Last active
May 12, 2016 03:52
-
-
Save Ac2zoom/499402b4589073cb411e945755354c1f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
Train a simple deep CNN on the CIFAR10 small images dataset. | |
GPU run command: | |
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cifar10_cnn.py | |
It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs. | |
(it's still underfitting at that point, though). | |
Note: the data was pickled with Python 2, and some encoding issues might prevent you | |
from loading it in Python 3. You might have to load it in Python 2, | |
save it in a different format, load it in Python 3 and repickle it. | |
''' | |
from __future__ import print_function | |
from keras.datasets import cifar10 | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.optimizers import SGD | |
from keras.utils import np_utils | |
import cPickle as pickle | |
batch_size = 32 | |
nb_classes = 10 | |
nb_epoch = 1 | |
data_augmentation = False | |
save_model_weights = True | |
# input image dimensions | |
img_rows, img_cols = 32, 32 | |
# the CIFAR10 images are RGB | |
img_channels = 3 | |
# the data, shuffled and split between train and test sets | |
### comment the next four lines after loading data once! ### | |
cifar10_data = cifar10.load_data() | |
print('pickling data...') | |
with open('cifar10_data.p', 'wb') as f: | |
pickle.dump(cifar10_data, f) | |
### uncomment these line after loading data once! ### | |
''' | |
print('unpickling data...') | |
with open('cifar10_data.p', 'rb') as f: | |
cifar10_data = pickle.load(f) | |
''' | |
(X_train, y_train), (X_test, y_test) = cifar10_data | |
# only use the first 10000 training examples to keep training time short | |
X_train = X_train[:10000] | |
y_train = y_train[:10000] | |
print('X_train shape:', X_train.shape) | |
print(X_train.shape[0], 'train samples') | |
print(X_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
model = Sequential() | |
model.add(Convolution2D(32, 3, 3, border_mode='same', | |
input_shape=(img_channels, img_rows, img_cols))) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(6, 5, 5)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Convolution2D(6, 2, 2, border_mode='same')) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(16, 5, 5)) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(16, 5, 5)) | |
model.add(Activation('relu')) | |
model.add(Flatten()) | |
model.add(Convolution2D(120, 5, 5)) | |
model.add(Activation('relu')) | |
model.add(Flatten()) | |
model.add(Dense(84)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Activation('softmax')) | |
# let's train the model using SGD + momentum (how original). | |
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) | |
print('compiling model...') | |
model.compile(loss='categorical_crossentropy', | |
optimizer=sgd, | |
metrics=['accuracy']) | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train /= 255 | |
X_test /= 255 | |
print('fitting model...') | |
if not data_augmentation: | |
print('Not using data augmentation.') | |
hist = model.fit(X_train, Y_train, | |
batch_size=batch_size, | |
nb_epoch=nb_epoch, | |
validation_data=(X_test, Y_test), | |
shuffle=True, | |
verbose=1) | |
with open('history.p', 'wb') as f: | |
pickle.dump(hist.history, f) | |
json_model = model.to_json() | |
with open('model_architecture.json', 'w') as f: | |
f.write(json_model) | |
if save_model_weights: | |
model.save_weights('model_weights.h5', overwrite=True) | |
print('Done training!') | |
print('History dict saved in "history.p".') | |
print('Model architecture saved in "model_architecture.json".') | |
else: | |
print('Using real-time data augmentation.') | |
# this will do preprocessing and realtime data augmentation | |
datagen = ImageDataGenerator( | |
featurewise_center=False, # set input mean to 0 over the dataset | |
samplewise_center=False, # set each sample mean to 0 | |
featurewise_std_normalization=False, # divide inputs by std of the dataset | |
samplewise_std_normalization=False, # divide each input by its std | |
zca_whitening=False, # apply ZCA whitening | |
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180) | |
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) | |
height_shift_range=0.1, # randomly shift images vertically (fraction of total height) | |
horizontal_flip=True, # randomly flip images | |
vertical_flip=False) # randomly flip images | |
# compute quantities required for featurewise normalization | |
# (std, mean, and principal components if ZCA whitening is applied) | |
datagen.fit(X_train) | |
# fit the model on the batches generated by datagen.flow() | |
hist = model.fit_generator(datagen.flow(X_train, Y_train, | |
batch_size=batch_size), | |
samples_per_epoch=X_train.shape[0], | |
nb_epoch=nb_epoch, | |
validation_data=(X_test, Y_test), | |
verbose=1) | |
with open('history.p', 'wb') as f: | |
pickle.dump(hist.history, f) | |
json_model = model.to_json() | |
with open('model_architecture.json', 'w') as f: | |
f.write(json_model) | |
if save_model_weights: | |
model.save_weights('model_weights.h5', overwrite=True) | |
print('Done training!') | |
print('History dict saved in "history.p".') | |
print('Model architecture saved in "model_architecture.json".') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment