Created
August 2, 2012 12:27
-
-
Save BYVoid/3236675 to your computer and use it in GitHub Desktop.
线性规划与网络流24题-圆桌问题
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Problem: 线性规划与网络流24题 #5 圆桌问题 | |
* Author: Guo Jiabao | |
* Time: 2009.6.27 12:59 | |
* State: Solved | |
* Memo: 网络最大流 二分图多重匹配 | |
*/ | |
#include <iostream> | |
#include <cstdio> | |
#include <cstdlib> | |
#include <cmath> | |
#include <cstring> | |
using namespace std; | |
const int MAXN=150+270+3,MAXM=150*270*2+MAXN*2,INF=~0U>>1; | |
struct edge | |
{ | |
edge *next,*op; | |
int t,c; | |
}*V[MAXN],*P[MAXN],ES[MAXM],*Stae[MAXN]; | |
int N,M,S,T,EC,Ans,Maxflow,Total; | |
int Lv[MAXN],Stap[MAXN]; | |
inline void addedge(int a,int b,int c) | |
{ | |
ES[++EC].next = V[a]; V[a]=ES+EC; V[a]->t=b; V[a]->c=c; | |
ES[++EC].next = V[b]; V[b]=ES+EC; V[b]->t=a; V[b]->c=0; | |
V[a]->op = V[b]; V[b]->op = V[a]; | |
} | |
void init() | |
{ | |
int i,j,c; | |
freopen("table.in","r",stdin); | |
freopen("table.out","w",stdout); | |
scanf("%d%d",&M,&N); | |
S=0; T=N+M+1; | |
for (i=1;i<=M;i++) | |
{ | |
scanf("%d",&c); | |
Total += c; | |
addedge(S,i,c); | |
} | |
for (i=1;i<=N;i++) | |
{ | |
scanf("%d",&c); | |
addedge(i+M,T,c); | |
} | |
for (i=1;i<=M;i++) | |
for (j=N;j>=1;j--) | |
addedge(i,j+M,1); | |
} | |
bool Dinic_Label() | |
{ | |
int head,tail,i,j; | |
Stap[head=tail=0]=S; | |
memset(Lv,-1,sizeof(Lv)); | |
Lv[S]=0; | |
while (head<=tail) | |
{ | |
i=Stap[head++]; | |
for (edge *e=V[i];e;e=e->next) | |
{ | |
j=e->t; | |
if (e->c && Lv[j]==-1) | |
{ | |
Lv[j] = Lv[i]+1; | |
if (j==T) | |
return true; | |
Stap[++tail] = j; | |
} | |
} | |
} | |
return false; | |
} | |
void Dinic_Augment() | |
{ | |
int i,j,delta,Stop; | |
for (i=S;i<=T;i++) | |
P[i] = V[i]; | |
Stap[Stop=1]=S; | |
while (Stop) | |
{ | |
i=Stap[Stop]; | |
if (i!=T) | |
{ | |
for (;P[i];P[i]=P[i]->next) | |
if (P[i]->c && Lv[i] + 1 == Lv[j=P[i]->t]) | |
break; | |
if (P[i]) | |
{ | |
Stap[++Stop] = j; | |
Stae[Stop] = P[i]; | |
} | |
else | |
Stop--,Lv[i]=-1; | |
} | |
else | |
{ | |
delta = INF; | |
for (i=Stop;i>=2;i--) | |
if (Stae[i]->c < delta) | |
delta = Stae[i]->c; | |
Maxflow += delta; | |
for (i=Stop;i>=2;i--) | |
{ | |
Stae[i]->c -= delta; | |
Stae[i]->op->c += delta; | |
if (Stae[i]->c==0) | |
Stop = i-1; | |
} | |
} | |
} | |
} | |
void Dinic() | |
{ | |
while (Dinic_Label()) | |
Dinic_Augment(); | |
} | |
void print() | |
{ | |
if (Total == Maxflow) | |
{ | |
printf("1\n"); | |
for (int i=1;i<=M;i++) | |
{ | |
for (edge *e=V[i];e;e=e->next) | |
if (e->c == 0 && e->t !=S) | |
printf("%d ",e->t-M); | |
putchar('\n'); | |
} | |
} | |
else | |
printf("0\n"); | |
} | |
int main() | |
{ | |
init(); | |
Dinic(); | |
print(); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment