Last active
December 27, 2021 13:37
-
-
Save vardanagarwal/094836d2876cdb045714424d6841ed23 to your computer and use it in GitHub Desktop.
opencv_inpainting.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "opencv_inpainting.ipynb", | |
| "provenance": [], | |
| "authorship_tag": "ABX9TyOFUEWyj0R7qeQtG44jujc8", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/vardanagarwal/094836d2876cdb045714424d6841ed23/opencv_inpainting.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "c88bidZtNI83", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 71 | |
| }, | |
| "outputId": "a1542c4d-76f9-4e5f-edd9-fb0571b3a0e8" | |
| }, | |
| "source": [ | |
| "!pip install opencv-contrib-python==4.2.0.34" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Requirement already satisfied: opencv-contrib-python==4.2.0.34 in /usr/local/lib/python3.6/dist-packages (4.2.0.34)\n", | |
| "Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from opencv-contrib-python==4.2.0.34) (1.18.5)\n" | |
| ], | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "6qpqWDuONZ7E", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "import cv2\n", | |
| "import matplotlib.pyplot as plt" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "dZsytty9NtCB", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| }, | |
| "outputId": "7394cd21-8696-41dd-8f87-054b915c66f8" | |
| }, | |
| "source": [ | |
| "img = cv2.imread('image.jpg')\n", | |
| "img = cv2.resize(img, None, fx=0.25, fy=0.25)\n", | |
| "mask = cv2.imread('mask.jpg', 0)\n", | |
| "print(img.shape)\n", | |
| "mask = cv2.resize(mask, (img.shape[1], img.shape[0]))\n", | |
| "_, mask = cv2.threshold(mask, 128, 255, cv2.THRESH_BINARY)\n", | |
| "mask1 = cv2.bitwise_not(mask)\n", | |
| "distort = cv2.bitwise_and(img, img, mask=mask1)\n", | |
| "\n", | |
| "output1 = cv2.inpaint(distort, mask, 3, cv2.INPAINT_NS)\n", | |
| "output2 = cv2.inpaint(distort, mask, 3, cv2.INPAINT_TELEA)\n", | |
| "\n", | |
| "restored1 = img.copy()\n", | |
| "restored2 = img.copy()\n", | |
| "cv2.xphoto.inpaint(distort, mask1, restored1, cv2.xphoto.INPAINT_FSR_FAST)\n", | |
| "cv2.xphoto.inpaint(distort, mask1, restored2, cv2.xphoto.INPAINT_FSR_BEST)\n", | |
| "\n", | |
| "dst3 = cv2.cvtColor(restored1, cv2.COLOR_BGR2RGB)\n", | |
| "dst4 = cv2.cvtColor(restored2, cv2.COLOR_BGR2RGB)\n", | |
| "dst1 = cv2.cvtColor(output1, cv2.COLOR_BGR2RGB)\n", | |
| "dst2 = cv2.cvtColor(output2, cv2.COLOR_BGR2RGB)\n", | |
| "dst = cv2.cvtColor(distort, cv2.COLOR_BGR2RGB)\n", | |
| "img1 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", | |
| "\n", | |
| "plt.figure(figsize=(15, 20))\n", | |
| "plt.subplot(2, 3, 1)\n", | |
| "plt.imshow(img1)\n", | |
| "plt.subplot(2, 3, 2)\n", | |
| "plt.imshow(dst)\n", | |
| "plt.subplot(2, 3, 3)\n", | |
| "plt.imshow(dst1)\n", | |
| "plt.subplot(2, 3, 4)\n", | |
| "plt.imshow(dst2)\n", | |
| "plt.subplot(2, 3, 5)\n", | |
| "plt.imshow(dst3)\n", | |
| "plt.subplot(2, 3, 6)\n", | |
| "plt.imshow(dst4)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "(1008, 756, 3)\n", | |
| "(1299, 1120)\n", | |
| "7.243106842041016\n", | |
| "11.15975308418274\n", | |
| "51.774988889694214\n", | |
| "1036.9667372703552\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.image.AxesImage at 0x7fadea264f98>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 8 | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment