Last active
July 25, 2022 15:23
-
-
Save yongjun21/17ebb9d041b0784e76c99e5cae0b6ac0 to your computer and use it in GitHub Desktop.
Fast (vectorized) implementation of Octree encoding
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import math\n", | |
"import numpy as np \n", | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"nodes = np.zeros(3000000 * 8, np.uint32)\n", | |
"bit_values = 2 ** np.arange(8)\n", | |
"\n", | |
"def encode_octree(points, precision, min_range):\n", | |
" max_level = math.ceil(math.log2(min_range / precision))\n", | |
" num_points = points.shape[0]\n", | |
" \n", | |
" grid_size_0 = precision * 2 ** max_level\n", | |
" grid_size = grid_size_0\n", | |
" \n", | |
" paths = np.zeros((num_points, max_level + 1), np.uint32)\n", | |
" \n", | |
" x = points['x'] + grid_size_0 - precision / 2.0\n", | |
" y = points['y'] + grid_size_0 - precision / 2.0\n", | |
" z = points['z'] + grid_size_0 - precision / 2.0\n", | |
" for j in range(max_level):\n", | |
" x_plus = x >= grid_size\n", | |
" y_plus = y >= grid_size\n", | |
" z_plus = z >= grid_size\n", | |
" paths[:, j] = x_plus * 1 + y_plus * 2 + z_plus * 4\n", | |
" x -= x_plus * grid_size\n", | |
" y -= y_plus * grid_size\n", | |
" z -= z_plus * grid_size\n", | |
" grid_size /= 2.0\n", | |
" x_plus = x >= grid_size\n", | |
" y_plus = y >= grid_size\n", | |
" z_plus = z >= grid_size\n", | |
" paths[:, max_level] = x_plus * 1 + y_plus * 2 + z_plus * 4\n", | |
" \n", | |
" nodes[:8] = 0 \n", | |
" node_counts = [1]\n", | |
" last_count = 1\n", | |
" \n", | |
" current = np.zeros(num_points, np.uint32)\n", | |
" for j in range(max_level):\n", | |
" next_index = current * 8 + paths[:, j]\n", | |
" next_index_set = np.unique(next_index)\n", | |
" node_count = next_index_set.size\n", | |
" node_counts.append(node_count)\n", | |
" nodes[next_index_set] = np.arange(last_count, last_count + node_count)\n", | |
" nodes[(last_count * 8):((last_count + node_count) * 8)] = 0\n", | |
" last_count += node_count\n", | |
" current = nodes[next_index]\n", | |
" next_index = current * 8 + paths[:, max_level]\n", | |
" next_index_set = np.unique(next_index)\n", | |
" leaf_count = next_index_set.size\n", | |
" nodes[next_index_set] = last_count\n", | |
" df['leaf_index'] = next_index\n", | |
" \n", | |
" reshaped_nodes = nodes[:last_count * 8].reshape((-1, 8))\n", | |
" encoded = ((reshaped_nodes != 0) * bit_values).sum(axis = 1)\n", | |
" \n", | |
" # leaf values\n", | |
" grouped = df.groupby('leaf_index')\n", | |
" intensities = grouped['intensity'].max().to_numpy()\n", | |
" \n", | |
" return { 'precision': precision, 'node_counts': node_counts, 'leaf_count': leaf_count }, encoded, intensities" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.13" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment