I hereby claim:
- I am andreacensi on github.
- I am censi (https://keybase.io/censi) on keybase.
- I have a public key ASBPicgZnGg8zvpehewAG33k8DYg1nz_nJBEQ0XFGVVZKwo
To claim this, I am signing this object:
| -- Auto-generated Lean 4 code from OpenAPI schema | |
| import Lean.Data.Json | |
| import Std.Data.TreeMap | |
| set_option maxHeartbeats 1000000 | |
| namespace Format2 | |
| #0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50 | |
| #1 0x00007facab77e537 in __GI_abort () at abort.c:79 | |
| #2 0x00007facab77e40f in __assert_fail_base (fmt=0x7facab8e7128 "%s%s%s:%u: %s%sAssertion `%s' failed.\n%n", | |
| assertion=0x7faca89efb98 "(value) != ((void *)0)", | |
| file=0x7faca89ef570 "/tmp/.local/lib/python3.10/site-packages/nuitka/build/include/nuitka/helper/dictionaries.h", line=275, function=<optimized out>) | |
| at assert.c:92 | |
| #3 0x00007facab78d662 in __GI___assert_fail (assertion=0x7faca89efb98 "(value) != ((void *)0)", | |
| file=0x7faca89ef570 "/tmp/.local/lib/python3.10/site-packages/nuitka/build/include/nuitka/helper/dictionaries.h", line=275, | |
| function=0x7faca89efd50 <__PRETTY_FUNCTION__.9> "UPDATE_STRING_DICT0") at assert.c:101 | |
| #4 0x00007faca893988e in UPDATE_STRING_DICT0 (dict=0x7faca8a88af0, key=<unknown at remote 0x7facaba4ec10>, value='__spec__') |
| These videos are unused: | |
| \linkvideo{spring2021-functorial-comp-a:design-queries} % Design queries | |
| \linkvideo{spring2021-functorial-comp-a:optimization-semantics} % Optimization semantics | |
| \linkvideo{spring2021-functorial-comp-a:how-cat-helps} % How can category theory help? | |
| \linkvideo{spring2021-functorial-comp-a:patterns} % Looking for patterns | |
| \linkvideo{spring2021-functorial-comp-a:compositionality} % Looking for compositionality | |
| \linkvideo{spring2021-functorial-comp-a:from-math-to-impl} % From math to implementation | |
| \linkvideo{spring2021-functorial-comp-a:solving-codesign} % Solving co-design problems | |
| \linkvideo{spring2021-functorial-comp-b:solving-queries} % Solving DP queries | |
| \linkvideo{spring2021-functorial-comp-b:solving-queries:solving-series} % Series composition |
| \linkvideo{spring2021-intro:why-cat-theory} % Why category theory? | |
| \linkvideo{spring2021-intro:composition} % Composition | |
| \linkvideo{spring2021-semi-mon-gro:summary} % Summary | |
| \linkvideo{spring2021-morphisms:functions-nomenclature} % Functions nomenclature | |
| \linkvideo{spring2021-morphisms:morphisms} % Morphisms | |
| \linkvideo{spring2021-morphisms:morphisms:semigroup-morphisms} % Semigroup morphisms | |
| \linkvideo{spring2021-morphisms:morphisms:semigroup-morphisms:semigroup-isomorphisms} % Semigroup isomorphisms | |
| \linkvideo{spring2021-morphisms:morphisms:semigroup-morphisms:ascii} % ASCII encoding | |
| \linkvideo{spring2021-morphisms:morphisms:semigroup-morphisms:morse} % Morse encoding | |
| \linkvideo{spring2021-morphisms:morphisms:monoid-morphisms} % Monoid morphisms |
| import base64 | |
| import hashlib | |
| import base58 | |
| import multihash | |
| ipfs_id_output = { | |
| "ID": "QmTn4XvjcA2ZCaWmr3fRZ3MKVj4CzTNVZyjY16Dni5NFc2", | |
| "PublicKey": "CAASpgIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDp5zHxCAqW6mU4bKvwhi2TCZwdga5IkhdTxHnIA9IdagB/IevNhe0O+O7Rc7czC+0tqWLLDS99oM1FjDqmHbMGiGsEmsVDrkWgx4d7+aHaHQWzNvxTd96gP6mY/ww6tvA5k6Tnow6pgUGvIl32GYDd+n4XqWnt/heoDXTenASnXh7aEBMhXXosZelxme6Bfwqmd0YO/Y4J1oNeHprgzJlZ901AwpcITfZCQuUCiGyot72kmD5wdAQu31KMXI0Rf7rMr20cnQI5SE9hoXR7NWtZ3zEg+4ODsP2ssn7QcIepm7WXeb1EO9GXsL6eMqkDSiVmUF23h5BJDirucZ7fDnPHAgMBAAE=", | |
| "Addresses": [ |
I hereby claim:
To claim this, I am signing this object:
| Docker loginNo docker credentials provided, skipped docker login | |
| Docker pull shippable/minv2:latestPulling image (latest) from shippable/minv2, | |
| Pulling image (latest) from shippable/minv2, endpoint: https://registry-1.docker.io/v1/, | |
| Pulling dependent layers, | |
| Download complete, | |
| Download complete, | |
| Download complete, | |
| Download complete, | |
| Download complete, | |
| Download complete, |
| def xcorr(a, b=None, maxlag=None): | |
| if b is None: | |
| b = a | |
| a = numpy.array(a) | |
| b = numpy.array(b) | |
| if maxlag is None: | |
| maxlag = len(a) / 2 |
| def xcorr(a, b=None, maxlag=None): | |
| if b is None: | |
| b = a | |
| a = numpy.array(a) | |
| b = numpy.array(b) | |
| if maxlag is None: | |
| maxlag = len(a) / 2 | |