-
-
Save 408881465/4965c612fc990f7caba4a42b261a5a08 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Code adapted from Tensorflow Object Detection Framework | |
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb | |
# Tensorflow Object Detection Detector | |
import numpy as np | |
import tensorflow as tf | |
import cv2 | |
import time | |
class DetectorAPI: | |
def __init__(self, path_to_ckpt): | |
self.path_to_ckpt = path_to_ckpt | |
self.detection_graph = tf.Graph() | |
with self.detection_graph.as_default(): | |
od_graph_def = tf.GraphDef() | |
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid: | |
serialized_graph = fid.read() | |
od_graph_def.ParseFromString(serialized_graph) | |
tf.import_graph_def(od_graph_def, name='') | |
self.default_graph = self.detection_graph.as_default() | |
self.sess = tf.Session(graph=self.detection_graph) | |
# Definite input and output Tensors for detection_graph | |
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') | |
# Each box represents a part of the image where a particular object was detected. | |
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') | |
# Each score represent how level of confidence for each of the objects. | |
# Score is shown on the result image, together with the class label. | |
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') | |
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') | |
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') | |
def processFrame(self, image): | |
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3] | |
image_np_expanded = np.expand_dims(image, axis=0) | |
# Actual detection. | |
start_time = time.time() | |
(boxes, scores, classes, num) = self.sess.run( | |
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], | |
feed_dict={self.image_tensor: image_np_expanded}) | |
end_time = time.time() | |
print("Elapsed Time:", end_time-start_time) | |
im_height, im_width,_ = image.shape | |
boxes_list = [None for i in range(boxes.shape[1])] | |
for i in range(boxes.shape[1]): | |
boxes_list[i] = (int(boxes[0,i,0] * im_height), | |
int(boxes[0,i,1]*im_width), | |
int(boxes[0,i,2] * im_height), | |
int(boxes[0,i,3]*im_width)) | |
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0]) | |
def close(self): | |
self.sess.close() | |
self.default_graph.close() | |
if __name__ == "__main__": | |
model_path = '/path/to/faster_rcnn_inception_v2_coco_2017_11_08/frozen_inference_graph.pb' | |
odapi = DetectorAPI(path_to_ckpt=model_path) | |
threshold = 0.7 | |
cap = cv2.VideoCapture('/path/to/input/video') | |
while True: | |
r, img = cap.read() | |
img = cv2.resize(img, (1280, 720)) | |
boxes, scores, classes, num = odapi.processFrame(img) | |
# Visualization of the results of a detection. | |
for i in range(len(boxes)): | |
# Class 1 represents human | |
if classes[i] == 1 and scores[i] > threshold: | |
box = boxes[i] | |
cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,0),2) | |
cv2.imshow("preview", img) | |
key = cv2.waitKey(1) | |
if key & 0xFF == ord('q'): | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment