Skip to content

Instantly share code, notes, and snippets.

View 97k's full-sized avatar
🛠️
Building AI-Tools

Aditya Kaushik 97k

🛠️
Building AI-Tools
View GitHub Profile
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@kevinzakka
kevinzakka / data_loader.py
Last active March 16, 2025 18:14
Train, Validation and Test Split for torchvision Datasets
"""
Create train, valid, test iterators for CIFAR-10 [1].
Easily extended to MNIST, CIFAR-100 and Imagenet.
[1]: https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4
"""
import torch
import numpy as np
@anatoly-kussul
anatoly-kussul / sync_async_deco.py
Last active August 24, 2024 12:08
Python sync-async decorator factory
class SyncAsyncDecoratorFactory:
"""
Factory creates decorator which can wrap either a coroutine or function.
To return something from wrapper use self._return
If you need to modify args or kwargs, you can yield them from wrapper
"""
def __new__(cls, *args, **kwargs):
instance = super().__new__(cls)
# This is for using decorator without parameters
if len(args) == 1 and not kwargs and (inspect.iscoroutinefunction(args[0]) or inspect.isfunction(args[0])):
@bartolsthoorn
bartolsthoorn / multilabel_example.py
Created April 29, 2017 12:13
Simple multi-laber classification example with Pytorch and MultiLabelSoftMarginLoss (https://en.wikipedia.org/wiki/Multi-label_classification)
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
# (1, 0) => target labels 0+2
# (0, 1) => target labels 1
# (1, 1) => target labels 3
train = []
@guillaumevincent
guillaumevincent / README.md
Last active December 9, 2024 14:37
Windows Service with Python 3.5 and pyinstaller
@karpathy
karpathy / min-char-rnn.py
Last active June 13, 2025 21:03
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
@PurpleBooth
PurpleBooth / README-Template.md
Last active June 10, 2025 23:11
A template to make good README.md

Project Title

One Paragraph of project description goes here

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

@obstschale
obstschale / octave.md
Last active April 12, 2025 00:17
An Octave introduction cheat sheet.