qQ6MiAMR8YN0/XXgeWD+FIesAbZExOF0Ep/dwIqK/yRmM8Qdd8Ds2eNjs2cncbOsTVkUIqIlIt4ZEadERGu6PtqueI5mSe3AhcBTaejTkp6VdI+kU9PYfODlosOGmLqImM1InZ1w3XVjw6i3tCTtzs5887LmUOnLa8dN0juA+4DPRMTPgE3AucBy4ABw++iuJQ6fdIsqfYluQNLA8PBwRlmb5aevDzZvHptvY2Qkaff15ZuXNYdMi4Kkk0gKQl9E3A8QEa9GxEhEHAW+wtgtoiHgnKLDFwD7J54zInojoiMiOtra2rJM3ywXGzbAoQljEh86lMTNspZZUZAk4G7g+Yj4y6L4vKLdrgGeS9e3AWslzZG0GFgC7MgqP7NGtW9fdXGzWspyas2LgI8DP5T0TBr7Y+CjkpaT3BraC1wPEBG7JG0FBkmeXLrRTx5ZM1q4EF56qXTcLGuZFYWI+A6l+wkemuKYjcDGrHIymw42bkymZS2+hTR3bhI3y1rmHc1mVp3OTujthUWLQEqWvb1++sjqw0WhyXV3Q2tr8j+f1takbfnr7IS9e+Ho0WTpgmD1kmWfgjW47m7YtGmsPTIy1u7pyScnM8uXrxSaWG9vdXEzm/lcFJrYSJlnu8rFzWzmc1FoYqPDKFQaN7OZz0WhiZ1/fnVxM5v5XBSa2OBgdXEzm/lcFMzMrMBFwczMClwUzMyswEXBzMwKXBTMzKzARcHMzApcFJrY6adXFzezmc9FoYndcQfMnj0+Nnt2Ejez5uSi0MQ6O+Gee8aP23/PPR6m2ayZZTlH8zmSnpD0vKRdkm5O46dJekzSi+ny1KJj1kvaLekFSZdllZuNaYRx+yderRwrbmbZyfJK4QjwhxHxq8D7gRslLQVuAfojYgnQn7ZJt60FlgGXAz2SPDRbE7juuuriZpadzIpCRByIiB+k668DzwPzgTXA5nS3zcDV6foaYEtEHI6IPcBuYEVW+VnjeKjMrN3l4maWnbr0KUhqBy4EngLOiogDkBQO4Mx0t/nAy0WHDaUxm+H27asubmbZybwoSHoHcB/wmYj42VS7lohFifN1SRqQNDA8PFyrNC1HCxdWFzez7GRaFCSdRFIQ+iLi/jT8qqR56fZ5wME0PgScU3T4AmD/xHNGRG9EdERER1tbW3bJW91s3Ahz546PzZ2bxM2svrJ8+kjA3cDzEfGXRZu2AevS9XXAA0XxtZLmSFoMLAF2ZJWfNY7OTli5cnxs5Uo/GmuWhyyvFC4CPg5cIumZ9HMFcBtwqaQXgUvTNhGxC9gKDAIPAzdGhGcLbgLd3dDfPz7W35/Ezay+FDHptv200dHREQMDA3mncVxUqgclNY3/kxwXfxdm9SVpZ0R0lNrmN5rNzKzARcHMzApcFMzMrMBFwXK3alV1cTPLjouC5W779skFYNWqJG5m9eWiYA3hvPOgJR3+sKUlaZtZ/bXmnYBZdzds2jTWHhkZa/f05JOTWbPylYLlrre3uriZZcdFwXI3Uua99XJxM8uOi4KZmRW4KJiZWYGLguVu0aLq4maWHRcFy53nUzBrHC4KlrvOzuRJo0WLkhFTFy1K2p5Pwaz+/J6CNYTOThcBs0bgKwUzMytwUTAzs4Is52i+R9JBSc8VxW6V9MqE6TlHt62XtFvSC5IuyyovMzMrL8srhXuBy0vEvxgRy9PPQwCSlgJrgWXpMT2SWjLMzczMSsisKETEt4GfVLj7GmBLRByOiD3AbmBFVrmZmVlpefQpfFrSs+ntpVPT2Hzg5aJ9htJYJlavTh59HP2sXp3VTzIzm17qXRQ2AecCy4EDwO1pXCX2jVInkNQlaUDSwPDwcNUJrF4N/f3jY/399S8MLWVujpWLm5nVQ12LQkS8GhEjEXEU+Apjt4iGgHOKdl0A7C9zjt6I6IiIjra2tqpzmFgQjhXPyllnVRc3M6uHuhYFSfOKmtcAo08mbQPWSpojaTGwBNhRz9zqbX/Jklc+bmZWD5m90Szpa8DFwBmShoDPAxdLWk5ya2gvcD1AROyStBUYBI4AN0aER9M3M6uzzIpCRHy0RPjuKfbfCGQ+BNrSpTA4WDpuZtbsmu6N5jffrC5uZtZMmq4o7NtXXdzMrJk0XVFYuLC6uJlZM2m6otAoE7r4PQUza0RNVxQaZUKXk0+uLm5mVg9NOclOI0zo8sYb1cXNzOqh6a4UzMysPBcFMzMrcFEwM7MCFwUzMytwUcjJO95RXdzMrB5cFHJy553QOuHZr9bWJG5mlhcXhZx0dsK9945/X+Lee/N/VNbMmpuLQo6++10YGoKIZPnd7+adkZk1u6Z8ea0RdHfDpk1j7ZGRsXZPTz45mZn5SiEn5foO3KdgZnlyUchJRHVxM7N6yKwoSLpH0kFJzxXFTpP0mKQX0+WpRdvWS9ot6QVJl2WVl5mZlZfllcK9wOUTYrcA/RGxBOhP20haCqwFlqXH9Eia0YNI+z0FM2tEmRWFiPg28JMJ4TXA5nR9M3B1UXxLRByOiD3AbmBFVrk1Ar+nYGaNqN59CmdFxAGAdHlmGp8PvFy031Aam7H8noKZNaJGeSRVJWIlu1wldQFdAAun+RyajTCvg5lZsXpfKbwqaR5AujyYxoeAc4r2WwDsL3WCiOiNiI6I6Ghra8s0WTOzZlPvorANWJeurwMeKIqvlTRH0mJgCbCjzrmZmTW9zG4fSfoacDFwhqQh4PPAbcBWSdcB+4CPAETELklbgUHgCHBjRIxklZuZmZWWWVGIiI+W2bSqzP4bgY1Z5WNmZsfmN5rNzKxAMY3HVZA0DLyUdx41cAbw47yTaBD+Lsbz9zHG38V4J/J9LIqIkk/qTOuiMFNIGoiIjrzzaAT+Lsbz9zHG38V4WX0fvn1kZmYFLgpmZlbgotAYevNOoIH4uxjP38cYfxfjZfJ9uE/BzMwKfKVgZmYFLgo5k9Qi6WlJD+adS94kvUvSNyT9SNLzklbmnVNeJP2+pF2SnpP0NUlvyzuneqp2kq6ZrMx38Rfpv5NnJX1T0rtq9fNcFPJ3M/B83kk0iDuAhyPiV4D30qTfi6T5wE1AR0RcALSQTELVTO6lwkm6msC9TP4uHgMuiIj3AP8IrK/VD3NRyJGkBcCHgbvyziVvkt4JfBC4GyAifh4R/5pvVrlqBU6W1ArMpcyowTNVlZN0zWilvouIeDQijqTNvycZWbomXBTy9SXgs8DRvBNpAL8MDAN/nd5Ou0vS2/NOKg8R8QrwBZJBIw8AP42IR/PNqiGUm6Sr2X0K+FatTuaikBNJVwIHI2Jn3rk0iFbgfcCmiLgQeJPmuT0wTnqvfA2wGDgbeLukj+WblTUiSRtIRpbuq9U5XRTycxFwlaS9wBbgEklfzTelXA0BQxHxVNr+BkmRaEargT0RMRwRvwDuB/5dzjk1gnKTdDUlSeuAK4HOqOG7BS4KOYmI9RGxICLaSToRH4+Ipv1tMCL+GXhZ0vlpaBXJ/BrNaB/wfklzJYnku2jKTvcJyk3S1XQkXQ58DrgqIg7V8tyNMkezGcDvAX2SZgP/F/hkzvnkIiKekvQN4Acktwaepsne5q1mkq6Zrsx3sR6YAzyW/N7A30fEf6rJz/MbzWZmNsq3j8zMrMBFwczMClwUzMyswEXBzMwKXBTMzKzARcEMkPRvJG2R9E+SBiU9JOm8MvteXKtRbSX9jqT/XotzmdWCi4I1vfQFsW8CT0bEuRGxFPhj4Kx8M5ssHSDPLDMuCmbwIeAXEXHnaCAingG6JK0ZjUnqk3RV8YGS3p6Od//9dCC/NWn8dyTdL+nhdPz/Py865pOS/lHS35EMdzIab5N0X3qu70u6KI3fKqlX0qPA/8zqSzADv9FsBnABUGpgwruA3wcekPRLJOMPrQM+ULTPBpIhSj6VTnSyQ9L2dNty4ELgMPCCpC+TvKH8J8CvAz8FniB5YxmS+SS+GBHfkbQQeAT41XTbrwMfiIi3avEHNivHRcGsjIj4O0n/Q9KZwG8B90XEkXRYgVG/STKw4R+l7bcBC9P1/oj4KYCkQWARcAbJbarhNP51YLTvYjWwtOj875R0Srq+zQXB6sFFwQx2Af+hzLa/ATpJBi38VIntAn47Il4YF5T+LckVwqgRxv69lRtbZhawcuL//NMi8eYU+ZvVjPsUzOBxYI6k3x0NSPoNSf+eZCrEzwBExK4Sxz4C/F7aWY2kC4/xs54CLpZ0uqSTGD+o26PAp4tyWH4cfxazE+KiYE0vHYv+GuDS9JHUXcCtwP6IeJVk2Oq/LnP4nwInAc+mE6v/6TF+1oH03N8DtpOMhDrqJqAjnYx9EKjJqJdm1fAoqWZTkDQX+CHwvtH+AbOZzFcKZmVIWg38CPiyC4I1C18pmJlZga8UzMyswEXBzMwKXBTMzKzARcHMzApcFMzMrMBFwczMCv4/5driaxNzFJgAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# write your code here\n", | |
"plt.scatter(cdf.CYLINDERS, cdf.CO2EMISSIONS, color='blue')\n", | |
"plt.xlabel(\"Cylender\")\n", | |
"plt.ylabel(\"Emission\")\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Double-click __here__ for the solution.\n", | |
"\n", | |
"<!-- Your answer is below:\n", | |
" \n", | |
"plt.scatter(cdf.CYLINDERS, cdf.CO2EMISSIONS, color='blue')\n", | |
"plt.xlabel(\"Cylinders\")\n", | |
"plt.ylabel(\"Emission\")\n", | |
"plt.show()\n", | |
"\n", | |
"-->" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"#### Creating train and test dataset\n", | |
"Train/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set. \n", | |
"This will provide a more accurate evaluation on out-of-sample accuracy because the testing dataset is not part of the dataset that have been used to train the data. It is more realistic for real world problems.\n", | |
"\n", | |
"This means that we know the outcome of each data point in this dataset, making it great to test with! And since this data has not been used to train the model, the model has no knowledge of the outcome of these data points. So, in essence, it is truly an out-of-sample testing.\n", | |
"\n", | |
"Lets split our dataset into train and test sets, 80% of the entire data for training, and the 20% for testing. We create a mask to select random rows using __np.random.rand()__ function: " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"msk = np.random.rand(len(df)) < 0.8\n", | |
"train = cdf[msk]\n", | |
"test = cdf[~msk]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"<h2 id=\"simple_regression\">Simple Regression Model</h2>\n", | |
"Linear Regression fits a linear model with coefficients $\\theta = (\\theta_1, ..., \\theta_n)$ to minimize the 'residual sum of squares' between the independent x in the dataset, and the dependent y by the linear approximation. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"#### Train data distribution" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEHCAYAAABBW1qbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df5Ac9Xnn8fezvwSScARC9gmEJEIEPslxhNkQc+QHscAQ7AKcijn51pQqdkWOhBM5OZcPRXexnTqluCROTK5KGMUGNtbGhLOdgyIEDLIdx45jssKAkTCHcggQ6EBgYxuDJbQ890f37PbO9s+Z7unZ2c+rqmtnvtPd892Rtp/p74/na+6OiIgIQF/dFRARke6hoCAiIpMUFEREZJKCgoiITFJQEBGRSQoKIiIyaaDKk5vZAeBHwARwzN2Hzewk4G+BlcAB4Ep3/364/1bg/eH+v+vud6ed/+STT/aVK1dWVX0RkZ60Z8+e5919SdxrlQaF0K+6+/OR59cAu939WjO7Jnz+X8xsNbAeWAOcAtxrZme6+0TSiVeuXMn4+HiVdRcR6Tlm9kTSa3U0H10OjIaPR4ErIuW3uPsRd38c2A+cW0P9RETmrKqDggNfMrM9ZrYxLHuDux8CCH++Piw/FXgqcuzBsExERDqk6uaj8939GTN7PXCPmX03ZV+LKZuRgyMMLhsBli9fXk4tRUQEqPhOwd2fCX8+B/wdQXPQs2a2FCD8+Vy4+0HgtMjhy4BnYs65092H3X14yZLYfhIREWlRZUHBzBaY2QmNx8DbgYeB24EN4W4bgNvCx7cD681snpmdDqwC7quqfiIiMlOVdwpvAL5uZg8SXNz/3t3vAq4FLjKzx4CLwue4+17gVmAfcBdwddrIIxGZW8bGYOVK6OsLfo6N1V2j3mSzOXX28PCwa0iqSO8bG4ONG+Hll6fK5s+HnTthZKS+es1WZrbH3YfjXtOMZhHpetu2TQ8IEDzftq2e+vQyBQUR6XpPPlmsXFqnoCAiXS9p9LlGpZdPQUFEut727UEfQtT8+UG5lEtBQUS63shI0Km8YgWYBT/VyVyNTiTEExFp28iIgkAn6E5BREQmKSiIiMgkBQUREZmkoCAiIpMUFEREZJKCgoiITFJQEBGRSQoKIiIySUFBREQmKSiIiMgkBQUREZlUeVAws34z+7aZ3RE+/5iZPW1mD4TbpZF9t5rZfjN71MwurrpuIiIyXScS4m0BHgFeFyn7C3f/s+hOZrYaWA+sAU4B7jWzM7VOs4hI51R6p2Bmy4B3AJ/OsfvlwC3ufsTdHwf2A+dWWT8REZmu6uajTwIfAV5rKv+gmT1kZjea2Ylh2anAU5F9DoZlIiLSIZUFBTN7J/Ccu+9peul64AxgLXAI+ETjkJjTeMx5N5rZuJmNHz58uMwqi4jMeVXeKZwPXGZmB4BbgLeZ2S53f9bdJ9z9NeCvmGoiOgicFjl+GfBM80ndfae7D7v78JIlSyqsvojI3FNZUHD3re6+zN1XEnQgf9nd32tmSyO7vQt4OHx8O7DezOaZ2enAKuC+quonIiIz1bEc55+Y2VqCpqEDwAcA3H2vmd0K7AOOAVdr5JGISGd1ZPKau3/V3d8ZPr7K3X/W3d/s7pe5+6HIftvd/Qx3P8vd/6ETdROR2WFsDFauhL6+4OfYWN016k2a0SwimTZvhoEBMAt+bt7c2fcfG4ONG+GJJ8A9+LlxowJDFRQURCTV5s1w/fUwETbmTkwEzzsZGLZtg5dfnl728stBuZTL3GeM+pw1hoeHfXx8vO5qiPS0/n54rXmmEUEzzkSHev36+oI7hGZm8XWTdGa2x92H417TnYKIpEq66HbyYrx8ebFyaZ2Cgoh0ve3bYf786WXz5wflUi4FBRFJtWBBsfIqjIzAzp2wYkXQZLRiRfB8ZKRzdZgrFBREJNUNNwT9ClH9/UF5J42MwIEDQbPVgQMKCFVRUBCZ5aoevz8yAqOj07+lj47qotyrFBREKlblGP9Ojd/Xt/S5Q0FBpEJVj/HX+H0pm+YpiFRoYCB+LH9/Pxw71v75NX5fWqF5CiI1SZrcVdakr06N389qAlNeot6hoCBSIYtbOiqlvKhOjN/PagJTXqLeoqAgUqGk1tkirbZp39I7MX7/U59KL1e/Rm9RUJA5re7sn1nydFTHjQwqszknK7A9+WT860nl0t0UFGTO6kT2z+ZJX1nlzXbuLFYOnW/OUV6i3qKgIHNWKxfcojZuLFberJWO6k435ygvUW+pPCiYWb+ZfdvM7gifn2Rm95jZY+HPEyP7bjWz/Wb2qJldXHXdZG6remQQwI4dsGnT1J1Bf3/wfMeOfMe3cqdRdnPOpk3p5SMjsGHD9N9xwwZNcJutOnGnsAV4JPL8GmC3u68CdofPMbPVwHpgDXAJsMPMct5kixTXbtNOXjt2BHMS3IOfeQMCtHanUXZzTlZgGxsL0l5Em+FGRzX6aLaqNCiY2TLgHcCnI8WXA6Ph41Hgikj5Le5+xN0fB/YD51ZZP5nb2m3a6YTzzw86wKMGBoLyJFU056QFNo0+6i1V3yl8EvgIEJ1b+QZ3PwQQ/nx9WH4q8FRkv4NhmUgl2m3a6YRt22bOfD52bPoFt3mkEXQ2zbRGH/WWyoKCmb0TeM7d9+Q9JKZsxmA4M9toZuNmNn748OG26ijSTtNOJ2RdcJNGGkHnEthp9FFvqfJO4XzgMjM7ANwCvM3MdgHPmtlSgPDnc+H+B4HTIscvA55pPqm773T3YXcfXrJkSYXVF6lf1gW3G5puqhp9dOGFwZ1OY7vwwvbOJ/lUFhTcfau7L3P3lQQdyF929/cCtwMbwt02ALeFj28H1pvZPDM7HVgF3FdV/URmg6wLbjc03VQxq/rCC2H37ullu3crMHRCHfMUrgUuMrPHgIvC57j7XuBWYB9wF3C1u5c4OFBk9sm64HZL003Z6y00B4Ss8rmk8uSD7j5rt3POOcdF6rZrl/uKFe5mwc9duzr73vPnuwc9CsE2f35n61CF6O/TvM1lZf17A+OecF3VjGaRNtSdIbTVphulup6dOtGHpKAg0oZu6OgtqopAtmbN9E7hNWvaq+O6dcXK54pO9CEpKIi0oY6O3qGh6Rfg9743+wIfvTPYsKF4IEsbCbRmDezbN33/ffvaCwz33jszAKxbF5TPZZ3oQ1JQEGlDpzt6h4bg1VfT92m+wDffGSTldnriifjyrJFAzQGhIak8r3vvnd6bMNcDAnQm+aCCgkgbOp0hNCsgNETvVOKauOIk5XzSSKDu0YlFlQaydxGRJI0/xm3bggvx8uVBQKg7Q2j0TiVvU1aZ2WGlOiMj1f7/0p2CSI9pvlPJ25S1YkU19ZHZRUFBpA2dHpI6OJj8WlJzQlwTV5xLL40v10iguUVBQSRF1nj+Tg9JPXp0ZmAYHAwCUtJs4uZ26KS+gzvvjC/PGgnUqXUppDMUFEQS5LkLqGNI6tGj00fl3HRT9kS0aBqK116b+XpWndNGApW1LsXmzcFaEWbBzzLXypYCkqY6z4ZNaS6kSitWxKdZWLGi2D5l27TJvb8/eB8z94GBYmkPqqjzunXTz7VuXfHfKa5Omza1XidJhtJciBSX5y6g00NSN2+G66+fGinkPnMRnpdfhi1bku8eyq7z2Bh885vTy775zenvmdUMt3Nn/LmTyqVCSdFiNmy6U5Aq5f1GXXVCvOj50xLFpW3Ndw9l1jnpc+rvD86/eLH70FB6fZQAr7PQnYJIcXm/UTenjYbyks0192u0qrnzOyvVdZEFbpJmQk9MBHV+4YWgHyStPuqs7h4KCiIJWpk9WvYQ1byzkfPI2/ndqQVuovW54IL4fZLKpToKCiIpii4eU/YQ1TJHMUUnsaW18aeltShzZFC0Pvv3x++TVC7VUVAQKVErQ1TTLtBlJtZrTE4bG4P3vW/63cz73pf/bmZiIujsbgSGVpp4mpvhumFZUQlUFhTM7Dgzu8/MHjSzvWb28bD8Y2b2tJk9EG6XRo7Zamb7zexRM7u4qrqJVOWkk4qVZzU3/czPlFe3xuS0LVtmtvEfPRqUF9EYGXTWWdn7Dg7C4sXJzXDdsqyoUN3oI8CAheHjQeBbwFuBjwEfjtl/NfAgMA84Hfg3oD/tPTT6SLpBntFBCxbEH5s1wqkxHyFtyzsqySw4Z9ZIn+Y5B1n7p71/3tFNvbqsaLeijtFH4Xu/FD4dDLe08ROXA7e4+xF3fxzYD5xbVf1EypB3dNCPfxxfntVskpa5tHH5/Oxnp3eGL14cv3/eb91xaS3iNJqN0n7vvH0xnUgJLflU2qdgZv1m9gDwHHCPu38rfOmDZvaQmd1oZieGZacCT0UOPxiWiXRM0bWL2x0dlNVskmeo5je+AQcPBhfngwdh7dr0obRJQSNaHk1rsWlT/P5F01hkKdqpL9WoNCi4+4S7rwWWAeea2ZuA64EzgLXAIeAT4e4Wd4rmAjPbaGbjZjZ++PDhimouc1Erw0mTxug3W7gwvjypz6BRnnThnZiYmkMQneE8MRGMEjrvvORv3dddF59U77rr4t9rx44gMDQCUX9/8HzHjuD5ccfFH5dULl0uqV2p7A34KE19CcBK4OHw8VZga+S1u4Hz0s6pPgUpUys5gfK0+UMwqzdOX1/8/n19U/tEcx3l3fr703/XMmc0L15c7HeW+lFHn4KZLTGzReHj44ELge+a2dLIbu8CHg4f3w6sN7N5ZnY6sAq4r6r6iTRrZVhk3tXKvve9+PKkjKXR8h07gvxGaW33rdarDEm/W1K5dLcql+NcCoyaWT9BM9Wt7n6HmX3WzNYSNA0dAD4A4O57zexWYB9wDLja3bVAoHTM8uXxzUHuQTMMTF9HAIKmmTxNSJ0eWpk2d6DRTNboC2k0k0Fr7fj9/TOT8mXVQbpXlaOPHnL3s939ze7+Jnf/o7D8Knf/2bD8Mnc/FDlmu7uf4e5nufs/VFU3kYZoDv8nnwwep2lO99DuqmZVSesELnvWdVxASCuX7qYZzdKyoiN1uk1SGuqFC6fuDOJE00C0u6pZUYsWpb/e3AkcR7OHJY2CgrSk02sTVyEpV/8rryS39cdpZ1WzotlB3/Oe+PJNm6aCWlpAAM0elnQKCtKSTq9NXIWkzth2OmmLXnCL1qGMxWi2b4ehoellQ0OtL7KT1OSW1RQn3SlXUAhHEv2Bme0MJ5zdaGY3Vl056V690ASR9S09aVZvc3m0Ge2ll2bOAShzJbayAlnzSKYiI5ua3XxzsXLpbnnvFG4Dfgq4F/j7yCZz1Gxpgkjr98hacD4u3UPz6KPmZrQXXpg+Wqm/HzZsSB7V05fwF5hUXsZiNNu2wauvTi979dX0u7y0z/Eb34g/JqlculzSBIboBjyQZ79Ob5q8Vp/ZkMAsTx2jE8P6+4svFJ804S3v55KVbK5ZGQvcJyWwayTMa5b1OSZNrMuaQCf1IWXyWt6g8N+BS/Ps28lNQaFe7V5Qq9bKDOWi8mYoTXrPVupYVSBrtY5FA5vULy0o5G0+2gLcYWY/MbMfhdsPK7l1kVlhbAxGR6fn3Bkd7fzoo7RmjU70e+RtLkt6z7zrQEdFZzjnGW3U7ntmfY5Jw3fThvVKF0uKFrNh051CfTrxLTxLVrPGggXxdUxa2yDpPdJyBMXVoejnUmYeoryKvGcZdwp1/I6SjHabj4JzcBnwZ+H2zrzHVbkpKNSnaLt0FbIuVnmSzaXZtWvmOfr64gND44K3eLH74GByoCpD8/kHB8s7d5ys4JsVFHbtmvn/xUyBoU5tBwXgWmA38L5wuwe4Ns+xVW4KCvXphjuFrMDUblv3ccfFH3vccenHFf1WXKSPoDkgdDIwJP1OWZ/z0FD8a0ND1dZZkpURFB4C+iLP+4GH8hxb5aagUJ9OjT5KuxhlBaZ272baDSp5FB1NVFadymzOWbgwvj4LF5ZbZylPWUHhpMjzkxQUpOp24qzA026zRpZOXMyKDucso05lB/Rdu9wHBqafb2CgvH8HKV8ZQeE9wBPAzcAo8DiwPs+xVW4KCr0tTxNVO80aWTpxMSv6Hnn3T2uSqqLpr8p/BylfWR3NS8PO5suBf5f3uCo3BYXe0nxhSbuYxF3smuVpPkq7mK1bF3/8unXl/c5Fm7jy9ClkNUl1epBAJz5HKabloAC8Mfz5lrgt7dhObAoKvSPv0M60i12zrLbuXbtmdoIODaUHhrIvZFl1jJM1+ihr1FUdy2dW/TlKMWlBwYLX45nZTnffaGZfiZ/i4G/LMxeiKsPDwz4+Pl5nFea0sbEgX86TTwaTuLZvb23lLggmnuVZwSxO0spfaZOn3OHkk4NcRc0WL4bnn2+tLlDsc8mqYyvq+r1l9jCzPe4+HPtaWlBo802PA74GzCNY9vPz7v5RMzsJ+FtgJcFynFe6+/fDY7YC7wcmgN9197vT3kNBoT7NSzpCMCt2587WAkNfX+sXQYg/dmAgPntoI4hUcUEu+rnUERSSPmuzYutIyOyVFhTyps5+t5mdED7+r2b2RTM7O+OwI8Db3P3ngLXAJWb2VuAaYLe7ryKY+3BNeN7VwHpgDXAJsCNc31m6UNnrKbSTXTUpQ2gV6yVk6YZ1JrLSTsyWDLdSj7y5j/6bu//IzH4RuJhgBNKn0g4Im65eCp8OhpsTdFSPhuWjwBXh48uBW9z9iLs/DuwHzs39m0hHJTX1tNoElHet4zhJKbAXLkwvX7w4/vWk8jyS8gQ98UR5y5ZG15UeGAieRyXdYTTKk9aL7vQ60tKd8gaFxnerdwDXu/ttwFDK/gCYWb+ZPQA8B9zj7t8C3uDuhwDCn68Pdz8VeCpy+MGwTLpQGXn9o5rXOl6xIvvi3N8frG9w553xF9wf/zj+uEb5ddfNXBBncDAoLyJ6kU5r8nEPgsNv/uZUPYt+js3rSk9MBM+bA0OapPWiy1pHWma3vEHhaTO7AbgSuNPM5uU51t0n3H0tsAw418zelLJ73E3vjD8xM9toZuNmNn748OGc1Zey5WmaSctgmkdcZ2iDWbCI/T/9U/I60VnfmEdG4Kabpgeim24q1ifSfJHO49VXYcuW4PHoaPw+SeXtLsfZ15d8N9dO9th2/62liyQNS4puwHzg14FV4fOlwNvzHBs5x0eBDwOPAksj53k0fLwV2BrZ/27gvLRzakhqfbKGNRadNRs3PLTVrcw8/4sWTT9u0aLpryfNSG6M+8+qQ9Zs4GZ5fqdWP7ci2WOjdu2KHyarhHfdi1aHpDaY2RnAQXc/YmYXAG8G/trdX0w5Zgnwqru/aGbHA18C/gfwK8AL7n6tmV1DkD7jI2a2Bvgbgn6EUwg6oVe5e+J3MI0+qs+8eXD06MzyoSE4ciR5iOmKFXDgwMzypGGSrWiMomllZM/mzcG37rRv/osWwfe/P/Veae9R9vDQPL9Tq+sY9PW11gmvIa6zT9ujj4AvABNm9jPAZ4DTCS7gaZYCXzGzh4B/JehTuIMg4+pFZvYYcFH4HHffC9wK7APuAq5OCwi9ruzb8azOyaLiAkK0vOgCN2UFBGh9FE3epqAXI1+F2u1bSfq92/k8Wu3XaXU4ahW/g9Qo6RYiugH3hz8/AvxO+PjbeY6tcuvV5qOyE5aVsa5vs6xmjKL5dcpoNmr+nIo2H6U1BSUdn/XZZp2jaB2rbD5qdU3lor+D1I8SEuJ9iyAp3sPA6WHZw3mOrXLr1aBQdsKyKhZWz7oQFA1sedc6TtrKSMRW5P2i0pLPZfW9VBEU8uSNitta/ZJQR9oMaU9aUMjbfPSbwHnAdnd/3MxOB3aVd78iUWWvLVzFJK6sZpO4IaZps53dW68LBE0fBw60nmajiEWLpj8//3xYtiz4PZctC543lDXstWFXwl9dtDxuzkej6RCCf6PVq6f+rfr7YdOm4ms9N1x3XdCXFDU01PrvKDVLihazYevVO4Wyv3m1uyxlnLKbDIo03eR9z6KfY567leOPn35MnjuisjOx5lnHotNLhGoN5tmFNrKk3hr+/A7BQjuN7TtokZ3KlB0UyljAvlnZQaGdgJD0nkUvuHnep/limtRU09+f7wLZifWLu2HpVOkuaUEhK0vqUnc/ZGYrEu4yWkxqUI5eHZJadsKyKhKglZ3I7YQT4KWXsvcr8p5ZCfHy7t8sOqw2TyK/tIR4RYfuQvHstEqAJ81aHpLqU+konggDwPeBH0U2qUDZCctmQwK0pJQU7Sjal5KUQ6lZtG8nz2eYlhCvaP9RIwtr0izuOJ3499eM5h6SdAsR3YAPAM8SpLp+PNz+b55jq9x6tfkoz+IvRc+XZyRQkXbhbms+imsaamXUVXQkUdLWvBxo3sWB4hRt2mmlKajsIc6dPr+UjxKGpD4GnJxn305uvRwUyk4bkHXBL/qerQSFVtfxbTUwtDI/IxoU+vpmdtJnBdOkOiUForKG7mYtpVllR7D6LGafMoLCXcD8PPt2cuvVoFDHH1nRzu2iQSHr4ldmUIjWIW0OQbOkILJgQf6LadnBslk3XoA7veaztC8tKOTNfXQ2cBPBJLYjkaan3y2tHasF6mguT9GO46L7Z3Wotpqvp0gdspTxuS9cGN8/smBBex3pDRdeCLt3zyxftw7uvbf987eilc5yqVcZuY9uAL4M/AuwJ7JJBZIWm2l1EZpuUPaiPFVICiRFAkzzqmtZ5UV99avFyjshbrLc/PlBucw+eYPCMXf/fXe/yd1HG1ulNZvDXnmlWHkZqliFLDoiJUmrydvSrFtX/jnzaiWwFBm5U8cSo1mKzl6X7pY3KHwlXNxmqZmd1NgqrdkcltRUUeWY8rJTFTQPnUxS9sWsnWaUrOU7qzA2FqzEFh1iGl2ZrVnZK96VZWQkaCrqZLoRqUbeoPCfCBbB+Wemmo56rzG/hzR/+9y8Of3b6MgI3Hjj9G97N97Y+h933AL2cdq5E4lqdG82B4Qi38I/9algAlvUwEBQnldzYM0q37IlWIktKroyW7OkuRR551iIZErqgZ4NW6+OPmplBEtUnrHz7Y4jz6pj3lFCebKF5tniRu60Mn6+3aGbVY/ici82oqpTlPtodqGN3EcfiTx+d9Nrf5x2bCc2BYV4eVMntzOMMauOSUn42g0iWVv0ol/H8M2iwzPb/bfuBpq8NvukBYWs5qP1kcdbm167pKSbFWnSbqdv3hE97SzUnqVI/0daR3RR0ZQSZacgz6NoSokqOvg7La6pMC21h3S3rD9HS3gc93z6i2anmdlXzOwRM9trZlvC8o+Z2dNm9kC4XRo5ZquZ7TezR83s4kK/SQ/pVH76bsl9FNx4lqcRFOvI+VR0eGYvrEVQR/CVCiXdQgR3GMEynM2P457HHLsUeEv4+ATg/wCrgY8BH47ZfzXwIDCPYA3ofwP6096jV5uP3Ntroy3azNLKe2Y1e7S7klq7W+P3qaNZo+i/3Wxvj+/GWdaSjjb6FCaAHxJkRD0WPm48fzXt2Jhz3QZclBIUtgJbI8/vBs5LO2cvB4V2pLXnp+U+KnIB7VQfQTtBofF7zeYL7mygPoXZJy0oZKXO7nf317n7Ce4+ED5uPB9MOzbKzFYCZxOkyQD4oJk9ZGY3mtmJYdmpwFORww6GZXPShRcGQ0Mb24UX5j/2+OPjyxcsSB5HXna7cLe0iWv8fPU0ea23lNjFF8/MFgJfAD7k7j8ErgfOANYCh4BPNHaNOXxGa3M4iW7czMYPHz5cUa3rFZffZvfu/IEhaW2CtDUL1C4s7VDw7R2VBgUzGyQICGPu/kUAd3/W3Sfc/TXgr4Bzw90PAqdFDl8GPNN8Tnff6e7D7j68ZMmSKqtfm7iEZ2nlzZKSy6UlnSu7U/Z732vtOBGpV2VBwcwM+AzwiLv/eaR8aWS3dwEPh49vB9ab2TwzOx1YBdxXVf16mSeM5kkqh/KTmp2kJCgis1KVdwrnA1cBb2safvonZvYdM3sI+FXg9wDcfS9wK7CPYP2Gq929xjRfvcksSN2wefP08k61C/f1lZ8mW0TKM5C9S2vc/evE9xPcmXLMdkAJd9vU15c+eWxiAq6/Pni8Y0dr73HccfCTn8SXQ3LzkXtQtzVrYN++1t47S7d0covMRpV3NEvnvfGN+fbbuXPqcdFsnT/90+nlWX0Ujz6ar45FDQ7OrolfIt1GQaEiRbJzlu2RR/LtF01bXTRbZ9K3/Eb5pZfGv94oLzNl9sKFU01eN92kkS8i7ais+Wgua6wl0Bj3/8QTU6mN271g9fUF37a3b08+V1qHclS0bf+FF+L3SSrPcmdCI2GjPKuJq4hXXql2rQmRuUR3ChWoMkFYo2ln48b27z4WLGi/Pkmy5j0kTbBrRZ2rjon0GgWFCnRiIlgZQaaMheSTZPUplLVmMdS/6phIL1FQqECnsnN282zjrHkPZX4WWnVMpDwKChXI6mQtS7ekvo6TNe+hjM+ivx82bWp9WK2IzKSO5gpkdbKWoZ3ZxnHM4juo25loNjKS3BnezmcxNARHjrR+vIgk051CBZJWPsu7IlqaqmYb//ZvFytvVztNX7/0S+XVQ0Sm051CBfr740fElNEhWtXQy0YTzM6dQd37+4O2+qqaZpYvbz1IfvWrpVZFRCJ0p1CBpCGS0fLNm4McREm5iOqwYwccOxY0Ix07Vm1bfVxHdF4agipSHQWFCiQtRN8o37w5yD3UuLg1chF1Q2DIa+HCYuXNmjuii9AQVJHqKCi0ICuFRVITT6M8mnMoKqm8U4rcvVx1VbHyONGFWVavzn+chqCKVEdBoaBGCoto4riis4vzNC91WtG7l7JHWO3dC6ecMr3slFOCIaeNOwMNQRWpnnneRDldaHh42MfHxzv6nitXxneQrlgRfOuF9OYQ9+BbeFJH9LFj2cdnKdIc0zhfVp2a9fUlD2FtpTO8OV8UBH0OWutXpHxmtsfdh+Ne051CQWUMN73ggmLlVVm0aOpx0buXsmdtV5kvSkTyU1AoKKmTs0jn5wMPFCuvyosvTj0u+nuVvXxnJ/JFiUi2KtdoPs3MvmJmj5jZXjPbEpafZGb3mNlj4c8TI8dsNbP9ZvaomV1cVd3aUUZ/QNlpqpsljX5Kk9R5m1Re9vKdncoXJSLpqrxTOAb8Z3f/9yi4Q0QAAA8USURBVMBbgavNbDVwDbDb3VcBu8PnhK+tB9YAlwA7zKzrBh+uWFGsvA55V16L2rGjeKdudPTQgQPttf2XfechIq2pLCi4+yF3vz98/CPgEeBU4HJgNNxtFLgifHw5cIu7H3H3x4H9wLlV1a9VZSS7GxoqVl5Uq2sfd3LyWrOy7zxEpDUd6VMws5XA2cC3gDe4+yEIAgfw+nC3U4GnIocdDMu6StKQy507p+YtZDl6tFj5XFHmnYeItKbyoGBmC4EvAB9y9x+m7RpTNmPQo5ltNLNxMxs/fPhwWdXMLWmU0cTE1LwFEZHZqtKgYGaDBAFhzN2/GBY/a2ZLw9eXAs+F5QeB0yKHLwOeaT6nu+9092F3H16yZEl1lU+gFAsi0suqHH1kwGeAR9z9zyMv3Q5sCB9vAG6LlK83s3lmdjqwCrivqvq1ajYkY2tnDYQistJ91H0+ESmuyjuF84GrgLeZ2QPhdilwLXCRmT0GXBQ+x933ArcC+4C7gKvdfRZcgrtP3jUQ2rnrKSPdR/P5rrpq+vmuukqBQaTTlOaioHa/hbtnp7FoN81FI49RlgUL4KWXsveLkyfdRxHHHRe/mtq8efCTnxQ/n4gkU5qLDmkMpazbpz6Vb78f/7j19yh7BnLS8ppadlOksxQUStQYSlm3Ttz8aQaySG9SUJCWaAaySG9SUOhBnRh9VPYM5HXripWLSDUUFEqUd0Zz1fI2Hy1e3N77lDkD+d57ZwaAdeuCchHpHAWFEnXLjOa8nd1XXlltPYo688zpCfnOPLPe+ojMRQoKPSiuvT/OrbdWX5e8ii4HKiLVUFCoQRkL9aRpbu9PUtb6DWXYubNYuYhUQ0GhBmUs1JMl2t4/G3TiMxGRbAoKNUjq4G2Ub9oU/3pSeZaFC4uVi8jcpaDQQatXBz+zZu/u2AGLFk1/bdGi1he9eeWVYuUiMncpKHTI6tWwd2/wOCnfUKN8zRp48cXpr734YlDeitnQNDMbljkVmQsUFCoUndj1B3+Q/7ik5TRbXWZzNtAMaZHuoKBQobLSSs8FWqNZpDsoKHTIyy/Dtm31vPdsSSGhNZpF6qegUFA7qSFaTSvdLqWQEJG8FBQKaic1RJ1ppe+9N2jKamwKCCISp8o1mm80s+fM7OFI2cfM7Omm5Tkbr201s/1m9qiZXVxVvaC9tYDvvLO19xwcnOo0TZpl3ChfsCD+9aRyEZGyVHmncDNwSUz5X7j72nC7E8DMVgPrgTXhMTvMrKSkD9O1u7ZwniagwUEYGJheFg0ESVlMG+U33DAz5UV/f1AuIlKlyoKCu38N+F7O3S8HbnH3I+7+OLAfOLeKem3bFnT6RhXpBE5qAurvnxo187rXwbFj018/enTqPbLG5I+MwOjo9JE4o6PqeBWR6tXRp/BBM3sobF46MSw7FXgqss/BsKx0edYWTmteShpPPzo6NWrmewmhsPEeecbkaySOiNSh00HheuAMYC1wCPhEWB7Xyh7byGJmG81s3MzGDx8+XLgCSSmlG+VZzUtx4+k3bAjuAhpB5KST4t+jcZeRZ0x+O/0eZRwvInOUu1e2ASuBh7NeA7YCWyOv3Q2cl3X+c845x4vq64uOwZna+vqC11esiH+9v9/dLHh9166p8+3a5T5//vR9Bwfdh4aml82fP/24NHHnLHp88/sPDeU/XkR6GzDuCddV87xrN7bAzFYCd7j7m8LnS939UPj494BfcPf1ZrYG+BuCfoRTgN3AKndPzc4zPDzs4+PjBeuU/Jp78M066yOZP3/qm/3KlfGrrS1eHGQhffLJ4A5h+/b8TUBJ51yxImhKynLyyfFrJSxeDM8/n68OItK7zGyPuw/HvlZVUDCzzwEXACcDzwIfDZ+vJWgaOgB8IBIktgHvA44BH3L3f8h6j1aCwsBAfCK4/v6gczjpgtyscYFOCiJmra9l0O450wIfBL/rxo2tZ10VkdktLShUOfroPe6+1N0H3X2Zu3/G3a9y95919ze7+2WNgBDuv93dz3D3s/IEhFZt3Jhefuml8a83a3QaJ41GameiWlKfRFJ5UVrqUkSSzLkZzTt2BIvVRBeI37Rp6ltz3slpjYt+UhDJG1yqkDcVh5a6FJFmcy4oQBAAjh0LmmiOHZvejJJnclp0+GhSEGl15jMkD2lNKm923XXBBLos3bSegoh0hzkZFNLkmZwWHT6aZ95DWXXI2yQ1MgI33TQ15DVJ86xpEREFhSZ5JqdFRxFV0adQxoIz0clvSSmyL7ig1RqKSK9SUGhSdLGXKlYMK3vBmf37i5WLyNyloBCjSIqJVi/gnZxxXEUTl4j0JgWFFjRf0KFYnqKsVBrtZnJtVkUTl4j0JgWFgsq4YGdlam03k2uzKpq4RKQ3KSgUVMYFO6s5p+zmnrL7KESkdw1k7yJRZVywly+PT6XRaM7Jer0VIyMKAiKSTXcKBZXRPp/VnKPmHhGpi4JCQWXNIUhrzlFzj4jUpdLU2VVrJUtqGcbGgj6EVtJii4jUrZYsqb2sjKUytTKaiHQjBYUSFL3Alz0PQUSkLAoKbWrlAl/2PAQRkbIoKLSplQu80k6ISLeqLCiY2Y1m9pyZPRwpO8nM7jGzx8KfJ0Ze22pm+83sUTO7uKp6la2VC7zSTohIt6ryTuFm4JKmsmuA3e6+CtgdPsfMVgPrgTXhMTvMbFZk+2/lAq95CCLSrapco/lrQPNaYZcDo+HjUeCKSPkt7n7E3R8H9gPnVlW3MrVygdc8BBHpVp1Oc/EGdz8E4O6HzOz1YfmpwL9E9jsYlnW9xoW86LwFpZ0QkW7ULbmP4haNjJ1VZ2YbgY0Ay7ukEV4XeBHpFZ0effSsmS0FCH8+F5YfBE6L7LcMeCbuBO6+092H3X14yZIllVZWRGSu6XRQuB3YED7eANwWKV9vZvPM7HRgFXBfh+smIjLnVdZ8ZGafAy4ATjazg8BHgWuBW83s/cCTwLsB3H2vmd0K7AOOAVe7+0RVdRMRkXiVBQV3f0/CS+sS9t8OaFCmiEiNNKNZREQmzerU2WZ2GIhZoyy3k4HnS6pOVVTHcqiO5VAdy1F3HVe4e+xInVkdFNplZuNJOcW7hepYDtWxHKpjObq5jmo+EhGRSQoKIiIyaa4HhZ11VyAH1bEcqmM5VMdydG0d53SfgoiITDfX7xRERCRiTgaFuAWAuo2ZnWZmXzGzR8xsr5ltqbtOzczsODO7z8weDOv48brrFMfM+s3s22Z2R911SWJmB8zsO2b2gJmN112fOGa2yMw+b2bfDf9fnld3naLM7Kzw82tsPzSzD9Vdr2Zm9nvh38vDZvY5Mzuu7jpFzcnmIzP7ZeAl4K/d/U111ydOmDBwqbvfb2YnAHuAK9x9X81Vm2RmBixw95fMbBD4OrDF3f8l49COMrPfB4aB17n7O+uuTxwzOwAMu3vXjq83s1Hgn9z902Y2BMx39xfrrleccJGup4FfcPd25jKVysxOJfg7We3ur4Tpfe5095vrrdmUOXmnkLAAUFdx90Pufn/4+EfAI3TZGhMeeCl8OhhuXfUtw8yWAe8APl13XWYzM3sd8MvAZwDc/Wi3BoTQOuDfuikgRAwAx5vZADCfhIzQdZmTQWG2MbOVwNnAt+qtyUxh08wDBGnQ73H3bqvjJ4GPAK/VXZEMDnzJzPaEa4Z0m58GDgM3hU1xnzazBXVXKsV64HN1V6KZuz8N/BlBQtBDwA/c/Uv11mo6BYUuZ2YLgS8AH3L3H9Zdn2buPuHuawnWwDjXzLqmOc7M3gk85+576q5LDue7+1uAXwOuDps4u8kA8Bbgenc/G/gx4Rrr3SZs2roM+F9116WZmZ1IsPzw6cApwAIze2+9tZpOQaGLhe30XwDG3P2LddcnTdiU8FXgkpqrEnU+cFnYXn8L8DYz21VvleK5+zPhz+eAv6P71ig/CByM3Al+niBIdKNfA+5392frrkiMC4HH3f2wu78KfBH4DzXXaRoFhS4VduJ+BnjE3f+87vrEMbMlZrYofHw8wX/479ZbqynuvtXdl7n7SoLmhC+7e1d9KwMwswXhYALCJpm3A101Ms7d/x/wlJmdFRatI1j/pBu9hy5sOgo9CbzVzOaHf+PrCPoLu8acDArhAkDfBM4ys4Phoj/d5nzgKoJvt40hdpfWXakmS4GvmNlDwL8S9Cl07bDPLvYG4Otm9iDBioN/7+531VynOL8DjIX/3muBP665PjOY2XzgIoJv4F0nvNP6PHA/8B2Ca3BXzW6ek0NSRUQk3py8UxARkXgKCiIiMklBQUREJikoiIjIJAUFERGZpKAgc4aZTTRl0Wx5Rq6Z/XOZdWs697CZ/WVV5xdJoyGpMmeY2UvuvrDueoh0M90pyJwXrmXwcTO7P1zT4I1h+RIzuycsv8HMnjCzk8PXXgp/XmBmX42sMzAWzlTFzM4xs38Mk9zdHaZDb37vd4d59R80s69FznlH+PjOyJ3ND8xsQ5iE8E/N7F/N7CEz+0CnPivpfQoKMpcc39R89B8jrz0fJqS7HvhwWPZRgtQYbyHIR7Q84bxnAx8CVhNkEz0/zFv1P4HfcPdzgBuB7THH/iFwsbv/HEESt2nc/dIw4eD7gSeA/x0+/oG7/zzw88Bvmdnp+T8GkWQDdVdApINeCS+wcRppEfYAvx4+/kXgXQDufpeZfT/h2Pvc/SBAmEZ8JfAi8CbgnvDGoZ8gVXKzbwA3h4utxKZmCO9OPgtc6e4/MLO3A282s98Id/kpYBXweEL9RHJTUBAJHAl/TjD1d2EFj40eb8Bed09dstLdf9vMfoFgIaAHzGxa0ApXELsF+CN3byTJM+B33P3unPUTyU3NRyLJvg5cCRB+Oz+xwLGPAkssXMfYzAbNbE3zTmZ2hrt/y93/EHgeOK1pl2uBh9z9lkjZ3cCmsIkKMzuzyxe8kVlEdwoylxwfNu803OXuacNSPw58Lux7+EeC5p8f5Xkjdz8aNu/8pZn9FMHf2ieBvU27/qmZrSL49r8beBD4lcjrHwb2Rur9hwRLi64E7g87tQ8DV+Spl0gWDUkVSWBm84AJdz8WfuO/PqVPQqQn6E5BJNly4FYz6wOOAr9Vc31EKqc7BRERmaSOZhERmaSgICIikxQURERkkoKCiIhMUlAQEZFJCgoiIjLp/wNwOzSrtoRKOQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')\n", | |
"plt.xlabel(\"Engine size\")\n", | |
"plt.ylabel(\"Emission\")\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"#### Modeling\n", | |
"Using sklearn package to model data." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"button": false, | |
"collapsed": true, | |
"deletable": true, | |
"jupyter": { | |
"outputs_hidden": true | |
}, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn import linear_model\n", | |
"regr = linear_model.LinearRegression()\n", | |
"train_x = np.asanyarray(train[['ENGINESIZE']])\n", | |
"train_y = np.asanyarray(train[['CO2EMISSIONS']])\n", | |
"regr.fit (train_x, train_y)\n", | |
"# The coefficients\n", | |
"print ('Coefficients: ', regr.coef_)\n", | |
"print ('Intercept: ',regr.intercept_)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"As mentioned before, __Coefficient__ and __Intercept__ in the simple linear regression, are the parameters of the fit line. \n", | |
"Given that it is a simple linear regression, with only 2 parameters, and knowing that the parameters are the intercept and slope of the line, sklearn can estimate them directly from our data. \n", | |
"Notice that all of the data must be available to traverse and calculate the parameters.\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"#### Plot outputs" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"we can plot the fit line over the data:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"button": false, | |
"collapsed": true, | |
"deletable": true, | |
"jupyter": { | |
"outputs_hidden": true | |
}, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')\n", | |
"plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], '-r')\n", | |
"plt.xlabel(\"Engine size\")\n", | |
"plt.ylabel(\"Emission\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"#### Evaluation\n", | |
"we compare the actual values and predicted values to calculate the accuracy of a regression model. Evaluation metrics provide a key role in the development of a model, as it provides insight to areas that require improvement.\n", | |
"\n", | |
"There are different model evaluation metrics, lets use MSE here to calculate the accuracy of our model based on the test set: \n", | |
"<ul>\n", | |
" <li> Mean absolute error: It is the mean of the absolute value of the errors. This is the easiest of the metrics to understand since it’s just average error.</li>\n", | |
" <li> Mean Squared Error (MSE): Mean Squared Error (MSE) is the mean of the squared error. It’s more popular than Mean absolute error because the focus is geared more towards large errors. This is due to the squared term exponentially increasing larger errors in comparison to smaller ones.</li>\n", | |
" <li> Root Mean Squared Error (RMSE): This is the square root of the Mean Square Error. </li>\n", | |
" <li> R-squared is not error, but is a popular metric for accuracy of your model. It represents how close the data are to the fitted regression line. The higher the R-squared, the better the model fits your data. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).</li>\n", | |
"</ul>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"button": false, | |
"collapsed": true, | |
"deletable": true, | |
"jupyter": { | |
"outputs_hidden": true | |
}, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
}, | |
"scrolled": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.metrics import r2_score\n", | |
"\n", | |
"test_x = np.asanyarray(test[['ENGINESIZE']])\n", | |
"test_y = np.asanyarray(test[['CO2EMISSIONS']])\n", | |
"test_y_hat = regr.predict(test_x)\n", | |
"\n", | |
"print(\"Mean absolute error: %.2f\" % np.mean(np.absolute(test_y_hat - test_y)))\n", | |
"print(\"Residual sum of squares (MSE): %.2f\" % np.mean((test_y_hat - test_y) ** 2))\n", | |
"print(\"R2-score: %.2f\" % r2_score(test_y_hat , test_y) )" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"button": false, | |
"deletable": true, | |
"new_sheet": false, | |
"run_control": { | |
"read_only": false | |
} | |
}, | |
"source": [ | |
"<h2>Want to learn more?</h2>\n", | |
"\n", | |
"IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: <a href=\"http://cocl.us/ML0101EN-SPSSModeler\">SPSS Modeler</a>\n", | |
"\n", | |
"Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at <a href=\"https://cocl.us/ML0101EN_DSX\">Watson Studio</a>\n", | |
"\n", | |
"<h3>Thanks for completing this lesson!</h3>\n", | |
"\n", | |
"<h4>Author: <a href=\"https://ca.linkedin.com/in/saeedaghabozorgi\">Saeed Aghabozorgi</a></h4>\n", | |
"<p><a href=\"https://ca.linkedin.com/in/saeedaghabozorgi\">Saeed Aghabozorgi</a>, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients’ ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.</p>\n", | |
"\n", | |
"<hr>\n", | |
"\n", | |
"<p>Copyright © 2018 <a href=\"https://cocl.us/DX0108EN_CC\">Cognitive Class</a>. This notebook and its source code are released under the terms of the <a href=\"https://bigdatauniversity.com/mit-license/\">MIT License</a>.</p>" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python", | |
"language": "python", | |
"name": "conda-env-python-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.7" | |
}, | |
"widgets": { | |
"state": {}, | |
"version": "1.1.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment