Skip to content

Instantly share code, notes, and snippets.

@yum-dev
Last active July 18, 2019 14:36
Show Gist options
  • Save yum-dev/7fce82eb7e5e058f1965b4daf55bc536 to your computer and use it in GitHub Desktop.
Save yum-dev/7fce82eb7e5e058f1965b4daf55bc536 to your computer and use it in GitHub Desktop.
Notebook for CNN on MNIST data.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MNIST with CNN"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from tensorflow.examples.tutorials.mnist import input_data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting MNIST_data/train-images-idx3-ubyte.gz\n",
"Extracting MNIST_data/train-labels-idx1-ubyte.gz\n",
"Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n",
"Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n"
]
}
],
"source": [
"mnist = input_data.read_data_sets(\"MNIST_data/\",one_hot=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensorflow.contrib.learn.python.learn.datasets.base.Datasets"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(mnist)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.train.images"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(55000, 784)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.train.images.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Helper Functions"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(10000, 784)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.test.images.shape"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10000"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.test.num_examples"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0.12156864, 0.5176471 ,\n",
" 0.9960785 , 0.9921569 , 0.9960785 , 0.8352942 , 0.32156864,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.08235294,\n",
" 0.5568628 , 0.91372555, 0.98823535, 0.9921569 , 0.98823535,\n",
" 0.9921569 , 0.98823535, 0.8745099 , 0.07843138, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.48235297, 0.9960785 , 0.9921569 , 0.9960785 ,\n",
" 0.9921569 , 0.87843144, 0.7960785 , 0.7960785 , 0.8745099 ,\n",
" 1. , 0.8352942 , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.7960785 ,\n",
" 0.9921569 , 0.98823535, 0.9921569 , 0.8313726 , 0.07843138,\n",
" 0. , 0. , 0.2392157 , 0.9921569 , 0.98823535,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.16078432, 0.95294124, 0.87843144, 0.7960785 ,\n",
" 0.7176471 , 0.16078432, 0.59607846, 0.11764707, 0. ,\n",
" 0. , 1. , 0.9921569 , 0.40000004, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.15686275, 0.07843138, 0. , 0. , 0.40000004,\n",
" 0.9921569 , 0.19607845, 0. , 0.32156864, 0.9921569 ,\n",
" 0.98823535, 0.07843138, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.32156864, 0.83921576, 0.12156864,\n",
" 0.4431373 , 0.91372555, 0.9960785 , 0.91372555, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.24313727, 0.40000004, 0.32156864,\n",
" 0.16078432, 0.9921569 , 0.909804 , 0.9921569 , 0.98823535,\n",
" 0.91372555, 0.19607845, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.59607846, 0.9921569 , 0.9960785 , 0.9921569 , 0.9960785 ,\n",
" 0.9921569 , 0.9960785 , 0.91372555, 0.48235297, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0.59607846, 0.98823535,\n",
" 0.9921569 , 0.98823535, 0.9921569 , 0.98823535, 0.75294125,\n",
" 0.19607845, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.24313727, 0.7176471 , 0.7960785 , 0.95294124,\n",
" 0.9960785 , 0.9921569 , 0.24313727, 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.15686275, 0.6745098 , 0.98823535,\n",
" 0.7960785 , 0.07843138, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.08235294, 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.7176471 , 0.9960785 , 0.43921572,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.24313727,\n",
" 0.7960785 , 0.6392157 , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.2392157 , 0.9921569 , 0.5921569 , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.08235294, 0.83921576, 0.75294125, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.04313726, 0.8352942 , 0.9960785 ,\n",
" 0.5921569 , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.40000004,\n",
" 0.9921569 , 0.5921569 , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.16078432,\n",
" 0.8352942 , 0.98823535, 0.9921569 , 0.43529415, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0.16078432, 1. , 0.8352942 ,\n",
" 0.36078432, 0.20000002, 0. , 0. , 0.12156864,\n",
" 0.36078432, 0.6784314 , 0.9921569 , 0.9960785 , 0.9921569 ,\n",
" 0.5568628 , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.6745098 , 0.98823535, 0.9921569 , 0.98823535,\n",
" 0.7960785 , 0.7960785 , 0.91372555, 0.98823535, 0.9921569 ,\n",
" 0.98823535, 0.9921569 , 0.50980395, 0.07843138, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.08235294,\n",
" 0.7960785 , 1. , 0.9921569 , 0.9960785 , 0.9921569 ,\n",
" 0.9960785 , 0.9921569 , 0.9568628 , 0.7960785 , 0.32156864,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0.07843138, 0.5921569 ,\n",
" 0.5921569 , 0.9921569 , 0.67058825, 0.5921569 , 0.5921569 ,\n",
" 0.15686275, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. ], dtype=float32)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.train.images[1]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0.12156864, 0.5176471 ,\n",
" 0.9960785 , 0.9921569 , 0.9960785 , 0.8352942 , 0.32156864,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.08235294, 0.5568628 , 0.91372555, 0.98823535,\n",
" 0.9921569 , 0.98823535, 0.9921569 , 0.98823535, 0.8745099 ,\n",
" 0.07843138, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.48235297, 0.9960785 , 0.9921569 , 0.9960785 , 0.9921569 ,\n",
" 0.87843144, 0.7960785 , 0.7960785 , 0.8745099 , 1. ,\n",
" 0.8352942 , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.7960785 , 0.9921569 , 0.98823535, 0.9921569 , 0.8313726 ,\n",
" 0.07843138, 0. , 0. , 0.2392157 , 0.9921569 ,\n",
" 0.98823535, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.16078432,\n",
" 0.95294124, 0.87843144, 0.7960785 , 0.7176471 , 0.16078432,\n",
" 0.59607846, 0.11764707, 0. , 0. , 1. ,\n",
" 0.9921569 , 0.40000004, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.15686275, 0.07843138, 0. , 0. , 0.40000004,\n",
" 0.9921569 , 0.19607845, 0. , 0.32156864, 0.9921569 ,\n",
" 0.98823535, 0.07843138, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.32156864,\n",
" 0.83921576, 0.12156864, 0.4431373 , 0.91372555, 0.9960785 ,\n",
" 0.91372555, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.24313727, 0.40000004, 0.32156864, 0.16078432,\n",
" 0.9921569 , 0.909804 , 0.9921569 , 0.98823535, 0.91372555,\n",
" 0.19607845, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.59607846, 0.9921569 , 0.9960785 , 0.9921569 ,\n",
" 0.9960785 , 0.9921569 , 0.9960785 , 0.91372555, 0.48235297,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.59607846, 0.98823535, 0.9921569 , 0.98823535,\n",
" 0.9921569 , 0.98823535, 0.75294125, 0.19607845, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.24313727, 0.7176471 , 0.7960785 , 0.95294124,\n",
" 0.9960785 , 0.9921569 , 0.24313727, 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.15686275,\n",
" 0.6745098 , 0.98823535, 0.7960785 , 0.07843138, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.08235294, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.7176471 , 0.9960785 , 0.43921572, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0.24313727, 0.7960785 , 0.6392157 , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.2392157 , 0.9921569 , 0.5921569 , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0.08235294,\n",
" 0.83921576, 0.75294125, 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0.04313726, 0.8352942 , 0.9960785 , 0.5921569 , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0.40000004,\n",
" 0.9921569 , 0.5921569 , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0.16078432,\n",
" 0.8352942 , 0.98823535, 0.9921569 , 0.43529415, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0.16078432,\n",
" 1. , 0.8352942 , 0.36078432, 0.20000002, 0. ,\n",
" 0. , 0.12156864, 0.36078432, 0.6784314 , 0.9921569 ,\n",
" 0.9960785 , 0.9921569 , 0.5568628 , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0.6745098 , 0.98823535, 0.9921569 , 0.98823535, 0.7960785 ,\n",
" 0.7960785 , 0.91372555, 0.98823535, 0.9921569 , 0.98823535,\n",
" 0.9921569 , 0.50980395, 0.07843138, 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0.08235294, 0.7960785 , 1. , 0.9921569 , 0.9960785 ,\n",
" 0.9921569 , 0.9960785 , 0.9921569 , 0.9568628 , 0.7960785 ,\n",
" 0.32156864, 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0.07843138, 0.5921569 , 0.5921569 , 0.9921569 ,\n",
" 0.67058825, 0.5921569 , 0.5921569 , 0.15686275, 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ],\n",
" [0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. ]], dtype=float32)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mnist.train.images[1].reshape(28,28)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"single_image = mnist.train.images[1].reshape(28,28)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x13356a0b8>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADhBJREFUeJzt3V2MVPUZx/HfU7E36IWydCWKiyYGo16gWUkvkGisKMYE\nuDG+xNBUWWOsKdqL4kusCYqmqVa4QddIxMa3BthIDNYoaZAmDeHNKu6CWoMCQRbERI0XVvfpxRya\nVff8zzBzZs4sz/eTbHbmPHNmHo/748yZ/5zzN3cXgHh+VnUDAKpB+IGgCD8QFOEHgiL8QFCEHwiK\n8ANBEX4gKMIPBDWhnS9mZnydEGgxd7d6HtfUnt/MrjGzPWb2kZktaea5ALSXNfrdfjM7SdIHkq6S\ntF/SVkk3uvtgYh32/ECLtWPPP1PSR+7+sbt/K+llSfOaeD4AbdRM+M+UtG/U/f3Zsh8wsz4z22Zm\n25p4LQAla/kHfu7eL6lf4m0/0Ema2fMfkDR11P2zsmUAxoFmwr9V0nlmdo6Z/VzSDZLWl9MWgFZr\n+G2/u39nZr+V9IakkyStcvf3S+sMQEs1PNTX0ItxzA+0XFu+5ANg/CL8QFCEHwiK8ANBEX4gKMIP\nBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjC\nDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gqIan6JYkM9sr6StJ30v6zt17y2gK7dPT05Os33bb\nbcn6/fffn6ynZoE2S08mOzQ0lKw/8MADyfrAwECyHl1T4c9c4e5HSngeAG3E234gqGbD75LeMrPt\nZtZXRkMA2qPZt/2z3P2Amf1C0ptmttvd3x79gOwfBf5hADpMU3t+dz+Q/R6WNCBp5hiP6Xf3Xj4M\nBDpLw+E3s4lmduqx25LmSNpVVmMAWquZt/3dkgay4ZoJkl5097+X0hWAlrPUOGzpL2bWvhcLZPLk\nybm1e++9N7nuzTffnKxPmjQpWS8aq29mnL/ob3Pfvn3J+qWXXppbO3LkxB2ddvf0hs0w1AcERfiB\noAg/EBThB4Ii/EBQhB8IiqG+caDotNmlS5fm1or+/7Z6uO3w4cPJekpXV1eyPm3atGR9cHAwt3bh\nhRc20tK4wFAfgCTCDwRF+IGgCD8QFOEHgiL8QFCEHwiKcf5xYOvWrcn6JZdckltrdpw/NVYuSVdc\ncUWy3syps7NmzUrWN23alKyn/tsnTCjjwtWdiXF+AEmEHwiK8ANBEX4gKMIPBEX4gaAIPxAU4/wd\n4Pzzz0/Wi8b5P//889xa0fn0RePwd999d7K+ePHiZH3ZsmW5tU8//TS5bpGiv92RkZHc2h133JFc\nt7+/v6GeOgHj/ACSCD8QFOEHgiL8QFCEHwiK8ANBEX4gqMJxfjNbJek6ScPuflG27HRJr0iaJmmv\npOvd/YvCF2OcvyFF3wNIjdU3OxV1X19fsr5y5cpkPTVN9o4dO5LrLliwIFlfs2ZNsp762z7jjDOS\n647nKbzLHOd/TtI1P1q2RNJGdz9P0sbsPoBxpDD87v62pKM/WjxP0urs9mpJ80vuC0CLNXrM3+3u\nB7Pbn0nqLqkfAG3S9IXM3N1Tx/Jm1icpfeAIoO0a3fMfMrMpkpT9Hs57oLv3u3uvu/c2+FoAWqDR\n8K+XtDC7vVDSq+W0A6BdCsNvZi9J+pek6Wa238xulfSYpKvM7ENJv8ruAxhHCo/53f3GnNKVJfeC\nHLt3767stYuuB7Bnz55kPXWtgaJrBSxZkh5BLppzoJXffzgR8A0/ICjCDwRF+IGgCD8QFOEHgiL8\nQFAn7jzFgcyePTu3VnQ6cNFQ3tDQULI+ffr0ZH3Lli25tcmTJyfXLTrdvKj3uXPnJuvRsecHgiL8\nQFCEHwiK8ANBEX4gKMIPBEX4gaAY5z8B3HTTTbm1RYsWJdctOi22jku7J+upsfxmTsmVpBUrViTr\nRZcGj449PxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ExTj/Ca5onL7K9Tdv3pxc95577knWGcdvDnt+\nICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiqcJzfzFZJuk7SsLtflC17SNIiSccunH6fu29oVZNIe/HF\nF3NrPT09yXW7urqS9aLr/k+cODFZT3nwwQeTdcbxW6uePf9zkq4ZY/lf3H1G9kPwgXGmMPzu/rak\no23oBUAbNXPMf5eZvWtmq8zstNI6AtAWjYZ/paRzJc2QdFDS43kPNLM+M9tmZtsafC0ALdBQ+N39\nkLt/7+4jkp6RNDPx2H5373X33kabBFC+hsJvZlNG3V0gaVc57QBol3qG+l6SdLmkLjPbL+mPki43\nsxmSXNJeSbe3sEcALWDNnq99XC9m1r4XQymKxvkffvjhZH3+/Pm5tZ07dybXnTt3brJedF3/qNw9\nPSFChm/4AUERfiAowg8ERfiBoAg/EBThB4JiqK9OqammDx8+nFuL7vXXX8+tXX311cl1iy7d/eST\nTzbU04mOoT4ASYQfCIrwA0ERfiAowg8ERfiBoAg/EBRTdGdmz56drD/+eO6VyrR79+7kurfccktD\nPZ0IHnnkkdzanDlzkutOnz697HYwCnt+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwgqzDh/6nx8SXrq\nqaeS9eHh4dxa5HH8oim6n3766dyaWV2nnaNF2PMDQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCF4/xm\nNlXS85K6JbmkfndfbmanS3pF0jRJeyVd7+5ftK7V5ixYsCBZLzp3fNOmTWW2M24UTdG9du3aZD21\nXYvmjCi6TgKaU8+e/ztJv3f3CyT9UtKdZnaBpCWSNrr7eZI2ZvcBjBOF4Xf3g+6+I7v9laQhSWdK\nmidpdfaw1ZLmt6pJAOU7rmN+M5sm6WJJWyR1u/vBrPSZaocFAMaJur/bb2anSForabG7fzn6e9nu\n7nnz8JlZn6S+ZhsFUK669vxmdrJqwX/B3ddliw+Z2ZSsPkXSmGe+uHu/u/e6e28ZDQMoR2H4rbaL\nf1bSkLs/Maq0XtLC7PZCSa+W3x6AVimcotvMZknaLOk9SSPZ4vtUO+7/m6SzJX2i2lDf0YLnqmyK\n7qIhq6GhoWR9cHAwt/boo4829dzbt29P1ov09PTk1i677LLkukVDoPPnpz/HLTotN/X3tXz58uS6\nRVN0Y2z1TtFdeMzv7v+UlPdkVx5PUwA6B9/wA4Ii/EBQhB8IivADQRF+ICjCDwRVOM5f6otVOM5f\nZM2aNcl6ary7mbFuSdq5c2eyXuTss8/OrU2aNCm5brO9F62fmqJ7xYoVyXWPHDmSrGNs9Y7zs+cH\ngiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAY588UTeG9YcOG3Fpvb/oiRSMjI8l6K8fai9b95ptvkvWi\ny2cvW7YsWR8YGEjWUT7G+QEkEX4gKMIPBEX4gaAIPxAU4QeCIvxAUIzz16mrqyu3tnTp0qaeu68v\nPZvZunXrkvVmznsvunY+02SPP4zzA0gi/EBQhB8IivADQRF+ICjCDwRF+IGgCsf5zWyqpOcldUty\nSf3uvtzMHpK0SNLh7KH3uXv+Se8a3+P8wHhR7zh/PeGfImmKu+8ws1MlbZc0X9L1kr529z/X2xTh\nB1qv3vBPqOOJDko6mN3+ysyGJJ3ZXHsAqnZcx/xmNk3SxZK2ZIvuMrN3zWyVmZ2Ws06fmW0zs21N\ndQqgVHV/t9/MTpG0SdIj7r7OzLolHVHtc4Clqh0a/KbgOXjbD7RYacf8kmRmJ0t6TdIb7v7EGPVp\nkl5z94sKnofwAy1W2ok9Vrs07LOShkYHP/sg8JgFknYdb5MAqlPPp/2zJG2W9J6kY9egvk/SjZJm\nqPa2f6+k27MPB1PPxZ4faLFS3/aXhfADrcf5/ACSCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4\ngaAIPxAU4QeCIvxAUIQfCIrwA0EVXsCzZEckfTLqfle2rBN1am+d2pdEb40qs7eeeh/Y1vP5f/Li\nZtvcvbeyBhI6tbdO7Uuit0ZV1Rtv+4GgCD8QVNXh76/49VM6tbdO7Uuit0ZV0lulx/wAqlP1nh9A\nRSoJv5ldY2Z7zOwjM1tSRQ95zGyvmb1nZu9UPcVYNg3asJntGrXsdDN708w+zH6POU1aRb09ZGYH\nsm33jpldW1FvU83sH2Y2aGbvm9nvsuWVbrtEX5Vst7a/7TezkyR9IOkqSfslbZV0o7sPtrWRHGa2\nV1Kvu1c+JmxmsyV9Len5Y7MhmdmfJB1198eyfzhPc/c/dEhvD+k4Z25uUW95M0v/WhVuuzJnvC5D\nFXv+mZI+cveP3f1bSS9LmldBHx3P3d+WdPRHi+dJWp3dXq3aH0/b5fTWEdz9oLvvyG5/JenYzNKV\nbrtEX5WoIvxnSto36v5+ddaU3y7pLTPbbmZ9VTczhu5RMyN9Jqm7ymbGUDhzczv9aGbpjtl2jcx4\nXTY+8PupWe4+Q9JcSXdmb287kteO2TppuGalpHNVm8btoKTHq2wmm1l6raTF7v7l6FqV226MvirZ\nblWE/4CkqaPun5Ut6wjufiD7PSxpQLXDlE5y6Ngkqdnv4Yr7+T93P+Tu37v7iKRnVOG2y2aWXivp\nBXdfly2ufNuN1VdV262K8G+VdJ6ZnWNmP5d0g6T1FfTxE2Y2MfsgRmY2UdIcdd7sw+slLcxuL5T0\naoW9/ECnzNycN7O0Kt52HTfjtbu3/UfStap94v8fSfdX0UNOX+dK+nf2837VvUl6SbW3gf9V7bOR\nWyVNkrRR0oeS3pJ0egf19lfVZnN+V7WgTamot1mqvaV/V9I72c+1VW+7RF+VbDe+4QcExQd+QFCE\nHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeC+h9PPuXddgFbfgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1314719b0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(single_image, cmap='gist_gray')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.0"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"single_image.min()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"single_image.max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"second_image = mnist.train.images[2].reshape(28,28)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x13359b0f0>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADbRJREFUeJzt3X+s1fV9x/HXq3ABpTaRooQgCnTY1dkM0yuuq1lsrNSa\nNugfdWXLZI0r3eqa6lhSY7OM/Ue2qjFbZ4aVio1Vt7VE0pA5ZT+YXUu8EKZYRNFRC+GHjm6IXeEC\n7/1xv3a3eM/nXM6v77m8n4/k5pzzfX9/vHPCi+/3nM855+OIEIB83lV3AwDqQfiBpAg/kBThB5Ii\n/EBShB9IivADSRF+ICnCDyQ1uZcHm+KpMU3Te3lIIJWf6S0dj2Mez7pthd/29ZLukzRJ0tcjYnVp\n/Wmarqt8bTuHBFCwJTaNe92WL/ttT5L0NUmfkHSZpGW2L2t1fwB6q53X/Isl7Y6IVyPiuKTHJC3t\nTFsAuq2d8M+R9ONRj/dWy36B7RW2h2wPDetYG4cD0Eldf7c/ItZExGBEDA5oarcPB2Cc2gn/Pklz\nRz2+qFoGYAJoJ/zPSlpoe77tKZI+I2lDZ9oC0G0tD/VFxAnbfyjpSY0M9a2NiBc61hmArmprnD8i\nNkra2KFeAPQQH+8FkiL8QFKEH0iK8ANJEX4gKcIPJEX4gaQIP5AU4QeSIvxAUoQfSIrwA0kRfiAp\nwg8kRfiBpAg/kBThB5Ii/EBShB9IivADSRF+ICnCDyRF+IGkCD+QFOEHkiL8QFKEH0iK8ANJEX4g\nqbZm6bW9R9Kbkk5KOhERg51oCkD3tRX+ykcj4o0O7AdAD3HZDyTVbvhD0tO2t9pe0YmGAPRGu5f9\nV0fEPtsXSnrK9osRsXn0CtV/CiskaZrObfNwADqlrTN/ROyrbg9JWi9p8RjrrImIwYgYHNDUdg4H\noINaDr/t6bbPe/u+pCWSdnSqMQDd1c5l/yxJ622/vZ9vRcQ/dKQrAF3Xcvgj4lVJv9rBXtDAu6ZN\nK9Yv3uyGtb+e873itpNcvvjbefynxfrKj99SrJ/ctbtYR30Y6gOSIvxAUoQfSIrwA0kRfiApwg8k\n1Ylv9aFNzYby9j02v1j/7pxHWj72NTtuLNZ998xifeor21s+drdNnndxw9qJPa/1sJP+xJkfSIrw\nA0kRfiApwg8kRfiBpAg/kBThB5JinL8P7F51RbH+4pVfa3nfCzf9XrH+/j/YVayfemtPsR5n2lAH\nvbTmymL9iSV/2bD2mw/9UXHbi1f9e0s9TSSc+YGkCD+QFOEHkiL8QFKEH0iK8ANJEX4gKcb5eyA+\nXP6F882/9RdN9lCe5uy1E41/XvvSW8vzqJwaPt7k2PUZ/tiHivX11/1Vsf4rA1M62c5ZhzM/kBTh\nB5Ii/EBShB9IivADSRF+ICnCDyTVdJzf9lpJn5R0KCIur5bNkPS4pHmS9ki6OSJ+0r02J7aDXy6P\npV84qTyO/79R3v6W21c2rJ07vKW4bT87eseRYv2DUwbK28exhrX5f/dfxW1PFqtnh/Gc+R+SdP1p\ny+6UtCkiFkraVD0GMIE0DX9EbJZ0+LTFSyWtq+6vk1Se9gVA32n1Nf+siNhf3T8gaVaH+gHQI22/\n4RcRocJPudleYXvI9tCwGr8GA9BbrYb/oO3ZklTdHmq0YkSsiYjBiBgc0NQWDweg01oN/wZJy6v7\nyyU90Zl2APRK0/DbflTS9yW93/Ze27dKWi3pOtsvS/pY9RjABNJ0nD8iljUoXdvhXs5aKy59pq3t\nb9r16WL93PWtj+V7cvmfgM85p+V9N3PygwuK9Xs/8I229n/N1s82rF34wott7ftswCf8gKQIP5AU\n4QeSIvxAUoQfSIrwA0nx090TwHkDPyvW3yrUhpcMFred8Sd7ivXHF/xjsd6ef21r6+8dK5+7LljN\nJ0pLOPMDSRF+ICnCDyRF+IGkCD+QFOEHkiL8QFIe+RWu3niPZ8RVzvdN4AN3/Hqxvu2Py1NNN/vp\n7t9/7fQfV/5/D17yVHHbyZpUrPezhX//hXL9Sz/oUSf9Y0ts0pE47PGsy5kfSIrwA0kRfiApwg8k\nRfiBpAg/kBThB5Li+/w98NZFp9ra/hxPKdbXXfJPhWp5HH/lgcXF+sYnryzWh2eXP4Owe8kDxXo7\nZm4b13A2GuDMDyRF+IGkCD+QFOEHkiL8QFKEH0iK8ANJNR3nt71W0iclHYqIy6tlqyR9TtLr1Wp3\nRcTGbjU50V36N68X6x8Yvq1rx/6lbx4u1k/teqVYn3/i+8X6q6s/fMY9jdcX9n2kWJ/xra3Feu9+\nqWJiGs+Z/yFJY/1axL0Rsaj6I/jABNM0/BGxWVL59AFgwmnnNf8XbT9ne63t8zvWEYCeaDX890ta\nIGmRpP2S7m60ou0VtodsDw3rWIuHA9BpLYU/Ig5GxMmIOCXpAUkNvx0SEWsiYjAiBgfExIlAv2gp\n/LZnj3p4k6QdnWkHQK+MZ6jvUUnXSJppe6+kP5V0je1FGhlN2SPp813sEUAXNA1/RCwbY/GDXejl\nrHXypSZj6XeW620du2t7HjH5p937Tv3Q1xcV6zOHy59BQBmf8AOSIvxAUoQfSIrwA0kRfiApwg8k\nxU93oy1uYyzxRJOByPNf4uPg3cSZH0iK8ANJEX4gKcIPJEX4gaQIP5AU4QeSYpwfbfnssidb3vbT\nuz9VrE/6l20t7xvNceYHkiL8QFKEH0iK8ANJEX4gKcIPJEX4gaQY50fRpAsuKNYXTt3d8r7fuH9e\nsX6eDrS8bzTHmR9IivADSRF+ICnCDyRF+IGkCD+QFOEHkmo6zm97rqSHJc2SFJLWRMR9tmdIelzS\nPEl7JN0cET/pXquow/989H3F+qfOLX+f/2g0/u39aW8Mt9QTOmM8Z/4TklZGxGWSfk3SbbYvk3Sn\npE0RsVDSpuoxgAmiafgjYn9EbKvuvylpp6Q5kpZKWlettk7Sjd1qEkDnndFrftvzJF0haYukWRGx\nvyod0MjLAgATxLjDb/vdkr4t6faIODK6FhGhkfcDxtpuhe0h20PDYu41oF+MK/y2BzQS/Eci4jvV\n4oO2Z1f12ZIOjbVtRKyJiMGIGBzQ1E70DKADmobftiU9KGlnRNwzqrRB0vLq/nJJT3S+PQDdMp6v\n9H5E0u9Iet729mrZXZJWS/pb27dK+pGkm7vTIuq0/M82tLX9fw43Pr8MPL21rX2jPU3DHxHPSHKD\n8rWdbQdAr/AJPyApwg8kRfiBpAg/kBThB5Ii/EBS/HQ3it476Whb2391/8cL1f9ua99oD2d+ICnC\nDyRF+IGkCD+QFOEHkiL8QFKEH0iKcX501fFTk+puAQ1w5geSIvxAUoQfSIrwA0kRfiApwg8kRfiB\npBjnR1c9MO+7DWsfuvuO4rbvW/mDTreDUTjzA0kRfiApwg8kRfiBpAg/kBThB5Ii/EBSTcf5bc+V\n9LCkWZJC0pqIuM/2Kkmfk/R6tepdEbGxW42iHl957LeL9V++5Z5yfWBq4+KpRjO/oxfG8yGfE5JW\nRsQ22+dJ2mr7qap2b0R8tXvtAeiWpuGPiP2S9lf337S9U9KcbjcGoLvO6DW/7XmSrpC0pVr0RdvP\n2V5r+/wG26ywPWR7aFjH2moWQOeMO/y23y3p25Juj4gjku6XtEDSIo1cGdw91nYRsSYiBiNicECF\n138Aempc4bc9oJHgPxIR35GkiDgYEScj4pSkByQt7l6bADqtafhtW9KDknZGxD2jls8etdpNknZ0\nvj0A3eKIKK9gXy3p3yQ9L+lUtfguScs0cskfkvZI+nz15mBD7/GMuMrXttkygEa2xCYdicPjGkMd\nz7v9z0gaa2eM6QMTGJ/wA5Ii/EBShB9IivADSRF+ICnCDyRF+IGkCD+QFOEHkiL8QFKEH0iK8ANJ\nEX4gKcIPJNX0+/wdPZj9uqQfjVo0U9IbPWvgzPRrb/3al0Rvrepkb5dExAXjWbGn4X/Hwe2hiBis\nrYGCfu2tX/uS6K1VdfXGZT+QFOEHkqo7/GtqPn5Jv/bWr31J9NaqWnqr9TU/gPrUfeYHUJNawm/7\netu7bO+2fWcdPTRie4/t521vtz1Ucy9rbR+yvWPUshm2n7L9cnU75jRpNfW2yva+6rnbbvuGmnqb\na/ufbf/Q9gu2v1Qtr/W5K/RVy/PW88t+25MkvSTpOkl7JT0raVlE/LCnjTRge4+kwYiofUzY9m9I\nOirp4Yi4vFr255IOR8Tq6j/O8yPiy33S2ypJR+ueubmaUGb26JmlJd0o6XdV43NX6Otm1fC81XHm\nXyxpd0S8GhHHJT0maWkNffS9iNgs6fBpi5dKWlfdX6eRfzw916C3vhAR+yNiW3X/TUlvzyxd63NX\n6KsWdYR/jqQfj3q8V/015XdIetr2Vtsr6m5mDLNGzYx0QNKsOpsZQ9OZm3vptJml++a5a2XG607j\nDb93ujoiFkn6hKTbqsvbvhQjr9n6abhmXDM398oYM0v/XJ3PXaszXndaHeHfJ2nuqMcXVcv6QkTs\nq24PSVqv/pt9+ODbk6RWt4dq7ufn+mnm5rFmllYfPHf9NON1HeF/VtJC2/NtT5H0GUkbaujjHWxP\nr96Ike3pkpao/2Yf3iBpeXV/uaQnauzlF/TLzM2NZpZWzc9d3814HRE9/5N0g0be8X9F0lfq6KFB\nXwsk/Uf190LdvUl6VCOXgcMaeW/kVknvlbRJ0suSnpY0o496+6ZGZnN+TiNBm11Tb1dr5JL+OUnb\nq78b6n7uCn3V8rzxCT8gKd7wA5Ii/EBShB9IivADSRF+ICnCDyRF+IGkCD+Q1P8B0+Erm//vnUoA\nAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1336e8400>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(second_image)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# PLACEHOLDERS\n",
"x = tf.placeholder(tf.float32, shape=[None,784])"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# VARIABLES\n",
"W = tf.Variable(tf.zeros([784,10]))\n",
"b = tf.Variable(tf.zeros([10]))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Create Graph Opertationsf\n",
"y = tf.matmul(x,W) + b"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Loss Function\n",
"y_true = tf.placeholder(tf.float32, shape=[None, 10])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_true, logits = y))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Optimizer\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5)\n",
"train = optimizer.minimize(cross_entropy)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Create session\n",
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"ename": "InvalidArgumentError",
"evalue": "You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]\n\t [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device=\"/job:localhost/replica:0/task:0/cpu:0\"]()]]\n\nCaused by op 'Placeholder_1', defined at:\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel_launcher.py\", line 16, in <module>\n app.launch_new_instance()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/traitlets/config/application.py\", line 658, in launch_instance\n app.start()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelapp.py\", line 477, in start\n ioloop.IOLoop.instance().start()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/ioloop.py\", line 177, in start\n super(ZMQIOLoop, self).start()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/ioloop.py\", line 888, in start\n handler_func(fd_obj, events)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n return fn(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 440, in _handle_events\n self._handle_recv()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 472, in _handle_recv\n self._run_callback(callback, msg)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 414, in _run_callback\n callback(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n return fn(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\n return self.dispatch_shell(stream, msg)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\n handler(stream, idents, msg)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 399, in execute_request\n user_expressions, allow_stdin)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/ipkernel.py\", line 196, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/zmqshell.py\", line 533, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2698, in run_cell\n interactivity=interactivity, compiler=compiler, result=result)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2802, in run_ast_nodes\n if self.run_code(code, result):\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2862, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"<ipython-input-21-12e74ec33d57>\", line 2, in <module>\n y_true = tf.placeholder(tf.float32, shape=[None, 10])\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py\", line 1548, in placeholder\n return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/gen_array_ops.py\", line 2094, in _placeholder\n name=name)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py\", line 767, in apply_op\n op_def=op_def)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/ops.py\", line 2630, in create_op\n original_op=self._default_original_op, op_def=op_def)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/ops.py\", line 1204, in __init__\n self._traceback = self._graph._extract_stack() # pylint: disable=protected-access\n\nInvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]\n\t [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device=\"/job:localhost/replica:0/task:0/cpu:0\"]()]]\n",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1327\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1328\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1305\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1306\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1307\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/contextlib.py\u001b[0m in \u001b[0;36m__exit__\u001b[0;34m(self, type, value, traceback)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 66\u001b[0;31m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 67\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py\u001b[0m in \u001b[0;36mraise_exception_on_not_ok_status\u001b[0;34m()\u001b[0m\n\u001b[1;32m 465\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpywrap_tensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_Message\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstatus\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 466\u001b[0;31m pywrap_tensorflow.TF_GetCode(status))\n\u001b[0m\u001b[1;32m 467\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mInvalidArgumentError\u001b[0m: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]\n\t [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device=\"/job:localhost/replica:0/task:0/cpu:0\"]()]]",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-25-1df33799cd1a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mbatch_x\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmnist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mbatch_x\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mbatch_y\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m# Evaluate the model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 895\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1122\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1123\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1124\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1125\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1126\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1320\u001b[0m return self._do_call(_run_fn, self._session, feeds, fetches, targets,\n\u001b[0;32m-> 1321\u001b[0;31m options, run_metadata)\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1323\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1338\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1339\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1340\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode_def\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1341\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1342\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_extend_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mInvalidArgumentError\u001b[0m: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]\n\t [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device=\"/job:localhost/replica:0/task:0/cpu:0\"]()]]\n\nCaused by op 'Placeholder_1', defined at:\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel_launcher.py\", line 16, in <module>\n app.launch_new_instance()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/traitlets/config/application.py\", line 658, in launch_instance\n app.start()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelapp.py\", line 477, in start\n ioloop.IOLoop.instance().start()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/ioloop.py\", line 177, in start\n super(ZMQIOLoop, self).start()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/ioloop.py\", line 888, in start\n handler_func(fd_obj, events)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n return fn(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 440, in _handle_events\n self._handle_recv()\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 472, in _handle_recv\n self._run_callback(callback, msg)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py\", line 414, in _run_callback\n callback(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tornado/stack_context.py\", line 277, in null_wrapper\n return fn(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\n return self.dispatch_shell(stream, msg)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\n handler(stream, idents, msg)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/kernelbase.py\", line 399, in execute_request\n user_expressions, allow_stdin)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/ipkernel.py\", line 196, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/ipykernel/zmqshell.py\", line 533, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2698, in run_cell\n interactivity=interactivity, compiler=compiler, result=result)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2802, in run_ast_nodes\n if self.run_code(code, result):\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/IPython/core/interactiveshell.py\", line 2862, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"<ipython-input-21-12e74ec33d57>\", line 2, in <module>\n y_true = tf.placeholder(tf.float32, shape=[None, 10])\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/array_ops.py\", line 1548, in placeholder\n return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/ops/gen_array_ops.py\", line 2094, in _placeholder\n name=name)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py\", line 767, in apply_op\n op_def=op_def)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/ops.py\", line 2630, in create_op\n original_op=self._default_original_op, op_def=op_def)\n File \"/Users/majain/anaconda3/envs/tfdeeplearning/lib/python3.5/site-packages/tensorflow/python/framework/ops.py\", line 1204, in __init__\n self._traceback = self._graph._extract_stack() # pylint: disable=protected-access\n\nInvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]\n\t [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device=\"/job:localhost/replica:0/task:0/cpu:0\"]()]]\n"
]
}
],
"source": [
"with tf.Session() as sess:\n",
" \n",
" sess.run(init)\n",
" \n",
" for step in range(1000):\n",
" \n",
" batch_x, batch_y = mnist.train.next_batch(100)\n",
" \n",
" sess.run(train, feed_dict={x:batch_x, y:batch_y})\n",
" \n",
" # Evaluate the model\n",
" correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_true,1))\n",
" \n",
" # Output will be like [True, False, True.....] --> Cast to [1.0, 0.0, 1.0.....]\n",
" acc = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))\n",
" \n",
" print(sess.run(acc,feed_dict={x:mnist.test.images,y_true:mnist.test.labels}))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment