Last active
April 18, 2022 03:12
-
-
Save BachiLi/89c702f246d9ed5c2299f8a13753c61c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import jax.numpy as np | |
import skimage | |
import skimage.io | |
import matplotlib.pyplot as plt | |
import math | |
lambda_d = 1 | |
img = skimage.img_as_float(skimage.io.imread('cameraman.png')) | |
grad_x = np.roll(img, 1, axis=[1]) - img | |
grad_y = np.roll(img, 1, axis=[0]) - img | |
img_freq = np.fft.fft2(img) | |
grad_x_freq = np.fft.fft2(grad_x) | |
grad_y_freq = np.fft.fft2(grad_y) | |
sx = np.fft.fftfreq(img.shape[1]) | |
sx = np.repeat(sx, img.shape[0]) | |
sx = np.reshape(sx, [img.shape[1], img.shape[0]]) | |
sx = np.transpose(sx) | |
sy = np.fft.fftfreq(img.shape[0]) | |
sy = np.repeat(sy, img.shape[1]) | |
sy = np.reshape(sy, img.shape) | |
# Fourier transform of shift operators | |
Dx_freq = 2 * math.pi * (np.exp(-1j * sx) - 1) | |
Dy_freq = 2 * math.pi * (np.exp(-1j * sy) - 1) | |
my_grad_x_freq = Dx_freq * img_freq | |
my_grad_y_freq = Dy_freq * img_freq | |
my_grad_x = np.real(np.fft.ifft2(my_grad_x_freq)) | |
my_grad_y = np.real(np.fft.ifft2(my_grad_y_freq)) | |
# my_grad_x_freq & my_grad_y_freq should be the same as grad_x_freq & grad_y_freq | |
recon_freq = (lambda_d * img_freq + np.conjugate(Dx_freq) * grad_x_freq + np.conjugate(Dy_freq) * grad_y_freq) / \ | |
(lambda_d + (np.conjugate(Dx_freq) * Dx_freq + np.conjugate(Dy_freq) * Dy_freq)) | |
recon = np.real(np.fft.ifft2(recon_freq)) | |
plt.figure() | |
plt.imshow(np.log(np.absolute(np.fft.fftshift(img_freq)) + 1), vmin = 0, vmax = 15) | |
plt.figure() | |
plt.imshow(np.log(np.absolute(np.fft.fftshift(grad_x_freq)) + 1), vmin = 0, vmax = 15) | |
plt.figure() | |
plt.imshow(np.log(np.absolute(np.fft.fftshift(grad_y_freq)) + 1), vmin = 0, vmax = 15) | |
plt.figure() | |
plt.imshow(np.log(np.absolute(np.fft.fftshift(my_grad_x_freq)) + 1), vmin = 0, vmax = 15) | |
plt.figure() | |
plt.imshow(np.log(np.absolute(np.fft.fftshift(my_grad_y_freq)) + 1), vmin = 0, vmax = 15) | |
plt.figure() | |
plt.imshow(np.log(np.absolute(np.fft.fftshift(recon_freq)) + 1), vmin = 0, vmax = 15) | |
plt.figure() | |
plt.imshow(recon) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment